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High b value diffusion-weighted images sampled at high angular

resolution were analyzed using a composite hindered and restricted

model of diffusion (CHARMED). Measurements and simulations of

diffusion in white matter using CHARMED provide an unbiased

estimate of fiber orientation with consistently smaller angular uncer-

tainty than when calculated using a DTI model or with a dual tensor

model for any given signal-to-noise level. Images based on the

population fraction of the restricted compartment provide a new

contrast mechanism that enhances white matter like DTI. Nevertheless,

it is assumed that these images might be more sensitive than DTI to

white matter disorders. We also provide here an experimental design

and analysis framework to implement CHARMEDMRI that is feasible

on human clinical scanners.
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Introduction

Magnetic Resonance Imaging (MRI) has significantly improved

the radiological assessment of white matter (Filley, 2001). T1- and

T2-weighted and magnetization transfer (MT) MRI have been used

to increase image sensitivity to lipids or macromolecules in white

matter, which has been attributed to the myelin sheath surrounding

axons (Tofts, 2003). Another MR method, diffusion tensor imaging

(DTI), increases white matter conspicuity primarily through its

sensitivity to the geometrical packing and architectural organiza-
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tion of white matter fibers (Basser, 2002; Basser and Pierpaoli,

1996; Basser et al., 1994; Pierpaoli et al., 1996).

DTI yields a diffusion tensor from measurements of the

apparent diffusion coefficient (ADC) of water molecules obtained

along multiple directions. This measurement can be used to

estimate the principal diffusivities parallel and perpendicular to

coherent fiber bundles (Basser and Jones, 2002; Basser and

Pierpaoli, 1996; Basser et al., 1994; Pierpaoli et al., 1996). Due

to the high packing density of axons in fasciculi, the motion

perpendicular to axons is more tortuous than that parallel to them.

Using the principal diffusivities, it is also possible to calculate the

orientationally averaged (or mean) ADC and the degree of

diffusion anisotropy (Basser et al., 1994), for which the most

popular parameter used presently is the fractional anisotropy (FA)

(Basser, 1995).

A typical voxel in a diffusion MRI experiment is of the order of

10 mm3, and thus contains thousands of cells and tissue com-

ponents. The diffusion of water molecules in each compartment

(e.g., extracellular space, cell soma, axons, dendrites) is affected by

the local viscosity, composition, geometry, and membrane perme-

ability. Of these factors, geometry and permeability appear to have

the most pronounced effect on the measured signal because the

path that molecules traverse within typical diffusion times in a DTI

experiment is larger than these compartment sizes, so that the long-

time (tortuosity) limit is achieved. Indeed, since the first

applications of diffusion imaging to neuronal tissue in the mid-

80s, a significant amount of data has led to the observation that

besides the cellular viscosity, permeability and tissue geometry

significantly affect water diffusion. It is well known that the

diffusivity across red blood cells that are very permeable to water

molecules is much higher than other tissue cells (e.g., neurons).

Furthermore, the fact that fiber directionality can be measured in

white matter implies that the geometrical arrangement of the tissue

also contributes significantly to the observed diffusivity.

Diffusion experiments are usually performed by spatially

labeling spins at two different times during an MR experiment.

These labeling periods are separated by a time interval (known also
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Table 1

CHARMED gradient direction scheme

b value (s/mm2) No. of directions

0 1

714 6

1428 6

2285 12

3214 12

4286 16

5357 16

6429 20

7500 20

8571 30

10,000 30
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as the diffusion time, D) during which we measure the spin’s

displacement. The measured signal decay will depend on the

strength of the labeling (referred to as the q value) and the diffusion

time. Sometimes, the signal decay is characterized by a b value (b =

q2D). An analytic relation between the signal decay and the

diffusivity can be found for cases of free, Gaussian diffusion where

we use the b factor to calculate the diffusivity (E = e�bD, also

known as the Stejskal–Tanner equation). In cases of non-Gaussian

diffusion, however, it is preferable to describe the signal decay as a

function of the q value. Conventional diffusion MRI (including

DTI) averages random motions of water molecules in all tissue

compartments and is insensitive to exchange (Basser and Jones,

2002). Yet, a Gaussian displacement distribution adequately

describes the random motion of water molecules in brain tissue

(both gray and white matter) only at low b or q values (Basser,

2002), so that over that range of b (or q) values, the description of

the diffusion process using the Stejskal–Tanner equation is

meaningful. However, these observations preclude the possibility

that DTI alone can tease apart contributions from the intra- and

extra-axonal compartments in white matter.

Several years ago, non-Gaussian diffusion was observed in

neuronal tissues using strong diffusion weighting (DW) that

sensitizes the image to molecular motions on a small length scale

(<2 Am) (Assaf and Cohen, 1998; Assaf et al., 2002a; Niendorf et

al., 1996). This approach revealed a pool of water molecules that is

highly anisotropic and restricted, which was attributed mainly to

water residing in the intra-axonal space (Assaf and Cohen, 2000).

