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Comprehensive Approach for Correction of Motion and
Distortion in Diffusion-Weighted MRI

G.K. Rohde,”®" A.S. Barnett,? P.]. Basser," S. Marenco,? and C. Pierpaoli’

Patient motion and image distortion induced by eddy currents
cause artifacts in maps of diffusion parameters computed from
diffusion-weighted (DW) images. A novel and comprehensive
approach to correct for spatial misalignment of DW imaging
(DWI) volumes acquired with different strengths and orienta-
tions of the diffusion sensitizing gradients is presented. This
approach uses a mutual information-based registration tech-
nique and a spatial transformation model containing parame-
ters that correct for eddy current-induced image distortion and
rigid body motion in three dimensions. All parameters are op-
timized simultaneously for an accurate and fast solution to the
registration problem. The images can also be registered to a
normalized template with a single interpolation step without
additional computational cost. Following registration, the signal
amplitude of each DWI volume is corrected to account for size
variations of the object produced by the distortion correction,
and the b-matrices are properly recalculated to account for any
rotation applied during registration. Both qualitative and quan-
titative results show that this approach produces a significant
improvement of diffusion tensor imaging (DTI) data acquired in
the human brain. Magn Reson Med 51:103-114, 2004.
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MRI measurements of water diffusion provide important
information about compositional, structural, and organi-
zational features of biological tissues. Most clinical MRI
diffusion studies are performed by acquiring single-shot
echo-planar images (EPI) with diffusion sensitizing gradi-
ents of different strengths and orientations. In diffusion
tensor imaging (DTI) (1), at least seven images must be
acquired: one image with no diffusion sensitization, and
six diffusion-weighted (DW) images with diffusion sensi-
tization in noncollinear directions. DTI analyses, in addi-
tion to other approaches used to extract diffusion informa-
tion from MRI data (2-5), require the different DW images
to be spatially coregistered.

Unfortunately, eddy current-induced image distortions
and patient motion during prolonged acquisitions cause
misalignment of the DW images. Eddy currents are signif-
icantly reduced, but not eliminated, by actively shielded
gradients (6) and preemphasis correction schemes (7) in
modern magnets. The methods that have been proposed to
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reduce residual eddy current-induced distortions in DW
images are based on either field maps or images.

In a field map-based correction scheme, such as that
presented by Jezzard et al. (8), one measures the magnetic
field produced by the eddy currents and then corrects the
distortion using the field map and theoretical models of
how field inhomogeneities distort the images. The major
obstacle to implementation is the difficulty of rapidly ac-
quiring reliable field maps.

In an image-based registration scheme, one uses a cost
function Q to measure how well the images are spatially
aligned. First, a target image is chosen as a reference for all
other images in the data set (source images). Because it is
usually less distorted and has a higher signal-to-noise ratio
(SNR) than the heavily DW images, the image acquired
with no diffusion sensitization (the T,-weighted image), is
usually used as the target image for registering DW images.
Next, using a spatial transformation model, one aligns all
other images to the target image by optimizing a cost
function. Image-based registration schemes differ from
each other in terms of 1) the definition of Q, 2) the types of
transformations applied to the image in searching for the
maximum of (), and 3) the numerical optimization method
used in searching for the maximum of Q. We chose to work
with an image-based registration scheme because a field
map, which is usually not available for DW images ac-
quired on conventional clinical scanner, is not required. In
addition, an image-based scheme allows one to correct for
misregistration produced by subject motion.

Haselgrove and Moore (9) proposed the first image-based
registration method to correct for eddy current-induced
distortions. They used the undistorted T,-weighted image
as a target image for the registration of the DW images. Q
was based on the cross correlations between the source
image and the target image. Unfortunately, cross correla-
tion performs poorly as a measure of alignment when the
contrast of the source and target images differs signifi-
cantly. Experiments by Bastin et al. (10) indicate that this
approach does not perform well in registering T,-weighted
images to DW images acquired with b-values higher than
300 s mm 2 (10).

Cost functions based on mutual information are more
robust than those based on correlation for registering im-
ages with significantly different contrast. A mutual infor-
mation-based method was presented by Horsfield (11),
who proposed that the effect of eddy currents could be
measured by registering DW images acquired on a special
phantom with low diffusivity and nonuniform relaxation
properties. The correction parameters computed from the
phantom could in turn be used to correct anatomical DW
images acquired in the same scanner with the same se-
quence, provided that 1) the subject’s position in the scan-
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ner is sufficiently well known, and 2) gradient perfor-
mance is stable over time.

