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Abstract. This paper explains how radio frequency (RF) background noise
produces uncertainty in measured diffusion tensor MRI (DT-MRI) data, how this
noise can be modeled, and how its effects can be mitigated. DT-MRI data are
derived from a series of magnitude diffusion-weighted images (DWI) in which RF
noise is rectified. A new Gaussian distribution is proposed that describes the vari-
ability of the estimated diffusion tensor, D, in an ideal experiment in which RF noise
is the only artifact present. We show how to improve the design of DT-MRI
experiments by requiring that the statistical distribution of D be independent of the
laboratory coordinate system. Non-parametric empirical methods of analyzing un-
certainty in DT-MRI experiments are also described. Monte Carlo simulations are
useful in designing and interpreting DT-MRI experiments. Bootstrap methods help
us measure the true variability of D (and quantities derived from it), and assess the
quality of DT-MRI data. Matrix Perturbation techniques predict how the uncertainty
in D propagates to its eigenvalues and eigenvectors. A method for obtaining a
continuous diffusion tensor field from the measured discrete noisy DT-MRI data
also reduces the uncertainty of D and quantities derived from it. Finally, we describe
schemes that use wavelets to remove noise from DWI and DT-MRI data while
preserving boundaries between different tissue regions. Collectively, these paramet-
ric and nonparametric methods provide a unified statistical framework to improve
the design of DT-MRI experiments and their subsequent analysis.

INTRODUCTION TO DT-MRI

What is DT-MRI?
The MR measurement of an effective or apparent

diffusion tensor of water, D,1 and the analysis and dis-
play of the information it contains in each voxel is called
Diffusion Tensor MRI (DT-MRI) .2 It is now well estab-
lished that the MR measurement of D in tissues can
provide unique biologically and clinically relevant in-
formation that is not available from other imaging mo-
dalities. This information includes parameters that help
characterize tissue composition, the physical properties
of tissue constituents, tissue microstructure, and its
architectural organization. Moreover, this measurement
is performed noninvasively, without exogenous contrast
agents.

Characterizing Diffusion in Biological Systems
In tissues such as brain gray matter, where the voxel-

averaged apparent diffusivity (measured using typical
dimensions of 2 mm × 2 mm × 2 mm) is largely indepen-
dent of the orientation of the tissue (i.e., macroscopi-
cally isotropic), it is usually sufficient to characterize
water diffusion characteristics with a single (scalar)
apparent diffusion coefficient (ADC). However, in skel-
etal and cardiac muscle3–5 and in white matter6–8 the
voxel-averaged ADC depends upon the orientation of
the tissue. In these macroscopically anisotropic media,
a single scalar ADC cannot describe the orientation-
dependent water mobility. The next most complex
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model of diffusion that can describe anisotropic diffu-
sion replaces the scalar diffusion coefficient with a sym-
metric effective or apparent diffusion tensor of water, D
(e.g., see ref 9).

Biological and Clinical Applications of DT-MRI
Since the apparent diffusivity of water molecules is

sensitive to changes in its local environment, D acts as a
probe of tissue architecture. This makes DT-MRI attrac-
tive for studying changes in white matter structure and
organization in a variety of clinical investigations. These
include applications in acute10–12 and chronic13 ischemia,
multiple sclerosis,14 Alzheimer’s disease,15 amyotrophic
lateral sclerosis,16,17 alcoholism,18,19 dyslexia,20 epi-
lepsy,21,22 HIV,23,24 schizophrenia,25,26 tumors,27,28 and
Wallerian degeneration.29 DT-MRI has also been used
to study normal aging from neurodevelopment30,31

through childhood32 and adult life.33–35

Physical Underpinnings of Diffusion Tensor NMR
and MRI

Torrey36 first incorporated anisotropic translational
diffusion to the Bloch (magnetization transport) equa-
tions37 as an additional mechanism that causes attenua-
tion of the NMR signal. Analytical solutions to this
equation followed for freely diffusing species during a
spin echo experiment38 and, later, for diffusion in re-
stricted geometries (e.g., refs 39–41). About a decade
after its introduction, Stejskal and Tanner solved the
Bloch–Torrey equation42 for the case of free, anisotropic
diffusion in the principal frame of reference. However,
the Stejskal–Tanner formula is not generally applicable
for measuring D using NMR or MRI methods for sev-
eral reasons.

First, the Stejskal–Tanner formula relates a time-
dependent diffusion tensor, D(t), to the NMR signal.
Thus, one must define the relationship between D(t) and
D.1 Second, in the era preceding the development of
MRI, in which Stejskal–Tanner developed their formal-
ism, it was always assumed that a homogeneous aniso-
tropic sample could be physically oriented within the
magnet so that its principal axes could be aligned with
the laboratory coordinate system. After the invention of
MRI, however, this assumption was no longer tenable.
Materials under study, like turbid tissues, were often
heterogeneous media whose “fiber” or principal axes
were generally not known a priori and could vary from
place to place within the sample. Thus, a general frame-
work had to be developed to measure the entire diffu-
sion tensor (both its diagonal and off-diagonal ele-
ments) in the laboratory frame of reference1 and its
variation within an imaging volume.2

In DT-MRI, we define D as a function of D(t)1 analo-
gous to the way Tanner defined an apparent diffusion

coefficient from the time-dependent scalar diffusivity.43

Then, we relate D to the measured NMR echo according
to:

(1)

where A(b) and A(b = 0) are the echo magnitudes of the
diffusion-weighted and non-diffusion-weighted signals,
respectively, and bij is a component of the symmetric
b-matrix, b.1 The b-matrix is calculated for each diffu-
sion-weighted image (DWI), and summarizes the at-
tenuating effect of all gradient waveforms applied in all
three directions, x, y, and z.44-46 Finally, D is estimated
from a series of DWIs using eq 1.1 The measurement of D
is inherently statistical: We use each DWI and its corre-
sponding b-matrix to statistically estimate D using mul-
tivariate linear regression1 of eq 1 as described in ref 1.