The measurement of water diffusion at high b values was first

quantified using q space MR, a model-free analysis of the signal

decay, which can provide a displacement probability distribution

function in three dimensions (Callaghan, 1991; Cory and Garro-

way, 1990; King et al., 1997). High b value diffusion imaging

complements DTI, in particular, providing information about water

mobility in highly restricted compartments (Assaf et al., 2002a).

This additional information has been useful in detecting several

white matter pathologies (Assaf et al., 2002a,b,c). If a significant

portion of the signal observed at high b value originates from

restricted motion of intra-axonal water, then it could provide new

information about axonal morphology and microstructure not

provided by DTI, and could potentially improve the delineation

of white matter tracts, as well as white matter assessment in disease

and development.

Recently, a composite hindered and restricted model of

diffusion (CHARMED) was proposed to provide a more complete

physical description of the diffusion process in white matter,

expressing the signal decay observed in white matter in terms of

Gaussian (hindered) and non-Gaussian (restricted) contributions

(Assaf et al., 2004). The model assumes that one contribution to

the net signal decay arises from hindered diffusion in the extra-

axonal volume (including extra- and intracellular spaces), while

another contribution to the net signal decay arises from restricted

diffusion in the intra-axonal volume.

In this work, we use CHARMED MRI to characterize 3-D

hindered and restricted diffusion in human brain in vivo. Here, we

propose an experimental framework for performing CHARMED

MRI in vivo within a clinically feasible timeframe, which entails

acquiring DW MRIs with multiple b values and multiple gradient

directions. We compare the ability of CHARMED MRI and DTI to

separate multiple fiber orientations within a single voxel, and

describe the biological significance of different microstructural and

physical parameters measured (estimated) from CHARMED MRI.
Methods

MRI experiments

MR imaging was performed on a 3-T whole-body Signa

Horizon MRI system (GE Medical Systems, Milwaukee) equipped

with 40 mT/m gradient coil with a slew rate of ¨200 As. Five
healthy subjects with no history of neuronal disorders were

included in this study. The local Institutional Review Board

(IRB) approved the experimental protocol; all subjects signed an

informed consent form.

The DWI data set consisted of 10 slices of 3 mm thickness with

no gap covering 30 mm. Three slices were placed above the top

edge of the corpus callosum and the rest below it. The DWIs were

acquired with a diffusion-weighted echo-planar imaging sequence

(DW-EPI) with the following parameters: TR/TE = 2700/133 ms,

D/y = 53/47 ms, Gmax = 3.4 Gauss/cm and 2 averages (NEX). The

field-of-view (FOV) was 19 cm, matrix size was 64 � 64 giving a

resolution of 3 � 3 � 3 mm3. We acquired one dummy scan prior

to each acquisition. The experiment was repeated for 169 diffusion

gradient strengths and directions (as specified in Table 1) so that

high and low b value images were interleaved. The b value was

controlled by changing the gradient amplitude. The number of

gradient directions increased at higher b values. For each b value,

the diffusion gradient directions were uniformly and symmetrically

distributed over a sphere. For each b value shell, as shown in Table

1, a different number of gradient directions was applied, which

increased as the b value increased. This was done as we assumed

that higher angular resolution is needed at higher b values to detect

features of the ‘‘intra-axonal’’ signal. To increase the angular

resolution further, we used a different gradient sampling scheme in

each b value shell. For instance, the 30 gradient directions at a b

value of 8571 s/mm2 were different from the 30 directions used at a

b value of 10,000 s/mm2. The total acquisition time for the DWI

data set was 17 min. Images with b = 0 were acquired eight times

(every 80 s). These were used for estimating head movement

during the scan. Statistical Parametric Mapping (SPM 2) software

was used to correct for head movement based on the b = 0 images.

Data analysis

Data were analyzed using the CHARMED framework

described previously (Assaf et al., 2004), which uses a diffusion

tensor to characterize 3-D hindered diffusion in the extra-axonal

spaces, and a new 3-D model of restricted diffusion to describe
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diffusion in the intra-axonal spaces. The restricted compartment is

itself decomposed into a signal arising from motions parallel and

perpendicular to impermeable cylindrical axons. Diffusion within

the axon parallel to its axis is free and modeled using the 1-D

Stejskal–Tanner equation (Stejskal and Tanner, 1965). Diffusion

perpendicular to the fibers, however, is restricted and, for a

constant gradient experiment, can be modeled using the theory of

Neuman et al. (Neuman, 1974) for D¨d (where D is the diffusion

time and d is the duration of the diffusion gradient), which is

approximately satisfied for many diffusion-weighted MRI sequen-

ces used in clinical scanners. The general form of the model is

given in Eq. (1) where fh and fr are the T1- and T2 (relaxation)-

weighted population fractions of the hindered and restricted terms,

respectively; q// and q– are the components of the q vector parallel

and perpendicular to the fibers, respectively; k// and k– are the

eigenvalues of the diffusion tensor parallel and perpendicular to the

axons (for a single coherent fiber bundle), respectively; D// and D–

are the parallel and perpendicular diffusion coefficients within the

cylinder; R is the cylinder radius; and s is half of the echo time.

