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The diffusion tensor is typically assumed to be positive definite.
However, noise in the measurements may cause the eigenval-
ues of the tensor estimate to be negative, thereby violating this
assumption. Negative eigenvalues in diffusion tensor imaging
(DTI) data occur predominately in regions of high anisotropy
and may cause the fractional anisotropy (FA) to exceed unity.
Two constrained least squares methods for eliminating nega-
tive eigenvalues are explored. These methods, the constrained
linear least squares method (CLLS) and the constrained nonlin-
ear least squares method (CNLS), are compared with other
commonly used algebraic constrained methods. The CLLS ten-
sor estimator can be shown to be equivalent to the linear least
squares (LLS) tensor estimator when the LLS tensor estimate is
positive definite. Similarly, the CNLS tensor estimator can be
shown to be equivalent to the nonlinear least squares (NLS)
tensor estimator when the NLS tensor estimate is positive def-
inite. The constrained least squares methods for eliminating
negative eigenvalues are evaluated with both simulations and in
vivo human brain DTI data. Simulation results show that the
CNLS method is, in terms of mean squared error for estimating
trace and FA, the most effective method for correcting negative
eigenvalues. Magn Reson Med 55:930–936, 2006. Published
2006 Wiley-Liss, Inc.†
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Water diffusion as measured by diffusion tensor imaging
(DTI) is a unique noninvasive approach to investigate and
characterize the microstructural properties of biologic tis-
sues (1–4). Several rotationally invariant scalar measures
have been constructed to extract important information
from the diffusion tensors (3,5,6). The most common ten-
sor-derived scalar measures are the fractional anisotropy
(FA) and the trace of the diffusion tensor (6,7). Interpreta-
tions and comparisons of these scalar measures are influ-
enced by the accuracy of the diffusion tensor estimates.

Measurement noise can cause errors in the diffusion tensor
estimates. If the measurement errors from noise, physio-
logic fluctuations, and image misregistration are large
enough, the diffusion tensor estimate may not be positive
definite. Further, these measurement errors may cause the
FA, which in theory should range from zero to 1, to exceed
1, particularly in regions with high diffusion anisotropy
such as the corpus callosum and the corticospinal tract.

In the present study, we describe two constrained least
squares methods [the constrained linear least squares
method (CLLS) and the constrained nonlinear least
squares method (CNLS)] for eliminating the negative eig-
envalues. These constrained methods can be recast as the
unconstrained optimization methods through the
Cholesky parametrization for the diffusion tensor; the
Cholesky parametrization is one of the unconstrained pa-
rametrizations for variance–covariance matrices discussed
by Pinheiro and Bates (8). Within the context of DTI, the
Cholesky parametrization has been used in combination
with an adaptive smoothing technique by Wang et al. (9).
However, this previous study did not specifically investi-
gate the effect of constraint satisfaction on the quantitative
accuracy of the tensor-derived quantities. In this study, the
CLLS and CNLS methods were evaluated and compared
with other algebraic constrained methods using both mea-
sured human brain DTI data and Monte Carlo simulations.
Three algebraic constrained methods are explored in this
work. The first algebraic constrained method is a pre-
estimation method that replaces the measured diffusion-
weighted signals that are greater than the reference (mea-
sured non-diffusion-weighted) signal with the reference
signal. The second method is a postestimation method that
replaces the negative eigenvalues with zero. The last
method is also a postestimation method that replaces the
negative eigenvalues with their absolute values.

Based on the simulation studies, the nonlinear methods
(nonlinear least squares (NLS) and CNLS) have lower
mean squared errors in estimating the trace and FA than
the linear methods (linear least squares (LLS) and CLLS)
and other algebraic constrained methods listed above. Fur-
ther, the CNLS method has lower mean squared errors in
estimating the trace and FA than the NLS method.

THEORY AND METHODS

In a DT-MRI experiment, the measured signal in a single
voxel may be modeled as (1,2,10)

S � S0exp� � bgTDg), [1]

where the measured signal is a function of the diffusion
encoding unit vector g, the reference signal S0, and the
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diffusion weighting b. The superscript T denotes vector
transpose (g � [gx gy gz]

T being a column vector). The
diffusion tensor D is a 3 by 3 symmetric positive definite
tensor.

