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The bootstrap technique is an extremely powerful nonparamet-
ric statistical procedure for determining the uncertainty in a
given statistic. However, its use in diffusion tensor MRI trac-
tography remains virtually unexplored. This work shows how
the bootstrap can be used to assign confidence to results
obtained with deterministic tracking algorithms. By invoking
the concept of a “tract-propagator,” it also underlines the im-
portant effect of local fiber architecture or architectural milieu
on tracking reproducibility. Finally, the practical advantages
and limitations of the technique are discussed. Not only does
the bootstrap allow any deterministic tractography algorithm
to be used in a probabilistic fashion, but also its model-free
inclusion of all sources of variability (including those that
cannot be modeled) means that it provides the most realistic
approach to probabilistic tractography. Magn Reson Med
53:1143–1149, 2005. Published 2005 Wiley-Liss, Inc.†
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Diffusion tensor MRI (DT-MRI) fiber tractography is the
generic name for a number of algorithms that aim to non-
invasively reconstruct the pathways of white matter fas-
ciculi within the brain (1–9). These algorithms can be
broadly classified into two types: deterministic and prob-
abilistic. Initial work in the field focused on the former,
i.e., deterministic tractography (e.g., 1,2). In this approach,
a single pathway is propagated bidirectionally from a
“seed point” by moving in a direction that is parallel with
the principal eigenvector, �1, (i.e., the eigenvector associ-
ated with the largest eigenvalue). The underlying assump-
tion is that �1 is parallel to the underlying dominant fiber
orientation in each voxel (10). Undoubtedly, this approach
can produce anatomically faithful reconstructions of white
matter fasciculi (e.g., 11,12) and has proven to be useful in
a range of applications (e.g., 13–15).

However, there have been two main criticisms leveled at
the deterministic approach. First, deterministic ap-
proaches produce only one reconstructed trajectory per
seed point, and therefore branching of fasciculi will not, in

general, be represented. Second, there is no indication of
the confidence that one can assign to a reconstructed tra-
jectory. This is somewhat of a shortcoming as there is
uncertainty associated with each estimate of �1 (16,17) and
this uncertainty is nonuniform throughout the brain (17).

Probabilistic tractography algorithms (e.g., 5–7) aim to
address both of these criticisms by considering multiple
pathways emanating from the seed point and from each
point along the reconstructed trajectories. One aim is to
allow for the occurrence of branching of fasciculi while
another is to quantify the confidence (often referred to as
the “probability”) that can be assigned to a particular re-
constructed pathway. The probability is defined in a num-
ber of ways, depending on the algorithm, for example,
Koch et al. (7) and Parker et al. (8) have equated the
probability of a tract with the number of times it is recon-
structed in a Monte Carlo random walk (where the char-
acteristics of the random walk are governed by properties
of the diffusion tensor). Tuch et al. (5), on the other hand,
assign probability by integrating a cost-function (based on
bending energy, etc.) along the path.

Two criticisms that can be leveled at probabilistic algo-
rithms are that (a) either the rules governing the propaga-
tion of the reconstructed fasciculi or the formulation of the
cost-functions are ad hoc and not rooted in any known
anatomic/biologic basis; and (b) the uncertainty is only
partly modeled (e.g., 8,9). Although contributions to un-
certainty from transient factors, such as “physiologic”
noise and system instabilities, are often encountered, a
parametric description of these artifacts is generally un-
available. Consequently, these sources of error are not
modeled, and so uncertainty is generally modeled based
on an assumed Gaussian distribution.

One way to incorporate such random errors in a measure
of confidence of the tract reconstruction would be to ac-
quire multiple DT-MRI data sets from a subject and repeat
the tracking process from the same anatomic point. How-
ever, using each individual data set to generate a single
tract from a particular point can prove costly in terms of
both scanning time and subject compliance. An alternative
approach is to use the bootstrap method (18). This is a
nonparametric procedure that enables one to estimate the
uncertainty of a given statistic, or its probability density
function (PDF), by randomly selecting individual mea-
surements (in this case individual diffusion-weighted im-
ages), with replacement, from a set of repeated measure-
ments, thus generating many bootstrap samples. Each
bootstrap sample provides a random estimate of a given
statistic. Hence, by generating a sufficient number of the
bootstrap replicates one obtains a measure of the uncer-
tainty or, in some cases, the PDF of, the given statistic. As
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the data are drawn with replacement, many more feasible
realizations of a DT-MRI volume can be extracted than
with a one acquisition � one data set approach.

