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We review several methods that have been developed to infer microstructural and physiological information
about isotropic and anisotropic tissues from diffusion weighted images (DWIs). These include Diffusion Imaging
(DI), Diffusion Tensor Imaging (DTI), isotropically weighted imaging, and g-space imaging. Just as DI provides
useful information about molecular displacements in one dimension with which to characterize diffusion in
isotropic tissues, DTI provides information about molecular displacements in three dimensions needed to
characterize diffusion is anisotropic tissues. DTI also furnishes scalar parameters that behave like quantitative
histological or physiological ‘stains’ for different features of diffusion. These include Trace(D), which is related
to the mean diffusivity, and a family of parameters derived from the diffusion tensor, D, which characterize
different features of anisotropic diffusion. Simple thought experiments and geometrical constructs, such as the
diffusion ellipsoid, can be used to understand water diffusion in isotropic and anisotropic media, and the NMR

experiments used to characterize it.

INTRODUCTION

Diffusion imaging (DI), which was first realized in 1985,
represents a landmark contribution in the history of NMR.
Diffusion imaging consists of estimating an effective scalar
diffusivity* from a set of diffusion weighted images (DWIs).
As such, DI is one of only a handful of MRI modalities that
provides a measurement or map of a fundamental physical
quantity. The myriad of applications and the underlying
principles of diffusion imaging are well known to many MR
practitioners, and are the subjects of a number of excellent
books and review articles.*’

In this review we examine several new approaches to
inferring microstructural and/or physiological information
about tissues from diffusion weighted images. We will focus
particularly on new methods to characterize diffusion in
anisotropic tissues such as brain white matter, kidney, and
skeletal and cardiac muscle, in which the apparent diffusion
coefficient (ADC) has been observed to vary with the
tissue’s orientation.*"® In these tissues diffusion imaging,
which measures one-dimensional molecular displacements,
inherently does not provide enough information to charac-
terize the three-dimensional translational displacements of
protons (or other labeled nuclei). We will also describe
different models relating molecular displacement and the
measured NMR signal in tissues and their uses (and abuses)
in interpreting diffusion weighted images and spectra
(particularly their use in characterizing the degree of
isotropic or anisotropic diffusion in tissues). Moreover, we
will examine several new approaches to inferring informa-
tion about tissue orientation from DWIs and diffusion
spectra. We will not, however, describe the gradient
hardware, the sequences used to acquire DWIs and other
technical matters that do not pertain directly to the theory of
measuring diffusive transport coefficients using NMR or the
post-processing of DWIs, as they are the subject of other
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reviews in this journal, as well as of recent review articles.’

Since the review is an outgrowth of a lecture given at the
recent London workshop on Diffusion Imaging,'* it has a
tutorial character. Instead of using formal arguments, which
rely heavily on evaluating complicated integrals and
manipulating tensors, we will present our arguments about
diffusion more intuitively, using throughout experiments,
diagrams, statistical reasoning and a little analytical geome-
try. One geometric construct that is proving to be
particularly useful for characterizing diffusion in both
isotropic and anisotropic media is the “diffusion ellip-
soid”.!*'® Another new and useful geometric construct in
understanding the measurement of the three-dimensional
effective displacement distribution using MR techniques is
the “measurement ellipsoid”. A great deal of information
needed to characterize and measure effective diffusion in
tissues is contained in their size, orientation, shape and their
distribution within the tissue.

BACKGROUND

Diffusion imaging (DI) provides an estimate of a single
scalar apparent diffusion constant (ADC) in each voxel from
a series of diffusion weighted images (DWIs) using linear
regression of eq. (1) below:

AB)\
In (@)‘ bD=—b ADC, (1)

where: A(b) is the measured echo signal in each voxel; b is
a constant that Le Bihan called the b-value or b-factor,
which is calculated for each gradient pulse sequence;'” A(0)
is the signal intensity for b=0. Whether one is acquiring
DWIs or ADC maps, diffusion imaging using eq. (1) is
inherently a one-dimensional technique. By that we mean
that it can incorporate information about molecular dis-
placements in one direction only even if the particle motion
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itself is three-dimensional.

Diffusion tensor imaging (DTI)"® is a new MRI modality
that was developed to describe diffusion in an anisotropic
medium for which eq. (1) is no longer adequate. With DTI,
one estimates an effective diffusion tensor, D, from DWIs
using a more general relationship between the measured
echo magnitude in each voxel and all the imaging and
diffusion gradient sequences:***°

3 3
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In (W)‘ D byDy=— (b Du+2b,D,
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+2b.D, +b,D,+2b,D +b,D,). (2)

Above, b; is a component of the symmetric b-matrix, b.
Whereas the b-factor in DI is calculated for a gradient
sequence applied only in one direction, the b-matrix in DTI
is calculated from all three applied gradient sequences
(including all imaging and diffusion gradient
sequences).'*2** Above, we write the echo intensity for a
* In diffusion imaging, the single scalar b-factor we calculate for each DW1
contains interactions among (a) diffusion gradient pulses, (b) diffusion and
imaging gradient pulses, and (c) imaging gradient pulses, which are all
applied along the same direction. In diffusion tensor imaging, the b-matrix
we calculate for each DWI contains the interactions among (a) diffusion
gradient pulses, (b) diffusion and imaging gradient pulses, and (c) imaging
gradient pulses, which may be applied along the same direction or along
perpendicular directions.'®>° Just as in diffusion imaging, in diffusion
tensor imaging the contributions of imaging gradients on the phase
distribution of the spin system may be significant, i.e. they may affect the
magnitude of the measured echo in each voxel, and thus our estimate of the
diffusion tensor.”® Clearly in DTI, accounting for the coupling between
these various gradient pulses in parallel and perpendicular directions and
assessing their effect on the measured echo is more complicated than in DI.
To facilitate this process, analytic expressions for the b-matrix have been
derived for various commonly used MRI sequences.'® 2!

gradient sequence whose b-matrix is b as A(b). It only
recently became possible to measure each component of D,
D, from DWIs. This was done by performing multivariate
linear regression of eq. (2) using a series of DWIs in which
diffusion gradients with different amplitudes were applied
in a multiplicity of directions.'*? Figure 1 depicts the steps
one performs to obtain (a) a “diffusion image” or “map” and
(b) a “diffusion tensor image” from a set of diffusion
weighted images.