Derived Parameters Produced by DT-MRI
Intrinsic quantitative parameters can be extracted

from diffusion-tensor MRI data that characterize dis-
tinct features describing the size, shape, orientation, or
pattern of root mean square (rms) displacement profiles
within an imaging volume. Scalar parameters, derived
from the diagonal and off-diagonal elements of D(x)
with x = (x,y,z) can be displayed as an image that exhib-
its different distinct features of the diffusion tensor field
and their distribution within the imaging volume.47

These quantities are rotationally invariant, i.e., indepen-
dent of the orientation of the tissue structures, the
patient’s body within the MR magnet, the applied diffu-
sion sensitizing gradients, and the choice of the labora-
tory coordinate system in which the components of the
diffusion tensor and magnet field gradients are mea-
sured.2,48 Some examples are Trace(D), which is propor-
tional to the orientationally-averaged intrinsic diffusi-
vity (or “mean ADC”), and the eigenvalues of D, which
are the principal diffusivities along the local principal
axes of D.

Other information can be obtained from the eigen-
vectors of D, which define the orientations of the local
principal axes. For instance, color maps that indicate the
local fiber-tract orientation are created by combining
information contained in the eigenvector associated
with the large principal diffusivity and a measure of
diffusion anisotropy.49–52 Fiber-tract trajectories can be
constructed from D data by generating streamlines that
follow the local direction of maximum apparent diffusi-
vity (e.g., see refs 2, 53–65).
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The definition and physical interpretation of useful
MR parameters derived from D, such as the Trace(D), as
well as measures of diffusion anisotropy, have been
reviewed elsewhere, e.g., ref 66. Moreover, several re-
view articles and book chapters have covered many
different aspects of diffusion tensor MRI.67–71 This
article is concerned primarily with how noise affects
DT-MRI data.

THEORY

Parametric Statistical Approaches to Model
Variability in DT-MRI Experiments

Johnson noise present in the radio-frequency (RF)
detection system is the most basic source of variability
in diffusion MR data. This MR signal is rectified when
producing magnitude DWIs that are used in eq 1 to
estimate D. The noise characteristics of these rectified
signals have been well characterized by Henkelman,72

and the noise distribution is known to be Rician,73

(2)

where I0(x) is the modified Bessel function of the first
kind, m is the magnitude, a is the parameter that controls
the mean of the distribution, and σ is the standard devia-
tion of the experimental noise. Since the components of
D are estimated from noisy DWI using regression analy-
sis (generally multivariate linear regression of the log-
linearized DW magnitude signalsi), the appropriate
parametric distribution of noise in D data within a voxel
is a multivariate Gaussian.74 This is because for signal-
to-noise (S/N) ratios greater than 3, the Rician distribu-
tion is well approximated by a normal distribution with
mean , and variance σ2, which is the variance
of the signal in each of the quadrature channels.72,73 Even
though the relationship between the magnitude of the
NMR signal and the components of D is nonlinear, and
arriving at an analytical expression for the noise distri-
bution of the individual diffusion tensor elements is
problematic, regression analysis is usually performed
using a large number of independent DW signals
(i.e., > 7). In this case, the Central Limit Theorem (even
for small S/N ratios) ensures that the distribution of
the elements of D will be a multivariate normal dis-
tribution:ii

(3)

in which the six independent components of D are
written as a 6-dimensional random vector x =
{Dxx,Dyy,Dzz,Dxy,Dxz,Dyz}. This distribution has two
parameters: a 6 × 6 precision (or inverse covariance)
matrix, M, and a 6-dimensional mean vector,  =
{
–
Dxx,

–
Dyy,

–
Dzz,

–
Dxy,

–
Dxz,

–
Dyz}. Above, |M| is the determinant

of M. Figure 1 displays Monte Carlo simulated DT-MRI
data in which the distribution of each element of D is
shown in a representative white matter compartment in
the brain. Such simulations, described below in more
detail, are one way to verify the accuracy and applicabil-
ity of parametric statistical models.

The result that the components of D are normally
distributed is an important one. First, one can immedi-
ately derive the parametric distribution of some useful
tensor-derived quantities, such as Trace(D):75

(4)

iMultivariate linear regression is just one of a number of
techniques, including nonlinear regression and singular-value
decomposition, that could be used to estimate D from the echo
data.
iiThis result applies for both linear and nonlinear regression
due to a property of least-square minimization.

Fig. 1. Monte Carlo simulated DT-MRI data in which the
Gaussian distribution of each element of D is shown in a
representative brain white matter compartment. Taken from
ref 74.
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is the covariance of Dxx and Dyy. Figure 2 shows an
empirical estimate of the distribution of Trace(D) in
three representative human brain compartments, includ-
ing white matter, gray matter, and cerebrospinal fluid
(CSF). This result was obtained using another empirical
statistical method, described below, called “bootstrap”.

Moreover, this multivariate normal distribution for-
malism allows us to use powerful hypothesis tests to
address many problems in DT-MRI data analysis that
previously were treated only in an ad hoc manner.

