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Image registration techniques which require image interpolation are

widely used in neuroimaging research. We show that signal variance in

interpolated images differs significantly from the signal variance of the

original images in native space. We describe a simple approach to

compute the signal variance in registered images based on the signal

variance and covariance of the original images, the spatial trans-

formations computed by the registration procedure, and the interpo-

lation or approximation kernel chosen. The method is general and

could handle various sources of signal variability, such as thermal noise

and physiological noise, provided that their effects can be assessed in

the original images. Our approach is applied to diffusion tensor (DT)

MRI data, assuming only thermal noise as the source of variability in

the data. We show that incorrect noise variance estimates in registered

diffusion-weighted images can affect DT parameters, as well as indices

of goodness of fit such as chi-square maps. In addition to DT-MRI, we

believe that this methodology would be useful any time parameter

extraction methods are applied to registered or interpolated data, such

as in relaxometry and functional MRI studies.
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Introduction

Post-acquisition image alignment (registration) is routinely

performed in biomedical research and clinical practice (Maintz

and Viergever, 1998; Pluim et al., 2003). Applications using image

registration techniques include motion and distortion correction in

functional MRI (fMRI), diffusion tensor MRI (DT-MRI), and MR

relaxometry experiments. In addition, image registration procedures

are increasingly being used in computational-based studies of
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neuroanatomy. This involves understanding the variability of tissue

properties, including shape, across specific populations. An example

is voxel-based morphometry, described in Ashburner and Friston

(2000).

In general, many of the current post-processing methodologies

can be summarized as follows. A set of medical images is

acquired and reconstructed using standard methodologies. This

step may include filtering to avoid bringingQ artifacts, denoising,
intensity corrections, etc. Next, using one of many available

algorithms, images are registered to ensure, as much as possible,

that a fixed image coordinate corresponds to the same structure,

or anatomical coordinate, in all images acquired. This step is

necessary because the subject being imaged may move during

data acquisition. In addition, images may contain geometric

distortions with respect to each other. In echo planar (EPI) MRI,

these distortions can be caused by magnetic field susceptibility

related artifacts. In EPI-based diffusion-weighted imaging, sig-

nificant geometric distortions may also occur due to eddy-

currents induced by the rapidly switched diffusion weighting

magnetic field gradients applied during imaging. Corrections to

account for such misregistration artifacts are absolutely necessary

to ensure the data analysis is reliable. In addition to correcting for

motion and geometric distortions, the entire image sequence may

also be aligned to a standard template image, using stereotaxic

normalization techniques, for example, so that the data analysis

results can be more conveniently interpreted. Data analysis

consists of extracting or estimating some physically meaningful

parameters from the sequence of medical images. In DT-MRI, a

3 � 3 symmetric diffusion tensor is estimated, based on which

several other quantities such as measures of diffusion anisotropy

and depictions of fiber tracts can be generated. In fMRI, these

may be statistical parametric maps (Friston et al., 1995), for

example.

In many of these applications, the analysis of the registered

images involves fitting or estimating model parameters from the

intensity values of the images. For such tasks, it is crucial to know

the correct signal variance of the registered images so that least-

squares procedures, for example, can be properly implemented.
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Though significant research has been devoted to estimating signal

variance in medical images–some examples in MRI include

Gudbjartsson and Patz (1995), Henkelman (1985), and Sijbers et

al. (1998) among others–it is important to recognize that the signal

variances in the registered and the original unregistered images

differ. This is because the image interpolation or approximation step

generally required in image registration can, as will be shown later,

significantly change the noise properties of the image. We will show

how a simple formula can be used to compute the appropriate signal

variance in registered images. The analysis of diffusion-weighted

MRI data using the diffusion tensor model will be used as a case

study. That is, given a set of diffusion-weighted MR images (DWI),

we use an existing software to register the DWIs to remove rigid

body motion and eddy-current-related distortions prior to tensor

computation. We then show that noise variance in the registered

images differs from the noise variance in the original images.

However, even though DT-MRI is the only application discussed in

detail in this paper, we believe that the general approach described

in this paper should be considered whenever registered images are

being analyzed using procedures that require knowledge of the

variance in the image intensity values.

At the time of writing not much related work can be found in

the biomedical imaging literature. Friston et al. (1996) address the

problem of removing movement-related artifacts, such as those

caused by intensity fluctuations due to the change in position of the

imaged object with respect to the reference frame of the scanner. In

Thacker et al. (1999) and Grootoonk et al. (2000), the authors

investigate the error in the intensity values produced by inter-

polation procedures applied on the registered images. Maas and

Renshaw (1999) discuss artifacts related to high frequency losses

on registered (interpolated) data. Pluim et al. (2000) report that

interpolation methods may cause undesirable artifacts when

estimating the mutual information similarity measure. Nickerson

et al. (2003) describe a method through which the local intensity

variance in positron emission tomography (PET) can be estimated

from the operations performed during image reconstruction. None

of these works, however, detail the importance of, and methods for,

obtaining correct estimates of the signal variance at each

coordinate of each registered image.

In the field of diffusion-weighted imaging and diffusion tensor

MRI, several researchers have investigated methods for performing

post-acquisition motion and distortion correction of data (Ander-

sson and Skare, 2002; Bastin, 1999; Haselgrove and Moore, 1996;

Horsfield, 1999; Mangin et al., 2002; Rohde et al., 2004). Though

the registration methods differ, most of these works use linear

interpolation to produce the series of DWIs. This series is then used

to estimate one diffusion tensor for each voxel via least-squares

fitting procedures similar to the v2 minimization procedure

described in Basser et al. (1994). We show in this paper that

least-squares fitting procedures that extract diffusion tensor

estimates from registered data can be affected by the changes in

image noise properties due to interpolation. We also provide a

simple method for obtaining correct variance estimates for the

registered images.
Theory

In practice, the process of registering two images is usually

approachedwithin an optimization framework in which the goal is to

find a spatial transformation f(x), where f : R2 YR
2, or f : R3Y
R
3 for volumetric images, that maximizes some similarity measure I

between the digitized target T(x) and source S(x) images:

max
f

I S f xð Þð Þ;T xð Þð Þ: ð1Þ

The function f(x) may be a rigid body, affine, or higher-order

transformation, depending on the application. The function I

usually measures the similarity between the images being

registered by computing some form of statistical dependency

between the intensity values of the images. In the processing

pipeline described above, the problem defined by Eq. (1) is usually

solved for K images in the image sequence {S1(x),. . ., SK(x)}, so it

is clear that the sequence of images {S1( f1(x)), Sk( fk(x)),. . .,
SK( fK(x))} is properly aligned. Note that in cases where fk(x) is

used to correct for geometric distortions caused by imperfect

magnetic field gradients in MRI, for example, the intensity value of

the corrected images may also have to be multiplied by a correction

factor (Rohde et al., 2004; Studholme et al., 2000):

S̃kSk f k xð Þð Þ ¼ Sk f k xð Þð ÞdetjJac f k xð Þð Þj; ð2Þ

where det|Jac( fk(x))| stands for the determinant of the Jacobian

matrix of the transformation fk(x).