Diffusion tensor imaging subsumes diffusion imaging.
Note that for an isotropic sample eq. (2) reduces to the form

of eq. (1):
AB))_
n (ATO)) == (b,+b,,+b)D. 3)

If we set the b-factor in eq. (1) equal to the coefficient of the
diffusivity in eq. (3), i.e.

b=b +b, +b,, @)

then these two models are equivalent. Interestingly, even for
diffusion imaging of isotropic media, not all the contribu-
tions produced by imaging and diffusion gradients are
presently being taken into account.

PRIMER ON ISOTROPIC AND ANISOTROPIC
DIFFUSION

First, it is useful to provide a brief introduction to the
notions of isotropic and anisotropic diffusion, and to
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Figure 1. Chart comparing the steps involved in performing diffusion imaging (DI} and diffusion tensor imaging (DTI).
Just as DI produces a diffusion coefficient and a T,-weighted scalar, A(0) in each voxel, DTl produces a 3 X 3 diffusion

tensor and a T,-weighted scalar, A(0) in each voxel.
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characterizing translational diffusion in isotropic and aniso-
tropic media. Diffusion anisotropy is a property of certain
media in which the translational mobility of the diffusing
molecule depends upon the medium’s orientation. Diffusion
isotropy describes the condition in which the translational
mobility of the diffusing molecule is independent of the
medium’s orientation.

Diffusion of a water droplet in a jar of water—isotropic
diffusion

Suppose we placed a droplet of water in the center of a tank
filled with water. We imagine that the water molecules in the
drop could be visualized as though they were colored. Some
time after release, the water molecules will redistribute
themselves within the container owing to the random
collisions between them. Their displacement profile? is
given by:

1 rr 1
(r|m)= ex =
plrl) Vamry T (4Drd> V@D1)y
24yte?
e A—— 5
X exp ( D7, ®)

Above, p(r|7,) is the probability that a particle initially at
position r=0, is at position r at a later time 7;. These
surfaces are concentric spheres (“diffusion spheres™) which
we obtain by setting the exponent of eq. (5) to a constant.
An example is given in Fig. 2. One particularly convenient
choice is —3. Then,

xX+y?+22=(V2D7 ) 6)

In this case, the radius of the diffusion sphere is V2D,
which is also the standard deviation, o, of p(r|7,). By the
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well-known Einstein formula:?
a=V2D7,, O

the radius of the diffusion sphere is the mean-squared
displacement of a particle from the center of the sphere in
time 7. We also see that the translational displacement
profile of water is completely specified by a single scalar
constant, D, the diffusion coefficient, and the diffusion time,
Ty.

Diffusion of water in a homogeneous, anisotropic
medium

Suppose that we again placed a drop of water in a
homogeneous, anisotropic medium. The displacement dis-
tribution is now slightly more complicated:

7= 1 -r'D7'r g
p(r Td)_vmexp 4Td - ( )

Whereas for an isotropic medium D appeared in the
variance of the distribution [Eq. (§)], for an anisotropic
medium D appears as the “matrix of variances and
covariances™? [Eq. (8)]. Where D? appeared in the normal-
ization factor of the probability density function, now |D|
(the determinant of D) appears in its place. When we
construct surfaces of constant probability (again by setting
the exponent of the displacement distribution to a constant),
we obtain instead:

(D,,D, — D2)x*+2(D,,D,,+ DD, )xy

wrz x2™yz

+D,D,—D2)y*+2(D,,D

xy™yz

_szDyy)xz
+2(D,,D,,— D..D,)yz+(D,D,,— D2)z*=IDI7,, (9a)
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Figure 2. Diffusion sphere indicating the hypothetical surface of constant
mean-squared displacement one would expect in an isotropic medium.
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which, when rewritten in “canonical form™:

ax®+2b xy+dy*+2c¢ xz+2e yz+f7*

‘a b ¢ x
=(xyz) {b d e y| =1, (9b)
c e f ¥4

is seen to be the equation of a (three-dimensional)
ellipsoid?, which is called the “diffusion ellipsoid”." '® An
example of a diffusion ellipsoid is shown in Fig. 3.

Clearly, in an anisotropic medium, more information is
required to describe the three-dimensional displacement of
particles than in an isotropic medium. Equivalently, in
anisotropic media more information is required to specify
the size, shape and orientation of the diffusion ellipsoid than
in isotropic media. Where one parameter, D, was sufficient
for an isotropic medium, now six independent parameters
(a—f, above, or the six coefficients of D, D, D,,, D,,, D,
D,., and D,) are required for an anisotropic one. This is so
because in anisotropic media, displacements generally
appear to be correlated in the x, y and z directions, whereas
in isotropic media they do not. Physically, this is because
the structure of the anisotropic medium biases the transla-
tional motions of molecules along particular directions and
away from others. The elements of the diffusion tensor
represent correlations between these molecular translational
displacements. Its diagonal elements, D,,, D, and D,
represent correlations along the same directions, x, y and z,
respectively, while its off-diagonal elements, D, D, and
D,,, represent correlations between molecular translational
displacements in perpendicular or orthogonal directions, i.e.
between x and y, x and z and y and z, respectively. In
isotropic media the diagonal elements of the diffusion
tensor are all equal, whereas in anisotropic media they

+ This is true because D and the coefficient matrix are both positive
definite.

usually are not. Moreover, in isotropic media the off-
diagonal elements are always zero, but in anisotropic media
they may be large (i.e. comparable in magnitude to the
diagonal elements).