At a particular pixel location, let Si and gi (with i � 1,. . .
N) be the measured diffusion-weighted signal and the dif-
fusion encoding unit vector in the ith diffusion gradient
direction, respectively. The number of encoding directions
is N. Rewriting Eq. [1] for each diffusion-weighted signal,
we have

Si � S0exp� � bgi
TDgi�, with i � 1, . . . ,N. [2]

For a measured set of Si values, there are several ap-
proaches for estimating the diffusion tensor. They are
briefly reviewed here.

A solution to Eq. [2] may be obtained by using NLS
method with the following objective function to be mini-
mized:

fNLS��� �
1
2�

i�1

N �Si � S0exp��
j�1

6

Xij�j��2

, [3]

where

� � �Dxx Dyy Dzz Dxy Dyz Dxz�
T [4]

is a vector representation of the diffusion tensor and

X � � b� g1x
2 g1y

2 g1z
2 2g1xg1y 2g1yg1z 2g1xg1z···

···
···

···
···

···
gNx

2 gNy
2 gNz

2 2gNxgNy 2gNygNz 2gNxgNz

�
[5]

is the encoding gradient design matrix. General minimiza-
tion routines can be used to solve the NLS problem in Eq.
[3] but most routines need a good starting value (guess
solution). Fortunately, one of the advantages of a trans-
formably linear model is the ease of finding a starting value
(11). Since the DTI model is a transformably linear model,
dividing both sides of Eq. [2] by the reference signal S0 and
then taking the natural log on both sides of this equation
yields a linearized equation of the following form:

ln�Si/S0� � � bgi
TDgi, with i � 1, . . . ,N. [6]

In the context of DTI, the starting value can be obtained by
working with the linearized equation shown in Eq. [6].
Working with Eq. [6] leads to the LLS problem with the
following objective function to be minimized:

fLLS��� �
1
2

�y � X��2 �
1
2�

i�1

N

�yi � �
j�1

6

Xij�j�
2, [7]

where

y � [ln�Si/S0�· · ·ln�SN/S0�]T.

The solution to the LLS problem may also be written
explicitly as

�̂ � [XTX]�1XTy � X�y, [8]

where �̂ denotes the linear squares estimator of � and X�

denotes the pseudoinverse of X (12). The LLS method is
mostly widely used, although the NLS method has been
applied as well. The theoretical analysis of the effects of
noise on the linearized equation, Eq. [7], was explored by
Anderson (13). The work of Papadakis et al. (14) focused
on the nonlinear equation, Eq. [3], in constructing a new
measure of curve fitting error. Outlier rejection methods
working with both equations, Eqs. [3] and [7], were used
by Mangin et al. (15) and Chang et al. (16).

Negative Eigenvalue Problems and Constrained Solutions

To model a diffusion process, the diffusion tensor is as-
sumed to be symmetric positive definite (PD)—in other
words the eigenvalues of the diffusion tensor estimate
must be real and positive. The real eigenvalue condition
on the diffusion tensor estimate is automatically satisfied
based on the structure of the design matrix, X, in Eq. [5].
However, the positive eigenvalue condition may not be
satisfied and enforcing the condition requires more elabo-
rate constraints not on the design matrix X but on the
diffusion tensor parameter vector, �. One such approach is
known as the Cholesky parametrization (8). The Cholesky
parametrization states that if R is an upper triangular ma-
trix with nonzero diagonal elements

R � � R0 R3 R5

0 R1 R4

0 0 R2

�, [9]

and D � RTR, then D will be a symmetric positive definite
matrix. Consequently, the diffusion tensor parameter vec-
tor � may be written as a vector-valued function of

� � �R0 R1 R2 R3 R4 R5�
T;

�(�) � �R0
2,R1

2 � R3
2,R2

2 � R4
2 � R5

2,R0R3,R1R4 � R3R5,R0R5�
T.

