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ABSTRACT We address three problems that limit the use of the atomic force microscope when measuring elastic moduli
of soft materials at microscopic scales. The first concerns the use of sharp cantilever tips, which typically induce local strains
that far exceed the linear material regime. We show that this problem can be alleviated by using microspheres as probes, and
we establish the criteria for their use. The second relates to the common use of the Hertz contact mechanics model, which
leads to significant errors when applied to thin samples. We develop novel, simple to use corrections to apply for such cases.
Samples that are either bonded or not bonded to a rigid substrate are considered. The third problem concerns the difficulty
in establishing when contact occurs on a soft material. We obtain error estimates for the elastic modulus resulting from such
uncertainty and discuss the sensitivity of the estimation methods to error in contact point. The theoretical and experimental
results are compared to macroscopic measurements on poly(vinyl-alcohol) gels.

INTRODUCTION

Knowledge of mechanical properties of cells and other
biological tissues at high resolution could be instrumental to
understanding how mechanical interactions affect function.
The atomic force microscope (AFM) used as a microin-
denter has recently emerged as a mainstream microrheology
tool used for this purpose (Vinckier and Semenza, 1998;
Hoh and Heinz, 1999). In addition to shedding light onto
function, mapping the distribution of elastic properties
across imaged areas may also be used to correct topographic
images for deformations caused by the imaging forces
themselves (Hoh and Heinz, 1999).

The use of the AFM as a microindenter to measure elastic
properties and other surface interaction forces was intro-
duced early in its development (Burnham and Colton,
1989). Such measurements on biological tissues followed
soon after (Tao et al., 1992; Radmacher et al., 1992). In
these applications, “force–displacement” curves are col-
lected with the AFM and used in conjunction with appro-
priate mathematical models describing the mechanics of
contact to estimate the Young’s modulus and other material
properties or structural parameters (Radmacher et al., 1994,
1996; Heuberger et al., 1994; Radmacher, 1995; Rotsch et
al., 1997; Sato et al., 2000; Haga et al., 2000; Mahaffy et al.,
2000). In these and other publications, with the exception of
the recent work attaching spherical beads to the AFM can-
tilevers (Mahaffy et al., 2000), standard commercial canti-

levers were used with pyramidal tips having tip radii of
curvature of the order of tens of nanometers. Sample thick-
ness typically varied from several microns to less than one
micron, and they were supported on relatively rigid sub-
strates, such as glass or mica. In all cases, force–displace-
ment data were analyzed by fitting them with Hertzian
models of contact in which two major assumptions are
made: linear elasticity and infinite sample thickness. Both
assumptions, however, can lead to significant errors. An-
other difficulty associated with these measurements is the
fact that the initial contact point is difficult to establish with
soft samples. Also, imperfections in commonly used canti-
levers with pyramidal tips may result in an ill-defined
contact-region geometry, which introduces uncertainty in
choosing the appropriate fitting model. These issues are
addressed in this paper.

Some of the problems have been highlighted in the liter-
ature, where it has been shown, depending on the applied
force and on the sample thickness, that large errors may
result when using infinite thickness models (Kim, 1996;
Domke and Radmacher, 1998; Akhremitchev and Walker,
1999). In the latter, the authors used the theoretical models
of Dhaliwal and Rau (1970) to compute force-displacement
curves for finite sample thickness to show that, for soft, thin
samples the error in the estimated elasticity modulus can be
an order of magnitude. More recent finite element modeling
of the contact problem (Costa and Yin, 1999) pointed out
that finite deformations occur in soft samples when probed
by the usual cantilevers carrying sharp pyramidal tips, and
that significant errors may occur when using models derived
from linear elasticity. Mahaffy et al. (2000) attached micro-
spheres to the cantilevers to avoid damaging delicate bio-
logical samples and they showed that, with thick gel sam-
ples, good agreement can be obtained with macroscopic
measurements of the same material. On both thick and thin
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samples, they showed the apparent Young’s modulus as
computed using the Hertz model, remains constant over
some range of applied force. As will be discussed here,
however, that approach may introduce artifacts that cannot
be addressed in the context of the Hertz theory. Other efforts
have proposed using relative stiffness measures (A-Hassan
et al., 1998), or evaluating relative Young’s moduli based
on comparisons with well-known materials (Reynaud et al.,
2000). In both cases, however, the need for a model at the
outset describing the relation between force and indentation
is not eliminated.

The general problem of contact between isotropic elastic
bodies has been studied for over a century starting with the
well-known works of Hertz (1881) and Boussinesq (1885).
Their work resulted in simple explicit expressions for the
force-indentation relation for an infinitely thick sample.
During the last few decades, improved mathematical tools
and strong interest in the materials science and mechanics
communities produced extensive literature on the subject.
Landau (Landau and Lifshitz, 1959) summarized the Hert-
zian approach, re-derived his results, and gave expressions
for both stress and displacement fields. Sneddon (1951,
1965) followed the approach taken by Boussinesq and de-
veloped a methodology based on integral transforms. He
derived solutions for several axisymmetric indenter geom-
etries, but solved the problem for infinitely thick samples
only. Until now, calculations for the finite thickness layer
have required extensive numerical computations, as exem-
plified in Tu and Gazis (1964), Popov (1962), and later in
Dhaliwal and Rau (1970) and Chen and Engel (1972).
Aleksandrov (1968, 1969) further developed the integral
transform method and used asymptotic methods to solve the
problem for a finite thickness layer. His final results, how-
ever, still require rather sophisticated mathematical manip-
ulations. Moreover, his results are not valid for incompress-
ible materials (Poisson’s ratio v � 0.5), which is the case for
most biological tissue. The numerical computations of
Hayes et al. (1972) are valid for v � 0.5, and are the most
appropriate to compare with the results of the present work,
which also has no restrictions on the value of v. Matthew-
son’s (1981) approximate analysis for very thin, bonded
layers is also applied to incompressible materials. A rather
important finding is that the force–indentation relation for
very thin layers depends surprisingly strongly on whether
the sample is bonded or not to the substrate (Yang, 1998;
Chadwick, 2002). This should have important implications
for biological samples where their attachment to substrates
may not be well controlled.