We can always find a frame of reference, usually one
other than the laboratory frame, in which these translational
displacements appear to be uncorrelated. This is called the
“principal frame”. Its axes are coincident with the principal
axes of the diffusion ellipsoid. In this frame all off-diagonal
elements of D vanish, and the equation describing the
diffusion ellipsoid, eq. (9), assumes a simpler and more
familiar form:

’ 2 ’ 2 ’ 2

) (y) ( = ) T

V2A, 7 V2A,, 1y V2A,1y
Above, A;,, A,, and A, are the principal diffusivities in the
x’,y" and 7’ coordinated system that is coincident with the
principal directions; V2A, 7, V2A; 7, and V2A[ 7, repre-
sent the mean-squared displacements of a molecule in the
(three principal) x’, y’ and z' directions at time 7,
respectively. These quantities are also the major and minor
axes of the diffusion ellipsoid. It is worth noting that in MRI
applications, the principal axes of the diffusion ellipsoid are
generally not coincident with the x-y-z laboratory axes, nor
are these principal directions and diffusivities known a
priori.

From these intuitive and simple geometric arguments, we
can already see that both the diagonal and off-diagonal
elements of D are essential in determining the size, shape
and orientation of the diffusion ellipsoid, and thus charac-
terizing diffusion in anisotropic media. Algebraically, this
can be demonstrated by referring to eq. (9a) or by writing
other quantities that characterize the etiipsoid’s features
(such as the distance between its foci and center, or the
eccentricity of the three great ellipses) in terms of these
quantities. It is also easy to see by referring to Fig. 4 that
diagonal elements of the diffusion tensor, D, D, and D_,

Figure 3. Diffusion ellipsoid showing the hypothetical surface of
constant mean-squared displacement one would expect in an

anisotropic medium.
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are alone not sufficient to characterize the size, shape and
orientation of the diffusion ellipsoid.

THE MEASUREMENT OF THE DIFFUSION
COEFFICIENT AND THE DIFFUSION TENSOR—A
GEOMETRIC VIEW

We can interpret the measurement of the diffusion tensor
geometrically from the relationship between the measured
echo and the diffusion tensor, eq. (2). In diffusion tensor
spectroscopy, in which there are only diffusion gradients
applied in a particular direction, but no imaging (localiza-
tion) gradients, we can write this relationship as:

AG)\ __ et s
In (A(0)>_ a’IGFE D1t an

where the applied gradient G is written as |G| ¥, where £ is
a unit vector in the direction of the applied diffusion
gradient, and o is a parameter that is calculated from the
pulse sequence.”® Above, the symbol “T” indicates the
transpose operation. It is helpful to consider an experiment
in which the diffusion gradient strengths and directions are
chosen so that the measured echo intensity is constant,
independent of gradient direction. For an isotropic medium

(i.e. D=D I, where I is the identity or unit tensor), eq. (11)
reduces to

constant=—In (i—((%)) =a2IGPD #T I +=aiGI’D, (12)

which is the equation of a sphere in a space whose
coordinate axes are \/Ex, \/B; and \/b_u Regardless of the
direction of the applied diffusion sensitizing gradient, we
obtain the same diffusivity, D. Therefore, we view the
measurement of the diffusivity in an isotropic medium as
specifying a point on this measurement sphere. In practice,
owing to experimental noise, we cannot measure the
diffusivity with one experiment. Moreover, since A(0) is an
unknown, we also need to determine it. Therefore, in
principle, we could measure the mean diameter of a cluster
of points on the measurement sphere. This could be done for
example, by sampling many different points on the
measurement sphere and then finding the radius that
minimizes the sum of the distances between the data points
and points on the surface of the sphere. However, usually it
is done by applying diffusion gradients in only one direction
and varying the gradient strength for a fixed diffusion time.

By analogy, in anisotropic media, estimating the diffusion
tensor is tantamount to determining the measurement’
surface given in eq. (11), which we immediately recognize
as another ellipsoid, since it can be recast in the same form
as eq. (9b):

Figure 4. A diffusion ellipsoid. The major and minor axes are proportional to the
square roots of the eigenvalues of the diffusion tensor; the square roots of the
diagonal elements of the diffusion tensor, D,,, D,, and D,, are also depicted as the
line segments between the center and the surface of the ellipsoid which lie on the
x-, y- and z-axes, respectively. We see that the diagonal elements of D alone are
not sufficient to characterize the size, shape and orientation of the diffusion
ellipsoid—all elements of the diffusion tensor are required. For ease of
illustration, the diffusion time, 7, is taken to be 3.
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a'x}4+2b' xy+d'y? +2c' xz+2e'yz+f'2?
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The measurement ellipsoid also requires six independent
parameters to specify its size, shape and orientation, which,
like the diffusion ellipsoid, can also be calculated from the
six independent components of the diffusion tensor. How-
ever, the measurement and diffusion ellipsoids do not have
the same size, shape and orientation. Although their
principal directions or principal axes coincide, their corre-
sponding major and minor axes are reciprocals of one
another. Figure 5 shows the measurement ellipsoid that
corresponds to the diffusion ellipsoid shown in Fig. 3.
Therefore, where the measurement ellipsoid is elongated,
the diffusion ellipsoid is shortened and vice versa. These
two “reciprocal” surfaces illustrate the fact that the effective
displacement distribution of molecules (x-space representa-
tion) is the Fourier transform of the net magnetization
distribution.”*

Finally, the measurement ellipsoid construction helps us
visualize how the ADC measured in a particular direction is
related to the diffusion tensor. The term £ D £ in eq. (11)
represents the projection of the diffusion tensor along the
diffusion sensitizing gradient direction f, and thus is the
“ADC” we measure in a spectroscopic experiment (i.e.
without localizing gradients) with diffusion sensitizing
gradients pointing in the i direction. While the diagonal
elements of the diffusion tensor D,,, D,, and D,, represent
ADCs along the x, y and z directions, respectively, the off-
diagonal elements, D, D,, and D,,, do not represent ADCs