The bootstrap approach has been used with DT-MRI
data to derive PDFs for quantities derived from the diffu-
sion tensor (eigenvalues, trace, anisotropy) (19) and to
determine the orientational uncertainty in estimates of the
eigenvectors of the tensor (17). Relevant to the current
work, Lazar et al. (20) reported the first use of the bootstrap
technique in tractography. In this work, we explore this
idea in more depth and show how the confidence can be
assigned to tractography results obtained using a deter-
ministic algorithm using the bootstrap technique. We also
highlight the important effect of the architectural milieu
on the reproducibility of tractographic reconstructions. A
number of different approaches to visualizing the resulting
bootstrap data are investigated.

METHODS

Acquisition

DT-MRI data were acquired from a healthy volunteer on a
CNV LX 1.5 GE System with a S3 passive shield magnet
and a CRM gradient coil yielding a maximum gradient
strength of 50 mT m�1 (General Electric, Milwaukee, WI).
A standard quadrature birdcage head coil was used for
both RF transmission and NMR signal reception. Images
were acquired using a multislice single-shot EPI sequence
developed in house, optimized for precise measurement of
the diffusion tensor in parenchyma (21) and peripherally
gated to each cardiac cycle. Whole brain coverage was
obtained by collecting 72 contiguous axial slices with iso-
tropic (2.0 � 2.0 � 2.0 mm) resolution. Four slices were
collected per cardiac cycle at trigger delays of 50, 170, 290,
and 410 ms after the peripheral pulse trigger (22). The echo
time was 90.8 ms and the duration, separation, and
strength of the diffusion encoding gradients were 13.4 ms,
42.4 ms, and 49 mT m�1, respectively, giving a maximum
diffusion weighting of 1200 s mm�2. The DT-MRI data set
consisted of 34 images acquired at each slice location: 4
images acquired with no diffusion gradients applied and
30 diffusion-weighted images in which gradient directions
were uniformly distributed in space. This scheme has
recently been shown to possess rotationally invariant sta-
tistical properties (23). For bootstrap analysis, we col-
lected nine replicates of this DT-MRI data set in a single
scanning session, with a total scanning time of 2 hr and
15 min. A vacuum device was used to minimize head
motion. Residual subject motion and eddy current in-
duced distortion were corrected using the approach de-
scribed by Rohde et al. (24). The study protocol was ap-
proved by our institutional review board and the subject’s
consent was obtained prior to scanning.

Bootstrap Analysis

First, all 306 images (i.e., 9 � (30 � 4) images) acquired at
each slice location were used to estimate a diffusion tensor
in each voxel (10). We refer to this tensor volume as the
superset. Subsequently, 4 images acquired with a diffusion
weighting close to zero (referred to here as the “b � 0
images”) and 30 images collected with the trace of the

b-matrix equal to 1200 s/mm2 (i.e., one for each of the 30
unique sampling orientations in the Jones30 scheme) were
drawn randomly, with replacement, from the complete set
of DWI data. This was performed 5000 times to generate
5000 DT-MRI volumes.

Tractography

A number of seed points were selected, and for both the
superset tensor volume and each of the 5000 bootstrapped
tensor volumes tractography was performed by launching
tracts bidirectionally from the seed point following the
direction parallel to the principal eigenvector. The step
size was 0.5 mm, and subvoxel stepping was facilitated
using the continuous tensor field B-spline approach de-
scribed by Pajevic et al. (25). Note that, although this
approach allows for approximation of the data, we simply
interpolated the data as we sought to investigate the inher-
ent variability of the data. The stopping criteria for track-
ing was an arbitrary threshold of fractional anisotropy
(FA) � 0.2. Full details of the tracking algorithm can be
found in Basser et al. (4) and Catani et al. (11).