However, writing D as a vector, x, fails to preserve
certain intrinsic algebraic relationships among its ele-
ments and their geometric relationships with the labora-
tory coordinate system in which the tensor elements are
measured. For example, algebraic operations naturally
performed on D (e.g., decomposing it into its eigenval-
ues and eigenvectors), or geometric operations (e.g.,
projecting it along a particular direction, or applying an
affine transformation to it), are unwieldy when D is
written as a vector.

Additionally, the form of M offers no insight into the
way noise or features of the experimental design affect
the distribution of the diffusion tensor elements, or that
of tensor-derived quantities. The democratic way in
which the multivariate (vector) representation treats ten-
sor components makes it difficult to appreciate their
unique roles. A new tensor-variate normal distribution,

whose form we recently proposed, preserves the alge-
braic and geometric structure of the tensor random vari-
able, and thus our ability to perform various algebraic
and geometric operations on it.76

Tensor-variate Normal Distribution of D
The key idea motivating this new distribution is in-

tuitive. Just as vector-valued data are written in vector
form in the exponent of a multivariate normal distribu-
tion,77 2nd (and higher)-order tensors should be written
in tensor form in the exponent of a tensor-variate normal
distribution. Specifically, the scalar exponent of the
multivariate normal probability density function (pdf) in
eq 2, p(x), contains a quadratic form, xT M x, of an N-
dimensional normal random vector, x, and the precision
matrix, M. In tensor parlance, xT M x is a scalar con-
traction—a linear operation that reduces one or more
higher order tensors to a 0th-order tensor (or scalar). In
this case, xi Mij xj

iii is the scalar contraction of a 2nd-
order precision tensor,iv M, and a 1st-order tensor, x.
The result is a linear combination of quadratic functions
formed from the products of the elements of x, xi xj, and
the corresponding elements of M, Mij.

In generalizing the multivariate normal distribution
to a tensor-variate normal distribution, we seek a tensor
analog to the quadratic form xT M x above containing
terms that are products of the elements of D, Dij Dmn. The
most general scalar function that contains all possible
linear combinations of these tensor elements is
Dij Aijmn Dmn. In this case, Dij Aijmn Dmn is a scalar contrac-
tion of the 4th-order tensor, A, and the 2nd-order tensor,
D. The result is a linear combination of quadratic func-
tions formed from a product of elements of D, Dij Dmn,
each weighted by the corresponding element of A, Aijmn.

We propose the normal distribution for a 2nd-order
tensor random variable, D, of the form:

(5)

where A is a 4th-order precision tensor and c is the
normalization constant to be determined below. The
probability that a particular random tensor arises is an
intrinsic property that should be independent of the coor-
dinate system in which D is observed. The requirement

iiiWe use the Einstein summation convention, in which indices
that are repeated in the expression are summed over the range
of their allowable values. So, for example, xi Mij xj means

.

ivM is usually referred to as a matrix, but it actually transforms
as a 2nd-order tensor.

Fig. 2. Bootstrap estimate of the distribution of Trace(D) for
representative voxels in brain gray matter, white matter, and
cerebrospinal fluid (CSF). In an experiment in which artifacts
are well controlled, the distribution in representative voxels
should be Gaussian.
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that D : A : D is a rotationally invariant quantity ensures
that A is a 4th-order tensor by a simple application of the
Quotient Rule Theorem.78

Analogies between D
ij
 A

ijmn
 D

mn
 and the Elastic Strain

Energy Density
The exponent in eq 5, Dij Aijmn Dmn, has the same form

as the strain energy density, W, (e.g., see ref 79) that
appears in the theory of linear elasticity.v Specifically,
there is a direct analogy between D and the infinitesimal
strain tensor, and between A and the 4th-order tensor of
elastic coefficients.

In the theory of elasticity, A must be positive definite
(i.e., have positive eigenvalues) to ensure that the mate-
rial is elastically stable, i.e., so that stresses developed
within the sample always act to return the object to a
stable equilibrium configuration.80 In this statistical
application, the same requirement must apply, but for a
different reason, to ensure that the variance of each
component of D is positive.

The 4th-order precision tensor, A, shares other prop-
erties with the tensor of elastic coefficients. A also
possesses symmetries, which are reflected by its value
being unaltered by the exchange of certain pairs of
indices. For example, since the product of two elements
of the 2nd-order tensor commutes (i.e., Dij Dmn =
Dmn Dij), the position of these elements can be switched
in Dij Aijmn Dmn without affecting the result. Using this,
we can argue that the corresponding coefficients of A
should also be the same (i.e., Aijmn = Amnij). Moreover,
since D is symmetric (i.e., Dij = Dji and Dmn = Dnm), we
require that Aijmn = Ajimn and Aijmn = Aijnm, respectively.
Owing to these symmetry conditions, there are at most
21 independent elements of A that we must specify a
priori81 or estimate from sample data, rather than 81
(i.e., ref 34).

In the theory of elasticity, since W is an intrinsic
property of the material, W should be independent of the
coordinate system in which the components of the strain
tensor are measured (e.g., see ref 81). This condition
applies also to p(D) as mentioned already.

The theory of elasticity also provides us with a
scheme to classify 4th-order tensors of elastic coeffi-
cients according to the number, types, and degrees of
symmetries they possess. The most general constitutive
law of an elastic solid corresponds to anisotropy, requir-
ing all 21 constants to specify the form of the tensor of
elastic coefficients.79 Other models of elastic behavior
require fewer constants (e.g., see ref 79). These include
the cases of planar symmetry, requiring 13 elastic coef-
ficients; orthotropy, requiring 9 elastic coefficients;

transverse isotropy, requiring 5 elastic coefficients; and
isotropy, requiring only 2 elastic coefficients.