[10]

Rewriting Eqs. [3] and [7] in terms of �, we have two
objective functions,

fCNLS(�) �
1
2�

i�1

N �Si � S0exp��
j�1

6

Xij����j��2

[11]

for the CNLS estimation and

fCLLS(�)�
1
2�

i�1

N

�yi��
j�1

6

Xij�(��j)2 [12]

for the CLLS estimation. Any unconstrained optimization
routine may be used to solve Eqs. [11] and [12] (18).
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The equivalence between the LLS estimate and the CLLS
estimate, when the LLS estimate is positive definite, is
established in the Appendix. Similarly, the CNLS estimate
may be shown to be equivalent to the NLS estimate when
the NLS estimate is positive definite. Definiteness of a
tensor estimate can be determined by a condition that does
not require tensor diagonalization. That is, D is positive
definite if and only if the determinants of all the leading
principal submatrices of D are positive (17),

Dxx � 0, �DxxDyy � Dxy
2 � � 0, and det(D) 	 0, [13]

where det(D) denotes the matrix determinant of D.
Given the conditions in Eq. [13] and the equivalence

conditions above, we know the exact situation when the
constrained methods (CLLS and CNLS) are needed. This
insight will facilitate efficient DTI data processing because
it is computationally more efficient to employ the uncon-
strained methods (LLS or NLS) than the constrained meth-
ods (CLLS or CNLS). Particularly, the LLS method is more
efficient than the CLLS method by at least a factor of 2 or
more, if one takes into account the initialization needed
for the CLLS method and the number of iterations needed
to achieve convergence.

Fractional Anisotropy Anomaly

The fractional anisotropy anomaly refers to the situation
when the FA value is greater than unity. The upper bound
for the FA value is often assumed to be unity; this assump-
tion is only true if the diffusion tensor estimate is positive
definite. A commonly used formula for FA is written as
(6,20)

FA �
�3��
1 � �
��2 � �
2 � �
��2 � �
3 � �
��2�

�2�
1
2 � 
2

2 � 
3
2�

� �3
2�1 �

1
3

Tr�D)2

Tr(D2)� , [14]

where 
i with i � 1,2,3 are the eigenvalues of the diffusion
tensor, 
 
 	 is the mean value of these eigenvalues, and
the symbol Tr denotes the trace operation.

According to Eq. [14], FA greater than unity is equiva-
lent to the condition


1
2 � 
1
3 � 
2
3 � 0. [15]

Equation [15] implies that there is at least one but no more
than two negative eigenvalues in the diffusion tensor esti-
mate; however, the converse is not generally true because
the validity of Eq. [15] depends on the size of the negative
eigenvalues.

Simulations

Monte Carlo simulations (similar to Pierpaoli et al. (6))
were performed to investigate the effects of noise on the
trace and FA estimates and to evaluate the performance of
various estimators in terms of the mean squared errors in
estimating both FA and trace. The frequencies of non-
positive definite (nonPD) tensor estimates from both LLS

and NLS algorithms as a function of SNR and FA were
investigated.

In the mean squared error analysis, the least squares
methods (LLS, NLS, CLLS, and CNLS) were evaluated and
compared with the other constrained algebraic methods.
Listed here are three algebraic constrained methods con-
sidered in this article.

LLS II

This is a pre-estimation method that replaces the mea-
sured diffusion-weighted signals that are greater than the
reference signal with the reference signal itself. The LLS
method will be used to estimate the diffusion tensor based
on the modified measured diffusion-weighted signals.

ZERO

This is a postestimation method that replaces the negative
eigenvalues with zero.

ABS

This is also a postestimation method that replaces the
negative eigenvalues with their absolute values.

As mentioned earlier, the only difference between the
LLS estimate and the CLLS estimate (or between the NLS
estimate and the CNLS estimate) lies in the case when the
LLS estimate (or the NLS estimate) is not positive definite.
Furthermore, as FA increases, so does the frequency of
nonPD tensors, making simulations with high FA values
(	0.4) and low SNR levels (
50) more appropriate in
investigating this difference. Particularly, three cylindri-
cally symmetric tensors of FA 0.358, 0.864, and 0.962 were
selected in the Results. The numerical values of these
simulated tensors are � � {1.045e-3, 5.721e-4, 5.721e-4, 0,
0, 0},{1.758e-3, 2.158e-4, 2.158e-4, 0, 0, 0},and {2.041e-3,
7.433e-5, 7.433e-5, 0, 0, 0} mm2/s. These three FA values
were selected to show both the effects of nonPD tensors on
the FA and trace estimates and the equivalence of various
methods of estimation. A low FA value (0.358) was chosen
to show the equivalence of various methods discussed
above, i.e., between NLS and CNLS and between CLLS and
LLS. Two relatively high FA values (0.864 and 0.962) were
chosen to show the effects of nonPD tensor estimates on
the estimated values of FA and trace. A single diffusion
weighting of 1000 s/mm2 was used in the simulation stud-
ies because the effects of the noise floor on tensor estimates
at this diffusion weighting are minimal and less critical.
The effects of the noise floor on tensor estimates have been
investigated by Jones and Basser (19).