Following Koch et al.’s (7) and Parker et al.’s (8) Monte
Carlo approach to tractography, the coordinates of the
vertices of the propagated streamlines were binned to the
voxel dimensions of the original tensor data. Initially, all
voxels in the data set were assigned a value of zero. For
each of the 5000 bootstrap iterations, if a voxel was visited
by the reconstructed tract, its value was increased by 1. At
the end of the 5000th iteration, the number of visits in each
voxel was normalized by the total number of bootstraps
(i.e., 5000) to generate a “percentage visitation” index. A
maximum intensity projection was then obtained (i.e., for
each voxel at a particular slice location, the maximum
visitation count along the line orthogonal to the plane was
computed). These data were then overlaid onto slices
showing the fractional anisotropy. In addition to visualiz-
ing the visitation data overlaid on anisotropy maps, path-
ways of individual trajectory reconstructions were using a
simple streamline representation. For anatomic reference,
these tracts were visualized within a surface rendering of
the brain surface, obtained by making an isosurface of the
anisotropy data, thresholded at FA � 0.05. All visualiza-
tions were performed in MATLAB (The Mathworks,
Natick, MA). Note that a preliminary report of this method
has appeared previously (26).

RESULTS

Figure 1 shows the results obtained from three seed points
placed in the body of the corpus callosum. There is great
variability in the reproducibility of the tracking results
despite small differences in the location of the seed point
and the fact that all three seed points were definitely
within the same structure (body of the corpus callosum).
Figure 2 shows a result obtained from a seed point placed
in the right cerebral peduncle and demonstrates the use of
binning the data to give a percentage visitation count.
While many of the bootstrapped tracts appear to be incon-
sistent with known anatomy, the path traced out by the
high visitation count appears to give a faithful representa-
tion of the fasciculus passing through the cerebral pedun-
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cle. The utility of the visitation count maps is further
demonstrated in Fig. 3, in which pathways emanating
from a point placed in the cingulum are shown. The tract
reconstructions are very compact along the central third of
the cingulum. This portion of the tract is in local isolation

and there are no “alternative ” routes/fasciculi in proxim-
ity for the stream particle to follow. However, as the
streamlines proceed further from the seed point, the tracts
begin to deviate and can pick up artifactual false-positive
tracts, e.g., connections to the contralateral hemisphere.

FIG. 1. Bootstrap results obtained from
three seed points placed in the body of the
corpus callosum. The location of the seed
point is indicated by a red asterisk.

FIG. 2. Results obtained from a seed
point placed in the right cerebral pedun-
cle. (a) The “raw” bootstrap trajectories;
(b) the percentage visitation count. The
color bar is in 5% intervals, with dark blue
corresponding to the lowest visitation
count (at least 1 visitation), while red cor-
responds to all 5000 bootstrapped tracts
passing through the voxel. The data are
overlaid on slices showing the fractional
anisotropy (FA). The seed point location is
indicated by the cross-hairs.
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The visitation maps indicate that we should be less confi-
dent in these tracts. The 1% threshold (Fig. 2c) results in
an anatomically plausible cingulum reconstruction. Fi-
nally, Fig. 4 illustrates results obtained from a seed point
placed in the left cerebral peduncle. As might be expected,
a large portion of the bootstrapped tracts pass along the
corticospinal pathway in the ipsilateral hemisphere. How-
ever, a considerable portion also cross the pons and ascend
the corticospinal pathway in the contralateral hemisphere,
which is clearly inconsistent with known anatomy.