The noise floor is also estimated in the fitting procedure.

E q;Dð Þ ¼ fh I Eh q;Dð Þ þ fr I Er q;Dð Þ ð1Þ

where E(q,D) is the measured signal decay; fh and Eh( q,D) are

the relaxation-weighted volume fraction and signal decay of the

hindered part, respectively, whereas fr and Er( q,D) are the

relaxation-weighted volume fraction and signal decay of the

restricted part, respectively.

The CHARMED framework can be expanded to include

additional hindered and restricted compartments, for example,

allowing for N distinct fiber populations, we use:

E q;Dð Þ ¼ fh I Eh q;Dð Þ þ ~
N

j ¼ 1

f jr I E
j
r q;Dð Þ ð2Þ

where fr
j and Er

j( q,D) are the relaxation-weighted volume fraction

and signal decay of the jth restricted compartment, respectively

(Assaf et al., 2004).

The experimental data were fit to the model using code written

in Matlab* (The Mathworks), which employs a non-linear least-

square estimation procedure (utilizing Levenberg–Marquardt

minimization). We used 3 configurations of CHARMED given in

Eq. (2) to describe the measured data:

1. One hindered compartment and no restricted compartments

(N = 0). This is identical to DTI analysis.

2. One hindered compartment and one restricted compartment

(N = 1). This was used in areas of homogeneous white matter

(e.g., corpus callosum).

3. One hindered compartment and two restricted compartments

(N = 2). This was used in areas of crossing white matter

fascicles.

Those 3 configurations were chosen first to compare DTI results and

CHARMED results in areas of homogenous white matter (config-

uration 1 vs. 2). Second, in order to show the utility of CHARMED

in areas of crossing white matter, we have used configuration no. 3

which includes restricted diffusion components. Using the param-

eters estimated from the fitting procedure, we then resampled E(q)

on a uniform grid in 3-D q space. A 3-D Fast Fourier Trans-

formation (FFT) was applied to this data in order to obtain the

average propagator, P̄s(R,D) (Callaghan, 1991; Cory and Garroway,
1990) (i.e., the 3-D displacement probability function), which we

used to produce 3-D iso-probability surfaces or 3-D contours in

Matlab. Fitting was done on a pixel-by-pixel basis ranging from

2–5 min per pixel. For a slice of 64� 64 pixels with approximately

2500 brain pixels, total computation time was about 2 h.

Cone of uncertainty simulations

To assess the variability of the computed fiber tract orient-

ation, we performed simulations to measure the cone of

uncertainty according to Jones et al. (Jones, 2003). Simulated

DW data were produced for a one-fiber system lying on the z

axis and for two-fiber bundles crossing orthogonal to each other

along the xz and �xz directions. For each fiber alignment

configuration, DW data were simulated 500 times, once using

high b value parameters and once with low b value parameters.

For both high and low b value data sets, the following parameters

were used: 31 gradient sampling directions, 16 b value incre-

ments for each direction with diffusion time of 50 ms and

gradient duration of 45 ms. The signal-to-noise ratio was also

varied in the simulation from infinity to 1. The maximal gradient

amplitude for the high b value data set was 5 G/cm, and for the

low b value data set, it was 1.25 G/cm, which results in b values

of 12,681 s/mm2 and 793 s/mm2, respectively.

The CHARMED framework was used to fit the simulated

signal decays. For the low b value data sets, we used CHARMED

with only 1 hindered compartment (DTI) for the single-fiber data

and 2 hindered compartments (dual-tensor) for the two-fiber data.

For the high b value data sets, we used CHARMED with 1

hindered and 1 restricted compartment for the single-fiber data and

1 hindered and 2 restricted compartments for the two-fiber data.

The 500 fits were used to calculate the 95% confidence level of the

fiber orientation angle (Jones, 2003).
Results

Typical DWI data for one slice with different gradient

directions and b values are shown in Fig. 1. For the b = 1000

and 500 s/mm2 images, a b value range typically used for DTI, the

changes in contrast with gradient orientation are already apparent;

high signal intensity is seen where the diffusion gradients are

applied perpendicular to the fiber direction while low signal

intensity is observed elsewhere. This contrast increases greatly as

the b value increases. At the highest b values, the only detectable

signal in the DWI is in regions where the diffusion gradients are

applied perpendicular to the fibers.