Relationship between A and M
The scalar contraction, Dij Aijmn Dmn, above can also

be recast as a quadratic form, D̃r Mrs D̃s, in which the
random 2nd-order tensor, D, is rewritten as a 6-dimen-
sional column vector, D̃r = (Dxx,Dyy,Dzz,Dxy,Dxz,Dyz) and
M has the form of the precision matrix in eq 2. An
important result that is often used in continuum mechan-
ics, and which we also exploit here, is that any 4th-order
tensor, A, satisfying the symmetry properties given in
the previous section, can be mapped to a 6 × 6 symmet-
ric matrix M. Both A and M contain the same 21 inde-
pendent coefficients (e.g., see refs 79, 82, 83). This cor-
respondence allows us to write a 6 × 6 precision matrix,
M, from any 4th-order precision tensor, A, and vice
versa. Thus, we can construct a corresponding multi-
variate normal distribution directly from a tensor-vari-
ate normal distribution, as given in eq 2, when M is
given by:

(6)

Using this definition, we arrive at a general form of
tensor-variate normal distribution having precision ten-
sor, A, and mean tensor, D

–
:

(7)

The distribution in eq 7 possesses the basic form and
properties of a normal distribution. Since A is positive
definite, D : A : D is always non-negative. Moreover,
p(D) is always properly bounded, i.e., 1 > p(D) ≥ 0.
Also, the exponent in eq 7 is a quadratic function of the
random variable (in this case, a tensor random variable)
whose mean and precision tensors appear in the expo-
nent in an analogous way to the mean vector and preci-
sion matrix of the multivariate normal distribution. In
fact, we can exploit this formal correspondence to ob-
tain many properties of the tensor-variate normal distri-
bution by using mathematical tools and approaches that
have already been developed to analyze multivariate
distributions (e.g., see ref 84).

p(D) When A is a General 4th-order Isotropic Tensor
We now derive the explicit form of p(D) for the case

in which A is a general isotropic 4th-order tensor, Aiso.
vW measures the internal energy stored as a homogeneous
elastic body deforms.
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This choice, A = Aiso corresponds to the tensor of elastic
coefficients for a general isotropic linearly elastic solid.
In this statistical context, isotropy means that the preci-
sion tensor is rotationally invariant, i.e., its form is
unchanged under any proper rotation, reflection, or in-
version of coordinates in which the components of D are
measured.

When D is a symmetric tensor, the most general form
of Aiso is (e.g., see refs 81, 83):

(8)

where µ and λ are as yet undetermined constants,vi and δ
is the KronKecker delta, a 2nd-order isotropic tensor.

The scalar contraction of the exponent in the tensor-
variate normal distribution, D:Aiso:D, becomes

which reduces to a linear combination of two scalar
invariants of D, i.e.,

     
     D : Aiso : D = λ (Trace(D))2 + 2µ Trace(D2) (10)

The distribution p(D) must assume the same form
under any proper rotation, reflection or inversion of
laboratory coordinates because it depends only on func-
tions of D that are rotationally invariant, Trace(D) and
Trace(D2). Thus, we find that isotropy of A implies
rotational invariance of p(D).

If D is a tensor whose mean is D
–

, it is also easy to
show that the tensor contraction in eq 10 becomes:

(D – D
–

) : Aiso
 : D = λ (Trace(D –  D

–
))2 + 2µ Trace(D – D

–
)2)

(11)

so that p(D – D
–

) is also rotationally invariant in this
more general case.

To obtain the form of p(D) using Aiso given in
eq 11, we again write D as a vector, D̃ = (Dxx, Dyy, Dzz,
Dxy, Dxz, Dyz)T, and rewrite the scalar contraction in
eq 11 as a quadratic form,  D̃T M  D̃.  Then, the precision
matrix, M, from eq 6 is sparse, having the form:

(12)

As seen above in eq 12, M can also be written in terms of
four 3 × 3 block matrices, Γ, Ξ, Ξ T, and ̃Ψ. Clearly, since
Γ is not diagonal, the three diagonal elements of D are
mutually correlated. However, the structure of Γ implies
that coupling among Dxx, Dyy, and Dzz is independent of
their size and of the particular choice of the x-, y-, and z-
axes in the laboratory coordinate frame. Since Ξ = 0,
diagonal elements of D are not correlated with off-
diagonal elements of D. Moreover, since Ψ = 4 µ I,
where I is the 3 × 3 identity matrix, the three off-
diagonal elements of D are mutually uncorrelated, and
have equal variances.

Using eq 12 in eq 7, we see that p(D) can be simpli-
fied as follows:

 (13)

where

(14a)

and

p D D Dxy xy xy( ) exp ;= − −
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π
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p D D Dxz xz xz( ) exp ;= − −
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p D D Dyz yz yz( ) exp= − −
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2
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Above, the mean tensor of D is D
–

.
Below, we use this isotropic form of the new tensor-

variate distribution in eq 14 to obtain an analytical ex-
pression for the distribution of the eigenvalues of D, and
to help design optimal DT-MRI experiments.76

Distribution of the Eigenvalues of D for A = Aiso

For A = Aiso in eq 12 we can immediately obtain the
joint probability distribution of γ1, γ2, and γ3, the three

viIn continuum mechanics, λ and µ correspond to the Lamé
constant and shear modulus of the isotropic material, respec-
tively.