Andersson and Skare (12) recently proposed a scheme
that uses the goodness-of-fit of the apparent diffusion ten-
sor (D) calculation for guiding the image registration pro-
cess. They define Q using the goodness-of-fit (x*) of the
DW imaging (DWI) signal to the b-matrix (1). This inter-
esting approach has the advantage of correcting for both
eddy current-induced distortions and subject motion.
However, as the authors pointed out, this method can not
be used to register DW images to T,-weighted images when
a single level of diffusion weighting is sampled because, in
this case, the T,-weighted images do not contribute to x2.

Surprisingly, until recently (12), misregistration from
patient motion has been neglected as a potential source of
artifacts in diffusion MRI studies, although it has been
long recognized as such in functional MRI studies.

The goal of this work was to design a robust image
registration approach that would correct the spatial mis-
registration of DWI volumes® originating from both subject
motion and eddy current-induced distortions. Our post-
processing method can also be used to position the dataset
in a standardized orientation. The b-matrix and the signal
magnitude of each DWI volume are recalculated to take
into account the effects of the spatial transformation ap-
plied. The method requires only one image interpolation
step and thus avoids unnecessary blurring of the images,
without requiring additional measurements on phantoms
or additional scans to map the magnetic field produced by
the eddy currents.

MATERIALS AND METHODS

In this section, we first describe the pulse sequence and
the acquisition parameters we used. We then present a
mathematical formulation of the registration problem. We
describe the spatial transformation f, the cost function Q,
the numerical method for finding the model parameters
that maximize QQ, and the postregistration processing nec-
essary to correct the image brightness and to rotate the
b-matrices. Finally, we describe the experimental design
and data analysis approach for the tests we performed to
validate our results.

Pulse Sequence and MRI Parameters

We designed our correction scheme to reduce artifacts in
data sets acquired with a standard single-shot, multislice,
spin-echo EPI sequence (i.e., fat suppression pulse, 90°
pulse, first diffusion gradient, 180° pulse, second diffusion
gradient, and EPI readout). The acquisition order is shown
in Fig. 1. We begin with a dummy scan, acquired with no
radiofrequency (RF) excitation, which permits us to cor-
rect for the direct current offset of the RF amplifier. Next,
we acquire an EPI reference scan for each slice. Finally, we
collect the image data looping through all slices and the

"Here and throughout this work we use the term “volume” to identify a set of
slices acquired with identical acquisition parameters covering the imaged
object without gaps. Different “volumes” do not differ in their spatial coverage
of the object, but do differ in the strength and/or orientation of the diffusion
sensitizing gradients used to acquire them.
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step

FIG. 1. Block diagram description of the volume acquisition proce-
dure.

different diffusion weightings. The slice loop is the inner-
most loop, so we acquire all slices composing a volume
before proceeding to the next diffusion weighting.

Scans were performed on a 1.5 T GE Signa system
equipped with a whole-body gradient coil able to produce
gradient pulses up to 50 mT/m (GE Medical Systems,
Milwaukee, WI). We scanned a cylindrical silicone oil
phantom and the brains of healthy subjects. The preem-
phasis correction for eddy currents provided by the system
manufacturer was disabled in some scans to obtain images
with severe geometric distortions. Some imaging parame-
ters, such as resolution, repetition time (TR), total number
of images, etc., varied slightly for the different tests we
performed. For brevity, we report the imaging parameters
of the brain study shown in Figs. 6—9. The imaged volume
was composed of 80 contiguous slices with 2-mm slice
thickness and 2-mm in-plane resolution. The TE was
82.7 ms, the readout time was 50 ms, and the TR was >10
s with cardiac gating (four acquisitions per heartbeat, start-
ing with a 150-ms delay after the rise of the sphygmic wave
as measured with a peripheral pulse oxymeter). The gra-
dient strength was 49 mT/m, yielding a b-value (i.e., trace
of the b-matrix) of 1120 s/mm?. A total of 56 3D images
were acquired by repeating eight times a previously de-
scribed (23) diffusion sampling scheme, which includes
one volume with no diffusion weighting followed by the
same volume six times, acquired with diffusion gradients
applied in different directions. The total imaging time was
approximately 20 min. Replicate volumes were acquired
for signal-to-noise ratio (SNR) considerations in order to
improve the quality of the estimated diffusion tensor pa-
rameters.

Formulation of the Spatial Transformation Model

A data set from a diffusion MR study consists of multiple
volumes acquired with different strengths and orientations
of the diffusion sensitizing gradients. To register a set of
images or 3D volumes, we first define a target coordinate
system x. We then define a source coordinate system x,, for
each volume a. The registration problem consists of find-
ing the coordinate transformation £, (x) for each volume «
that transforms the target coordinates x into the source
coordinates x,. We describe the transformations with a set
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of parameters p, = {pl, p2, ...
number of parameters:

, p&'}, where m is the total

x, = f,(x) = fx; p.) [1]

We then define a cost function Q that depends upon the
image values and the parameters p,. We then find f by
finding p,, for which Q is an extremum.