Independently of how the solution to Eq. (1) is actually

computed for each image in the sequence, many imaging

applications require knowing the value of the registered images

{S1( f1(xi)),. . ., SK( fK(xi))} for some arbitrary coordinate xi. Since

in general the point fk(x) will not coincide with a sampling

coordinate of image Sk, an interpolation or approximation strategy

must be used to produce the image value Sk( fk(x)). Many

approximation and interpolation methods can be chosen to perform

such tasks (Meijering et al., 2001). Most estimate the value of

Sk( fk(x)) based on a linear combination of the intensity values of

image Sk around the point fk(x). Fig. 1 illustrates this process. Note

that w refers to grid coordinates of the image Sk. Mathematically,

this interpolation or approximation procedure can be expressed as:

SK f K xð Þð Þ ¼
X

wi a H

aiSK wið Þ; ð3Þ

where H defines a set of sampling coordinates that surround f(x)

(see Fig. 1). The coefficients ai of the linear combination Eq. (3) as

well as the size of H are determined solely by the choice of

interpolation or approximation kernel. For the linear interpolation

method, one of the most popular image interpolation methods, the

value of the image S at coordinate f(x) is given by:

S f xð Þð Þ ¼
X2
i¼1

X2
j¼1

X2
k¼1

1� Við Þ 1� Pj

� �
1� Qkð ÞS xi;yj;zk

� �
; ð4Þ

where Vi = | f(x)x � xi|, Pj = | f(x)y � yj|, Qk = | f(x)z � zk|,

and {xi, yj, zk} are image grid coordinates for which | f(x)x � xi| b 1,

| f(x)y � yi| b 1, |f(x)z � zi| b 1. Thus the coefficients of the linear

combination (Eq. (3)) are given by:

ai;j;k ¼ 1� Við Þ 1� Pj

� �
1� Qkð Þ: ð5Þ

The set H, in this case, are the coordinates wi for which | f(x) �
wi| V 1 holds. Note that Eqs. (4) and (5) represent the three-

dimensional case, while Fig. 1 depicts a 2-dimensional situation.

Naturally, when different interpolation or approximation methods

are used, different formulas are needed for estimating the variance



Fig. 1. Illustration of an interpolation or approximation procedure for image registration. First, a coordinate x in the target image space is transferred to a coordinate in

the bsourceQ image space via f(x). The value of the source image at f(x) is computed using neighboring values of the source image at that coordinate, s(w1), s(w2), etc.
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of any given interpolated image value. Refer to Appendix A for the

general formula for the variance of an interpolated image value

given a general (separable) basis function.

Because of random variability introduced at several steps

during image acquisition, the measurement Sk(wi) should be

considered a random variable with a variance Var(Sk(wi)). For MR

images, it is customary to assume that noise variance, denoted by

k2, is uniform throughout the imaging volume. Note that, though it

can be assumed that Sk(wi) and Sk(wj), where i p j, have equal

variances, in general they are not independent measurements

because several image reconstruction steps effectively correlate

measurements from different image coordinates. Correlation in the

data due to the reconstruction procedure can arise from filtering

during analog to digital conversion, filtering to remove ringing

artifacts, filtering to remove noise, correcting for ghosting artifacts

(particularly salient in EPI reconstructions), and others. Correlation

between values in different image coordinates occurs not only in

MRI, but also X-ray-based computed tomography and positron

emission tomography (PET). This is because most reconstruction

algorithms use filtering operations that correlate intensity values of
Fig. 2. Ordering of voxels used to compute the correlation matrix (E9).

Corr(1,3), for example, corresponds to the correlation coefficient between

the image value at location with index 1, and the image value at location

with index 3.
different image coordinates. A simple method for estimating this

correlation in MRI will be described in the next section.

In short, because of the noise variability introduced during

image acquisition and processing, the measurements Sk(wi) and

Sk(wj) are random variables with variance Var(Sk(wi)) and

Var(Sk(wj)), respectively, and covariance Cov(Sk(wi), Sk(wj)).

Thus, Sk( fk(x)), as defined by Eq. (3), is also a random variable

with variance (Hogg and Craig, 1995):

VarðSkðfk xð ÞÞÞ ¼
X

wi a H

a2i Var Sk wið Þð Þ
 !

þ 2
X

fwi;wjg a H;i b j

aiajCov Sk wið Þ;Sk wj

� �� �0
@

1
A:

ð6Þ

If it can be assumed that Var(Sk(wi)) = k2 is approximately

constant for all values of the image, Eq. (6) simplifies to,

Var Sk fk xð Þð Þð Þ ¼ k2
X

wi a H

a2i

 !

þ 2
X

fwi;wjg a H;i b j

aiajCov Sk wið Þ;Sk wj

� �� �1A:

0
@

ð7Þ

In cases when the intensity correction function defined in Eq.

(2) needs to be applied to the registered image Sk( fk(x)) to obtain

intensity corrected value S̃k( fk(x)), it is easy to show that the

correct formula for the variance becomes:

Var S̃kSk fk xð Þð Þ
� �

¼ detjJac f k xð Þð Þjð Þ2 k2
X
i a H

a2i

 ! 