×



Basser and Pajevic / Uncertainty in Diffusion Tensor MR Data

135

eigenvalues of D. The distribution p(γ1,γ2,γ3) is a special
case of p(D) in eqs 14a and b, obtained by performing a
principal coordinate transformation in which the three
diagonal elements of D are mapped to the three eigen-
values of D. Integrating over all possible values of the
off-diagonal elements, and substituting γ1, γ2, and γ3

for Dxx, Dyy, and Dzz in the distribution above, we obtain:

  (15)

where –γ1, 
–γ2, and –γ3 are the mean eigenvalues. Equiva-

lently, we can obtain the result in eq 15 by substituting
expressions for Trace(D – D

–
) and Trace((D – D

–
)2) writ-

ten in terms of γ1, γ2, and γ3 into eq 13.
The joint distribution, p(γ1,γ2,γ3), in eq 15 is charac-

terized by only two parameters, µ and λ. While the
eigenvalues are correlated, their coupling is indepen-
dent of their order or assignment. This finding follows
because the exponent in p(D), given in eq 13, depends
only on (Trace(D – D

–
))2 and Trace((D – D

–
)2), both scalar

invariants of D, which are inherently insensitive to the
order of the eigenvalues. Thus, permuting the order of
the eigenvalues will always leave this distribution un-
changed.

EMPIRICAL STATISTICAL APPROACHES

Bias in Sorting the Eigenvalues of D
The finding that the distribution of the eigenvalues of

D is Gaussian for this particular choice of A is impor-
tant. Why? Because if we design our experiment so that
A = Aiso, then it allows us, in principle, to apply power-
ful parametric hypothesis tests to study the properties of
the measured eigenvalues (e.g., to see if there are sig-
nificant differences between them in health and disease,
between eigenvalues measured in different brain re-
gions, etc.).76 In practice, however, there is a significant
limitation in performing such hypothesis tests. We typi-
cally determine these eigenvalues from measured or
simulated D data using numerical algorithms, such as
the Jacobi method, or by solving the characteristic equa-
tion numerically85 or analytically.86 Generally, we do not

know the correct assignment of γ1, γ2, or γ3 beforehand;
typically we sort them by size, which, in the absence of
noise, would ensure that the eigenvalues are binned
consistently. However, due to noise, they are not. When
the sample distributions of the eigenvalues overlap,
as they frequently do, there is a possibility of a mis-
assignment. This binning or sorting error, observed for
the first time in DT-MRI data by Pierpaoli and Basser,87

introduces a bias in the sample mean of the distribution
of each eigenvalue—generally, the sample mean of the
largest eigenvalue is increased and the sample mean of
the smallest eigenvalue is reduced.

A pernicious consequence of this sorting bias is that
it artifactually reduces the standard deviation of the
distribution of the eigenvalues within a Region of Inter-
est (ROI), making the differences between the three
samples appear more significant than they are. It ampli-
fies differences among the means of the sorted eigenval-
ues within an ROI, making them statistically significant
even in isotropic media whose “true” eigenvalues are all
equal. Figure 3 shows this phenomenon in an isotropic
medium. This has the effect of artifactually increasing
the estimates of diffusion anisotropy such as γ1/γ3 .87 This
artifact has also made it difficult to interpret whether
differences among sorted eigenvalues measured in skel-
etal88 and cardiac muscle5 were biologically meaningful
or were due to noise. Finally, the sorting bias in the
eigenvalues also introduces a concomitant artifactual
increase in the dispersion of the sample distribution of
the three eigenvectors.89

Generally, when background noise is present in
DWIs, it is not clear how to sort the eigenvalues and
eigenvectors consistently within even a homogeneous
ROI. To address this issue, we and others have devel-
oped alternative schemes for sorting eigenvalues.89,90

The approach described below entails representing geo-
metric and algebraic features of eigenvalue–eigenvector
pairs (the former being scalars, and the latter vectors) so
they can be sorted simultaneously, developing a mea-
sure of overlap between such eigenvalue–eigenvector
pairs, and displaying the sorting results and artifacts
graphically.89

The basic idea of this method came from examining
the properties of the expansion of D in terms of its
eigenvalues and eigenvectors, γ and εεεεε, respectively.

(16)

Each term in this expansion consists of an eigenvalue, γi,
that weights a dyadic tensor formed from the outer
product of its corresponding normalized eigenvectors,
εi εi

T. Each dyadic tensor, γi εi εi
T, is effectively a one-

dimensional object, resembling a dumbbell. N.B., it is
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Fig. 3. Distribution of sorted eigenvalues within Regions of Interest (ROIs) having uniform diffusion properties. Eigenvalues
with superscript “M” were sorted by magnitude, while those with superscript “D” were sorted as dyadic tensors. Interestingly, in
all cases, magnitude sorting reduces the variance of the distribution and increases the bias in the sample means of each of the
three distributions of the eigenvalues. Taken from ref 89.

not a vector with a particular direction (i.e., tip and tail)
but a symmetric line-segment having a particular orien-
tation. To display a dyadic tensor, we construct a line-
segment having the length of the eigenvalue and orien-
tation of its corresponding eigenvector. Each of the
three eigenvalue–eigenvector dyads can then be as-
signed a color, Red, Green, or Blue (RGB) according to
their assigned order, and can be displayed in each voxel as
a 3-D object. This graphical display method, illustrated
in Fig. 4, allows us to observe the effects of sorting
eigenvalues and eigenvectors using different schemes.