The first T,-weighted volume acquired is extracted from
the DWI dataset and rigidly registered to a standard tem-
plate. Subsequent registrations of each DW image to the
normalized T,-weighted target volume will then cause
then entire DWI dataset to be positioned in a standardized
orientation. All of the human brain images displayed in
this work were spatially normalized using this method.
Although this volume is free from eddy current-induced
distortions, it contains geometrical distortions due to B,
inhomogeneity caused by the magnetic susceptibility of
the object. These distortions are generally accompanied by
localized changes in the brightness of the image. Because
these distortions and brightness modulations are the same
in both T,-weighted and DW images, they do not cause
misregistration artifacts in the computed diffusion param-
eters. However, if large corrections of the shape of the
object (in particular magnification) are required to correct
the DW images for eddy-current distortion, one should
also correct their brightness (signal magnitude) appropri-
ately to account for changes in size of the object. Neglect-
ing to correct the brightness of the DW images following
distortion correction will result in errors in the computed
diffusion parameters.

Each volume a consists of a 3D array of pixel values,
I [p.q.rl, where p, q, and r are the array indices. We define
the image coordinates for volume o as

Xo = (Xiqs Xpo» X34) = (S1p, S,q, 531) [2]

where s, and s, are the nominal in-plane pixel sizes, and
s, is the slice separation. Each volume I [p,q,r] is only
defined for integral values of the indices p, Q, and r. We
use trilinear interpolation (13) to define a continuous func-
tion I, (x,) in terms of the measured values I [p,q.r].

Call the coordinate system of the target image x. For each
volume o we seek the properly registered and brightness-
corrected image I',. As shown in Eq. [8], I}, is related to the
measured image I, by the equation

I(x) = L)) (f,(x)), (3]

where f, is a coordinate transformation, and T’ (x) is a
brightness correction function. We propose a parameter-
ized form for f, that can correct for patient motion and
eddy current-induced distortion. We find the best values
of the parameters by maximizing the cost function Q as
described below. Since the brightness correction is a func-
tion of the spatial transformation necessary to correct for
eddy current-induced distortions, we can express the
brightness correction I' (x) in terms of parameters we used
to model the eddy current field (see Effects of Eddy Cur-
rents section below).

105

We decompose the spatial transformation f into two
steps. The first step describes the change in location and
orientation of the object between acquisition times of the
two volumes, and the second step describes the distortion
introduced by the acquisition process.

We model the patient’s brain as a rigid body, and de-
scribe its displacement and change in orientation by the
equation

v.=Rx+a [4]

where R is a rotation matrix, a is a displacement vector,
and y,, is an intermediate set of coordinates that describes
the orientation of the patient’s head at the time of the
acquisition of volume a. Equation [4] contains six param-
eters: the three components of the displacement vector a,
and three parameters (typically Euler angles ¢, 6, and ()
that define the rotation R (14). No changes in the image
brightness are associated with this transformation.

Subject motion between the start of the excitation pulse
and the end of the data acquisition can potentially affect
the data in a significant way. For a single-shot EPI acqui-
sition, this period lasts about 1.5 TE, or about 120 ms in
our case. Head motion during this period has two effects
on the data: 1) The component of velocity parallel to the
diffusion sensitizing gradients causes a phase shift in the
reconstructed image. This phase shift does not cause any
artifact in EPI single-shot magnitude images. 2) Motion
during the readout can cause blurring. An image registra-
tion algorithm is clearly not appropriate for correcting
image blurring.

Effects of Eddy Currents

The image distortion due to eddy currents depends on the
time and space dependence of b, ;4,(y.t), the component
parallel to B, of the magnetic field generated by the eddy
currents. The shifts in the readout, phase-encode, and
slice-select directions are:

beddy _ beddy [5]

greadoutsl 7gaU55

8n:-)aa' =

5 _ beddyTecha _ beddy [6]
phase Gpiips: ~ .07gauss
bedd bedd
8slice = = - [7]

ZaiceSs  2.5gauss

where 3,4 and 8. are in pixels; 8., is multiples of
the slice thickness; Gy, is the area of the phase-encode
blips; T..no is the time between consecutive echoes in the
readout echo train; s,, s,, and s, are defined in Eq. [2]; and
the numerical values are typical of the scans we perform.
We can safely ignore the shifts in the readout and slice-
select directions, as they are almost two orders of magni-
tude smaller than the shifts in the phase-encode direction.
If b.yqy(y.-t) were to change appreciably during the read-
out phase of image acquisition, the image would suffer
blurring that cannot be corrected by a simple coordinate
transformation.
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As shown in the Appendix, if we assume that b4, (y.t)
is approximately constant during the readout, and that
eddy current fields from the acquisition of one slice do not
interfere with the next, the pixel values for volume o are