DISCUSSION

Bootstrap DT-MRI is a powerful tool for investigating the
variability inherent in a number of analyses using DT-MRI

data. Bootstrap methods have been previously employed
to determine the uncertainty in the principal eigenvector
of the diffusion tensor (17), showing a negative relation-
ship between planar anisotropy (27) and the 95% cone of
uncertainty of the principal eigenvector. One might there-
fore predict that tracts launched in a region of high linear
anisotropy, and which stay within a region of high linear
anisotropy, would be highly reproducible and, likewise,
tracts with lower linear anisotropy would be less repro-
ducible. Our results in the anterior portion of the corpus
callosum are consistent with this prediction, showing
highly reproducible trajectories in a structure with overall
high linear anisotropy. However, tracts originating from
slightly more posterior seed points in the corpus callosum,
although traversing regions with similarly high anisot-

FIG. 3. Results obtained from a seed
point placed in the cingulum. (a) The
“raw” bootstrap trajectories; (b) the per-
centage visitation count. The color bar is
in 5% intervals, with dark blue corre-
sponding to the lowest visitation count (at
least 1 visitation), while red corresponds
to all 5000 bootstrapped tracts passing
through the voxel. The data are overlaid
on slices showing the fractional anisot-
ropy (FA). The seed point location is indi-
cated by the cross-hairs. (c) The same
data thresholded at �1% visitation count.

FIG. 4. Visitation map obtained for boot-
strapped tracts passing through the left
cerebral peduncle (location indicated by
cross-hairs). The color scheme is the
same as that used in Figs. 2 and 3.

1146 Jones and Pierpaoli



ropy, show a much higher variability of the reconstructed
trajectories. Such higher variability could originate from a
more marked effect of physiologic noise (e.g., cardiac pul-
sation) in these regions. Unlike other probabilistic ap-
proaches which rely on a priori assumptions about the
error distribution, a bootstrap-based tractography ap-
proach would be ideally suited to detect such an effect. In
our view, however, another important and hitherto unre-
ported factor is the influence of the architectural milieu on
the reproducibility of a tract reconstruction. The overall
variability in the trajectory of reconstructed tracts is deter-
mined not only by the uncertainty in the vector field
(which would determine the likelihood of going off track)
but also by the characteristics of the surrounding tissue
(which would determine what would happen to the off-
track trajectories). To better describe this concept, we in-
voke the notion of a “tract propagator”—i.e., the current
position of the “front” of the tract reconstruction. Even in
a tract with low and constant uncertainty in its vector
field, such as the corpus callosum, the propagator of the
reconstructed trajectory could locally progress in a direc-
tion inconsistent with the orientation of the anatomic
pathway. The consequences of a reconstructed trajectory
straying from its true path will be different depending on
the type of tissue that the propagator encounters. If the
neighboring pathway that the tract propagator picks up is
still within the original anatomic structure the effect will
be negligible, as the new trajectory will not be anatomi-
cally incorrect. Results will also appear reliable if the
propagator leaves the structure and encounters either gray
matter or CSF. In either case, the anisotropy will generally
be lower than the threshold for continuing propagation
and so no “false-positive” tracts will be reconstructed. On
the other hand, for a tract which passes close to another
anatomically distinct pathway a perturbation in the path
of the tract propagator can lead to a “leapfrog” of the
propagator from one tract to another and a wildly different
trajectory is followed, resulting in false-positive recon-
structions. We believe that this phenomenon is implicated
in explaining the remarkable differences in the reproduc-
ibility of tracts launched from different seed points in the
corpus callosum. The aberrant trajectories shown in the
third panel of Fig. 1 are the consequence of the tract
jumping into projection pathways that do not belong to the
callosal system anatomically. It is important to note that
the “cone of uncertainty” (16,17) in fiber orientation can be
small along the entire length of such an erroneous pathway
as only a small perturbation is necessary for such a leap-
frog to occur.

Note that we have not invoked the term “probability” in
relation to this work. There is nothing in the bootstrap
approach described here that indicates whether the tract
reconstructions are likely to represent real anatomic path-
ways. Rather, we use the term “confidence mapping” to
refer to the amount of confidence we can place in the tract
realization not being a spurious “one off” occurrence that
has been unusually corrupted by noise, motion, or other
sporadic artifacts. A high visitation count (in the binned
tract reconstructions) does not mean a high probability of
anatomic connection. For example, using a deterministic
fiber tractography algorithm to analyze DT-MRI data col-
lected in stroke subjects with a small infarct in the internal