In reviewing the literature on modeling the contact prob-
lem, it becomes clear that no convenient solutions exist for
the indentation of finite thickness elastic samples. The rea-
son lies in the intrinsic geometric nonlinearity whereby the
actual contact area and hence the pressure profile depend on
the total applied force. Existing mathematical formulations
lead to an integral equation that has to be solved either

numerically using finite element schemes or by other, rather
complex computational schemes. This is a rather tedious
and inconvenient approach for routine AFM use. Simpler,
validated, analytical corrections to the infinite sample solu-
tions, such as those developed here, should be very helpful.
Our corrections are based on recasting the integral equations
into a hierarchy of simpler integral equations that can be
solved analytically.

The aims here are to: examine the limitations of the use
of the widely available AFM cantilevers with their sharp
tips but poorly defined tip geometry; further develop the use
of microspheres as indenters; develop a simple-to-use the-
ory that allows reliable determination of elastic moduli on
soft samples irrespective of thickness, which are supported
in different ways on rigid substrates; and verify the ap-
proach and the theoretical models by comparing results with
those obtained from macroscopic measurements. Estimation
of Young’s modulus [N/m2] instead of sample stiffness
[N/m] is more desirable, because the latter depends on the
experimental setup, as opposed to the former, which is an
intrinsic material property that can be used to compute
mechanical responses under any conditions.

MATERIALS AND METHODS

Microsphere attachment and
cantilever calibration

Polystyrene microspheres (4- and 9.6-�m diameter, Interfacial Dynamics
Corp., Portland, OR) were attached to the cantilever tips. The 9.6-�m
spheres were attached to standard Si3N4 cantilevers (Digital Instruments,
Santa Barbara, CA, nominal stiffness 0.06 N/m) adjacent to the existing
pyramidal tip. The 4-�m spheres were attached to tipless cantilevers of the
same nominal stiffness, obtained for this purpose (Digital Instruments).
The attachment was effected using water-resistant, two-part epoxy adhe-
sive using an inverted optical microscope and a micromanipulator. Cali-
bration of the cantilevers was performed by first making a calibrated glass
fiber cantilever of comparable stiffness that was then used to deflect the
AFM cantilevers while measuring both the glass fiber vertical displace-
ment and the vertical deflection at the contact point. The glass fiber was 50
�m in diameter and was pulled to a tip of �10 �m in a micro-pipette
puller. The glass fiber calibration was performed by loading it with known
weights close to its free end and measuring deflections. The measured
stiffnesses were within 25% of the nominal value.

Gel composition and macroscopic shear
modulus measurements

Poly(vinyl alcohol) (PVA) gels were prepared by cross-linking PVA
(Mw � 100,000) in aqueous solutions with glutaraldehyde at pH � 1.5.
Cross-links were introduced at different polymer concentrations. The molar
ratio of the cross-linker to the monomer units of the polymer was 0.01 at
all concentrations and this guaranteed that no swelling or shrinking of the
gel would occur during or after the gelation process (Horkay and Nagy,
1980). 1 M HCl solution was used as a catalyst in all cases to adjust the pH.

Uniaxial compression measurements were performed by a TA.XT21
HR Texture Analyser (Stable Micro Systems, UK). This apparatus mea-
sures the deformation (�0.001 mm) as a function of an applied force
(�0.01 N). Gel cylinders (height � diameter � 1 cm) equilibrated with
pure water were deformed (at constant volume) between two parallel flat
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glass plates. The shear modulus, G, was calculated from the nominal stress,
� (force per unit undeformed cross-section), using the equation,

� � G�� � �	2
, (1)

where � is the macroscopic deformation ratio (� � L/L0, L and L0 are the
lengths of the deformed and undeformed specimen, respectively). Eq. 1
applies to an isotropic, incompressible, neo-Hookean elastic material that
has been shown to be appropriate for PVA gels (Horkay and Nagy, 1980).
Measurements were carried out at deformation ratios 0.6 � � � 1. No
volume change or barrel distortion was detected. The shear modulus is
simply related to the Young’s modulus by E � 2(v � 1)G, which translates
to E � 3G for incompressible materials (v � 0.5). In all cases, fresh gels
were made shortly before measurements were performed.

Gel preparation and electron microscopy

Thick (�2 mm) gel samples were made in petri dishes. Cubical gel sections
2 mm on the side were then quick-frozen by contact with a liquid nitrogen-
cooled sapphire block of a Life Cell CF-100 quick-freezing machine
(Research and Manufacturing Co., Tuscon, AZ) and promptly transferred
into liquid nitrogen. The frozen gels were then fractured at 	150°C in a
Balzers BAF301 freeze–fracture apparatus, etched for 10 min at 	100°C,
and rotary shadowed with platinum at 15° angle and backed with carbon at
a 90° angle. Organic material was cleaned with 10% chromic acid. Rep-
licas were observed and photographed on a Zeiss 902 transmission electron
microscope in zero-loss imaging mode.

Figure 1 shows a representative image obtained from the above
procedure. The image was taken on a fracture plane that laid parallel
and very close to the gel-free surface and is, therefore, representative of
the environment probed by the AFM tip. The gel consists of a rather
homogeneous looking three-dimensional fiber network when observed
at the scale of the image size. The mesh size of the cavities in most of
the image area is distributed in the range between 30 and 90 nm with a
mean of �65 nm. Occasional larger cavities appear, such as the appar-
ent gaps of �0.15 �m in size observed in the image. The gel microstruc-
ture bears striking resemblance to known biological gelatinous tissue such
as the supporting matrix of the otolithic membrane in the vestibular sensory
apparatus of the frog (Kachar et al., 1990) and of the guinea pig (Lins et al.,
2000).