Figure 5. The measurement ellipsoid that corresponds to the
diffusion ellipsoid in Fig. 3. The measurement ellipsoid also
requires the six independent elements of the diffusion tensor to
specify its size, shape and orientation. However, the measure-
ment and diffusion ellipsoids do not have the same size, shape
and orientation. Although their principal directions or principal
axes coincide, their corresponding major and minor axes are
reciprocals of one another.

obtained by applying equal strength gradients simultane-
ously in x and y, x and z and y and z. For example, with
diffusion gradients applied only in the x-direction, eq. (11)
becomes

A(G) 22 22
In (A(O)) a’G;D,.=— a’G; ADC. (14)
D, the ADC in the x-direction, can be identified as being
proportional to the point of intersection of the center of the
measurement ellipsoid and the x-axis. With equal gradients
applied along both the x- and y-directions, G,=G,=G, €q.
(11) becomes

In (1;(:.?))> == asz(Dxx+2ny+D.Vy)= - asz ADC". (15)

ADC' contains contributions from D,,, D,, and D, so it is
clear that D, is not the same as ADC’.

The measurement ellipsoid construction can be used to
explain why even in a noise-free experiment, we must apply
diffusion gradients in at least six different (noncollinear)
directions in order to estimate all the independent elements
of D—since that is the smallest number of noncollinear
points required to specify the size, shape and orientation of
the measurement ellipsoid. However, because of measure-
ment noise, it is necessary to obtain more data, by applying
gradients in more than six noncollinear directions or by
performing multiple acquisitions along those six directions.
This former is particularly important if a material’s
measurement ellipsoid is very elongated, such as in the
corpus callosum of human and monkey white matter.”
There, the length of the major axis of the diffusion ellipsoid
can easily be underestimated unless diffusion gradients are
applied nearly parallel to this principal direction.

Finally, the diffusion and measurement ellipsoids help us
to represent experimental noise that corrupts the estimates
of diffusion coefficients and diffusion tensors. Without
noise, we could consider the diffusion and measurement
ellipsoids to be well-defined, infinitesimally thin shells.
However, in the presence of noise, we must think of them
rather as thick-walled, fuzzy ellipsoids (i.e. with a surface
roughness). The thickness of this surface fuzz may not be
uniform, and is related to the S/N of the DWIs, the material
in the voxel and the set of diffusion gradients (both strength
and direction) that we apply. Measurement noise will affect
our estimate of ADCs and diffusion tensors, as well as their
eigenvalues (the principal diffusivities) and eigenvectors
(the principal directions). Generally, the smaller the S/N,
the thicker the fuzz, and the more the measurement surface
will deviate from being ellipsoidal.

DIFFUSION TENSOR IMAGING —APPLICATIONS
TO CHARACTERIZING ISOTROPY AND
ANISOTROPY

Clinical importance of characterizing the isotropic
component of diffusion

Characterizing the isotropic part of the diffusion tensor has
become increasingly important clinically since Moseley et
al.**? and Minotorovitch et al.® discovered in animals, and
Chien et al.”® and Warach et al.* later showed in humans
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that a reduction in the ADC is a sensitive indicator of the
onset and severity of cerebral ischemia. However, from
their earliest work, it was clear that while in gray matter
compartments (where diffusion is approximately isotropic)
the ADC was independent of the direction of the diffusion
sensitizing gradients, in white matter this was not the case.
There, the contrast of the DWI or the calculated value of the
ADC in a voxel depended upon the direction in which the
diffusion sensitizing gradient was applied with respect to
the orientation of the white matter fiber tracts. This
orientationally dependent contrast complicated the inter-
pretation of these images in anisotropic white matter.
Specifically, one could not ascertain whether hyper- or
hypo-intensity in a region of white matter resulted from a
structural/physiological change (brought on by the ischemic
event), or from diffusion anisotropy in the tissue (i.e. the
sensitivity of the ADC to the orientation and strength of the
applied diffusion gradient). In this particular application of
diffusion imaging, tissue anisotropy produced an unwanted
experimental artifact.

Diffusion tensor spectroscopy and diffusion tensor
imaging'*3? provided a solution to this vexing problem.
Associated with each diffusion tensor are scalar quantities
known as scalar invariants that are intrinsic to the medium.
Specifically, they are independent of the laboratory frame of
reference (in which the components of the diffusion tensor
are measured) and the direction or orientation of the
structures that reduce the observed diffusion anisotropy.
Therefore, these parameters (or functions of them) are
independent of the orientation of the structures, the patient
within the MR magnet, the direction of the applied imaging
and diffusion sensitizing gradients and the choice of the
laboratory coordinate system.'* These scalar invariants
were first proposed in 1992 as novel MR imaging
parameters®' that were shown experimentally to be inde-
pendent of fiber tract direction in diffusion spectroscopic
studies in anisotropic skeletal muscle.”

19,31

The Trace of the diffusion tensor

One of the aforementioned scalar invariants we proposed,
Trace(D),

Trace(D)=D,+D,,+ D, =3(D)=A+A, +A,, (16)

is proportional to the orientationally averaged (or “iso-
tropically averaged™) apparent diffusivity.** Geometrically,
Trace(D) is also proportional to the sum of the squares of
the major and minor axes of the diffusion ellipsoid. To see
this, note that the mean-squared displacement in the ith
principal direction, (r?), is given by:

(ry=2Ar, (17)

in a diffusion time 7. Then the average of the mean-squared
displacements along the three principal directions, {(r*)), is

(r)+(ry ) +4rl)
3

A tA,+A,

)= =2

=2(D)r. (18)

van Gelderen et al.*® subsequently used the “trace” as an
imaging parameter in an in vivo study of a model of cerebral
ischemia in cats, claiming the superiority of the “trace” to
the ADC in defining the ischemic region because it removes
the orientational dependence inherent in the ADC. This
group defines the “trace” differently from eq. (16). Their

“trace” is obtained by summing ADCs measured in three
orthogonal directions:*

“YTrace”=ADCx+ADCy+ADCz=3(ADC), (19)

where each ADC is estimated from the diffusion imaging
equation, eq.(1).>® Moreover, in calculating the b-factor in
eq. (1), they use only the “Stejskal-Tanner” terms, ignoring
the contributions of all imaging gradients on the measured
echo. The Stejskal-Tanner formula,*® although widely used
in diffusion imaging, was derived specifically for diffusion
spectroscopy, not for diffusion imaging, which had not yet
been invented. In contrast, the definition of Trace(D) used
by Basser et al.'>*! in diffusion tensor imaging is that given
in eq. (16), where D is estimated using eq. (2) in which the
effects of all the imaging and diffusion gradients on the
echo signal are accounted for.