capsule, it has been shown that often anatomically incor-
rect trajectories originate for the corticospinal tract recon-
structed on the side of the lesion (28). Specifically, at the
level of the pons, the reconstructed pyramidal tract would
erroneously cross to the contralateral hemisphere. This
was a consequence of the Wallerian degeneration the py-
ramidal tract fibers, which left the local tensor field dom-
inated by the transverse pontine fibers having left–right
orientation. In such a situation, probabilistic tractography
approaches, including those based on bootstrapping,
would also fail to give a correct indication of the probabil-
ity of a real anatomic connection. The probabilistic trac-
tography algorithm would detect the high frequency of
occurrence of the left–right orientation of the local tensor
field, assigning a high probability to the fibers that errone-
ously cross the pons to the contralateral hemisphere. The
result presented in Fig. 4 shows that it is not necessary for
such pathology (i.e., Wallerian degeneration) to occur in
order for anatomically implausible tractography results to
be obtained in this region. In the example shown, the
visitation map indicates a reasonably reproducible path-
way passing through the left cerebral peduncle, crossing
the trans-pontine fibers, and ascending the corticospinal
pathway of the contralateral hemisphere—much the same
as the result presented by Pierpaoli et al. (28).

Although the anatomic accuracy of DT-MRI tractogra-
phy needs independent validation, bootstrapping is cur-
rently one of the most powerful tools to obtain a reliable
assessment of the precision of DT-MRI tractography. Sig-
nal variability in diffusion-weighted images is influenced
by thermal noise and by spatially and temporally varying
artifacts. Such artifacts originate from the so called “phys-
iologic noise,” such as subject motion and cardiac pulsa-
tion, as well as from acquisition related factors such as
system instabilities. While the signal variability produced
by thermal noise is approximately Gaussian distributed
(29), signal variability produced by physiologic noise and
other artifacts does not have a known parametric distribu-
tion and currently is impossible to model. It is therefore
difficult to include a priori information regarding all vari-
ability sources into a probabilistic tractography algorithm
and indeed all tractography algorithms proposed to date
neglect to include variability originating from artifacts.
Bootstrapping tractography is intrinsically sensitive to all
sources of variability affecting the DT-MRI data set and
bootstrapping results could be used as a benchmark for
comparing other probabilistic tractography algorithms.
Moreover, bootstrapping can be used to assess the contri-
bution of specific sources of errors to the overall reproduc-
ibility of a DT-MRI tractography study. For example, the
effect of cardiac gating can be assessed by bootstrapping
from supersets containing either gated or ungated data.
Furthermore, intrasession, intraday, and long-term repro-
ducibility of tractography results can be assessed by cre-
ating bootstrap supersets that include data acquired in a
single session (without removing the subject from the mag-
net), or acquired in the same day, or over several days.
Finally, bootstrapping from coregistered data sets from
different subjects could provide confidence maps of trac-
tography results for a population.

Given these clear advantages, it would be tempting to
suggest that bootstrapping should become the preferred
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method for tractography in all clinical and research stud-
ies. The main drawback to consider, however, is that the
superset must be much larger than the subset whose vari-
ability is being characterized. In our study, for example,
the superset was nine times larger than the subset. We
chose a subset of data that can be collected in a reasonable
time for a clinical DT-MRI study, about 15 min. In order to
characterize the variability of such a subset, our subject
had to lay in the magnet for 2 hr and 15 min, a length of
time that is unacceptable for most patients and therefore
unsuitable for general clinical use. However, as the SNR of
diffusion-weighted acquisitions improves and time effi-
cient acquisition sequences become available, it is not
inconceivable that bootstrap analyses could be used in
selected groups of cooperative patients in the future. Fu-
ture work will focus on determining the minimum number
of repeat samples taken in each sampling orientation that
still permits reliable bootstrap analyses to be performed,
with the aim of reducing the time the subject is required to
remain in the scanner. We should stress that the results
presented here were obtained from a single subject and
therefore we are not providing general information regard-
ing the anatomic variability of white matter pathways in
healthy human subjects. Indeed, the goal of this paper is
not to provide a probabilistic atlas of white matter path-
ways but rather to describe a new method that allows one
to account for the contribution of physiologic noise and
other confounds to the variability of fiber trajectories. This
approach can be used in a limited number of motivated
subjects to compare and contrast the results of probabilis-
tic approaches that require a priori assumptions regarding
sources of variability.