Gel sample preparation for AFM and
thickness measurement

For each polymer concentration, a relatively thick sample was made
(�1 mm) and data were collected to ascertain the validity of the Hertz
model and to explore the errors involved when using sharp tips. Thin
samples were subsequently made of the same stock solution by the
method described below. After cantilever calibration, the thickness of
the gel was measured approximately by topographic AFM imaging of a
100  100-�m area that included the gel boundary. Regions �100 �m
from the gel border were chosen, and a number of force-displacement
curves were collected using three successive cantilevers (sharp, R � 2 and
R � 4.8 �m).

Gel films were prepared that were firmly attached to the substrate and
had a thickness of less than 5 �m. A small quantity of PVA solution
(100–150 �l) containing the cross-linker and the catalyst was poured on
silane, or polylysine-coated glass slides, held in vertical position to allow
for the gel to drip down the slide aided by gravity. The slide was placed in
a vibration-free environment and protected from drying by placing it in a
saturated water vapor atmosphere. After the gel was fully formed, the
thinnest part of the gel was found to have thickness between 1 and 4 �m
as measured from the AFM topographic image. It was found that the gels
adhered to the substrate well and that the step size could be measured

consistently under water using either the contact or the oscillating mode of
the AFM. The resulting samples were fairly flat (rms fluctuation � 25 nm).
This type of sample is typical of single cells, and, at such sample thickness,

FIGURE 2 Topographic steps obtained using contact mode AFM imag-
ing. Different strips indicate successive shifts in the scan region to view
larger area of the gel. The vertical bar at the image front is 5 �m.

FIGURE 1 Transmission electron micrograph of PVA gel sample. Few
large cavities (arrow) appear in an otherwise homogeneous matrix. Bar �
150 nm.
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the Hertz theory of infinite half-space clearly breaks down. Figure 2 shows
a typical thin gel step.

All samples were maintained in de-ionized water in which the measure-
ments were also made using a commercial AFM (Bioscope, Digital Instru-
ments) attached to an inverted optical microscope (Olympus IX-70). All
force–displacement curves were collected using Si3N4 commercial canti-
levers with nominal stiffness of 0.06 N/m.

Measurements and data analysis

Data collection was followed by visual truncation as close as possible
to the contact point. The resulting data, within the error associated with
the choice of the contact point, represent the deflection versus inden-
tation relation. The data were often also truncated at high force so as not
to exceed surface strains of �10% as estimated by the Hertz theory
when using attached microspheres. This was more difficult, however,
when sharp tips were used because of the very high strains induced even
by very small forces. In all cases, the gels were assumed to be incom-
pressible (v � 0.5).

If the coordinates of the contact point are assumed, the linearity of the
force–indentation relation with respect to E allows the inversion of any
explicit model and the estimation of E for each data point independently.
This is the method that is widely used and was also used here. An extension
of the method solves the relevant model equations for the parameters by
matching the data at a number of points equal to the number of parameters.
The transcendental form of the finite thickness model complicates the
inversion, which is not an insurmountable problem but would require some
computational effort.

The method for parameter extraction used here fits the model to the
complete set of data points by least squares method. Only those data points
where contact is certain need be used and the complete set of unknown
parameters can be optimally estimated. The small percentage of points
corresponding to noncontact that may inadvertently be included will only
have proportionally small effect. The nonlinearity of the model requires
nonlinear regression analysis, which is available in many software pack-
ages. Here we used either the steepest descent or the Levenberg–Marquardt
minimization algorithms available in Mathematica (Wolfram Research,
Champaign, IL).

THEORY

In the following sections, the indentation geometry is first
presented, followed by the conditions required for small
strains, and finally by new theoretical models of the contact
problem for finite thickness samples. The second section
supports the use of microspheres for indentation experi-
ments, and the last contains the models needed to extract the
desired material parameters.

Indentation geometry and
force–displacement data

The mechanical properties of linear, isotropic, elastic ma-
terials considered here may be completely described by two
intrinsic parameters, the Young’s modulus E [N/m2] and the
Poisson’s ratio v, in addition to geometry. The collected
data are in the form d � f(z) where d represents cantilever
deflection within an unknown additive constant d0, and z is
the piezo-actuator translation. The useful part of the data are

those beyond the contact point, (d0, z0), which means that
the contact portion of the data are given by

�d � f��z
, (2)

where �d � d 	 d0 is the actual cantilever deflection, and
�z � z 	 z0 the corresponding piezo translation, with d and
z being the actual measured quantities. Figure 3 is a sche-
matic of the geometry of indentation. It is seen that the piezo
translation �z equals the sum of the cantilever deflection
�d � d 	 d0, and the sample indentation �,

�z � �d � �. (3)

If kc[N/m] is the cantilever stiffness, the force deflecting the
cantilever, F � kc�d, is transmitted to the sample. Contact
mechanics relates this force to the indentation. Because the
contact area depends on the force, the relation is nonlinear
and can be written in the general form,

F � kc�d � F��; R, h; E, v
, (4)

where the parameters E and v are the material moduli to be
extracted from the experimental data, and R and h are the
probe radius of curvature and the sample thickness, respec-
tively. Substitution of � from Eq. 3 and the introduction of
the new variable w � z 	 d, which is a measured quantity,
results in an implicit form of Eq. 4,

d � d0 � kc
	1F�w � �z0 � d0
; R, h; E, v
. (5)

The right-hand side of this equation is a generally complex
relation among the various geometric and material param-
eters of the problem and is derived by solving the appro-
priate contact problem. Fitting such a mathematical model
to the experimental data gives estimates for unknown pa-
rameters such as E and v. For this purpose, the data are also
transformed into a form d versus w, so that they conform to
the form of the fitting function, Eq. 5. The contact point (d0,
z0) is sometimes difficult to establish directly from the data,
especially for soft samples, so it may also have to be
estimated along with the material parameters. In fact, any

FIGURE 3 Schematic of the indentation experiment. Indentation of a
thin sample on a rigid substrate by a spherical probe.
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subset of the parameter set {E, v, d0, z0, R, h} may be used
as the fitting parameter vector in a parameter-estimation
scheme.