The disagreement between these two methods is not
merely of academic interest. Only when there are no
localization gradients or when all cross-terms can be shown
to vanish will eq. (16) be equivalent to eq. (19) and will be
guaranteed to independent of the tissue’s orientation.
Otherwise, the “trace™ defined in eq. (19) will depend on the
orientation of anisotropic structures. This is because the
“trace” is calculated using an isotropic model of diffusion—
eq. (1). In general, without including the effect of all the
diagonal and off-diagonal elements of the diffusion tensor
on the signal attenuation, the estimate of the diagonal
elements of the diffusion tensor will be in error, and so will
their sum or mean value. The “trace” is calculated without
considering the phase dispersion of the nuclear spins due to
the imaging gradients. If the imaging gradients produce
significant cross-terms, as they would for example in
diffusion weighted MR microscopy sequences, or in
imaging sequences in which imaging gradients are not
immediately refocused, then significant additional orienta-
tional artifacts can be introduced. Nonetheless, if the
biological effect of interest can be demonstrated to be
significantly larger than any of the errors introduced by
using eq. (19), then the “Trace” is still preferable to the
ADC in anisotropic media when one wants to mitigate the
effect of fiber orientation.

The significance of these potential artifacts can be
assessed quantitatively by performing a simple experiment.
One can obtain a set of DWIs with diffusion sensitizing in
any three orthogonal directions, and then repeat the
acquisition with diffusion sensitizing gradients applied in
three new (skewed) mutually orthogonal directions. This
data set is then used to obtain two independent estimates of
the “trace” or the mean ADC. The aggregate data set can
also be used to estimate a single diffusion tensor, D, from
which Trace(D), given in eq. (16), can be calculated. One
can then compare the two estimates of the “trace” to each
other, as well as to Trace(D).

It would be disingenuous to suggest that eq. (2) is no
more time consuming or resource intensive to implement
than eq. (1), and that three ADCs are not simpler to estimate
than the six elements of a diffusion tensor. Nevertheless, if
the material is anisotropic, eq. (1) is not an adequate model
of diffusion. However, the development of fast high-
resolution DW imaging®”* as well as user-friendly software
with which diffusion tensors can be readily estimated, and
images derived from them displayed, has significantly
mitigated this problem, making the trade-off in effort and
time between diffusion imaging and diffusion tensor
imaging much less severe. If one is only interested in
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measuring Trace(D), a reasonable alternative may be to
obtain isotropically weighted sequences.

Isotropically weighted sequences

In a clinical setting, for example, in the evaluation of stroke
patients, total scan time is critical. One of the principal
disadvantages of calculating Trace(D) from the estimated
diffusion tensor (or even calculating the “trace™) is that
obtaining enough high quality, motion-artifact free, high-
resolution DWIs may still be too time consuming.
Moreover, these DWIs must be post-processed to produce
the final map or image. In acute cases, a need exists to
identify DWI sequences that require no significant post-
processing, but whose contrast [like Trace(D)] is
independent of the orientation of structures within the brain
or other tissues.

An interesting first step in this area was taken by Edelman
et al.*® who attempted to remove the orientational artifact by
taking the sum of diffusion weighted images with gradients
applied in the x, y and z directions:

DWI,, + DWL,,+ DWI,,=3(DWI). (20)

The average DWI, (DWI), is intended to remove the
orientational artifact caused by anisotropic diffusion [like
Trace(D)]. Even if the imaging gradients can be chosen to
have a negligible effect on the measured signal attenuation,
the quantity above is usually not a reasonable proxy for
Trace(D)/3 owing to its strong T, and T, weighting. A more
quantitative approach has been to develop single-shot
“isotropically weighted” DWI sequences whose image
contrast is proportional to Trace(D). Two such sequences
were recently proposed.*®*? Mori and van Zijl*' obtained
isotropically weighted images by applying a tetrahedral
pattern of bi-polar diffusion gradients, producing a DWI in
which the signal attenuation would be independent of the
off-diagonal elements of the diffusion tensor and would be
equally sensitive to the attenuation produced by each of the
diagonal elements, D,,, D,, and D,. The contribution of the
imaging gradients to the signal attenuation is mitigated by
immediately refocusing each diffusion gradient pulse. This
clever strategy to eliminate “cross terms”, however, greatly
reduces the sequence’s diffusion weighting or attenuation.
This is because when the bi-polar diffusion gradients are
adjacent to each other and are immediately refocussed,
diffusion time is reduced, and so is diffusion sensitization of
the DWI. Therefore, isotropic weighting appears to come at
the price of low diffusion attenuation. A possible solution to
this problem may be found in the isotropically weighted
sequence proposed simultaneously by Wong and Cox."
They searched for gradient sequences in the x, y and z
directions that ensured that the off-diagonal elements of the
b-matrix elements (i.e. those premultiplying off-diagonal
elements of the diffusion tensor) were all zero, while the
diagonal elements of the b-matrix elements (i.e. those
premultiplying all diagonal elements of the diffusion tensor)
were all equal. These constraints, if satisfied, guarantee that
the resulting echo magnitude is proportional to trace(D).
They obtained admissible isotropically weighted sequences
using a trial and error search procedure, which intrinsically
have higher diffusion weighting than those of Mori and van
Zijl, although their complicated pulse shapes make the
phase history of the spin system more difficult to interpret.