I[m, 1, q] = W (ms,, Is, = Bbega(ms,, Is,, qss), gs,)

a(Bbeddy)
X (1 +7&yz ) [8]

where W,_is the undistorted image of volume « smoothed
by the point spread function (PSF) of the imaging system,
and B is given in Eq. [A3]. Comparing Eqgs. [8] and [3], we
conclude that the transformation and brightness correction
associated with eddy currents are

Xo = Va — Bbeddyez [9]

with e, = (0,1,0) representing the phase-encode direction
and

[10]

Fa(xa) _ <1 + a(Bbeddy)) )
Xa=Ya

Vs

We now have to model b,,,,. Since we can neglect the
fields due to eddy currents induced in the patient’s head,
begay(¥.-t) in the imaging volume obeys Laplace’s equation
(15)

Vzbeddy: 0. [11]
Expanding the solution of Laplace’s equation in Cartesian
coordinates up to second order, we approximate b, by

Bbeddy()’a) =[c, + C1Va1 T CoVaz T C3Vas T CaVarVez T CsVarVas
+ CVarVas T C7(,V<2n - Yﬁz) + Cs(zyqis - Yga - yiz)] [12]

where c,—cg are parameters to be determined from the
optimization procedure. We can use Eq. [12] to write the
brightness correction function in terms of the fit parame-
ters:

Fo=1+4cy+ Y + CeVaz T 2(C7 + Cg)Vup  [13]
Equations [4], [9], and [12] define the transformation f,
from target coordinates x to the source coordinates x,. This
transformation is not unique, however, because the c, and
t, are not independent. We therefore set c, = 0 without
loss of generality, and are left with 14 parameters: eight
(c1—c8) that describe the eddy current distortion, and six
(a,, a,, a5, ¢, 6, and ¢) that describe the rigid body dis-
placement of the object.

As mentioned previously, very short time constant eddy
currents (i.e., eddy currents with significant variation dur-
ing the readout period) do not produce image distortion,
but rather image blurring that cannot be corrected by im-
age registration. Our approach will correct for the effect of
eddy currents that have relatively long time constants with
negligible decay during the readout period. However, our
3D correction model assumes that the eddy-current field is
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the same for all of the slices in a particular volume. This
assumption requires either that the eddy currents from the
previous excitation have died away during the time inter-
val between consecutive excitations or that a steady state
is reached. In the latter case, the first few slices acquired in
each volume after the gradient direction has changed will
be collected before the steady state is reached, and will
have an amount of distortion inconsistent with that ac-
counted for by our model. We performed a set of 2D
registration experiments on a silicone oil phantom in order
to investigate this effect on our magnet.

Cost Function

In image registration problems, the goal of the cost func-
tion Q is to measure how well two images are aligned. It is
common to assume that the images are optimally aligned
when the statistical dependence between their intensity
values is highest. As mentioned earlier, the correlation
coefficient is a poor measure of image alignment when the
intensities in the images are not linearly related (see Re-
sults section). A more robust way of measuring spatial
alignment in medical images is to use the mutual informa-
tion, a special case of the Kullback-Leibler measure (16),
between the intensity values of the images to be registered
(17-19). The mutual information similarity measure has
been shown to be significantly more robust than the cor-
relation coefficient and some other measures of similarity,
when images of different modalities are registered (20). In
practice, we elected to use the normalized mutual infor-
mation (21) in our registration program, as it has been
shown to avoid any dependency on the amount of image
overlap.

Consider two volumes, S and T. The normalized mutual
information is defined in terms of three quantities: the
normalized histogram pg(n) of pixel values in volume S,
the normalized histogram p,{m) of pixel values of image T,
and the normalized joint histogram pg,{(n,m) of pixel val-
ues in volume T and the corresponding pixel in image S.
Let v,,;, and v,,,, be the minimum and maximum pixel
values in volume S, respectively, and let w,,;,, and w,,,, be
the minimum and maximum pixel values in image T,
respectively. We divide the range of pixel values of vol-
ume S into N bins of equal width, and the range of pixel
values in image T into M bins of equal width. The limits of
bin I for volume S are v, and v, ,, given by

Vmax ~ Vmin
] =

V1= Vmin + N s [14]

and the limits of bin m for image T are w,,, and w,,,, ;, given
by

Wmax -
M

Whnin

Wmn = Whnin +m [15]

Let ng; be the number of pixels in volume S with value h
in the range v; = h < v;,,, ny,, the number of pixels in
image T with value d in the range w,, = d < w,, ,, Dgitm
the number of voxels for which the value h in volume S
lies in the range v; = h < v,., and the value of the
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corresponding voxel in image T lies in the range w,,, = d <
W1, and let n,, be the total number of voxels in volume
S (= the total number of voxels in image 7). The normal-
ized histogram of volume S is then