þ 2
X

i;jf g a H;i b j

aiajCov Sk wið Þ;Sk wj

� �� �1A
0
@

1
A:

ð8Þ
Note that if nearest neighbor interpolation is used, the variance

of each value in the interpolated image would be equal to the
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variance of the nearest neighbor voxel, multiplied by the Jacobian

correction term when appropriate. We have implemented Eq. (8),

using the linear interpolation method, in our DTI processing

pipeline and we show next that, because the fitting procedure

includes estimates of the noise variance in each image, Eq. (8)

should be used to re-estimate the variance of the signal in each

voxel in each image that has been registered.
Methods

MRI data acquisition

The data sets in the demonstrations used throughout this paper

were acquired with a standard single-shot multi-slice spin-echo EPI

sequence (i.e., fat suppression pulse, 908 pulse, first diffusion

gradient, 1808 pulse, second diffusion gradient, EPI readout).

Scans were performed on a 1.5-T GE Signa system equipped with

a whole-body gradient coil able to produce gradient pulses up to 50

mT/m (GE Medical Systems, Milwaukee, WI). The imaged

volume was composed of 80 contiguous slices with 2-mm slice

thickness and 2-mm in-plane resolution. The echo-time was 82.7

ms, the read-out time 50 ms, and the repetition time was greater

than 10 s with cardiac gating (4 acquisitions per heart beat starting

with a 150-ms delay after the rise of the sphygmic wave as

measured with a peripheral pulse oxymeter). The gradient strength

was 49 mT/m, yielding a b value (i.e., trace of the b-matrix) of

1120 s/mm2. A total of 56 3D images were acquired by repeating 8

times a diffusion sampling scheme described previously (Pierpaoli

et al., 1996), which includes one volume with no diffusion

weighting followed by the same volume six times, acquired with

diffusion gradients applied in different directions. The total

imaging time was approximately 20 min. Replicate volumes were

acquired for signal to noise considerations in order to improve the

quality of the estimated diffusion tensor parameters. The signal to

noise ratio, as measured by the mean signal in the region of the

thalamus divided by the estimated standard deviation of the signal

(see section below), was about 13 for the T2-weighted images and

about 7 for the diffusion-weighted images.

MRI noise estimation

The sources that introduce uncertainty in each voxel intensity

are many and are generally put into one of two categories: thermal

noise and physiological noise. Other sources may also exist in the

electronics of the acquisition system, such as digitization, etc., but

these can be minimized in an ideal experiment. Thermal noise is

usually considered as bwhite noiseQ because it is expected that its

power should be equal for all frequencies within the readout

bandwidth. Because the images are reconstructed using the Fourier

transform, the variance that characterizes the uncertainty due to

thermal noise is constant throughout the imaging volume (Haacke

et al., 1999). Naturally, the same cannot be said about physio-

logical noise.

In our experiments, we are only able to estimate the variance

that characterizes the uncertainty of the MR measurement due to

thermal noise. We do so by computing the variance of magnitude

reconstructed intensity values in an artifact-free background

region and propagating it to regions with strong signal from the

brain through the method described in Gudbjartsson and Patz

(1995) and Henkelman (1985). The correction factor described in
Gudbjartsson and Patz (1995) and Henkelman (1985) uses the

assumption that Gaussian distributed noise is added to the real and

imaginary channels of the receiver system. If possible, we would

also like to estimate the variance component due to physiological

noise such as flow, MR spin history errors, etc. To do so,

however, would require many repeated acquisitions. It would also

be difficult to isolate the variance due to patient motion in such

repeated measurements (which is something the registration step is

actually trying to diminish). Because of these difficulties, we are

not able to estimate the variance introduced by physiological

effects. Thus the variance estimate we are able to compute for

each voxel intensity value is a biased lower bound estimate of the

variance when all sources of uncertainty are included. We would

like to note, however, that if the total variance, and covariance, in

the signal (from all sources) does somehow become available in

the future, the same formulas described in the Theory section can

be used to propagate the known variance beyond the interpolation

step.

The correlation matrix used in our experiments was estimated

empirically. Though theoretically possible, it could be very

cumbersome to account for all of the filtering steps applied to

the data before it becomes a magnitude image. In addition, some

steps taken during analog to digital conversion of the free

induction decay signals may be proprietary and thus inaccessible.

Instead, we acquired and reconstructed several 3D images of pure

noise. Using this pure noise image data, we computed the

correlation coefficient between the original volumes and the same

volumes shifted by one pixel in the x, y, and z directions. Note

that because we are using linear interpolation, it is only necessary

to include 1 voxel shift in the computation Eq. (8). When bases

functions of wider support are used in the interpolation or

approximation procedure, the correlations of larger shifts may be

required. Using this method, we computed the following 8 � 8

correlation matrix:

Corr i;jð Þ ¼

1 0:35 0:40 0:25 0 0 0 0

0:35 1 0:25 0:40 0 0 0 0

0:40 0:25 1 0:35 0 0 0 0

0:25 0:40 0:35 1 0 0 0 0

0 0 0 0 1 0:35 0:40 0:25
0 0 0 0 0:35 1 0:25 0:40
0 0 0 0 0:40 0:25 1 0:35
0 0 0 0 0:25 0:40 0:35 1

3
77777777775
:

2
66666666664

ð9Þ

Fig. 2–which defines the ordering of the voxel coordinates–

helps explain the correlation matrix expressed in Eq. (9). Because

we are assuming that most of the correlation is caused by linear

filtering operations applied on the image data, the noise correlation

matrix (Eq. (9) should be approximately constant throughout the

domain of the original magnitude reconstructed images. Note that

since our acquisition is based on a 2D EPI pulse sequence,

measurements between one slice and the next show no significant

correlation. Also note that the correlations in the x and y directions

are not equal, since additional operations are performed in the

phase encode ( y in this case) direction to minimize ghosting

artifacts. Lastly, since we are also assuming that the noise variance

in the original magnitude reconstructed image is constant, the

covariance matrix used in Eq. (8) is given by:

Cov i;jð Þ ¼ Corr i;jð Þ � k2: ð10Þ
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Diffusion tensor estimation

The diffusion tensor model was estimated in each voxel x

from the diffusion-weighted data by minimizing the following

equation:

v2 D xð Þ;A xð Þð Þ ¼ 1

K � 7

�
XK
k ¼ 1

A xð Þe �D xð Þ:bkð Þ � S̃kSk f k xð Þð Þ
� �2

Var S̃kSk f k xð Þð Þ
� � ; ð11Þ

where D(x) is a 3 � 3 symmetric matrix, A(x) is the amplitude

term, and bk is the b-matrix for image k, and D:b stands for the

matrix dot product (Basser et al., 1994). The minimization was

performed using the Levenberg–Marquardt least-squares method.