MEASUREMENTS AND APPLICATIONS OF
DIFFUSION ANISOTROPY

We begin by recalling that diffusion anisotropy is a property
of certain media in which the translational mobility of the
diffusing molecule depends upon the medium’s orientation.
In biological tissues such as brain white matter, skeletal
muscle, soft tissues and cardiac muscle, we can usually
ascribe anisotropic diffusion (as measured by MR spectros-
copy or imaging) to spatial variations of molecular mobility
(heterogeneity) at various length scales ranging from the
molecular to the microscopic. Primarily, this phenomenon
appears to be due to the presence of ordered macro-
molecular, membranous, and fibrous compartments and
interfaces. Diffusion anisotropy can be characterized within
a macroscopic voxel by the effective diffusion tensor, D.

Survey of anisotropy measures and indices derived
from DWIs

Diffusion anisotropy in tissues has been measured from
DWIs using several different scalar indices. Moseley et al.”®
characterized diffusion anisotropy in a voxel by the ratio of
differences and sums of diffusion-weighted images (DWIs)
with diffusion sensitizing gradients applied in two perpen-
dicular directions, e.g. x and y:

DWI, — DWI,

21
DWI, +DWI, @b

Douek et al.*® characterized diffusion anisotropy in a voxel

by the ratio of two apparent diffusion constants (ADCs),
again measured with diffusion sensitizing gradients applied
in two perpendicular directions, e.g. x and y:

ADC

X

ADC,

(22)

In voxels where this ratio was found to be maximal (for a
particular tissue type), its value was assumed to be ADC,/
ADC,, the ratio of ADCs perpendicular to and parallel to the
local fiber direction. Finally, van Gelderen et al.** more
recently proposed a scalar anisotropy index that is propor-
tional to the standard deviation of three ADCs measured in
three mutually perpendicular directions: ADC,, ADC, and
ADC,, divided by their mean value, (ADC):

V(ADC,—(ADC)*+(ADC,— (ADC))*+((ADC,— (ADC))*
(ADC) ’

(23)

where (ADC) has already been defined in eq. (19).

Besides these indices, several color-coding schemes have
been proposed to visualize diffusion anisotropy. Douek et
al. proposed taking eq. (22) and displaying the ratio as a
color image.”> Subsequently, others have used color-
imaging schemes to attempt to elucidate diffusion
anisotropy. Nakada et al.* have proposed using separate R-
G-B video channels to display DWI,, DWI, and DWI,
respectively, diffusion-weighted images with sensitizing
gradients applied in the three orthogonal directions.

Unfortunately, anisotropy measures based upon DWIs
[like eq. (21)] are generally not objective, that is, their
contrast does not correspond to a known function of a single
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meaningful physical or chemical quantity, but to an
unknown function of many such quantities. Second, any
anisotropy measure that employs the ADC will not be
quantitative unless interactions between imaging and diffu-
sion gradients are adequately accounted for as discussed
above.'® However, the feature that all of these anisotropy
measures share is that they all inherently depend upon the
choice of the laboratory frame of reference, the direction of
the applied diffusion gradients, and the orientation of the
macromolecular, cellular and/or fibrous structures within
the tissue in each voxel. Like the ADC, they are not
invariant. As a result, their values will change, for example,
when the sample is rotated within the magnet. These
measures inherently introduce a directional artifact into the
measurement of anisotropy. Pierpaoli et al” recently
demonstrated this point convincingly, showing that when
one uses eq. (23), the anisotropic white matter in the ventral
internal capsule of the brain appears isotropic like gray
matter. Moreover, this error, predicted by theoretical
considerations alone, depends upon the relative orientation
of the white matter structure and the x, y and z laboratory
coordinate frame of reference.

Anisotropy indices that use the ADC, such as eq. (23), are
estimated without accounting for the effect of imaging
gradients on the measured NMR signal. The error made by
this omission depends upon the particular imaging sequence
used. To estimate its severity we see from eq. (2) that

303 303
_2 2 AbijDij=2 2 b,AD,, (24)

i=1 j=1 i=l =1

from which one can show that the fractional error in
calculating a b-matrix element approximately equals the
fractional error in its corresponding diffusion tensor element
that we estimate. In the diffusion weighted two-dimen-
sional-FT spin echo sequences we have used, we would
routinely calculate errors of 10—15% in the estimates of the
diagonal elements of D if we failed to account for imaging
gradients.'® This error is further exacerbated by ignoring the
off-diagonal elements of D when attempting to estimate the
diagonal elements of D in anisotropic media.”

An alternative approach to characterizing diffusion
anisotropy has been to derive scalar invariant quantities
from the diffusion tensor that represent some feature of
anisotropic diffusion while being invariant quantities.* This
is because an anisotropy index should be physically
meaningful, as well as being intrinsic to the tissue. As such,
it should be independent of the sample’s placement or
orientation with respect to the (laboratory) x-y-z reference
frame. Several quantities described below satisfy these
criteria.

One proposed set of anisotropy indices, the ratios of the
principal diffusivities,'” measures features of the shape
(degree of prolateness) of the diffusion ellipsoid, but is
independent of its size and orientation. These dimensionless
ratios measure the relative effective diffusivities in the three
principal directions. For example, if we number the
principal diffusivities in decreasing order, the dimensionless
anisotropy ratio, A,/A;, then measures the degree of
cylindrical symmetry (with A,/A;=1 indicating perfect
cylindrical symmetry). Alternatively, one could calculate
the eccentricity, €, of the great ellipse that lies in the plane
normal to the fiber-tract axis and divides the diffusion
ellipsoid into two equal pieces:

A T 25)
o

To measure the relative magnitude of the diffusivities along
the fiber-tract direction and the two transverse directions,
we can calculate A,/A, and A,/A,, or, as above, measure the
eccentricities of the two remaining great ellipses obtained
from the diffusion ellipsoid that also contain its major axis
(i.e. the axis along the fiber-tract direction).*