Our strategy is to sort these dyadic pairs within an
ROI in a self-consistent manner. First, we define a mea-
sure of similarity between dyads in different voxels. Just
as one uses the vector dot product, “•”, to determine the

degree of overlap between two vectors,   γi εi and
  γi
′ εi

′, we use the tensor dot product, “:”, to determine
the degree of overlap between two dyadic tensors con-
structed from them,91 γi εi εi

T and γi
′ εi

′ ei
′T, i.e.,

(γ
i
 ε

i
 ε

i
T):(γ

i
′ ε

i
′ ε

i
′T) = Trace(γ

i
 ε

i
 ε

i
Tγ

i
′ ε

i
′ ε

i
′T)

             = γ
i
γ

i
′(ε

i
 ⋅ ε

i
′)2 (17)

We can generalize this concept to consider all three
dyads simultaneously. Geometrically, this measures the
degree to which two diffusion ellipsoids (whose three
major axes have lengths of   γ1 ,   γ2 ,   γ3 , and

  γ′ ,   γ′ ,   γ′ , respectively) resemble each other, i.e.,
have similar size, shape, and orientation.66

The deleterious effects of magnitude sorting of the
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Fig. 4. Distribution of sorted dyadic tensors within ROIs having uniform diffusion properties. The three sorted eigenvalue–
eigenvector pairs are displayed by the colors RGB. Magnitude sorting causes many misclassifications, as well as bias in the
eigenvalues’ sample mean, and in the eigenvectors’ mean and variance, whereas dyadic sorting reduces these artifacts
demonstrably.89
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eigenvalues are clearly seen in Fig. 3 for isotropic and
anisotropic media. Magnitude sorting clearly reduces
the variance and increases the bias in the sample means
of the distributions of the eigenvalues.89 Figure 4 shows
the sorted dyadic tensors encoded by RGB. This graphi-
cal display method clearly shows how magnitude sort-
ing causes misclassifications, bias in the sample mean,
and in the eigenvectors’ mean and variance.89 Figures 3
and 4 also show the improvement achieved when eigen-
values and eigenvectors are grouped and sorted together
as dyadic tensors.

Scalar Invariants
One way to mitigate the effect of the sorting bias is

by defining measures of diffusion anisotropy that do not
depend on the ordering of the eigenvalues. The scalar
invariants of the diffusion tensor are prime candidates
for use in this application because they are, by defini-
tion, invariant to the permutation of the eigenvalues’
order. Quantities such as the Fractional Anisotropy (FA)
and the Relative Anisotropy (RA)66,92 are functions
(ratios) of scalar invariant quantities derived from D.
Thus, they are not susceptible to the sorting bias artifact
described above. Still, they do not entirely remove the
effects of noise present in DWIs. For example, both the
FA and RA depend on the sample standard deviation of
the estimated eigenvalues, a quantity that is inherently
susceptible to the signal-to-noise ratio (SNR).87,92

Monte Carlo Methods to Simulate DT-MRI
Experiments

Even when we know the parametric distribution of
noise in diffusion tensor data, analytical estimates of
errors and probability distributions cannot be calculated
for most useful DT-MRI parameters since their para-
metric distributions cannot be derived a priori. Gener-
ally, this is because these quantities are complicated
nonlinear functions of the diffusion tensor elements. In
such cases we can use Monte Carlo methods. This meth-
odology uses a parametric model of noise to explore
statistical properties of any derived variables for a given
simulated instance of the model.

The use of Monte Carlo (MC) methods to simulate
DT-MRI is now well established. MC methods were first
introduced in DT-MRI in ref 93 but were first applied by
Pierpaoli and Basser to study the effect of noise on the
distribution of the eigenvalues of D and on measures of
diffusion anisotropy derived from D.87 As an example,
Fig. 5 shows the Monte Carlo estimate of the probability
density function (pdf) of the RA2 for approximately isotro-
pic (Fig. 5a) and anisotropic (Fig. 5b) diffusion tensors.
The RA2 scales with the variance of the estimated eigen-
values, so the pdf of RA2 conforms to a χ2 distribution.74

Matrix Perturbation Methods
Matrix perturbation methods use error-propagation

analysis to approximate the uncertainty of eigenvalues
and eigenvectors from an estimated matrix and its cova-
riance matrix. They were first suggested for use in ana-
lyzing the uncertainty in diffusion tensor data in ref 94,
but were elaborated upon in ref 95. The matrix perturba-
tion approach was used to estimate the uncertainty in an
eigenvalue and the width of the “cone of uncertainty” of
its corresponding eigenvector from D and its covariance
matrix, both of which can be estimated directly using
the statistical regression procedures described in ref 1.
The main shortcoming of matrix perturbation methods is
that they fail in the important degenerate cases when two
or three eigenvalues are similar. The former degeneracy
corresponds to a diffusion process that is approximately
cylindrically symmetric, and the latter to a diffusion

Fig. 5. Monte Carlo estimate of the probability density func-
tions (pdf) of the RA2 of approximately isotropic (a) and
anisotropic (b) diffusion tensors. The estimated pdf conforms
to a χ2 distribution. Taken from ref 74.



Basser and Pajevic / Uncertainty in Diffusion Tensor MR Data

139

process that is approximately spherically symmetric or
isotropic. When one knows a priori that two or three
eigenvalues are equal, it is possible to use higher-order
approximations;95 however, we generally do not have
access to such foreknowledge when acquiring experi-
mental diffusion MR data.

Bootstrap Methods
When the parametric model is known, Monte Carlo

methods yield reasonable estimates of any statistic of
interest. In many situations, however, parametric mod-
els do not embody the true variability observed in the
measured DWI data. For example, fasciculation and
bulk motion artifacts introduce additional variability in
the DWI signal beyond that caused solely by RF noise.
Therefore, using an empirical approach like the boot-
strap is a necessity to obtain an empirical estimate of the
true variability of D and any tensor-derived quantities.