First, we compared conventional DTI analysis with CHARMED

in regions having homogenously oriented fiber bundles. We chose a

small area at the level of the genu of the corpus callosum whose

fibers connect the left to the right hemispheres. Fig. 2 shows an iso-

probability surface plot of a DTI ‘‘diffusion ellipsoid’’ juxtaposed

with a CHARMED ‘‘toothpick’’ for a region of interest (ROI) in the

genu of the corpus callosum. The latter represents the iso-

probability distribution from the restricted compartment obtained

from CHARMED. The CHARMED ‘‘toothpick’’ is clearly more

peaked than the diffusion ellipsoid. This means that for the same

level of probability, water in the restricted pool diffuses a much

smaller distance perpendicular to the fibers than in the hindered

pool. By contrast, both pools diffuse similar distances parallel to the

fibers. The CHARMED toothpick representation also provides



Fig. 1. Samples of the raw-data images. Data were collected at 10 shells of b value (only 6 are shown, more information given on Table 1) starting from 0

to 10,000 s/mm2. The angular resolution of gradient directions increased with the b value starting from 6 at the lowest (714 s/mm2) up to 30 at the highest

(10,000 s/mm2). Image quality was reasonable even at the highest b value shells (see darkest blue ring, b = 8571 s/mm2, SNR > 5) where signal originates

only from white matter fibers placed perpendicular to the gradient direction.
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greater dynamic range than the DTI ellipsoid in distinguishing

among white matter, gray matter, and cerebrospinal fluid (CSF).

Where in DTI the ellipsoid becomes spherical in gray matter and

white matter, the CHARMED toothpick becomes very small when

no restricted compartment is identified.

In a previous in vitro study, CHARMED revealed multiple

white matter fiber orientations in pixels (Assaf et al., 2004). In

order to estimate the ability of CHARMED to discriminate

between more than one fiber bundle in vivo, we considered an

ROI in human brain with a well-characterized fiber geometry and

having known relative orientations. The corpus callosum and

cingulum bundle are white matter fiber pathways oriented at 90-
with respect to each other (Fig. 3). The fibers of the corpus

callosum cross the brain from left to right whereas the cingulum

bundle arches over the corpus callosum with its fibers crossing

the brain from anterior to posterior (Figs. 3 and 4). Usually with

high-resolution DTI, these two pathways can easily be separated

(Fig. 4), particularly when using direction-encoded color mapping

(Pajevic and Pierpaoli, 2000). However, here, we purposely

combined these pathways into a single slice to see if CHARMED

could separate them correctly. We combined raw data from two

axial slices—one that contains the top edge of the corpus

callosum and one above it that contains the cingulum bundle.

In this way, we could analyze each fiber system separately as

well as test the ability of CHARMED to resolve the individual

pathways in the combined DWI data set. Fig. 5 shows DTI

Direction-Encoded Color maps of the three data sets (i.e., the
corpus callosum, cingulum, and combined). Fig. 5A (enlarged at

Fig. 5D) depicts the slice at the level of the corpus callosum,

indicated in red (representing fibers crossing left and right),

whereas the cingulum bundle at Fig. 5B (enlarged at Fig. 5E) is

identified in green (representing fibers crossing up and down). In

the combined data set (Fig. 5C, enlarged at Fig. 5F) the color in

the area of the corpus callosum and cingulum appears orange,

consistent with it being a weighted average of Figs. 5A and B.

This can be seen also in the DTI iso-probability ellipsoids given

in Figs. 6A, B, and C for the corpus callosum, cingulum, and

combined data set. As with DTI, CHARMED was able to

compute the fiber directions in the data sets for the corpus

callosum alone and cingulum alone (see Figs. 6D and E) using

one hindered and one restricted compartment. Using a single

hindered and two restricted compartments, CHARMED was able

to distinguish between the two-fiber populations for the combined

data set, and provide the correct orientation of the two crossing

fibers (Fig. 6F).

CHARMED provides estimates not only of the orientations of

one or more fiber populations, but also microstructural param-

eters and compartmental diffusion coefficients. Fig. 7 shows

CHARMED analysis on an entire slice depicting images of the

relaxation-weighted volume fractions of the restricted pool and

hindered pools, respectively, the fractional anisotropy and mean

ADC of the hindered pool. The diffusivity perpendicular to the

fibers in the restricted pool is not observable in this experiment,

and was fixed in our simulation.



Fig. 3. Diffusion-tensor-based fiber tract images of the corpus callosum and cingulum fiber bundles. These two-fiber systems are orthogonal to each other

where the cingulum lies on top of the corpus callosum. The fiber tract images were constructed from a whole brain diffusion tensor imaging data set. Seed

regions of interest for fiber tracts were placed on mid-sagittal views for the corpus callosum and axial views above the corpus callosum for the cingulum.