Human Brain Imaging Experiment

DT-MRI studies were performed on a human volunteer
using a Signa 3.0 T scanner (General Electric Medical
Systems, Milwaukee, WI, USA). Informed consent was
obtained from the subject in accordance with the guide-
lines of our institutional review board for human subject
studies. A cardiac-gated, pulsed-gradient, spin echo with
single-shot EPI readout was used for DW imaging. The set
of encoding directions used in this experiment has 12
directions. The width, spacing, and amplitude of the dif-
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fusion gradient pulses were 25 ms, 36 ms, and 30 mT/m
yielding a b value of 1113.91 s/ mm2. Other imaging pa-
rameters were TR � 4.68 s, TE � 79.5 ms, field of view �
240 � 240 mm2, number of slices � 5, slice thickness �
4 mm, and each DW and nonDW image is an average image
of three magnitude images. The signal-to-noise ratio
(SNR � signal amplitude/SD of noise) taken from the
nonDW image was approximately 19.19 � 6.85 as deter-
mined from several patches of small ROIs of the brain.

RESULTS

Figure 1a shows an FA map computed based on the LLS
method and Fig. 1b shows a magnified image of the FA
map with colored areas indicating the nonPD LLS tensor
estimates. The eigenvalues of these nonPD LLS tensor
estimates are shown in Fig. 2. The item numbers shown in
Figs. 2 and 3 correspond to the voxel numbers indicated in
Fig. 1b. Various estimation methods (LLS II, CLLS, NLS,
and CNLS) are also used in calculating the eigenvalue
estimates shown in Fig. 2. Figure 2 shows that some of the
NLS estimates (Item 5–13 in Fig. 2) are positive definite
even though the corresponding LLS estimates are not. The
FA values and the trace values are shown in Figs. 3a and b,
respectively. The CNLS estimates and the NLS estimates
are observed to be equivalent when the NLS estimates are
positive definite (Item 5–13 in Figs. 2 and 3). This obser-
vation agrees with the equivalence condition on the NLS
and CNLS tensor estimates mentioned in Section 2.1.

Figure 4 shows the frequency of nonPD tensor estimates
for simulations as a function of SNR and FA for both the
LLS method and the NLS method. This plot clearly illus-
trates that the NLS method has much lower likelihood of
nonPD tensor estimation. This result is similar to the ob-
servation made on the human brain data in Fig. 2. The
simulated effects of the algorithms on the estimated values
of FA and trace as a function of SNR are shown in Figs. 5
and 6, respectively. Based on the results shown in Figs. 5
and 6, the CNLS method has the lowest mean squared
errors in estimating either trace or FA.

DISCUSSION

The aim of this study was to demonstrate the effects of
non-positive definite tensors on the quantitative diffusion

tensor measures (FA and trace) and to explore various
methods for solving this problem. All methods except the
LLS II were effective in eliminating negative eigenvalues,
although they were not equivalent in terms of accuracy
and stability. The constrained least squares methods
(CLLS and CNLS) provide a simple generalization to the
usual least squares methods used in DTI so that the nega-
tive eigenvalue problem can be solved objectively rather
than using ad hoc methods to correct this problem. The
constrained least squares methods (CLLS and CNLS) use
the Cholesky parametrization, which constrains the esti-
mated tensors to be positive definite.

The incidence of nonPD diffusion tensors is ultimately
linked to the diffusion anisotropy, diffusion weighting,
and SNR. From Fig. 4, it is clear that the rate of nonPD
tensor estimates is much lower for NLS relative to LLS.
This observation coupled with the recent study by Jones
and Basser (19), which demonstrated that NLS methods
produce more accurate estimates than LLS methods, pro-
vides converging evidence that NLS methods are better for
diffusion tensor estimation.