Finally, we note that Parker et al. (8) described an algo-
rithm that is similar to the current work, in that a stream-
lining algorithm is used to infer a measure of probability
by incorporating uncertainty in the principal eigenvector.
In Parker et al.’s approach, a sigmoidal relationship is
assumed between uncertainty in the orientation of the
principal eigenvector and the anisotropy and a Monte
Carlo random walk is performed, where the orientation of
the principal eigenvector is drawn from the distribution
defined by the assumed FA/uncertainty relationship. We
could have adapted a similar approach, by actually deriv-
ing the uncertainties in �1 in the manner previously de-
scribed (17), and then use the Monte Carlo approach in the
same manner as Parker, the advantage being that the rela-
tionship between �1 uncertainty and anisotropy would be
empiric, rather than imposing an assumed model. How-
ever, we obviously do not need to rely on the Monte Carlo
approach, as we obtain realizations of the distribution of
�1values in “real-time.”

CONCLUSIONS

In this work, we have demonstrated the use of the boot-
strap technique to generate confidence maps for diffusion
tensor tractography results obtained using a deterministic
algorithm. We have also highlighted the important influ-
ence of the architectural milieu on tractography results.
One of the main strengths of the bootstrap approach is that
it makes no a priori assumptions regarding the form of the
PDF for fiber orientation and thus can account for variabil-

ity due to non-Gaussian noise (e.g., physiologic noise). The
approach reported here can be used to assign confidence to
the results obtained with any deterministic tracking algo-
rithm.

REFERENCES

1. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three dimensional tracking
of axonal projections in the brain by magnetic resonance imaging. Ann
Neurol 1999;45:265–269.

2. Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS,
McKinstry RC, Burton M, Raichle ME. Tracking neuronal fiber path-
ways in the living human brain. Proc Natl Acad Sci USA 1999;96:
10422–10427.

3. Poupon C, Clark CA, Frouin V, Regis J, Bloch I, Le Bihan D, Mangin J.
Regularization of diffusion-based direction maps for the tracking of
brain white matter fasciculi. NeuroImage 2000;12:184–195.

4. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo tractog-
raphy using DT-MRI data. Magn Reson Med 2000;44:625–632.

5. Tuch DS, Belliveau JW, Wedeen VJ. A path integral approach to white
matter tractography. In: Proceedings of the 8th Annual Meeting of
ISMRM, Denver, 2000. p. 791.

6. Parker GJM. Tracing fiber tracts using fast marching. In: Proceedings of
the 8th Annual Meeting of ISMRM, Denver, 2000. p. 85.

7. Koch M, Glauche V, Finsterbusch J, Nolte U, Frahm J, Buchel C.
Estimation of anatomical connectivity from diffusion tensor data. Neu-
roImage 13:S176, 2001.

8. Parker GJM, Barker GJ, Buckley DL. A probabilistic index of connec-
tivity (PICo) determined using a Monte Carlo approach to streamlines.
ISMRM Workshop Diffusion MRI: Biophysical Issues. St Malo, France,
March 2002.

9. Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-
Kingshott CAM, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Cic-
carelli O, Thompson AJ, Brady JM, Matthews PM. Non-invasive map-
ping of connections between human thalamus and cortex using diffu-
sion imaging. Nat Neurosci 2003;6:750–757.

10. Basser PJ, Mattiello J, Le Bihan D. MR diffusion tensor spectroscopy
and imaging. Biophys J 1994;66:259–267.

11. Catani M, Howard R, Pajevic S, Jones DK. Virtual in vivo interactive
dissection of white matter fasciculi in the human brain. NeuroImage
2002;17:77–94.