Simulated data experiments

As an initial test of our variance estimation software, we

performed simulation experiments using artificially constructed

data. In this experiment, one thousand 2D images of Gaussian

distributed random noise with mean zero and variance one were

rotated about their centers by 58 using bilinear interpolation. In this

simulation, the correlation matrix used was approximately:

Corr i;jð Þ ¼

1 0:25 0:25 0:23
0:25 1 0:23 0:25
0:25 0:23 1 0:25
0:23 0:25 0:25 1

3
775:

2
664

For a fixed pixel coordinate x, the variance across all of the

rotated images was computed and displayed. The purpose of this

experiment is to show that the variance in the images acquires a

particular striped structure. The origin of the striped structure

shown stems from the fact that each intensity value in the rotated

image was computed by interpolating the original image on a

particular non-grid-point coordinate. This estimate comes from a

linear combination of the intensity values from around the

transformed sampling coordinate (see Fig. 1). The coefficients of

the linear combination are computed from the distance of the

transformed coordinates to its nearest neighbors. For a specific

degree of rotation, this distance will repeat itself every so often

throughout the rotated image domain. Since the variance of the

rotated image is determined by the coefficients of the linear

combination, the variance value of the rotated image will also

repeat itself every so often throughout the rotated image domain.

We show that by using Eq. (8) the variance in the interpolated

images can be predicted exactly.

Experimental data

The diffusion-weighted data used in the examples in this paper

were registered to account for patient motion and eddy-current-

induced geometric distortions using the methodology described in

Rohde et al. (2004). When using this method, first a non-diffusion-

weighted image is chosen from the same DWI dataset to be the

reference image to which all remaining images are aligned. The

registration of each image is done in series and independently from

the registration of the other images in the same set. This approach

uses a mutual information-based registration technique and a
spatial transformation model containing parameters that correct for

eddy-current-induced image distortion and rigid body motion in

three dimensions. Each registration consists of estimating 14

parameters in total: 6 for rigid body motion and 8 for the model of

eddy-current-induced distortions which consist of a spherical

harmonics series expansion in Cartesian coordinates, up to

quadratic terms. All 14 parameters for each image in the set are

estimated simultaneously. Optimization is performed using a

gradient-ascent-type technique within a multi-resolution frame-

work. Initial estimates of the registration parameters are obtained

using low-resolution approximations of the images. These esti-

mates are then used to initialize the optimization using higher-

resolution representations of the data. The images can also be

registered to an arbitrary template with a single interpolation step

without additional significant computational cost, though this

feature was turned off in all of the experiments shown here. The

registered images are created using trilinear interpolation. Follow-

ing registration, the signal amplitude of each DWI volume is

corrected to account for size variations of the object produced by

the distortion correction, and the b-matrices are properly recalcu-

lated to account for any rotation applied during registration.

The diffusion tensor at each voxel was computed using the

registered images by solving Eq. (11) as described above. For

comparison purposes, we also estimate the diffusion tensor from

the registered images using Eq. (11), but using a constant term for

the noise variance Var(S̃k( fk(x))) = k2. The v2 measure at each

voxel is compared for both methods. In addition to v2, we also

compare the estimated tensor parameters to investigate whether or

not they are significantly affected when the incorrect noise

variance is used.
Results

The results of the simulation experiments are shown in Fig. 3.

Part a shows a sample noisy image computed as described above.

Part b shows the same image rotated by 58 about its center. Values
outside the original image were assumed to be zero. Part c shows

an image of the variance of the one thousand rotated images

computed at each pixel. Clearly the variance became non-uniform

and acquired a striped pattern throughout the domain of the image.

This variance image was computed analytically using Eq. (7), and

the result is shown in part d.

A similar effect can be seen in real data experiments using

diffusion-weighted images. Though these striped artifacts are

practically invisible in the interpolated DWI volumes, they

become evident in the v2 maps computed using Eq. (11). Some

results are shown in Fig. 4. In this experiment, a set of DWI

volumes was rotated about its horizontal axis by about 7.58, thus
causing interpolation to be performed between values of different

slices, as well as between values of different lines in the logical y

direction. For this experiment, the same rotation transformation

was applied to each DWI volume, that is: f1(x) = fk(x) . . . = fK(x).

Part a of Fig. 4 shows the v2 map computed using a single value,

k2, for the variance of each voxel in each image. Horizontal stripes

are visible along the vertical axis of the image, reflecting the

different amounts of interpolation performed at each voxel

location. Part b shows the variance predicted using Eq. (8). Part

c shows the v2 map computed using the variance given by Eq. (8).

The bstripingQ patterns become negligible when compared to those

shown in part a of the same figure. Note that the dynamic ranges of



Fig. 3. Simulation showing how the interpolation necessary to relate measurements in two images can significantly affect the noise properties of the

interpolated image. Part a, an image of simulated noise. Part b is the image in part a rotated by 58. Part c is the variance of image (b) computed by repeating the

rotation experiment 1000 times. Part d shows the variance of image (b) predicted by Eq. (8).
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both v2 maps in this example were auto-scaled to obtain maximum

contrast.

Fig. 5 displays an additional comparison of v2 maps computed

on unregistered and registered data, with and without the

estimation of intensity variance method we propose above. Unlike

the example above, the dynamic range of all v2 maps was set to

[0,5]. Note that the original image data used in this experiment was

significantly misregistered due to relatively large subject motion.

Part a shows the v2 computed from the original, unregistered

images using a single variance value estimated from the back-

ground of the images. Fig. 5b shows the v2 map computed from the

registered DW images with the same variance value used in part a.

Note that the v2 values of the registered images are generally lower

than the chi-squared values of unregistered images. Finally, Fig. 5c

shows the v2 maps computed from the registered DW images using

the variance values produced by Eq. (8). Note also that the chi-

squared values for part c are generally higher than those of part b.

We also compared some of the most well-known parameters

derived from the diffusion tensor computed from the fitting of Eq.

(11). For reference, the amplitude, trace, and fractional anisotropy

index (Basser, 1995; Basser and Pierpaoli, 1996) are shown in Fig.