As a general nonparametric approach to analyze
DT-MRI data, we have proposed a particular implemen-
tation of the bootstrap method.96,97 Bootstrap analysis is
an empirical technique commonly used to obtain vari-
ous uncertainty measures of a given statistic when the
underlying statistical parametric model is not known a
priori. Details of our implementation are given in ref 74;
it is implemented by randomly drawing with replace-
ment from the original sample of DWIs, and then ob-
taining sample estimates of D and any tensor-derived
quantities. These estimates are used to calculate the
standard errors, bias, confidence intervals, probability
distributions, and other measures of uncertainty for any
given statistic. The bootstrap estimate of the standard
error (SE) is the nonparametric maximum likelihood
estimate of the true SE. The bootstrap can also be used
to determine the bias in the estimate of a given statistic.
Figure 6 shows empirically-derived pdfs of RA2 for an
in vivo DT-MRI acquisition of human brain. These pdfs
agree with those predicted by the parametric model for
the typical isotropic (gray matter, CSF) and anisotropic
(white matter) voxels (Fig. 6a–c), but deviate signifi-
cantly from the expected result in one of the studied
voxels (Fig. 6d).

This finding is quite useful. Deviations from the
expected parametric model occur because of artifacts
such as bulk motion, partial volume contamination,
eddy current distortion, etc., that can make the set of
DWIs inconsistent. Using the bootstrap, we can actually
assess data quality on a voxel-by-voxel basis.

Continuous B-Spline Approximation of the D-field
We have already established that DWI measure-

ments are inherently discrete, noisy, and voxel-aver-
aged. However, we can view the DT-MRI data as dis-
crete noisy samples of an underlying macroscopic

diffusion tensor field, D(x), where x = (x, y, z) are the
spatial coordinates in the laboratory frame of reference.
This field is presumed to be continuous and smooth at a
gross anatomical (voxel) length scale within many soft
fibrous tissue regions, including white matter, muscles,
ligaments, and tendons.

Previously, we developed a mathematical framework
to estimate a continuous tensor field, D(x), from a dis-
crete set of noisy DT-MRI measurements.47 The method
is based on obtaining a projection of the DT-MRI data
onto a function space in such a way that the error norm
between the sampled points and the continuous distribu-
tion is minimized. The approximated tensor field
elements inherently will have a lower variance than the
original measured tensor data. The reliability of these
estimates improves, and bias in their means and vari-
ances is reduced when the approximated diffusion
tensor field is used rather than the noisy tensor measure-
ments themselves.

Perhaps the most important application of this new
methodology is to DT-MRI fiber tractography.2,53-65,98

Here, fiber-tract trajectories are represented as stream-
lines obtained by integrating the fiber direction (vector)
field.53 Integrating a noisy fiber direction vector field

Fig. 6. Bootstrap estimates of RA2 for an in vivo DT-MRI
acquisition of human brain. Empirical estimates of the pdf are
similar to those of the parametric model for typical isotropic
(gray matter, CSF) and anisotropic (white matter) tissue
(a,b,c). For some voxels, the measured pdf can deviate signifi-
cantly from the expected parametric result (d).
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can cause these computed fiber trajectories to wander
off course. However, using a smoothed representation
of the direction field, obtained from the continuous
representation of D(x), improves the fidelity of tract-
following schemes.53

Moreover, this method provides the basis of a unified
image-processing framework for performing several
generic tasks rapidly and efficiently on DT-MRI (and on
other tensor field) data, including: filtering noise, sharp-
ening edges, detecting boundaries; compressing, storing,
and transmitting large image files; interpolating and
extrapolating tensor data; resampling data at different
resolutions; extracting textural features, segmenting
images, clustering tensor data, classifying tissues; and
detecting statistical outliers.

One disadvantage of this approach, however, is that
it enforces continuity even in regions where there may
be piece-wise discontinuities in the tensor field. For
instance, across the boundary between gray matter and
CSF in the brain, where Trace(D) (or the mean
diffusivity) may jump discontinuously. Also, while
there may be no appreciable change in the mean
diffusivity at the boundary between gray matter and
white matter, the anisotropic part (deviatoric) of D may
jump.47 In both cases, the continuous approximation
smoothes over these discontinuities, introducing conti-
nuity in the field where there is none.

Wavelet Denoising of DT-MRI Data
A useful preprocessing step that can reduce noise but

preserves edges or boundaries between different tissue
regions is based on the wavelet transform. Despite their
widespread use in other areas, however, the application
of the wavelet transform and multiscale methods has
been limited to diffusion MRI. A widely used wavelet
denoising technique called wavelet shrinkage99,100 can
be used to estimate the true signal that is corrupted by
additive, homogeneous noise. It has been applied to
remove Johnson noise in the real and imaginary images
in DW MR acquisitions.101,102 We have applied wavelet
shrinkage directly to the DWIs 103 since, as discussed
above, in most DWI contexts, the Rician distribution is
approximately Gaussian, and the bias in the estimated
“true” signal for typical SNR is very small. Figure 7
compares wavelet denoising of diffusion tensor direc-
tional data in a phantom to the B-spline approximation
result. It is evident that wavelet denoising preserves
edges with a reduction in variability of fiber orientation
comparable to that of the B-spine method.