Fig. 2. (A) Low-resolution T1-weighted image of slice taken at the level of the lateral ventricles. (B) Enlargement of a region of interest surrounding the genu of

the corpus callosum upon which CHARMED analysis was performed. (C) Iso-probability plots of the hindered component of CHARMED analysis (equal to

DTI analysis). In areas of CSF and gray matter, the large spherical structures represent the isotropic diffusion, whereas in areas of white matter, the ellipsoids

represent the orientation of the fibers. (D) Iso-probability surface plots of the restricted component of CHARMED. In areas of white matter, these plots look

like Ftoothpicks_ aligned parallel to the fibers. The angular uncertainty in fiber orientation appears smaller in the restricted component plots than in the hindered

component plots. In areas of CSF and gray matter, only a negligible fraction of restricted diffusion is found and when scaled to the fraction in gray matter, it is

not observable in the iso-probability surface plots.
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Fig. 4. T2 and direction-encoded color maps of a healthy volunteer. (A) A coronal view showing the corpus callosum and cingulum. Lines represent axial slice

locations given in panels B and C. (B) Axial T2 and DEC images at the level of the corpus callosum. (C) Axial T2 and DEC images at the level of the cingulum.
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We also determined the relationship between DTI and

CHARMED using simulations of the cone of uncertainty (see

Methods). Fig. 8 shows simulations of the cone of uncertainty as a

function of the SNR for a single fiber for DTI and CHARMED.

Fig. 9 shows the same but for the two-fiber data modeled by a dual

tensor (Inglis et al., 2001; Tuch et al., 2002) and CHARMED

framework with one hindered and two restricted compartments.

The cone of uncertainty is always smaller for CHARMED for any

measured SNR. This effect is more significant when two distinct

fiber populations are used. Then, the dual tensor model fails even

at reasonable SNR (in the range of 10–20 typical of clinical
Fig. 5. Direction-encoded color maps of (A) an axial slice at the level of the corp

axial slice generated by combining data from slices (A) and (B). Enlargement o

fibers for panels A, B, and C given in panels D, E, and F, respectively. In the c

corpus callosum and cingulum seems to be the weighted average of the two and

areas in panel F).
experiments). At low SNR (<5), both methods fail to provide

accurate results of the fiber orientations.
Discussion

High b value diffusion imaging is increasingly used for

delineating white matter structures in development and degener-

ation (Assaf et al., 2002a,b,c; Clark and Le Bihan, 2000; DeLano

and Cao, 2002; Mulkern et al., 2001). In recent years, effort has

been invested in developing analysis tools for such data (Alexander
us callosum, (B) an axial slice at the level of the cingulum (ci), and (C) an

f a region of interest showing mainly the corpus callosum and cingulum

ombined images (C and F), the directionality calculated in the area of the

does not represent the direction of either of the fibers (see orange–yellow



Fig. 6. Iso-probability surface plots of the slices given in Figs. 5D, E and F. (A–C) Iso-probability surface plots of the hindered part of CHARMED

analysis. In the high-resolution slices (Figs. 5D and E) the orientation of the two-fiber system is well defined (see panels A and B). In the combined slice

(Fig. 5F), the surface plots provide the weighted average of the fibers, making the diffusion ellipsoid more spherical in those regions. (D–F) Iso-probability

surface plots of the restricted part of CHARMED analysis. In the high-resolution slices (comparable to Figs. 5D and E) the Ftoothpick_ shapes depict the

two-fiber system. In the combined slice (comparable to Fig. 5F) in areas where the two systems cross, CHARMED was able to reconstruct the two systems

with high accuracy.
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et al., 2002; Assaf et al., 2000; Frank, 2002; Tuch et al., 2003;

Wedeen et al., 2000). In this work, we demonstrate that high b

value DWI data of human brain white matter in vivo can be

characterized with CHARMED. The model assumes that, at high b

values, the physical process that dominates the signal decay is

restricted diffusion, while at low b values, hindered (Gaussian)
Fig. 7. CHARMED analysis on an entire slice. (A) Population fraction of

the restricted components. High intensity is seen in areas of white matter,

lower in gray matter, and none in CSF. (B) Population fraction maps of the

hindered component. The image is a mirror image of panel A as all

components are summed to 1; hence, white matter seems to have lower

intensity than gray matter and CSF. (C) Mean diffusivity map calculated

from the diffusion tensor eigenvalues of the hindered part of CHARMED.

(D) Fractional anisotropy map calculated for the diffusion tensor

eigenvalues of the hindered part of CHARMED.
diffusion is more significant. When CHARMED was tested on

phantom and excised spinal cord, it provided a clean separation

between restricted and hindered processes (Assaf et al., 2004). This

result validated the main assumption of the model that the major

restricted compartment in white matter comes from intra-axonal

water. To that end, the axonal inner membrane serves as a

reflecting boundary for water molecules. In this case, under the

long-time limit (i.e., mean free path in water is greater than the

axonal radius), water diffusion perpendicular to the axon’s main

axis will appear restricted.