Pierpaoli et al.” recently suggested a scalar invariant,
dimensionless anisotropy index that includes all three
principal diffusivities:

. AAA, Determinant(D)
Vol tio= = 26
onme ratio (A1+A2+A3>3 Trace@y 0
3

Rotational invariance is assured because this measure
depends solely on the ratio of two scalar invariants
computed from the diffusion tensor, its determinant and its
trace. The volume ratio is aptly named because it represents
the square of the volume of the diffusion ellipsoid divided
by the square of the volume of a diffusion sphere whose
radius is the square root of mean diffusivity, (D), defined
above in eq. (16). Images of the volume ratio for living
monkey brain are qualitatively similar to those of the
anisotropy ratio image, A,/A;,” in that the intensity of
voxels containing gray matter and CSF-filled ventricles is
virtually the same, while the intensity in voxels containing
white matter is significantly different. However, the volume
ratio is generally less noisy than the ratio of eigenvalues.”

Basser and Pierpaoli® more recently proposed another
measure of diffusion anisotropy that was actually derived
from the diffusion tensor. It uses the requirements that (a)
the anisotropy measure is a scalar invariant quantity and (b)
it measures the magnitude of the anisotropic part of the
diffusion tensor, D. One proposed measure that possesses
these properties is given by D:D, where
D:D=(D,,— (D))’ +(D,,— (D))’ +(D,, — (DY

+2D%+2D} +2D3, 27N

and, again, using the definition of (D) given in eq. (16). The
first three terms on the right-hand side of eq. (27) are the
sum of the square deviations between the diagonal elements
of D and their mean value, (D); the remaining three terms
are the sum of the squares of the off-diagonal elements of D.
Thus D:D is the scalar measure of the degree to which the
diffusion tensor deviates from isotropy (in a mean-squared
sense). In the principal or fiber-tract frame, all off-diagonal
elements of D vanish (i.e. D,,=D, =D,,=0) and its diagonal
elements, D,,, D,, and D,, are replaced by the principal
diffusivities, A;, A, and A;. Then,

D:D=(X, — (D))’ +(A, = (D))’ +(X;, — (D))’ (28)

where again (D) is defined as above in eq. (16). This
quantity clearly is a scalar invariant because it is a function
solely of the eigenvalues of D, and is independent of their
assignment or ordering scheme. (Any permutation of the
indices 1, 2 and 3 will produce the same result). Equation
(28) also provides a more satisfying interpretation of D:D.
It is the sum of the squares of the deviations between the

* While the ratios of the eigenvalues of D represent the ratios of its
principal diffusivities, it may be preferable to measure the ratios of the
mean-squared diffusion distances. This can be done simply by taking the
square roots of the ratios presented above, i.e. VA/A;.
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principal diffusivities of D and their mean value—the mean
diffusivity, (D). Now, by taking the “magnitude” of the
anisotropic part of D and dividing it by the “magnitude” of
the isotropic part of D, we obtain a dimensionless measure
of the relative anisotropy, RA:*

_L VD:D
V3 (D)
_ 1 VA, = DY+, — D) +(A;,— D))’
V3 (D) -

which is quantitative (i.e. physically meaningful and
invariant). For an isotropic medium RA=0. It is instructive
to compare eq. (29), which is invariant, with eq. (23), which
is not.

Alternatively, if we are interested in measuring the
fractional anisotropy, FA, (i.e. the fraction of the total
“magnitude” of the diffusion tensor that we can ascribe to
anisotropic diffusion) we have proposed the following
expression:*

FA—3 VD:D
2VD:D

For an isotropic medium, FA=0; for a cylindrically
symmetric anisotropic medium (with A;> A,=4A;), then
FA=1.

If one were now interested in developing a color coding
scheme to visualize diffusion anisotropy, it would be
recommended to make the assignment of the colors
invariant, or independent of the laboratory coordinate
frame, etc. This could be done, for example, by following
the clever suggestion of Larry Latour’s at the recent 1995
Workshop on Diffusion (London). He proposed using
separate R-G-B video channels to represent the three
principal diffusivities, A;, A, and A;. Unlike other proposed
color-based measures of anisotropy (e.g. Ref. 44), this one
would not introduce an orientational artifact (e.g. change of
color when the tissue is rotated). For this new color scheme
to work, one should sort the eigenvalues consistently in
each voxel, for example, in decreasing order. However, one
should be cognizant that sorting of the eigenvalues intro-
duces a significant statistical bias, particularly for low
S/N,* which could affect the color in each voxel and its
distribution.

In summary, characterizing diffusion anisotropy is tanta-
mount to characterizing the shape of a diffusion ellipsoid,
independent of its orientation and size. It is then easy to see
that knowing only the diagonal elements of the diffusion
tensor is not adequate to characterize diffusion anisotropy.
Knowing the eigenvalues of the diffusion tensor is suf-
ficient, but since in most MRI applications we typically do
not know them a priori we generally must determine them
using both the diagonal and off-diagonal elements of D.

(30)

CYLINDRICAL SYMMETRY AND THE DIFFUSION
TENSOR

Several studies have been published recently assuming that
diffusion is cylindrically symmetric about the fiber-tract
axis in nerve white matter*”*® and in skeletal muscle
fibers**® (the former having used this assumption to
simplify the measurement of fiber orientation** *%). This is

tantamount to presuming that the diffusion ellipsoid is
symmetric about its (longest) major axis, i.e. it is a surface
of revolution about the fiber-tract axis. This assumption is
seductive because it allows us to reduce the number of
independent elements of the diffusion tensor from six to
four. While it is good practice to use whatever a priori
information is available to improve the estimate of D, it is
recommended that each assumption first be tested experi-
mentally. If this is not possible, then we suggest testing the
assumption of cylindrical symmetry a posteriori within
each voxel. This could be done by testing the null
hypothesis that the two smallest eigenvalues (or principal
diffusivities) of the diffusion tensor are equal. Then, one can
assess whether the hypothesis of cylindrical symmetry must
be rejected or accepted based upon the measured data.
Hypothesis testing in the context of diffusion tensor
imaging, however, has a precedent: it was used to test
whether a diffusion tensor is isotropic or anisotropic.”