However, these approaches are still based on the
assumption that the noise is spatially homogeneous
within the image, a condition that is not satisfied if
artifacts other than Johnson noise are present. Thus, we

have developed a new wavelet denoising strategy for
spatially inhomogeneous noise, i.e., in which σ = σ(x).
To do this, we treat wavelet denoising as a multiple
comparison problem in statistical inference.104

When denoising the measured data, yi, i = 1,…,n,
which is corrupted by additive and spatially in homoge-
neous noise, our goal is to estimate the true signal, yi

t

below:

y
i
 = y

i
t + σ

i
 ε

i
(18)

The εi are random variables with zero mean and unit
variance, and here we assume they are normally distrib-
uted, N(0,1). Note that σi indicates that the noise can be
different for each data point (voxel). Standard denoising
using wavelet shrinkage is achieved by thresholding the
wavelet coefficients dj, j = 1,…,n, which are related to

Fig. 7. Comparison of B-spline approximation and wavelet
shrinkage applied to simulated DWI. Line fields of the princi-
pal diffusion orientation, with lengths proportional to the frac-
tional anisotropy, are shown for (a) the original numerical
phantom of crossing fibers (SNR = 10), (b) B-spline smoothed
approximation with scale factor D = 0.6, and (c) data obtained
from denoised DWIs using wavelet shrinkage with soft-
threshholding. Similar improvements are observed for experi-
mental data.
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the original data, yi, through a linear transformation:

(19)

Since the wij are elements of an orthonormal wavelet
transformation matrix, the dj can be written in terms of
the true or denoised wavelet coefficients, d t

j, where εj

are also N(0,1):

d
j
 = d t

j
 + σ

j
 ε

j
(20)

Knowing this, we can perform multiple tests of the null
hypothesis, H0: d t

j = 0 against the alternative H1:d t
j  ≠ 0.

Then, the procedure for denoising data with inhomoge-
neous noise properties can be performed using the fol-
lowing four steps.103

1. For each dj find the p-value in testing H0, pj =
2(1 – Φ(dj / σj)) where Φ is the cumulative normal
distribution.

2. To control the dissipation of statistical power of the
multiple tests,105 rank order the |pj| by increasing
magnitude, p(1) ≤ p(2) ≤ ε ≤ p(n), and find the highest
rank k for which p(n) < kα /n, where a is the confi-
dence level.vii

3. Threshold the jth wavelet coefficient, dj, using
threshold tj, such that tj = σj Φ–1 (1 – p(k) / 2). N.B.
Any of the common thresholding rules can be used
(e.g., soft, hard, garrote). The σj are calculated from
the original σi using:

(21)

4. Use the thresholded wavelet coefficients, di
t, and

the inverse wavelet transform, W–1, to obtain the
denoised data, yi

t.

This methodology is also directly applicable to
denoising images of the individual components of D(x)
(e.g., Dxx(x), Dxy(x)). Moreover, the “noise free” coeffi-
cients, dj

t, can be used to construct a continuous repre-
sentation of D(x), using wavelets as the basis rather than
B-splines, as described above. The most difficult task
here is to obtain estimates of σi(x). One approach is to
use theoretically predicted values of σi(x) for each
component, but this assumes that we know all of the
underlying sources of noise. A more robust and prag-
matic approach is to obtain bootstrap estimates of σi(x),
which can be obtained readily for every voxel in the
image.

CONCLUSIONS
Many statistical analysis approaches described above
are generally applicable to DWI data. This is important
because several new MR displacement imaging meth-
ods do not explicitly invoke a tensor model to describe
the MR signal decay. For example, Frank’s HARD
method produces a spherical harmonic decomposition
of an ADC distribution in which diffusion gradients are
sampled at high angular resolution over a sphere.106,107

3-D q-space MRI methods108 are increasingly being
used in biological and medical applications (e.g., see ref
109). A variant of 3-D q-space MRI called Diffusion
Spectrum Imaging (DSI), recently proposed by Wedeen
and Tuch et al.110 provides features of a displacement
“propagator” by performing 3-D Fourier Transforms of
DW signal intensity data as a function of a 3-D pseudo
q-vector. The empirical methods described in this paper
are quite general and can be easily adapted to incorpo-
rate different underlying diffusion models (i.e., they
are not restricted to the form of eq 1); they can also be
used to model different experimental designs. Other
methods, such as wavelet denoising, can be applied to
the raw DWIs in an entirely model-independent way.
Perhaps the only methods that specifically employ eq 1
are the parametric models. Yet, their properties are in-
teresting to study in themselves, as they offer the possi-
bility for optimizing DT-MRI experimental designs and
for understanding the sources of variability in DT-MRI
data.

We have investigated several important issues with
regard to analyzing noisy DT-MRI data and designing
DT-MRI experiments that are optimal in their noise
immunity, at least with respect to Johnson noise. Some
advances have been made in characterizing and remedy-
ing the effects of Johnson noise on the estimates of D
and on other tensor-derived quantities, using a variety of
parametric and nonparametric approaches described
above. However, this is by no means a complete survey
of statistical methodologies that can be used to extract
useful information from DWI data. There are a number
of new statistical approaches designed to establish ana-
tomical connectivity between different regions, or
at least establish probabilities of connections.112–114

There are also statistical approaches being developed to
determine the most parsimonious model of diffusion on
a voxel-by-voxel basis.115

Other sources of variability must still be considered
in the DWI acquisition, and these are often more diffi-
cult to characterize and correct. These include partial
volume artifacts,116–118 eddy current distortion,119-125

physiological motion117,126–132 (i.e., both small-scale
and large-scale bulk motion), and susceptibility varia-
tions.133–136 Typically, these effects should be corrected

viiNote, the parenthesis on the subscripts of the p-value indi-
cates the rank-ordered magnitude p-statistics.
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as a preprocessing step, prior to denoising, by applying
appropriate models. At this point, an interesting issue to
address is how to ferret out useful physiological infor-
mation buried in the “noise”.
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