The detection of the actual contact point may be possible
to within a few nanometers by observing perturbations in
the cantilever thermal-noise spectrum as long-range inter-
actions come into play during approach (Heinz et al., 2000;
Kosalek et al., 2000). That would depend on the nature of
the surface, so some preliminary experimentation may be
required. Such capability, however, was not available for
our experiments. The usual practice is to truncate the data
visually and assume the location of the contact data point
and then fit the data by various methods. The errors asso-
ciated with such an approach and improvements to this
method are explored here.

Hertzian contact problem: estimation of
sample strains

Small deformations or strains is the most fundamental
assumption of the Hertz formulation (Hertz, 1881). Here
we show that the assumption is easily violated with sharp
pyramidal indenters. Various simple indenter geometries,
such as a sphere, a cone, or a paraboloid, can be consid-
ered. For small indentations the spherical probe becomes
identical to the paraboloid for which the solution exists in
closed form. Among all the above profiles, and including
the pyramidal profile of the most common AFM silicon
nitride tips, the spherical or paraboloid shapes will, in
general, generate conditions of lowest stresses and
strains. The limits of small strains under a spherical
indenter will represent a conservative estimate for the
other probe profiles.

The basic formulas of the Hertzian model are given in
the first section of the Appendix. We used Eqs. A1–A4 to
compute axial strain, �zz � �uz/�z. At the contact point,

the integrations can be performed in closed form, result-
ing in

�zz�0, 0
 �
2

�

a

R

1

1 � v
, (6)

where a is the contact radius given by

a � �3

4

1 � v2

E
FR�1/3

, (7)

and F and R are the indentation force and probe radius,
respectively.

Some indicative results for the maximal strain are
shown in Fig. 4 for three values of the Young’s modulus,
1, 5, and 20 kPa. These are values in the range typical of
biological tissue such as cells. Notice that, for radii of
curvature of the probe that are typical of the commercial
silicon-nitride probes (�100 nm), the strains for forces
down to a few pico-Newtons are much larger than 20%,
which is viewed as the upper limit before material non-
linearity invalidates linear elasticity theory. For example,
a 100-nm radius of curvature, which represents a mod-
erately blunt tip, will result in strains that are too large
even for a force of 1 pN. Moreover, even with the softest
cantilevers available, the lower limit of a measurable
force is of the order of several pico-Newtons.

The above computations point to the following con-
clusions. First, the use of the commercially available
probes on soft biological samples will inevitably lead to
erroneous estimates of material parameters. Strains such
as those shown above, when probing live cells, for ex-
ample, may be forcing lateral lipid flow resulting in
membrane penetration of the tip. In that case, the material
parameters estimated by the simple Hertzian contact the-
ory may bear no relation to the apparent material prop-
erties exhibited by cells in vivo and under physiological
conditions. If a large enough radius of curvature is used,
however, it should be possible to apply forces that induce
reasonable strains and hence allow reliable extraction of
relevant material parameters. Besides, for many physio-
logic in vivo situations, mechanically induced strains are
relatively small, and that is the case of interest. In cases
where very large strains develop, the parameters E and v
are no longer meaningful.

The need for simplicity and robustness in experimental
procedures supports the use of the spherical indenter
geometry because it is the one that will cause the smallest
stress and strain concentrations. Also, the well-defined
geometry lends credence to the mathematical models that
are used for parameter extraction. From the values shown
in Fig. 4, one can see that a radius of 5 �m ensures that
strains will be kept in the linear region even for relatively
large forces. Consideration should be given to the conse-
quent loss of resolution because of the large radius of
curvature. Typically the area of contact will approximately

FIGURE 4 Computed maximal strains for different materials and in-
denter probe radii of curvature.
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be a circle of diameter of about a micron, which defines the
resolution, but that should not be a major drawback when
measuring whole cells. The measurement of molecular
structures, in contrast, where resolution is paramount, does
not present the same difficulties because of the usually
much higher effective stiffness.

Finite thickness sample models

The few theoretical models that exist for finite thickness sam-
ples are inconvenient because they require extensive numerical
computations that prohibits their use for routine analysis of
force–displacement curves, and mapping of elastic properties
over an extensive area of a sample. Another difficulty is the
need to know the actual sample thickness. This, however, may
often be easily overcome in AFM measurements by perform-
ing an initial topographic scan of the sample. For thin samples
(�5 �m), commercial AFM scanners possess the vertical
range needed for the task.

We present two approaches for correcting for the finite
thickness of the samples. In the first, we construct an
approximate solution using the method of images for the
case where the sample is not bonded to the supporting
substrate. In the second, we first derive the Green’s
function for a finite thickness sample bonded to the
substrate and use that to compute approximate indenta-
tions. In both approaches, the integral equations are sat-
isfied by a computed, effective pressure profile acting on
the Hertzian contact area. The details of the mathematical
development are presented in the Appendix. The results
are summarized in the final relation between the applied
force F and the indentation �,

F �
4E

3�1 � v2

R1/2�3/2�1 �

2�0

�
� �

4�0
2

�2 �2

�
8

�3 ��0
3 �

4�2

15
�0��3 �

16�0

�4 ��0
3 �

3�2

5
�0��4� , (8)

where � � �R�/h, and the constants �0 and �0 are func-
tions of the material Poisson’s ratio v given below. Notice
that the term outside the bracket represents the Hertz solu-
tion for the indentation of a semi-infinite solid and the terms
inside the bracket are corrections needed to account for the
finite thickness of the actual sample. As expected, the latter
vanish as h becomes large. It is clear from this expression
that, as the sample becomes thinner, the force required to
cause a given indentation increases. This is the apparent
stiffening effect that has been widely observed experimen-
tally. A positive feature of this solution is that it is valid for
all values of the Poisson’s ratio and, because �0 is a mono-
tonic function, the apparent stiffness of the sample is max-
imum for incompressible material. Another feature of Eq. 8

is that it is valid whether the sample is bonded to the
substrate or not. The only difference is that the parameters
�0 and �0 depend differently on v. When the sample is not
bonded to the substrate, they are given by