CHARMED and human data

The simplest form of CHARMED, describing homogeneous

white matter (i.e., a single bundle of fibers lying within a pixel), has

12 free parameters. In pixels containing heterogeneous white matter

having two (or more) crossing fiber bundles, the number of free

parameters increases to 15 and above. Estimating these parameters

for an excised tissue sample requires acquisition of diffusion-

weighted MR data having many different b values and gradient

directions. Applying this model to the human brain in vivo is more

challenging, not only because of the need to minimize the number

of diffusion-weighted images acquired, but also for the following

reasons: (A) We showed that, for crossing fibers, more than 20

directions are needed to distinguish fiber pathways accurately. (B)

The higher sampled b values, the better estimate of the restricted

compartment parameters. (C) At high b values, the signal to noise

(SNR) decreases so more samples are required to maintain the data

quality. Low-resolution sampling of q space in terms of gradient

directions, b values, or poor SNR will degrade model parameter

estimates (Assaf et al., 2004). By contrast, high-resolution sampling

of q space causes extremely long acquisition times that will not

satisfy clinical scanning requirements.

Here, we propose a pragmatic experimental protocol for

CHARMED, which balances the various needs and requirements



Fig. 9. (A) Angular uncertainty as a function of the noise standard deviation

(Noise Std—rstd) for simulated MR data for two crossing fibers. The

angular uncertainty was calculated according to Jones (2003). Red dots

represent angle uncertainty values calculated using dual tensor analysis of

low b value data set and green dots represent the same but for a 2-restricted

compartment CHARMED analysis of high b value data set. Red and green

lines and the sigmoidal curve fit are given to guide the reader and

emphasize the differences between the two analysis methods. (B) Cone of

uncertainty surface plots given at 4 levels of noise standard deviation (0.06,

0.12, 0.24 and 0.36) for simulated two-crossing-fiber data analyzed using

dual tensor (red) and CHARMED (green). As the signal was normalized to

1 in the simulation, the signal-to-noise ratio (SNR) is simply 1/rstd. For the

cone of uncertainty surface plots, the SNR was 16.7, 8.3, 4.2, and 2.8 for

1/rstd of 0.06, 0.12, 0.24, and 0.36, respectively.

Fig. 8. (A) Angular uncertainty as a function of the noise standard deviation

(Noise Std—rstd) for simulated single-fiber data, calculated according to

Jones (2003). Red dots represent angle uncertainty values calculated using

DTI analysis of low b value data set and green dots represent the same but

for CHARMED analysis of high b value data set. Red and green lines and

the sigmoidal curve fit are given to guide the reader and emphasize the

differences between the two analysis methods. (B) Cone of uncertainty

surface plots given at 4 levels of noise standard deviation (0.06, 0.12, 0.24,

and 0.36) for a simulated single-fiber data analyzed using DTI (red) and

CHARMED (green). As signal was normalized to 1 in the simulation, the

signal-to-noise ratio (SNR) is simple 1/rstd. For the cone of uncertainty

surface plots, the SNR was 16.7, 8.3, 4.2, and 2.8 for 1/rstd of 0.06, 0.12,

0.24, and 0.36, respectively.
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described above. On one hand, the experimental design entails high

angular resolution diffusion gradient sampling at high b values (30

directions), but on the other hand, low angular resolution (6

directions) at low b values. Low b value data is used primarily to

fit a single diffusion tensor for which 6 directions are sufficient

(Basser and Pierpaoli, 1998). To increase the angular resolution, we

used 10 shells of b values in the range of 0–10,000 s/mm2, each of

these shells was acquired using a different isotropic directional

scheme. It is important to note that we are not using a conventional

high angular resolution diffusion imaging (HARDI) scheme that

entails sampling only a single shell in q or b space (Tuch, 2004;

Frank, 2001). In addition, we used a 3-T scanner that provides high-

quality diffusion-weighted image data even at high b values (>5000

s/mm2). The clinical CHARMED acquisition framework thus

provides high angular resolution only where it is needed, using a

moderate number of diffusion-weighted acquisitions (192) with a

reasonable SNR (even at highest b value, see Fig. 1).

CHARMED model parameters

The CHARMED model yields estimates of microstructural and

physical parameters for the restricted and hindered compartments.
The hindered component provides diffusivities that resemble DTI

analysis at low b value mainly since this component is modeled by

a diffusion tensor. The restricted component provided high

discrimination between gray matter, white matter, and CSF. The

CSF, which has high diffusivity, appears dominant at the hindered

(DTI) iso-probability plots (see Fig. 2). By contrast, CSF does not

appear at the iso-probability plots of the restricted part as no

restricted diffusion is measurable there (see Figs. 2 and 7).

Moreover, in gray matter, the population fraction of the restricted

component is much lower than in white matter (see population

fraction maps, Fig. 7), suggesting that restricted diffusion is more

apparent in white matter.