6, parts a through c, respectively. Fig. 7a shows the relative error

between the trace parameter computed with and without the

variance correction scheme proposed above. The relative error was

computed using the following formula: |vcorrected � vuncorrected|/

vcorrected, where dvT stands for the voxel’s specific value for the

trace of the diffusion tensor. The absolute value of the difference

between the fractional anisotropy values computed with and

without the variance correction described above is shown in part

b of Fig. 7.
Fig. 4. Demonstration of bias in v2 between the DT model and registered DWI dat

the data. Part b shows the non-uniform variance estimated using Eq. (8). Part c sho

displayed in part b.
Discussion

The rotation experiments performed with the simulated noisy

images demonstrate qualitatively and quantitatively the effect that

image interpolation can have on the noise variance in registered or

interpolated images—the variance becomes non-uniform. The

experiment also shows that Eq. (8) can be used to estimate the

variance in the interpolated images.

Experiments using real DWIs showed that the change of

image noise properties caused by the registration (interpolation)

procedure can significantly affect parameter estimation procedure

in DT-MRI. First, the alignment of the entire DWI dataset to a

standard template can cause v2 maps to acquire a striped pattern

if a single value for the image intensity variance is used during

tensor estimation. The pattern can be explained by the non-

uniform intensity variance introduced by the image interpolation

step. The patterns disappear when the correct noise variance in

each voxel of each image, given by Eq. (8), is used to compute

the diffusion tensor. The striped pattern in the v2 values is

negligible if the DWI dataset was not aligned to a standard

template, in addition to being corrected for motion and distortion,

even if a single value for the intensity variance is used in

estimating the tensor model. Nonetheless, Eq. (8) should be used in

this case–because the images have suffered interpolation–to ensure

an estimation of the correct variance values. Our results showed

that in general the v2 computed from registered images is lower

than the v2 computed from unregistered images when significant

misregistration due to motion was present. However, the v2 values

computed using a single variance value estimated from the original

(unregistered) images were lower than the v2 values computed
a. Part a shows the v2 map computed using a single value for the variance in

ws the same v2 map, however, this time computed using the variance values



Fig. 5. Part a, v2 images computed from the raw (unregistered) data. v2 images computed from registered images with (part c) and without (part b) the noise

variance formula given in Eq. (8). The v2 values computed using the bcorrectQ noise variance values are generally higher than the values computed using a

single noise variance estimated on the original (unregistered) images. The actual noise variance in registered images is generally lower than the original noise

variance because of the linear combinations performed during image interpolation.
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using Eq. (8) to estimate the correct intensity variance. This is to be

expected since the variance of registered images at any given voxel

location is less than or equal to the variance of the original

(unregistered) images because of the interpolations necessary for

registration. Thus, if a single variance value estimated from

original (unregistered) images is used for the tensor computation,

the overall effect will be an artificial decrease in the v2 maps

derived from tensor fitting.

We have also shown that the estimation of the trace and

fractional anisotropy parameters of the diffusion tensor can be

affected by incorrect noise variance estimates. In the experiment

shown, the error between the parameters estimated with and

without the variance correction to account for image registration

was small: a few relative percentage points for the trace of the

diffusion tensor and a few absolute percentage points for the

fractional anisotropy index. We expect that the error caused by

inappropriate weights in computing the actual parameters of the

diffusion tensor model will be largest when the data being fit differ

substantially from the model being used. To understand this, one

only has to think of the extreme case in which the model fits the

data without error. In this case, the weights being used become

irrelevant since the numerator of the chi-squared equation becomes

zero. The error between the data and the model arises from

normally distributed thermal noise, physiological noise, as well as

regions where it is known that the DT model poorly describes the
Fig. 6. Tensor-derived quantities computed after registration with dcorrectT varian
Part c, fractional anisotropy image.
underlying diffusion process, e.g., regions of crossing fibers. When

considering only thermal, normally distributed additive noise, as

we do throughout this paper, errors caused by incorrect variance

estimates are not expected to be large and may diminish as the

number of diffusion-weighted images increases. As shown in the

Results section, however, these errors are expected to be in the

order of a few percent.

The precise effect that changed image noise properties due to

interpolation or approximation will have on DT estimation

procedures cannot be determined a priori and will depend on

several aspects of the registration and data processing procedures.

Some of these are the spatial transformations used to register the

images, the interpolation or approximation kernel used, the noise

variance and covariance in the original images, and the anatomical

content of the images. However, it is worth noting that a translation

of 0.5 pixels in all three dimensions can cause the variance of the

signal to be reduced to 0.125 of the original variance of the signal

when the linear interpolation method is used and if the data are

spatially uncorrelated. If the correct noise variance value is not

used, the resultant v2 measure will be underestimated by 8 times.

Using the correlation matrix stated in Eq. (9), a translation of 0.5

pixels in all three dimensions would cause the variance in the

interpolated image to be 0.25 of the variance in the original data.

This would cause the v2 measure to be underestimated by 4 times if

all images in the dataset suffered similar interpolation.
ce estimates. Part a, amplitude image. Part b, trace of the diffusion tensor.



Fig. 7. Part a, relative error (absolute value of the difference divided by the

dcorrectT value) between the trace of the diffusion tensor computed with and

without the variance estimate given by Eq. (8). Part b, absolute value of the

difference between fractional anisotropy values computed with and without

the variance estimated by Eq. (8).
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Note that, although noise variance, and thus covariance, may

vary even between datasets acquired using the same magnet and

reconstructed using the same procedure, because of receive coil

temperature or amplification settings, for example, the noise

correlation should not vary greatly. This is because the most

significant correlations are introduced almost entirely by data-

independent post-processing operations performed during magni-

tude image reconstruction. Thus, we expect that the method we

propose to estimate the noise correlations in the images to be well

suited when the MR images are reconstructed using the same

procedure.