�0 � 	0.347
3 � 2v

1 � v
, �0 � 0.056

5 � 2v

1 � v
, (9)

and, when the sample is bonded to the substrate, they are
given by

�0 � 	
1.2876 � 1.4678v � 1.3442v2

1 � v
,

�0 �
0.6387 � 1.0277v � 1.5164v2

1 � v
. (10)

Notice the linear dependence of the force on Young’s mod-
ulus and its nonlinear dependence on the Poisson’s ratio.
Theoretically, it should be possible to extract both E and v,
but, for most biological samples, it is safe to assume incom-
pressibility, v � 0.5, because of their high water content. In
this case, and when the sample is not bonded to the sub-
strate, Eq. 8 can be written as

F �
16E

9
R1/2�3/2�1 � 0.884� � 0.781�2

� 0.386�3 � 0.0048�4�, (11)

and, when the sample is bonded,

F �
16E

9
R1/2�3/2�1 � 1.133� � 1.283�2

� 0.769�3 � 0.0975�4�. (12)

The above relations agree with the intuitive notion that
the same sample appears stiffer when bonded to the sub-
strate than when it is allowed to slip. The difference is large
enough to be a consideration and becomes more significant
as the layer thickness decreases. This agrees with the theo-
retical findings in the asymptotic solutions for a flat-ended
circular indenter derived previously (Yang, 1998) and the
recent results for a spherical indenter (Chadwick, 2002).

Parameter estimation can be performed after the above
equations are cast in the form of Eq. 5 where the indentation
� is written in terms of the initial contact point (d0, z0). In
the commonly used estimation method, the contact point is
visually chosen and the model equation solved for E for
each data point. If it is assumed that small errors are made
in d0 and z0, �d0 and �z0, respectively, and that the Young’s
modulus is estimated by inverting either the Hertzian or the
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finite thickness models, Eq. 8, to match data point (di, wi),
the resulting estimate may be written, to first order, as

�Ei

E
�

�d0

di � d0
�

��z0 � d0


wi � �z0 � d0

�2 �

�

2�� � 2�0�0

� ,

(13)

where E and �0 are the values that would be obtained for the
Young’s modulus and for �, respectively, if (d0, z0) � (0, 0).
For the Hertzian model, �0 � 0. Notice that the error �E
decreases as one uses points further away from the origin,
but, for points near the contact point, the results can be very
erratic. In contrast, because, in keeping with material lin-
earity, points with too large w and d should not be used
either. Therefore, this type of error may often be significant.

Clearly, there is an appropriate range of sample thickness
and indentation for any given tip radius for which the above
formulas are valid. As the parameter � is increased with
smaller sample thickness, the asymptotic series expansion
may loose accuracy. Let us assume that, to maintain mate-
rial linearity, the maximum total strain should never exceed
10%, or � � 0.1 h. If it is agreed that the correction is
significant if the first term of the series adds at least 10% to
the force, then 1.133� � 0.1. This translates to h � 12.8R.
For sample thicknesses greater than this, one may use the
semi-infinite sample assumption safely. For the series to
converge, in contrast, one may roughly set an upper bound
of � � 1 which translates to h � 0.1R. For thinner thick-
nesses, the series does not represent the physics of the

problem and may not be safe to use. Instead, the equations
derived in Chadwick (2002) and given below should be
used:
For bonded sample:

F � �2�/3
ER1/2�3/2�3, (14)

For nonbonded sample:

F � �2�/3
ER1/2�3/2�. (15)

Notice the striking difference in the dependence of the force
on the sample thickness for given R and indentation.

To summarize the ranges of validity of Eqs. 11–12 and
14–15, it is useful to make comparisons with a more exact,
numerical solution in the literature. For that purpose, the results
presented in Hayes et al. (1972) were found to be the most
appropriate. The comparison is made in Fig. 5, where the ratio
F/FH is plotted versus aH/h where the subscript H denotes
“Hertz” and refers to the force and contact radius for the case
of an infinitely thick sample and for the same R and �. Notice
that the agreement is surprisingly good even up to a/aH � 1

FIGURE 5 Comparisons between present theories and numerical results.
The circular dots indicate values derived from all the tabulated data in
Hayes et al. (1972).

FIGURE 6 Least squares fit of AFM data collected on a thick gel using
a 2-�m sphere. Insert shows the residual error distribution.

FIGURE 7 Estimation of E by fitting each data point independently to
Eq. 12 after determination of the contact point. The lower curve corre-
sponds to a contact point as determined by the least squares fit of Fig. 6.
The upper curve corresponds to a contact point determined visually.

TABLE 1 Comparisons between macroscopic and AFM
measurements using different probe tips on thick gels

PVA
concentration,

1.6%

Measurement Method

AFM

MacroscopicSharp tip R � 2 �m R � 5 �m

Young’s modulus,
E [kPa]

8.2 � 1.3 5.2 � 0.8 5.4 � 0.9 5.9
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and that the asymptotic behavior of Eq. 11 has the correct
slope even for very thin samples. This means that the rough
limit estimated above (h � 0.1R) for the use of Eq. 11 is
rather conservative. For F/FH 	 100, however, Eqs. 14–15
should be used.

RESULTS AND DISCUSSION

The first measurements were performed on thick gels. The
results from both microscopic and macroscopic measure-
ments are given in Table 1. The macroscopic measurements
were performed on two samples, and the Young’s modulus
estimate represents a mean value over the sample volume.
The AFM measurements were performed at a number of
different locations (generally 5–15 different randomly cho-
sen locations). The mean values and standard deviation of
the estimates of E are included in the table.