12. Mori S, Kaufmann WE, Davatzikos C, Stieltjes B, Amodei L, Frederick-
sen K, Pearlson GD, Melhem ER, Solaiyappan M, Raymond GV, Moser
HW, van Zijl PCM. Imaging cortical association using diffusion-tensor-
based tracts in the human brain axonal tracking. Magn Reson Med
2002;47:215–223.

13. Mori S, Fredericksen K, van Zijl PCM, Stieltjes B, Kraut MA, Solaiy-
appan M, Pomper MG. Brain white matter anatomy of tumor patients
evaluated with diffusion tensor imaging. Ann Neurol 2002;51:377–380.

14. Jones DK, Catani M, Reeves SJ, Shergill SS, McGuire P, Horsfield MA,
Simmons A, Williams SCR, Howard RJ. A tractography approach to
studying fronto-temporal fasciculi in schizophrenia and late onset
schizophrenia-like psychosis. In: Proceedings of the 11th Annual Meet-
ing of ISMRM, Toronto, Canada, 2003. p. 244.

15. Clark CA, Barrick TR, Murphy MM, Bell BA. White matter fiber track-
ing in patients with space-occupying lesions of the brain: a new tech-
nique for neurosurgical planning? NeuroImage 2003;20:1601–1608.

16. Basser PJ. Quantifying errors in fiber tract direction and diffusion
tensor field maps resulting from MR noise. In: Proceedings of the 5th
Annual Meeting of ISMRM, Vancouver, Canada, 1997. p. 1740.

17. Jones DK. Determining and visualizing uncertainty in estimates of fiber
orientation from diffusion tensor MRI. Magn Reson Med 2003;49:7–12.

18. Efron B. Bootstrap methods: another look at the jackknife. Ann Statist
1979;7:1–16.

19. Pajevic S, Basser PJ. Parametric and non-parametric statistical analysis
of DT-MRI data. J Magn Reson 2003;161:1–14.

20. Lazar M, Hasan KM, Alexander AL. Bootstrap analysis of DT-MRI
tractography techniques: streamlines and tensorlines. In: Proceedings
of the 9th Annual Meeting of ISMRM, Glasgow, Scotland, 2001. p.
1527.

21. Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring
diffusion in anisotropic systems by magnetic resonance imaging. Magn
Reson Med 1999;42:515–525.

1148 Jones and Pierpaoli



22. Pierpaoli C, Marenco S, Rohde G, Jones DK, Barnett AS. Analyzing the
contribution of cardiac pulsation to the variability of quantities derived
from the diffusion tensor. In: Proceedings of the 11th Annual Meeting
of ISMRM, Toronto, Canada, 2003. p. 70.

23. Jones DK. The effect of gradient sampling schemes on measures derived
from diffusion tensor MRI: A Monte Carlo study. Magn Reson Med
2004;51:807–815.

24. Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. Comprehen-
sive approach for correction of motion and distortion in diffusion
weighted MRI. Magn Reson Med 2004;51:103–114.

25. Pajevic S, Aldroubi A, Basser PJ. A continuous tensor field approxima-
tion of discrete DT-MRI data for extracting microstructural and archi-
tectural features of tissue. J Magn Reson 2002;154:85–100.

26. Jones DK, Pierpaoli C. Towards a marriage of deterministic and prob-
abilistic tractography mehtods: bootstrap analysis of fiber trajectories in
the human brain. In: Proceedings of the 12th Annual Meeting of
ISMRM, Kyoto, Japan, 2004. p. 1276.

27. Westin CF, Peled S, Gudbjartsson H, Kikinis R, Jolesz FA. Geometrical
diffusion measures for MRI from tensor basis analysis. In: Proceedings of
the 5th Annual Meeting of ISMRM, Vancouver, Canada, 1997. p. 1742.

28. Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix LR, Virta A, Basser P.
Water diffusion changes in Wallerian degeneration and their depen-
dence on white matter architecture. NeuroImage 2001;13:1174–1185.

29. Henkelman RM. Measurement of signal intensities in the presence of
noise in MR images. Med Phys 1985;12:232–233 (erratum in Med Phys
1986;13:544).

Confidence Mapping in Deterministic Tractography 1149