(m) = 2 [16]
Ps (o)’
the normalized histogram of image T is
(m) = " [17]
Py = (o)’

and the normalized joint histogram of volumes T and S is

Igirm
(Nyo1)

pST(]’ m) = [18]

Our cost function Q is defined in terms of the above his-
tograms by the formula

> ps(DIn(ps(D) + >, pr(m)In(ps(m))
1

QS 1) = [19]

> > psr(l, m)n(psy(l, m))

m

Lastly, note that the images reconstructed from an MRI
experiment often contain intensity spikes. That is why, in
practice, we do not choose v,,,, and w,,,, to be the maxi-
mum of images T and S, respectively. Instead, we sort the
pixels of T by increasing intensity, and choose w,,,, to be
some ith (with I some low integer) value from the last
element in the sorted list. The same operation is performed

to compute v, .

Optimization

To register a source volume « to the target volume T, we
have to find the values of the 14 parameters p,, = (c,, ¢, C,
Cas Cs, Cgy Cyy Cg, Ay, Uy, A3, &, 6, and &) for which Q(S(f(x;
P.),T(x)) in Eq. [19] is a maximum when we use the target
volume for volume T and Egs. [3], [4], [9], and [12] to
compute the volume S from the measured volume «. To
speed up the registration, we do not apply the brightness
correction I', during the optimization process. We use a
simple gradient ascent optimization procedure coupled
with a golden section line optimization method to maxi-
mize Q (13). That is, the registration parameters are
searched iteratively according to the equation

P = P+ sV, Q0. [20]
where s is determined via the golden section line optimi-
zation method (note the change in notation: Q(S(f(x;
P). T(x)) = Q(p.)). We evaluate the gradient of the cost
function with respect to registration parameters p, numer-
ically using finite differences, and several step sizes are
used throughout the registration procedure. Note that be-
cause different sets of parameters in p,, have different units
and thus affect the value of Q(p,) differently, we use Eq.
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[20] to determine different sets of parameters in p, sepa-
rately. That is, Eq. [20] is used to update the translation
parameters first, followed by the rotation parameters, the
linear deformation parameters, and finally the quadratic
deformation parameters. The loop is repeated until the
improvements in the cost function value fall bellow a
chosen tolerance e (typically e = 0.0001). The algorithm
also works in multiple resolutions, in a coarse to fine
fashion, in order to avoid local optima and decrease com-
putation time.

Postregistration Processing
Intensity Correction

After we register the volume to the target, we apply the
brightness correction I',. An example demonstrating the
benefit of the brightness correction is shown in the Results
section.

b-Matrix Reorientation

Each DWI volume is accompanied by a b-matrix that de-
scribes its diffusion weighting. In principle, both patient
motion and eddy currents can cause errors in the calcula-
tion of parameters that describe diffusion in each voxel of
a DWI dataset. We use dimensional analysis to estimate
the change in the b-matrix due to the eddy currents, and to
demonstrate that it is very small in normal conditions. The
elements of the b-matrix scale as

b o y gy [21]
where v is the gyro-magnetic ratio, g, is the strength of
the diffusion gradients, and 7t is a characteristic time for
the experiment. The presence of an eddy current b,

2
would change the b-value to v* 7%, resulting

beda'y
8aif T L

Zbeddy
8di fL ’

teristic length scale over which éeddy varies. For our ma-

chine, with pixel shifts of the order of 1-2 pixels, over a

22-cm FOV, b,gq, ~ .1 gauss, L ~ 20 cm, and gg; ~

4 gauss/cm, resulting in a fractional change in the b-value

of about 0.25%, which we can safely neglect.

However, we do correct for patient motion. The b-matrix
is calculated with respect to the y_-coordinates, which are
fixed with respect to the scanner. We have to rotate the
b-matrix to target coordinates x using the results of the
fitting procedure

in a fractional change in b of where L is a charac-

b’ =R bR [22]

where b’ is the rotated b-matrix in target coordinates, b, is
the computed b-matrix, and R is the rotation matrix de-
fined by the Euler angles ¢, 6, and ¢ obtained from the
fitting procedure.

Validation Methods

A common problem one encounters when validating re-
sults from image registration algorithms, particularly non-
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rigid ones, is the lack of a gold standard. Therefore, we are
limited to using indirect measures to establish the reliabil-
ity of our spatial normalization approach. In this section
we describe several approaches we used to establish the
reliability of the results produced by our registration algo-
rithm.