By inspecting images a and c displayed in Fig. 4 closely, the

reader may notice a slight vertical dark band running through the

center of the images. We believe that this is due to non-uniformity

in noise variance through the field of view caused by noise aliasing

in the frequency encode direction (logical x direction) during

Fourier transform-based image reconstruction. The magnet receiver

chain includes an analog filter, A/D converter, and a digital

decimation filter. The filters reduce the response to higher

frequencies. If the filters are not properly chosen, high frequency

noise will be aliased into the Nyquist band. The observed pattern

reflects the shape of the filter. There is no modulation of the

brightness of an object in the field because the object fits into the

FOV, so no aliasing takes place. There is no modulation of the

noise in the phase encode direction due to its low bandwidth,

~100� lower than in the frequency-encode direction. We are in the

process of determining the exact causes and remedies for the

problems outlined above, but we do not believe that the slight

(though noticeable) pattern in the noise materially affects our

results.
Implications for analysis of variance of DT parameters

Knowledge of the uncertainty in the estimated diffusion tensor

model parameters is important for assessing the significance of

results of inter-subject or inter-acquisition comparisons. It is also

worth noting that thermal noise variance not only plays a role in

estimating the parameters of the model but also their uncertainty.

From Basser et al. (1994), it is known that when multivariate log-
linear regression is used to compute the diffusion tensor

parameters, the error variances of the estimated diffusion param-

eters are given by the diagonal elements of the matrix (BTAe
�1B)�1

(see Appendix B), where B is the bdesignQ matrix for the

experiment, computed from the vectors that define the diffusion

weighting gradients being used, and the diagonal values of Ae
�1

given by S̃k
2/Var(S̃k), where S̃k represents the intensity value of the

kth image (for a fixed spatial coordinate) in the experiment. As

shown in Appendix B, if incorrect values of Var(S̃i) are used, the

variance of the estimated parameters is no longer (BTAe
�1B)�1 and

it is given by Eq. (B3). Methods for estimating the uncertainty in

parameters computed through nonlinear models usually rely on

Monte Carlo-type simulations for which it is necessary to know the

variance that characterizes the uncertainty of each image intensity

value (Behrens et al., 2003).
Implications for DT-MRI-based tractography

One application which may be particularly affected by incorrect

estimate intensity variance due to random thermal noise is DT-

MRI-based tractography. Intensity variations due to thermal noise

cause uncertainty in the orientation of greatest diffusivity measured

in a DTI experiment. This uncertainty is normally computed using

bootstrap (Jones, 2003) or Monte Carlo methods (Behrens et al.,

2003). Such approaches are general in the sense that they can be

used with both linear and nonlinear regression methods. On the

down side, they are computationally intensive. In addition,

bootstrap methods such as the one discussed in Jones (2003)

require the acquisition of an additional amount of data. In both

cases, testing the effect of different experimental setups (diffusion-

weighted directions, diffusion weighting strength, number of image

replicates, etc.) can be cumbersome.

Alternatively, given a specific set of b-matrices and a

diffusion tensor, a root mean square estimate of the uncertainty

in orientation as a function of thermal noise variance can be

derived using the theory of linear regression (see Appendix B).

This result can be used to calculate the approximate effect that

incorrect intensity variance estimates can have on the variability of

the principal diffusivity direction. We use a set of 22 b-matrices

derived using the scheme described in Jones et al. (1999) and an

anisotropic diffusion tensor specified by the eigenvectors g1 =

{1,0,0}, g2 = {0,1,0}, g3 = {0,0,1}, and eigenvalues d1 =

1,685e�6, d2 = 287e�6, d3 = 109e�6 mm2/s, and SNR = 15 to

demonstrate the following example. When correct variance values

are used in the estimation process, the covariance matrix of the

estimated DT parameters is given by Eq. (B4) and the root mean

square estimate in angle deviation when using the correct variance

values is about 2.58. If the entire set of images is translated by 0.5

pixels in all three dimensions, using linear interpolation and using

the covariance matrix stated in Eq. (9), for example, and the

variance of each intensity value is not recomputed using the

method described above, the covariance matrix of the estimated

parameters is given by Eq. (B3). The root mean square estimate of

angle deviation in this case increases to about 108. This result

seems counter intuitive since data interpolation should reduce the

intensity variance of image values. This, in turn, should reduce the

variability of the measurement of principal direction. We point out,

however, that this is only caused by neglecting to account for the

variance reduction due to image interpolation. If the variances of

the image intensity values are appropriately recalculated, the root
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mean square of the angle variation is reduced to about 1.38. We

point out that these results are only approximations since they were

obtained using first order expansion methods. Moreover, only

variability due to thermal noise was included. However, it seems

clear that tractography methods that rely on information about the

variability of diffusivity orientation should be directly and

adversely affected by neglecting to recompute intensity variance

estimates after image registration.

Moreover, we point out that probabilistic tractography is not the

only approach that could be affected by intensity variance

modifications due to interpolation. The deterministic methods

presented in Basser et al. (2000) and Conturo et al. (1999) rely on

estimating a continuous version of the diffusion tensor field for

numerically computing the continuous path of presumed fiber

tracts. In the approach described by Basser et al. (2000), the

continuous tensor field is estimated using an approximate fit to the

discretely sampled diffusion tensor data using cubic B-splines.

Conturo et al. (1999) obtain a continuous version of the diffusion

tensor field by interpolating the diffusion-weighted images where

needed and fitting the DT model using the interpolated values. In

both cases, the continuous approximation of diffusion tensor data

produces diffusion tensors with different variance properties at

different locations in the domain of the images. The variance of the

interpolated diffusion tensors can be computed using the formulas

given in Appendix A. Thus, such deterministic tract following

approaches effectively integrate tracts by using estimated principal

diffusivity directions that have different orientation uncertainty

across different parts of the images, whether or not the raw DW

images used for computing each diffusion tensor have been

registered. At this point, it is unclear what are the effects of non-

uniform variance for such deterministic tract following methods.

However, we believe that further investigation in the area is

merited.
Implications for functional MRI and voxel based morphometry

Note that though we used diffusion tensor imaging as a case

study, we believe that the same methodology could be used

whenever data analysis requiring noise variance estimates is

performed on registered or interpolated data. Some application

examples in biomedical imaging include fMRI data analysis,

studies of tissue shape and composition using statistical analysis

of image data, MR relaxometry experiments, etc. In all such

applications, the goal is to detect image intensity changes that

are the result of some biologically relevant phenomena. In

fMRI, this may be BOLD activation correlated with some type

of brain activity, while in voxel-based morphometry, for

example, this may be information related to diseased tissue.