One of the advantages of CHARMED is that it can provide

information about multiple fiber orientations within the same pixel

(Assaf et al., 2004). We tested this using a thick slice containing

fibers from both the corpus callosum and cingulum bundle and also

on higher-resolution data with slices containing only the cingulum

bundle or the corpus callosum. These two fibrous structures lie

orthogonal to each other, and if sampled at low-enough resolution,

can provide a model of orthogonal crossing fibers within the same

pixel (see Figs. 3 and 4). In this case, conventional DTI provides a
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powder average of the two fiber populations, producing an estimate

of the fiber direction lying between the two direction vectors of the

individual tracts (see Fig. 5). Using CHARMED with two

restricted components, it was possible to extract the directions of

the two fiber populations (see Fig. 6) with high accuracy. This is

encouraging, since DTI tractography methods often fail to trace

fiber tracts in regions where tracts cross.

To estimate the ability of CHARMED to separate crossing

fibers and more generally to compare its angular resolution to DTI,

we conducted a series of simulations at different SNRs and

computed the cone of uncertainty. Surprisingly, at any given SNR,

the cone of uncertainty was smaller for CHARMED than for DTI,

implying that CHARMED provides higher angular definition (see

Figs. 8 and 9). This is even more impressive since CHARMED

uses high b value images in which SNR is extremely poor. Based

on these simulations, it is not surprising that the CHARMED

model was able to separate crossing fibers in the human brain.

Moreover, even on the level of a single-fiber bundle, high b value

CHARMED MRI provides better angular resolution for fiber

tracking than DTI. This result supports our main assumption that

restricted diffusion of intra-axonal water dominates the signal at

high b value. As these water molecules are trapped within the

axon, this displacement profile which is strongly biased perpen-

dicular and parallel to the axon direction, will improve our estimate

of local fiber orientation.

Analysis approaches to high b value data

Several approaches have been suggested to analyze high b value

data, which can be divided into those that fit the data to a particular

model and those that are ‘‘model free’’. Among the ‘‘model-free’’

approaches, there is q space imaging (QSI) (Assaf et al., 2000;

King et al., 1997), diffusion spectrum imaging (DSI) (Wedeen et

al., 2000), high angular resolution diffusion imaging (HARDI)

(Tuch, 2004; Frank, 2001), Q-ball imaging (QBI) (Tuch et al.,

2003), and persistent angular structure MRI (PASMRI) (Alexander,

2004). QSI uses a 1-D Fourier transformation of the signal

attenuation data acquired along several directions to obtain an

estimate of width of the 1-D displacement distribution perpendic-

ular to the fibers (Assaf et al., 2002a). Although this methodology

is relatively fast in terms of acquisition times (¨15 min for 10

slices at 3 T), it does not provide full characterization of the

displacement profile in 3-D and hence may not be useful for fiber

tracking and other applications. Nevertheless, QSI was shown to be

extremely useful for following fine white matter degeneration in

multiple sclerosis and dementia (Assaf et al., 2002a,b). By contrast

to QSI, DSI (based on q space MRI method proposed by

Callaghan, 1991) provides a 3-D characterization of the average

propagator but requires sampling the q vector in a regular grid over

all of q space (Tuch et al., 2003; Wedeen et al., 2000). This

approach is costly in terms of acquisition time. HARDI, Q-ball

imaging, and PAS-MRI provide an orientational distribution

function (ODF) for a DWI data set sampled at one particular high

b value (typically 5000 s/mm2) sampled along many diffusion

gradient directions. HARDI, Q-ball imaging, and PAS-MRI all

provide an indication of white matter structure in areas where the

fiber architecture is complex (e.g., crossing fibers), but with

significantly shorter acquisitions times than required by DSI. None

of these methods account for the effect of the ‘‘fat’’ or long-

duration gradient pulse, which can distort features of the measured

displacement distribution (Mitra and Halperin, 1995).
The most basic (and popular) model used to analyze the

apparent bi-exponential decay observed at high b values is the dual

tensor model (Assaf and Cohen, 1998; Clark and Le Bihan, 2000;

Maier et al., 2001; Niendorf et al., 1996; Ronen et al., 2003). Here,

two tensors are used to describe the signal decay. This model

assumes two non-exchanging pools of water molecules: one

exhibiting fast diffusion and the other exhibiting slow diffusion.

This approach has produced results that are difficult to interpret

physically, since it has repeatedly predicted that 20% of the water

molecules in white matter exhibit extremely slow diffusion (<1 �
10�7 cm2/s) and 80% of the water molecules exhibit fast diffusion

(Niendorf et al., 1996). However, work by Nicholson and Sykova

(1998) suggests that the ratio of extracellular to intracellular space

is 20%/80%. The obvious conclusion is that extracellular diffusion

is slow and intracellular diffusion is fast which is counterintuitive.