Visual Assessment of DW Images and Computed Diffusion
Tensor Images

As an initial check, we confirm through visual inspection
that the DW images and their corresponding T,-weighted
images are well aligned after registration. Then we check
for artifacts in the maps of the computed tensor parameters
that could originate from image misalignment in the DWI
datasets used to generate them. Often, such artifacts are
large enough to be detected at visual inspection of the data.
An assumption often used (8,9,11) is that high anisotropy
index values around the edges of the brain are associated
with image misalignment, because anisotropy in those re-
gions is inconsistent with known anatomy. Following the
same approach, we use anisotropy index images, as well as
images of the off-diagonal tensor elements, to assess the
amount of anisotropic diffusion at the periphery of the
brain.

Improved Fitting to the Tensor Model

Andersson and Skare (12) proposed an image registration
approach that uses the goodness-of-fit of the apparent dif-
fusion tensor (D) calculation to guide the image registra-
tion process. Here we use their approach to test the results
of our registration algorithm. This scheme relies on the
assumption that the DWI data is well described by the
tensor model of Basser et al. (1). At the b-values we used,
this assumption is probably satisfied, although it may not
hold true when very large b-values are used. Moreover, as
mentioned in the Introduction, this approach can only be
used to test the registration of different DWI volumes. It
does not provide information about the degree of registra-
tion of DWI volumes to T,-weighted volumes.

PCA Analysis of the Data

Several factors contribute to the signal amplitude in each
particular voxel of the volumes in a diffusion MRI dataset.
These factors include the relaxation and diffusion proper-
ties of the tissue, as well as noise. Misregistration artifacts
caused by motion and image distortion will affect the
signal amplitude by changing the tissue that is imaged at a
particular location during different acquisitions. The n
volumes of a diffusion MRI dataset can be viewed as a
random vector X of n components and m elements, where
m is the number of voxels in the imaged volume. We use
the principal component analysis (PCA) described in Ref.
22 to describe the DWI dataset in terms of a new set of n
uncorrelated volumes (principal components). These prin-
cipal components are computed as a linear combination of
the n components of X that have special properties in
terms of variances of their m elements, and they are or-
dered by decreasing variance. For example, the first prin-
cipal component is the normalized linear combination (the
sum of squares of the coefficients being one) with maxi-
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DW intensity (au)

T2-weighted intensity in arbitrary units (au)

FIG. 2. Joint histogram showing the relationship between T,-
weighted and DW image intensities. The highly nonlinear nature of
this relationship demonstrates why correlation type similarity mea-
sures are not appropriate for this application. Intensities are in
arbitrary units.

mum variance. The second component is the normalized
linear combination that is uncorrelated with the first com-
ponent and whose variance is maximal, and so on. It turns
out that the coefficients of such linear combinations are
given by the characteristic vectors of the covariance matrix
of X (22). As shown in the Results section, PCA is a
powerful tool that can be used to detect interesting fea-
tures in a DWI sequence, including artifacts such as image
distortion and patient motion.

RESULTS
Cost Function

Figures 2 and 3 show that correlation type similarity mea-
sures are not appropriate for registering T,-weighted and
DW images. Correlation type similarity measures require
signals in the target and source image to be linearly re-
lated. Figure 2, which displays the joint histogram of DW-
and T,-weighted images, shows that the intensity values of
the images are not linearly related. This happens because
cerebrospinal fluid (CSF) has low intensity in the DW
images, but not in the T,-weighted images. Consequently,
background values in the DW images map to both back-
ground and CSF values in the T,-weighted images. In
addition, DW images contain signal affected by anisotropic
diffusion, while the T,-weighted images do not. As a con-
sequence, white matter has a relatively narrow range of
values in the T,-weighted images but a large range of
values in the DW images.

Figure 3 shows representative results for registration of a
DWI to a corresponding T,-weighted image using the cor-
relation coefficient as well as the normalized mutual in-
formation as the similarity measure. The first (middle im-
age) result was obtained using the normalized mutual in-
formation cost function. The image on the right was
obtained using the correlation coefficient as a similarity
measure. As evident from the picture, the result obtained
using the mutual information cost function is superior to
that obtained using the correlation coefficient. We note
that the original DW images were acquired with gradient
preemphasis turned off. Thus the original images con-
tained significant geometric distortions. For brevity, the
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FIG. 3. Example image registrations performed using mutual infor-
mation and correlation coefficient similarity measures. Left image:
Reference T,-weighted image. Middle image: DW image registered
to the reference image using normalized mutual information. Right
image: DW image registered to the reference image using the cor-
relation coefficient similarity measure.

original distorted images are not shown here. Close visual
inspection reveals that the edges of the brain shown in the
images are well matched only when the normalized mu-
tual information cost function is used. The use of the
correlation coefficient causes the gray matter in the DW
image to be matched to the CSF in the T,-weighted image.
Such visual inspections, which were initially performed to
check the accuracy of our correction approach, revealed
that the image distortion model described above appears to
be appropriate for correcting relatively large distortions in
images acquired with b-values of about 1100 mm?/s
(which are typically used in clinical studies).