According to Fig. 2, both CLLS and CNLS result in
minor eigenvalue estimates that are close to zero when the
respective LLS and NLS algorithms produce negative eig-
envalues. Note that this is similar to the ZERO algorithm,
except that the CLLS and CNLS adjust the other eigenval-
ues as well. Figures 5 and 6 show that CLLS has similar yet
slightly more accurate behavior relative to the ZERO
method. The CNLS appears to be the most accurate and
stable method, especially at low SNR. However, it should
be noted that for all algorithms the SNR is the main lim-
iting factor in terms of accuracy and stability and the CNLS
does not correct for all the problems related to low SNR.
Since the nonPD cases are caused by errors in the minor
eigenvalue estimates, the algorithms do not significantly
alter major eigenvector direction. The maximum differ-
ence in the vector direction between algorithms was 2.3°
(not shown).

The focus of this study was to investigate various post-
processing methods of solving the negative eigenvalue
problem with the assumption that Johnson RF (Gaussian)
noise is the principal factor contributing to the problem. If
this assumption is valid, then it can be concluded that the
CNLS method is the most effective method among those
considered here in treating the negative eigenvalue prob-

FIG. 1. (a) The FA map and (b) the magni-
fied region of FA map. Areas where the LLS
estimates are not positive definite are indi-
cated in red. The numbering shown in (b)
corresponds to the item number listed in
Figs. 2 and 3.
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lem in the sense that it has the lowest mean squared errors
in estimating FA and trace. Nevertheless, further studies
are needed to investigate other factors encountered in a
biologic or clinical setting including partial volume ef-
fects, physiologic noise, susceptibility, DW image misreg-
istration, and hardware errors.

CONCLUSION

The NLS method resulted in fewer nonpositive definite
tensors than the linear least squares method, and the con-
strained nonlinear least squares (CNLS) method demon-
strated the lowest mean squared errors in estimating FA
and trace.

APPENDIX

The solution obtained by the SVD method is equivalent to
that of the CLLS method when the tensor matrix D is
positive definite.

Rewriting Eq. [12] as

f(�(�)) �
1
2

�y � X��(�)�2, [A1]

we can think of transforming the constrained case to the
unconstrained case as a change of variables. Using the
basic chain rule and setting the derivative of the function
with respect to �i for all l to zero we have

FIG. 3. The estimated FA and trace values of the nonPD tensors of
Fig. 1b. (a) The plot of the estimated FA. (b) The plot of the estimated
trace.

FIG. 2. The eigenvalue estimates of the nonPD tensors of Fig. 1b.
Several methods of tensor estimation are used in computing the
eigenvalue estimates. These methods are LLS, NLS, LLSII, CLLS,
and CNLS. The plots of major, medium, and minor eigenvalue
estimates are shown in (a), (b), and (c), respectively.
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�f��(��)
��l

� �
i

�f���

��i

��i

��l
� 0 [A2]

or

�
��1

��1
· · ·

��m

��1···
· · ·

···
��1

��n
· · ·

��m

��n

	�
�f���

��1···
�f���

��m

	 � � 0
···
0
�. [A3]

The matrix above is known as the transpose of the Jacobian
matrix. If the Jacobian matrix is invertible then the vector
on the left-hand side of [A3] must be a zero vector. There-

FIG. 4. Relative frequency of nonPD tensor estimates as a function
of FA and SNR. The red lines denote the relative frequency of the
nonPD LLS tensor estimates whereas the blue lines denote the
relative frequency of the nonPD NLS tensor estimates. At each FA
value and SNR level, 10000 simulated tensors were used in com-
puting the relative frequencies.

FIG. 5. Mean squared error in estimating FA as a function of SNR.
Ten thousand simulated tensors were generated for the simulation
at each FA value and SNR level. (Top) FA � 0.358, (middle) FA �
0.864, and (bottom) FA � 0.962. CNLS is uniformly better in terms
of MSE than all other methods considered in this study.

FIG. 6. Mean squared error in estimating trace as a function of
SNR. Ten thousand simulated tensors were generated for each FA
value and SNR level with the same trace. (Top) FA � 0.358, (middle)
FA � 0.864, and (bottom) FA � 0.962. Again, CNLS is uniformly
better in terms of MSE than all other methods considered in this
study.
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fore, this leads to the defining relation for the LLS method.
That is,

�
�f���

��1···
�f���

��m

	 � � 0
···
0
�. [A4]

For the specific mapping of �(�) in Eq. [10], the Jacobian
matrix is a square matrix and its determinant is nonzero if
R0, R1, and R2 are nonzero. Specifically, the determinant of
the Jacobian matrix is 8(R0)3(R1)2(R2)1.
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