It is seen that AFM measurements using the standard
sharp tip result in higher estimates of the Young’s modulus.
The accuracy when using microspheres of either 2- or 5-�m
radius as the probe tip, is excellent. The variability observed
in data from different points across the gel surface is an
indication of microscopic gel inhomogeneities. Also, when
using sharp tips, the error is more difficult to characterize
because the radius of curvature is really unknown unless
separate estimation of its radius is made by imaging dimen-
sionally known objects. For example, a probe radius of
curvature that is in error by a factor of 2 will result in a 41%
error in the Young’s modulus for thick samples and even
larger for thin samples. Figure 6 shows the least squares fit
for a representative force–displacement curve along with
the error residuals of the fit. For the case shown, the max-
imum contact radius is of the order of 300–400 nm. Al-
though the overall quality of fit is rather good, the fitting
residuals exhibit systematic structure, which may be reflect-
ing the microstructure observed in the electron micrograph
of Fig. 1. Apparent 150-nm gaps in the gel matrix may
cause the force–distance curves to deviate from the smooth
function expected from a truly homogeneous material. In
addition, these gaps would have an unpredictable effect on
the force–distance curves obtained using sharp tips. A sharp
tip could easily disrupt the gel matrix locally or probe inside
a large gap.

Figure 7 shows the results of the method where the
contact point is chosen and each data point is fit to the
contact model to estimate E. Results are shown for two
choices of the contact point. It is seen that even small errors
in choosing the contact point biases the results, but the
resulting error in the estimate of the Young’s modulus can
be significant even for such thick samples.

Thin gels were prepared from polymer solutions at three
different polymer concentrations. Thick samples made from
the same solutions were used to measure their Young’s
moduli macroscopically. Force–displacement data were
collected from the thin samples and analyzed according to

the methods described here. The results are summarized in
Table 2. The AFM indentation experiments were performed
at a number of locations within a region of a few microme-
ters, and microscopic gel inhomogeneity was also evident.
The results show that, when using sharp tips either in
conjunction with the Hertz model or with our finite thick-
ness correction, the estimation error in E is significant. For
the softest gel, the standard deviation was so large and the
quality of the fits was so poor as to render the results
meaningless. Moreover, correcting for the finite thickness
results in significant improvement even when using the
sharp tips. When using 2- or 5-�m spheres in conjunction
with the models corrected for finite thickness, the estimated
value of E is very close to that obtained by macroscopic
measurements.

Figure 8 shows the least-squares fit for a representative
data set. The data were fitted using the finite thickness
model for bonded sample and the Hertzian model. It is
seen that the quality of fit for the finite thickness model
is excellent but the Hertzian model fit is significantly
inferior. In the same figure, we show the error residuals
for fitting with the two models. The larger and more
systematic residuals in the Hertzian fit indicate the
inappropriateness of the Hertzian model for such thin
samples.

In Fig. 9, using the same data as shown in Fig. 8, the
Young’s modulus is estimated by fitting each data point
independently after the determination of the initial con-
tact point. In the same plot, the Hertzian and the finite
thickness models are compared for two different choices
of the contact point. Notice that errors in the contact
point result in an estimate of E that decays for larger wi,
which is consistent with the error derived in Eq. 13
showing algebraic decay of the error. Also, the incorrect
contact point will result in a significant flat region of the
curve resulting from the finite thickness model but that
plateau will be in error.

The results obtained here confirm that it is possible to
estimate elastic moduli of soft samples from AFM data
that closely agree with macroscopically measured values,
provided microspheres are used as the measuring probes
(Mahaffy et al., 2000). Also, the results consistently
support the corrections developed here to the Hertzian
indentation model for finite thickness samples. In paral-
lel, the inappropriateness of using AFM probes with
sharp tips for thin, soft samples has been demonstrated.
Nevertheless, as the results in the first row of Table 2
demonstrate, even if probes with sharp tips were to be
used, it is important to correct for thickness. We have
here derived corrections to the Hertz model for finite
thickness that cover the full range of forces, tip radii, and
sample thicknesses. The derived corrections are simple
expressions and, as such, add no significant complexity
in the methods for extracting elastic moduli. We have
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also demonstrated that the problem of determining the
contact point on soft samples can be effectively handled
within the parameter estimation scheme.

APPENDIX

Hertzian theory

The analysis follows the approach used by Landau and Lifshitz (1959). Let us
assume a spherical probe of radius R applies a total force F in the negative z
direction, distributed over the contact circle of radius a. The force is applied at
the free surface (z � 0) of a semi-infinite solid and is centered at r � 0, where
r is the in-plane radial distance in the z � 0 plane. The axial displacement field
uz, may be written in terms of the pressure distribution Pz and the Green’s
function G

uz�r, z
 � ��
A

Pz�rs
G�s
 dA, (A1)

where A is the contact region, and the Green’s function is the displacement
profile for a point force,

G�s
 � 	
1 � v

2�Es �z2

s2 � 2�1 � v
� , (A2)

and the Hertz pressure field applied by the sphere is

Pz�rs
 � p0�a2 � rs
2 , (A3)

where s � �r� � (r2 � rs
2 	 2rrs cos � � z2)1/2 is the distance between

source (rs, 0, 0) and observation point (r, �, z); � and z are their angular and
vertical distances, respectively, and p0 � 2E/�R(1 	 v2). The contact
radius, a, is given in terms of the applied force and the sample material
parameters,

a � �3

4

1 � v2

E
FR�1/3

. (A4)

A finite thickness layer resting on a rigid
substrate: method of images

Let us assume a sample of thickness h extending in the x–y plane and
resting onto a rigid substrate located at z � 	h. A spherical probe applies
a force F at the origin in the negative z direction. We construct an
equivalent problem by combining multiple images of the actual probe in
such a way as to satisfy all the boundary conditions of the original problem.
The model is shown in Fig. A1, where it is explained that an infinite
number of images is required. Each of the images is assumed to apply the
force to a semi-infinite sample for which the solution is known. We assume
that the rigid boundary modifies the semi-infinite solution by altering the
pressure distribution across the contact area. We use the known solutions
from each image to construct the pressure profile in the presence of the
rigid boundary.

FIGURE 8 Least squares fit of data collected on a very thin gel (2.7 �m)
using a 2-�m sphere. The same data are shown twice, with the curve to the
right shifted horizontally by 20 nm for clarity. The data are fit using the
Hertzian model (open squares) and the bonded finite thickness model
(open triangles). Insert shows the corresponding residual errors of the fits.
Estimated values for E were 21.53 (thickness corrected) and 26.48 kPa
(Hertz). Corresponding root mean square errors for the fits were 0.16 and
0.36 nm.