Adequacy of the Eddy Current-Induced Distortion Model

We tested whether the terms included in Eq. [12] were
sufficient to approximate the distortions encountered in
the image volume. We measured the distortion produced
by x-, y-, and z-oriented diffusion gradients in each slice of
the phantom using a 2D affine registration algorithm. The
resulting correction coefficients for translation, magnifica-
tion, and shear are plotted against the slice position in Fig.
4. The translation coefficient has dimensions of length and
is measured in pixels; the magnification coefficient is unit-
less, representing the ratio between the size of the original
and the corrected image; and the shear coefficient is ex-
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pressed in pixels per column. Slice position zero denotes
the isocenter of the magnet, and each slice is indexed in
terms of its slice position (in millimeters). The gradient
preemphasis scheme provided by the magnet manufac-
turer was turned off during the acquisition of these images,
and consequently large corrections were necessary to reg-
ister the DW images to the undistorted T,-weighted image.
With the exception of the first few slices, a quadratic
function describes well the required correction as a func-
tion of slice position for all gradients, indicating that the
terms included in Eq. [12] are sufficient to approximate the
correction for distortions encountered in the image vol-
ume. The values of the correction coefficients for the first
few slices differed significantly from those of the remain-
ing slices. This suggests that the eddy-current field is not
constant during the acquisition of the first few slices of a
new DWI volume. In a separate experiment, we performed
a single-slice measurement on a phantom in order to char-
acterize the time course of the achievement of the steady
state of the eddy current field for the x-, y-, and z-gradients.
This experiment showed that, in our magnet for all gradi-
ents, reaching a steady state in the eddy-current field re-
quired about 500-750 ms when images were acquired
with a TR of 250 ms. This result is in line with the findings
of the multislice experiment described in Fig. 4. Identical
experiments were performed using an image acquisition
sequence in which the gradient preemphasis scheme was
turned on. The results for these experiments were qualita-
tively equal to the ones shown, although the distortions
measured were significantly smaller. For brevity, we do
not report them here.

Intensity Correction

The effect of omitting the intensity correction step when
significant distortions are present is shown in Fig. 5. Here
a set of DW images with severe distortion were acquired by
turning off the gradient preemphasis eddy-current com-
pensation. These DW images were coregistered and
aligned to the T,-weighted image, and D was computed
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FIG. 4. Study of image distortions using phantoms. Registration of DW images and a target T,-weighted image was performed slice by slice
using an affine transformation. The registration parameters (translation, shear, and scaling) for the DW images acquired with sensitizing

gradients in the x-, y-, and z-directions are shown above.
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FIG. 5. Demonstration of artifacts introduced when the intensity
values of the DW image are not recomputed after warping. Left
image: Color representation of tensor maps computed from a DW
image in which the intensity values were not recomputed after
registration. Right image: The same as the left image, but with DW
image intensity values properly recomputed. The background bias
(red in the color image) seen on the left image appears to indicate
preferential diffusion in the x-direction. The background artifacts
disappear when appropriate correction is used.

from two sets of images: one with brightness correction
and one without. Figure 5 shows the fiber orientation color
maps (24) computed from diffusion tensors obtained from
these two sets of images. In the color map computed from
images that had no brightness correction (left image), a red
background in isotropic regions is evident, indicating
anisotropic diffusion in the left-right orientation. This
artifact is completely removed in images in which the
signal magnitude was appropriately corrected for the
amount of nonrigid body distortion applied during image
warping.

Subject Motion

To test the ability of our algorithm to correct for subject
motion, we acquired a dataset in which the subject was
asked to move his head deliberately three times (about 10°
rotation to the left, about 10° rotation to the right, and an
extension of about 10°). The resulting DW images in this
dataset were significantly misaligned due to patient mo-
tion. Gradient preemphasis was turned on during this
acquisition. Figure 6 contains maps of the relative anisot-
ropy (25) computed in three representative slices from
uncorrected images (top row) and images that were coreg-
istered using our algorithm (bottom row). The relative
anisotropy is a diffusion anisotropy index that corre-
sponds to the coefficient of variation of the three eigenval-
ues of the diffusion tensor in each voxel (25). In the an-
isotropy maps computed from the uncorrected images,
several white-matter structures that are clearly visible in
the anisotropy maps computed from the registered images
can not be identified. This is most evident in frontal re-
gions where motion was most severe. In addition, the
anisotropy maps computed from the uncorrected images
show an artifactual rim of increased anisotropy around the
periphery of the brain.