There are a number of practical reasons discussed below
why diffusion would not be (or at least appear not to be)
cylindrically symmetric in tissues. Firstly, partial volume
artifacts will affect the apparent symmetry of the measured
diffusion tensor.* In the brain, for example, some voxels
may contain a mixture of gray matter, CSF and white
matter, each with its own diffusion tensor. Moreover, in
white matter, there may be more than a single fiber tract
direction within a voxel, as fibers may be crossing each
other or radiating in different directions.*®*' The estimated
tensor will be a weighted average of the diffusion tensors of
these various tissue compartments. Secondly, noise in the
DWIs would tend to make cylindrically symmetric media
appear to be cylindrically asymmetric.** ' Specifically, the
two smallest estimated eigenvalues, A, and A;, would be
expected to be different from one another in many voxels
owing to measurement noise, an effect that is exacerbated as
S/N is reduced. Thirdly, anatomically there may be barriers
to diffusion (ranging from the macromolecular to cellular
length scales) as well as local defects and dislocations that
will make diffusion cylindrically asymmetric. This issue is
under considerable debate in the cardiovascular field.”* A
recent paper by Garrido et al. also suggested that the
assumption of cylindrical symmetry does not apply in the
rat heart and so does the recent work of Wedeen et al.”
Moreover, the loss of cylindrical symmetry in some voxels
may have some diagnostic or clinical value.

To resolve this problem, we could test the hypotheses of
cylindrical symmetry and then that of spherical symmetry
(i.e. isotropy) sequentially, voxel by voxel. For the given
background noise level, if the hypothesis of cylindrical
symmetry is rejected, the diffusion tensor representation
should be retained. Otherwise, a reduced set of parameters
(e.g. Hsu’s and Mori’s*’) could be used to represent the
diffusion tensor. Then, if the test of the hypothesis of
isotropy is supported, the diffusion coefficient is the only
transport coefficient required to describe diffusion in that
voxel. In this way, the diffusion process in each voxel is
represented most economically, and the parameters of the
model will be estimated with the lowest variance.

RESTRICTED DIFFUSION AND THE DIFFUSION
TENSOR

Restricted diffusion refers to the case in which a diffusing
species encounters reflecting boundaries that sequester it
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within a particular compartment. This term applies, for
example, to the diffusion of intracellular markers. In a
restricted geometry, diffusion on a macroscopic scale no
longer appears to be Gaussian; specifically the effective
probability density function within a voxel can no longer be
fit adequately using Eq. (8). Geometrically, in restricted
diffusion the surface of constant mean-squared displace-
ment is no longer ellipsoidal in shape. Equivalently, the
Einstein equation relating the mean-squared molecular
displacement and the diffusion time no longer applies along
the directions perpendicular to the reflecting boundaries,
and the physical meaning of the diffusion coefficient as well
as the diffusion tensor elements associated with these
directions becomes moot. Nonetheless, some groups have
attempted to use the diffusion tensor formalism to describe
diffusion of a molecule in restricted compartments. This is
the case in a recent study of phosphocreatine (an intra-
cellular marker) in rabbit leg muscle.” In such cases, we
recommend measuring the displacement distribution of the
diffusing species directly using g-space methods.****

Fiber orientation and architectural imaging

The ability to measure the diffusion tensor has also created
the opportunity to measure fiber-tract direction fields and
other architectural features of tissues. The first measurement
of the fiber-tract direction using diffusion tensor methods
was performed spectroscopically on skeletal muscle.” The
anatomical fiber tract directions were seen to be coincident
with the principal direction or axis of the diffusion ellipsoid
associated with the largest principal diffusivity." "%
Shortly thereafter, diffusion tensor images were obtained of
skeletal muscle in vitro,'> white matter in vitro'*>” and in
vivo®™ ¥, and more recently in cardiac tissue.” %> Quantita-
tive, rapid, high-quality, high-resolution, clinical DTI was
realized recently, providing images suitable for radiological
evaluation.®® Recently Reese et al. published a technical
tour de force demonstrating how diffusion tensor imaging
methods can be extended to elucidate tissue architecture in

a beating human heart.®

Diffusion tensor MRI provides unique tools with which
to probe tissue structure at different levels of hierarchical
organization. While experimental diffusion times are con-
sistent with measurements of molecular displacements on
the order of microns, these molecular motions are then
averaged within voxels, which are then assembled into
multi-slice or three-dimensional images of tissues or organs.
This single imaging method then permits us to elucidate
complex structural features from the macromolecular to the
macroscopic length scales. Recently, several new invariant
parameters have been proposed that help assess both intra-
and intervoxel macrostructural features.”

CONCLUDING REMARKS

One recurring theme in this review is that the effective
diffusion and measurement ellipsoids can help us under-
stand how to characterize and measure diffusion in isotropic
and anisotropic media simply by examining their features,
such as their size, shape, orientation and pattern. Another
important theme is that if one is interested in using a scalar
quantity to characterize some intrinsic feature of an
anisotropic medium, such as the degree of diffusion
anisotropy or fiber organization; that parameter should be
invariant to translation and rotation of the laboratory
coordinate system. If, in addition, these parameters are
physically meaningful, they will possess characteristics of a
quantitative physiological or histological stain.

We have also seen that some confusion arises from using
inappropriate models of diffusion to interpret diffusion
weighted images. In an isotropic medium, we can use an
isotropic model of diffusion [as in eq. (3)]. In an anisotropic
medium, it is appropriate to use an anisotropic model of
diffusion—diffusion tensor imaging [as in eq. (2)]. In
restricted media, it is appropriate to use g-space imaging
methods.
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