FIGURE 9 Young’s modulus estimation by fitting each data point inde-
pendently after choosing the contact point. The lower two curves corre-
spond to the contact point estimated from least squares fitting (z0 � 406
nm). The other two curves correspond to a contact point that was three data
points to the right of the previous one (�z0 � 5 nm).

TABLE 2 Young’s moduli estimates in kPa

Concentration/thickness

Measurement Method

AFM Measurements

Macroscopic
Sharp tip

Hertz model R � 2 �m R � 5 �m Sharp Tip

1%/1.75 �m �30 3.1 � 0.1 3.7 � 0.4 �50 2.73
1.9%/2.4 �m 24.9 � 0.5 9.4 � 0.1 8.8 � 0.6 11.2 � 0.2 7.80
3.3%/2.7 �m 76.1 � 3.7 24.2 � 2.0 19.4 � 3.1 30.1 � 2.4 20.34

Macroscopic versus AFM estimates based on measurements performed on very thin, soft gels. All AFM data were fit with the thickness-corrected model
except the left-most column where the Hertz model was used.
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Let s be the in-plane distance between source and observation points,
s2 � r2 � rs

2 	 2rrs cos �. Because the images act on planes located at
vertical distances that are multiples of 2h from the actual sample free
surface, one can write a general expression for the part of the Green’s
function that results from the general image at z � 2nh, n � 0, 1, 2, . . . ,

Gn�s
 � �	1
n
1 � v

2�E � z2

�s2 � z2
3/2 �
2�1 � v


�s2 � z2
1/2	

z�2nh

,

n � 0, 1, 2, . . . . (A5)

And the complete Green’s function for the array of images will be

GT�s
 � �
n�0,�1,�2,…

Gn�s
. (A6)

This is the Green’s function for the deformation of the finite thickness
sample free surface. In this model, the sample surface that is in contact with
the rigid substrate is free to slide horizontally. Because, ultimately only the
probe contact region at the surface sample is of interest, it is justified to
assume that s � h, especially if the sample thickness is not much smaller
than the probe radius of curvature. This allows the Taylor series expansion
of the Green’s function, which may also be written in terms of the small
parameter, ε � �/h, where � is the indentation at the center of the contact
area, which will be referred to as the “indentation”

GT�s
 � G��s
�1 � ε��s
 � ε3��s
 � ε5
�s
 � · · ·
,

(A7)

where G�(s) � G0(s) � [(1 	 v2)/�E](1/s) is the Green’s function for the
surface indentation of a semi-infinite sample, whereas the higher order
terms are corrections due to the finite sample thickness. The coefficients of
the series are simple functions of the Poisson’s ratio of the sample material,

��s
 � �0�v

s

�
,

��s
 � �0�v
�s

��
3

, (A8)


�s
 � 
0�v
�s

��
5

,

where the coefficients �0(v), �0(v), and 
0(v) are

�0�v
 � 	0.347
3 � 2v

1 � v
,

�0�v
 � 0.056
5 � 2v

1 � v
, (A9)


0�v
 � 	0.011
7 � 2v

1 � v
.

Assuming a spherical probe and that no significant long range interactions
take place, it is safe to assume that the indentation will conform to the
shape of the probe so that one may write

� �
r2

2R
� ��

A

P�rs
GT�s
 dA, (A10)

where P(rs) is the pressure profile applied by the spherical probe. Because
we know the Green’s function, Eq. A10 is an integral equation for the

pressure profile. The approach taken here assumes that the contact radius
is independent of sample thickness and that the pressure profile is modified
by the presence of the rigid substrate. Therefore, it is reasonable to assume
that the pressure profile will be a function of the same small parameter ε
(� �/h) and it may then be expanded in terms of ε as was done with the
Green’s function

P�rs
 � P��rs
 � εP1�rs
 � ε2P2�rs
 � ε3P3�rs
 � · · ·.

(A11)

Substitution of Eqs. A7 and A11 into Eq. A10 and rearrangement results in
a series of integral equations for P�, P1, P2, P3, etc. The first-order problem
has exactly the form of the Hertz problem of indenting a semi-infinite
sample with a rigid spherical probe and the pressure profile is given by
(Landau and Lifshitz, 1959)

P��rs
 �
2E

��1 � v2


1

R
�a0

2 � rs
2 . (A12)

This relation can be derived by substituting the form p0(a0
2 	 rs

2)1/2 into the
first-order integral equation and solving for p0 and a0. The contact radius
turns out to be simply related to the indentation � and the probe radius of
curvature R,

a0
2 � R�. (A13)

The second-order problem results in

��
A

G��s
P1�rs
 dA � � ��
A

G��s
P��rs
��s
 dA

� 	
4�0

3�

a0
3

R�
, (A14)

because the right-hand side integral can be performed closed-form. This
equation has the same form as that obtained for indenting an infinitely thick
sample with a flat-ended cylindrical punch, which accepts a solution of the
form P1 � p1/(a0

2 	 rs
2)1/2 (Johnson, 1985). Integration of the first integral

in Eq. A14 allows the calculation of the factor p1 so that

P1 � 	
4�0

3�2�1 � v2


Ea0
3

R�

1

�a0
2 � rs

2 . (A15)

The next-order problem has a form and a solution similar to the one for P1,

P2�rs
 �
8E�0

2

3�1 � v2
�3

a0
4

R�2

1

�a0
2 � rs

2 . (A16)

The fourth-order expansion term results in the integral equation,

��
A

G��s
P3�rs
 dA

� 	 ��
A

G��s
�P2�rs
��s
 � P��rs
��s
� dA

� 	
4

3�

a0
3

R�3 ��4�0
3

�2 �
2�0

5 �a0
2 � �0r

2� . (A17)
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A pressure profile of the form,

P3�rs
 �
p31

�a0
2 � rs

2 �
p32rs

2

�a0
2 � rs

2 , (A18)

would satisfy this integral equation. The unknown factors p31 and p32 are
calculated by substituting Eq. A18 into A17. Finally,