Both fMRI data analysis and voxel-based morphometry methods

often rely on a generalized linear model for identifying the

presence, absence, and quantification of biologically relevant

phenomena. In this framework, the measured image data (at a

fixed voxel coordinate), defined by an N dimensional vector y,

is modeled as a linear combination of explanatory coefficients

arranged in an N � M matrix M and unknown parameters

defined by an M dimensional vector a: y = Ma + e, where e

represents an N dimensional error vector whose entries are

usually assumed to be independent, equally, and normally

distributed. If the error values are indeed normally distributed,

the maximum likelihood estimate for the model parameters is
given by a = (MTM)�1MTy, while the covariance matrix of the

estimates is given by Sa = L SyL
T, with L = (MTM)�1MT and

Sa, Sy representing the covariance matrix of the estimated

parameters and original data, respectively. Since the measure-

ments y are usually assumed to be independently and identically

distributed, the covariance matrix of the estimated parameters

reduces to Sa = k2 (MTM)�1, with k2 being the assumed noise

variance. Note that this analysis is usually performed on

registered images in order to account for patient motion and

geometric distortions. As shown in this paper, since different

images will have different spatial transformations (and thus

different interpolation) applied on them, the constant noise

variance assumption is no longer appropriate. That is, the variance

due to noise of an image value that has suffered interpolation is

expected to be different from the variance of an image value that

has suffered no interpolation at all. At this point it is unclear what

effect this will have on image analysis results obtained using the

general linear model, though it is an issue that should be

investigated further.
Summary and conclusions

As fitting and estimating procedures from registered image data

become increasingly more elaborate and quantitative, knowledge

of the intensity variance due to noise will become more important

for increasing the accuracy and scientific value of the results

obtained from them. A method for estimating the variance in

registered images is presented. The general approach can be

summarized as follows. The output of the registration procedure is

computed using an image interpolation or approximation proce-

dure. The interpolation or approximation procedure can be written

as a linear combination of the values of the image being registered.

The coefficients of the linear combination are determined by the

choice of interpolation or approximation kernel. Since the values of

the image being registered are typically corrupted by noise, this

operation can be viewed as a linear combination of random

variables. The variance of the linear combination is given by well-

known statistical formulas.

The image interpolation or approximation generally required

by image registration procedures will inevitably affect the noise

variance properties of the images. We have shown that incorrect

variance estimates can have a significant effect on diffusion

tensor estimation procedures. The method we proposed for

estimating the noise variance in registered images was shown to

be successful in both simulated and real data experiments. Since

v2 measures and noise variance estimates are used more and

more frequently in diffusion data analysis–examples include

image registration (Andersson and Skare, 2002), diffusion model

selection (Alexander et al., 2002; Shrager et al., 2002), robust

tensor estimation (Chang et al., 2004), and brain tumor

pathology detection (Maier et al., 2003)–correct variance

estimates from registered image data will become increasingly

important.

The methods described here could also be useful in other

biomedical imaging applications such as MR relaxometry, fMRI

data analysis, voxel-based morphometry, etc. However, the effects

of the technique in each of these applications are not discussed in

detail here and could be the subject of future study. The techniques

described here could also find applications in other image

processing and data analysis fields such as automatic target
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recognition and segmentation of registered data obtained from

satellite or other remote sensing machinery. Statistical approaches

are often used to fuse information gathered from several sensors

and extract possible target matches.
Appendix A

We expect that different interpolation or approximation kernels

will modify the variance in the registered images differently. The

precise manner in which the choice of interpolator will affect the

variance of an image is currently being investigated (Rohde, 2004).

Here we give a general formula for the variance of the image

intensity value produced using any kernel-based interpolation

method due to a spatial transformation being applied during

registration. Let s(k), where k a Zd, with d being the dimension of

the images, be the discretely sampled image produced by the

acquisition system. A continuous approximation to s(k) is given

by:

s̃s xð Þ ¼
X

k a Zd

s kð Þh x� kð Þ ðA1Þ

Note that the summations are carried from �l tol by making

the images periodic. Naturally, if we would like the values s̃(x) to

be equal to the values of s(k) at coordinates x = k, then h(x) must

have the following properties:

h kð Þ ¼ 08k p 0; ðA2Þ

and

h 0ð Þ ¼ 1: ðA3Þ
Examples of such kernels are the linear bhatQ function (also

known as B-spline of order 1), and the popular sinc kernel given

by:

h xð Þ ¼ 1� jxj;jxj V 1

0;jxj N 1
;

�
ðA4Þ

and

h xð Þ ¼ sin pxð Þ
px

; ðA5Þ

respectively. Note that btrueQ sinc interpolation is almost never

used in the field of medical imaging because of the enormous

computational cost associated with it. Since the support of sinc is

infinite, in theory, the sum in Eq. (A1) should be evaluated from

�l to l. Because of such computational costs and other reasons

(i.e., bringingQ artifacts), researchers in the field prefer to use

truncated and apodized versions of Eq. (A5) (Hajnal et al., 1995;

Lehmann et al., 1999, 2001; Meijering et al., 2001; Thevenaz et al.,

2000). Note also that in the cases where d N 1, the interpolation

kernel is replaced by

ĥh xð Þ ¼ j
d

i¼ 1
h xið Þ: ðA6Þ

If the basis function being used does not satisfy the

properties stated in Eqs. (A2) and (A3), examples include the
popular B-splines of order 2 or greater, Eq. (A1) needs to be

adjusted. Let b(x) be a basis function such that properties of Eqs.