This conundrum is resolved if, however, restricted water

diffusion within the axons is responsible for the slow component

of the exponential decay (Assaf et al., 2002a). If this is the case, the

Stejskal–Tanner or DTI model of diffusion is no longer valid since

the assumed Gaussian displacement distribution does not hold.

Moreover, above b = 10,000 s/mm2, the decay becomes tri-

exponential and eventually multi-exponential (Assaf and Cohen,

1998), supporting the conjecture that the origin of this signal is

restricted diffusion. To that end, CHARMED assumes that the

majority of the Fslowly diffusing_ spins are undergoing restricted

diffusion within the neuronal fibers. Although some restricted

diffusion may also be apparent in the extra-axonal space, under

normal physiological conditions, this appears negligible compared

to that in the intra-axonal space. Support for this assertion comes

from the population fraction maps (see Fig. 7) where the relative

population fraction of the restricted component in gray matter (in

which the fiber density is much smaller than white matter) is less

than 10% of that in white matter.

Exchange and restricted diffusion

The present model assumes no exchange between hindered and

restricted compartments. Exchange between different compart-

ments has been studied with various models and methodologies

and there is no agreement on the exchange rates of water molecules

residing in the intracellular, intra-axonal, or extracellular compart-

ments. While Pfeuffer et al. reported fast exchange in glial cells in

early studies (Pfeuffer et al., 1998), more recently, much longer

exchange times were reported (Meier et al., 2003; Sehy et al.,

2002). This would suggest that water in glia might be restricted,

rather than hindered (Lee and Springer, 2003). If water in the glia

were restricted and contributed significantly to the total MR signal,

we would expect to see a ‘‘slow’’ signal decay that would be

independent of gradient direction, characteristic of restricted

diffusion in porous media, such as in spherical pores (Hayden et

al., 2004) or in spherical yeast cells (Cory and Garroway, 1990).

However, experimentally, the decay in the signal attenuation does

not support the existence of a significant isotropic restricted

compartment. We do not see such signal decay in our data.

Accordingly, we have chosen the simplest model with the fewest

free parameters, which is nonetheless physically motivated to

describe the signal decay we measure. Thus, our model currently

does not include glia as a separate, restricted compartment, but

rather lumps together water in glia and in the extracellular matrix.

In our model, we assume that during a typical experimental

diffusion time (on the order of 50–100 ms), water molecules
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exchange freely between intra- and extracellular compartments

through the semi-permeable cell membranes in glia at a rate of 25–

50 ms. This exchange will cause both intracellular and extracellular

compartments to appear as one compartment at long diffusion

times. With respect to exchange between the intra-axonal space and

the surrounding extracellular matrix and glia, it is reasonable to

speculate that one myelin lamella will have a similar permeability

to water molecules as a lipid membrane. However, when tightly

packed and spirally arranged, the exchange between the intra-

axonal and extra-axonal compartments should be extremely long.

Studies show that this exchange rate may be as high as 700 ms,

which under the typical experimental diffusion time (50–100 ms),

will result in restricted diffusion of the intra-axonal compartment

(Meier et al., 2003). This also implies that both components

(hindered and restricted) are in the no-exchange limit, thus

supporting our assumption about exchange between them.

The assumption of slow exchange between intra-axonal

compartments has important implications for the formulation of

CHARMED. As we assume that water diffusion in the intra-axonal

compartment is restricted and its exchange is slow, exchange

between different axons will also be slow if it occurs at all. This

means that we can treat different fiber bundles as separate

compartments. Using this assumption, we were able to use a

multi-restricted model to fit pixels in which crossing fibers appear

(see Fig. 6).

Finally, it is important to note that the hindered model

describing water diffusion in the extra-axonal space is fairly

insensitive to exchange. Whether there is fast exchange between

different hindered compartments or no or slow exchange between

them, the diffusion tensor model still can be applied (Basser, 2002)

in the low-b or low-q regime.
Conclusions

The CHARMED MRI framework relates physiological and

structural features to the MR signal decay in diffusion experiments

measured over a large range of b values and diffusion gradient

directions. CHARMED has two main assumptions: (A) Exchange

between intra- and extra-axonal water pools is slow. (B) The

majority of water exhibiting restricted diffusion in white matter

originates from intra-axonal spaces. Using these assumptions, we

are able to estimate various parameters from diffusion-weighted

MR data, such as hindered compartment diffusivities and the

population fraction of the restricted and hindered compartments.

These parameters, especially the population fraction of the

restricted component, might be very sensitive to various pathologies

of white matter that involve myelin, the number of fibers, or intra-

axonal composition. In the present examples, two fitting parameters

were fixed in the model: the diffusivity of the restricted compart-

ment perpendicular to the fibers and the axonal diameter

distribution. Future work will aim at measuring these two quantities

and exploring their use as possible image contrast mechanisms.
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