P3�rs
 � 	
16

15�4

E

1 � v2

a0
3

R�3

�
��5�0

3 � 2�2�0
a0
2 � 5�2�0rs

2�

�a0
3 � rs

2 . (A19)

The next higher-order problem is similar to the previous one and its
solution takes the form,

P4�rs
 �
32

45�5

E�0

1 � v2

a0
4

R�4

�
��15�0

3 � �2�0
a0
2 � 15�2�0rs

2�

�a0
2 � rs

2 . (A20)

The force–displacement relation can now be derived from the fact that the
corrected pressure profile must integrate to the total applied force. When

the series expansion for the pressure profile is integrated within the contact
region and the contact radius is substituted from Eq. A13, the final result
can be written as

F �
4E

3�1 � v2

R1/2�3/2�1 �

2�0

�
� �

4�0
2

�2 �2

�
8

�3 ��0
3 �

4�2

15
�0��3

�
16�0

�4 ��0
3 �

3�2

5
�0��4� , (A21)

where � � �R�/h. This is the final force versus indentation relation valid
for finite thickness samples. Notice that the term outside the brackets has
the Hertzian form, whereas the terms inside the brackets are corrections
due to the finite thickness.

Finite thickness layer bonded to a rigid substrate:
integral transform method

Sneddon (1965) and Dhaliwal and Rau (1970) used integral transform
methods to solve the axisymmetric problem for a semi-infinite- and finite-
thickness elastic layer, respectively. For the finite-thickness sample, where
the interest lies here, they derived an integral equation whose solution
required extensive numerical computations. Here, we take a slightly dif-
ferent approach and first compute the Green’s function for a finite-thick-
ness solid. This casts the problem in a simpler framework in which we can
follow the procedure in the previous section to derive an explicit expres-
sion for the force versus indentation relation.

The basic equations are given in some detail in (Dhaliwal and Rau,
1970) but the main idea is to use the linear elasticity equations for an
axisymmetric problem in a cylindrical coordinate system,

��2U � �� � �
��� � U
 � 0,

�zz�r, z
 � �� � 2�
�zuz � ���rur �
ur

r � , (A22)

�rz�r, z
 � ���zur � �ruz
,

where U � {ur, 0, uz} is the displacement vector, �ij are stresses, and � �
2�v/(1 	 2v) and � � E/(2(1 � v)) are the Lamé constants. The general
solution of the above system can be written as

2�ur�r, z
 � �r� � z�r� (A23)

2�uz�r, z
 � �z� � z�z� � �3 � 4v
�,

where � and � are harmonic functions known as the Boussinesq–Papko-
vitch potential functions (Green and Zerna, 1968). Axisymmetric harmonic
functions in the Hankel transform domain have the form

��r, z
 � H0�A�
e	z � B�
ez�, (A24)

��r, z
 � H0�C�
e	z � D�
ez�,

FIGURE A1 An infinite sequence of images of the spherical probe
satisfies all the boundary conditions for the finite thickness sample. All
images act on semi-infinite samples and in the direction indicated by the
arrows. The first (z � 	2h) image satisfies the rigid interface (z � 	h)
boundary condition (with no bonding), but results in a net stress on the free
surface of the finite thickness sample. That stress is eliminated by the
second image source (z � 2h) which, however, violates the rigid interface
boundary condition (z � 	h). This necessitates the next image (z � 	4h),
and so on, ad infinitum and with the degree of boundary condition violation
decreasing with every pair of images because they are further removed
from those boundaries.
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where the transform of order n is defined by

f�r, z
 � Hn�f̃�, z
� � �
0

�

f̃�, z
Jn�r
 d, (A25)

with Jn() being the Bessel function of order n. The coefficients A, B, C,
and D are determined from the boundary conditions. The boundary con-
ditions for the computation of the Green’s function are

�rz�r, 0
 � 0, �zz�r, 0
 � 	
1

�
��r
, (A26)

ur�r, 	h
 � 0, uz�r, 	h
 � 0,

where �(r) is the Dirac delta function. These conditions suffice to calculate
the unknown constants in Eq. A24, which, in turn, allows the transformed
axial displacement at the free surface to be written as

ũ�, 0
 �

	
�1 � v
��3 � 4v
�1 � e4x
 � 4xe2x


2����3 	 4v
�1 � e4x
 � 2�5 	 12v � 8v2 � 2x2
e2x

,

(A27)

where x � h. The actual Green’s function, which is the axial displacement
field caused by a point force, is given by the inverse transform of the above
expression. Because the inversion cannot be performed closed-form, an
approximate form of the above expression is constructed by least squares,
fitting the simpler form

ũz�, 0
 � a0 � �b0 � c0x � d0x
2 � e0x

3
e	2x, (A28)

which, as it turns out, can approximate the actual function extremely well.
The inverse zeroth-order Hankel transform of the above expression is the
approximate form of the Green’s function,

Gapp�r, 0
 �
q0h

r
�

q1h
6 � q2h

4r2 � q3h
2r4 � q4r

6

�4h2 � r2
7/2 ,

(A29)

where the coefficients qi are algebraic functions of the Poisson’s ratio. The
numerically inverse transform of the exact expression, Eq. A27, was
compared to the approximate form Eq. A29 for values of the Poisson’s

ratio between 0.3 and 0.5. Errors never exceeded 1–2% of the exact value.
A comparison between the exact and the above approximate Green’s
function is shown in Fig. A2. Therefore, an essentially exact, closed-form
expression for the Greens’ function for the indentation of a finite-thickness
solid has been derived and can now be used to compute the actual
indentation caused by a spherical probe. This, again, is equivalent to
solving the integral Eq. A10, but using Gapp instead of GT. It is clear that
the sequence of problems is essentially the same as with the images except
the coefficients �0(v) and �0(v) have a different dependence on Poisson’s
ratio. In this case, those functional forms are rather complicated but, for the
usual range of the Poisson’s ratio (0.3–0.5), they can be extremely well fit
by the ratio of a quadratic polynomial in v and (1 	 v). The fitted forms of
�0(v) and �0(v) are given in Eq. 10.
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