(A2) and (A3) do not hold. The interpolation equation then

becomes:

s̃s xð Þ ¼
X

k a Zd

c kð Þb x� kð Þ: ðA7Þ

The coefficients c(k) are given by:

c kð Þ ¼ b�1
4 s

� �
kð Þ; ðA8Þ

where b�1 is the uniquely defined convolution-inverse (Unser et

al., 1993a,b). As shown in Unser et al. (1993a,b), we can substitute

Eq. (A8) into Eq. (A7) to see that

s̃s xð Þ ¼
X

k a Zd

b�1
T s

� �
kð Þb x� kð Þ

¼
X

k1 a Zd

X
k2 a Zd

b�1 k2ð Þs k1 � k2ð Þb x� k1ð Þ

¼
X

k a Zd

s kð Þh x� kð Þ ðA9Þ

where the new interpolation kernel is given by:

h xð Þ ¼
X

k a Zd

b�1 kð Þb x� kð Þ: ðA10Þ

Thus, the variance of the interpolated image intensity value due

to spatial transformation f(x) is given by:

Var s̃s f xð Þð Þð Þ ¼
X

k a Zd

Var s kð Þð Þ h f xð Þ � kð Þð Þ2 þ
X
i a Zd

�
X

j a Zd ; j p 1

h f ðxð Þ� iÞh f xð Þ � jð ÞCov s ið Þ;s jð Þð Þ:

ðA11Þ
Applications such as geometrical distortion correction due to

imperfect magnetic fields in MRI require the formula above to be

multiplied by the square of the determinant of the Jacobian matrix

of f, as in Eq. (8):

Var s̃s f xð Þð Þð Þ ¼ detjJac f xð Þð Þjð Þ2

�
 X

k a Zd

Var s kð Þð Þ h f xð Þ � kð Þð Þ2 þ
X
i a Zd

�
X

j a Zd ; j p 1

h f xð Þ � ið Þh f xð Þ � jð ÞCov s ið Þ;s jð Þð Þ
!
:

ðA12Þ

Appendix B

Using the log-linear diffusion tensor model for the diffusion-

weighted image data, we analyze the error distribution of the

estimated diffusion tensor parameters. Let y = {ln(S1),. . .,
ln(SN)}

T, where Si represents the ith measurement in a typical

DTI acquisition, and a = {Dxx, Dyy, Dzz, Dxy, Dxz, Dyz, ln(A0)}
T
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represents the diffusion tensor model parameters. To first order, the

log linear model can be written as

y ¼ Baþ e ðB1Þ

where the jth row of B is composed of the b-matrix entries of the

jth diffusion-weighted acquisition parameters {�bxxj, �byyj, �bzzj,

�2bxyj, �2bxzj, �2byzj, 1}, and e represents the error vector. The

covariance matrix of e is denoted (Ae)ij = ri
2/hSii2, where hui

denotes the expectation of random variable u. Since each measured

data point in y was taken independently at different times (Ae)ij = 0

8i p j. All terms in Eq. (B1) are considered deterministic, with

exception of e which represents error due to noise in the imaging

acquisition system. Therefore Ay = Ae. In practice however, one

can only estimate Ae. This is usually done based on measurements

from background intensity values. As shown in this paper, the

estimates of the variance in each image intensity value need to be

recalculated after registration or interpolation is performed on the

images. We will differentiate the true covariance matrix of the data

Ae from the estimated one Ãe. The weighted least squares solution

to Eq. (B1) is given by:

a ¼ BT Ã�1
e B

� ��1

BT Ã�1
e

�
y;

�
ðB2Þ

while the covariance matrix of the estimated parameters is given by:

Aa ¼ haaT i ¼ ðBT Ã�1
e BÞ�1

BT Ã�1
e AeÃ

�1
e BðBT Ã�1

e BÞ�1: ðB3Þ

If our estimate of the covariance matrix of the measured data is

precise and accurate, Ãe c Ae, then Eq. (B3) reduces to:

Aa ¼ ðBT Ã�1
e BÞ�1: ðB4Þ

If, on the other hand, errors are made in calculating Ãe, such as

neglecting to account for the interpolation applied to the data

during image registration, the covariance of the estimated

parameters is given by Eq. (B3).

The uncertainty in the principal direction orientation in a

diffusion tensor D̃ calculated using Eq. (B2) can be estimated by

studying the effects of random perturbations DD on a deterministic

tensor D0 (Basser, 1997):

D̃D ¼ D0 þ DD: ðB5Þ
Let d1, d2, d3 and g1, g2, g3 represent the eigenvalues (arranged

in decreasing order) and eigenvectors, respectively, of the three-

dimensional positive definite symmetric tensorD0.We are interested

in computing the perturbation g̃1 = g1 +Dg1.Wewill assume thatD0

comes from biological tissue with high diffusion anisotropy so that

sorting bias in the computed eigenvalues can be safely neglected. It

can be shown (Fukunaga, 1972) that, to first order, the perturbation

of the eigenvector associated with greatest diffusivity is:

Dg1 ¼
X
i¼ 2

3 gT1DDgi
d1 � di

�
gi:

�
ðB6Þ

The perturbation angle h between g̃1 and g1 is thus (Basser,

1997) h = tan�1(jjDg1jj). Noting that the eigenvectors g form an

orthonormal basis for the 3D Euclidean space and using the small

angle approximation for tan h:

hc jjDg1jj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
i¼ 2

3 ð gT1DDgi
d1 � di

Þ2

vuuut : ðB7Þ
Now

hh2ichjjDg1jj
2i ¼

X
i¼ 2

3 hð gT1DDgi
d1 � di

Þ2i¼
X
i¼ 2

3 hðgT1DDgiÞ
2i

d1 � dið Þ2

ðB8Þ

while, as shown in Anderson (2001),

h DDiið Þ2i ¼ hðD̃Dii � D0ð ÞiiÞ
2i ¼ ðXaÞi;i ðB9Þ

and similarly

h DDij

� �2i ¼ hðD̃Dij � D0ð ÞijÞ
2i ¼ ðXaÞi þ j þ 1;i þ j þ 1: ðB10Þ

Looking at the principal axis case, gi
T DDgj = DDij. In general,

the covariance matrix can be rotated so that h(giT DDgj)
2i =

(RAaR
T)i + j + 1, i + j + 1 = ti + j + 1, i + j + 1 (Anderson, 2001),

where R is a rotation matrix. Therefore, Eq. (8) can be written as

hjjDg1jj
2i ¼

X
i¼ 2

3 hðgT1DDgiÞ
2i

d1 � dið Þ2
¼
X
i¼ 2

3 Nð Þ2 þ i;2 þ i

d1 � dið Þ2
: ðB11Þ

Thus the root mean square angle estimate of the deviation from

the principal direction is:

hRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼ 2

3 Nð Þ2 þ i;2 þ i

d1 � dið Þ2

vuut ; ðB12Þ

where the covariance matrix of the estimated parameters Aa in

RAaR
T = t is given in Eq. (B3).
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