For the same dataset, Fig. 7 shows representative slices
of the x*> maps produced by the tensor fitting procedure.
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The top row contains the x* maps of the original data prior
to correction. The bottom row shows the x*> maps after
correction. For display purposes (i.e., to increase the dy-
namic range of the displayed image and reveal more inner
structure), the square root of x? is shown. In this experi-
ment, the mean x* of the image was reduced by about 80%
after correction with our approach. Note that the x* maps’
corrected datasets still contain slight bands of increased x*
in some regions of the brain. One possible explanation for
the presence of these bands is that we did not remove the
volumes acquired during the voluntary motion. In these
volumes there is significant intravolume misregistration
that our program does not correct for, which could account
for these residual artifacts.

For the same dataset, Fig. 8 shows the coefficients for the
first 16 principal components in each voxel for a DWI dataset
corrected for misalignment. The coefficients of the compo-
nents are displayed in order of decreasing variance, starting
from the top left. The coefficients of the first two components
shown in Fig. 8 appear to be related to T,-weighted contrast
from the different tissues, and to signal attenuation due to
isotropic diffusion. The coefficients of components 4-8
clearly show effects related to anisotropic diffusion in white
matter. Components 9 and higher show mostly noise. Figure
9 shows the same decomposition for DW images that have
not been coregistered. Not only do the first few components
appear blurred, but most components higher than 8 contain
significant coefficient variability. For the PCA analysis of
both registered and unregistered data, the volumes acquired
when the voluntary motion occurred have been removed,
and striations such as those observed in Fig. 7 are not visible.
An interesting observation from the uncorrected dataset
shown in Fig. 9 is that the features related to diffusion an-
isotropy and motion-induced artifacts do not separate into
distinct components.

FIG. 6. Axial views of the relative anisotropy index for three repre-
sentative slices. Top row: Anisotropy indexes computed from DW
images without alignment. Bottom row: Anisotropy indexes com-
puted from DW images corrected for alignment. Apparent anisot-
ropy around the top edges of the images appears to be significantly
reduced in the corrected images.
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FIG. 7. Axial views of the fit of the diffusion tensor for three repre-
sentative slices. Top row: Fit without alignment. Bottom row: Fit
from DW images corrected for alignment. The chi-squared error
between the ADT model and the DWI data is significantly reduced
after motion and distortion correction, indicating better image align-
ment.

Figure 10 contains the plot of the relative variance of the
coefficients of components 3—16 for the corrected and un-
corrected datasets. The total variance (sum of the variances
of each component) for a dataset was normalized to one for
both datasets. The first two components account for 82%
and 91% of the variance in the uncorrected and corrected
DWI datasets, respectively. The plot shows that fewer
principal components are required to describe the inten-
sity signal in the DWI dataset after motion and distortion
correction. This confirms that fewer sources of signal are
present in the data after correction. Given that no qualita-
tive loss in signal anisotropy was detected after correction,
we conclude that the effects of sources related to image
misalignment have been reduced after image registration.

DISCUSSION

We have presented a novel method for correcting image
distortion and patient motion in DWI datasets. We use a
mutual information-based registration algorithm to align
each DWI volume in a dataset to a target volume chosen
from the same DWI dataset. The registration is performed
in 3D, and the warping function allows for rigid body
patient motion as well as eddy current-induced distortion.
All parameters are optimized simultaneously so that the
final registration result represents an optimal correction of
both patient motion and image distortion. After registra-
tion, the image intensity of each DWI volume is adjusted
according to the spatial transformation applied to it. This
prevents eddy current-induced distortions from introduc-
ing directional bias in the computed tensors. Similarly,
each b-matrix is properly rotated using the same rotation
applied to the corresponding DW image.
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One of the novel aspects of our approach is the use of a
model for eddy current-induced fields based on Laplace’s
equation. A derivation of the image distortion caused by
such fields, as well as the brightness correction term nec-
essary for adjusting the intensity values of the images, is
also provided. Lastly, if desired, the target volume for the
DWI dataset can first be registered to a template. Subse-
quent registration of the DW image to the target T,-
weighted volume will then cause the whole DWI dataset to
be registered to a normalized template without additional
computational cost, and with only one interpolation of the
images. Thus our correction framework not only removes
motion and distortion artifacts, but also positions the data-
set in a standardized orientation using a single interpola-
tion step. Note that although we designed our method for
the purpose of spatially aligning DW images of the human
brain, it can be easily adapted to work with other types of
images. The method is relatively fast. Our code written in
IDL (Research Systems Inc.) aligns each 3D volume of size
128 X 128 X 72 in about 3 min on a Linux machine
equipped with a 2 GHz Xeon processor. Implementing the
method in a more efficient computer language, such as C,
would certainly reduce the computation time for each
image.

The results show a significant increase in data quality.
Validation included visual inspection of the data, as well
as more quantitative measures, such as the study of the x*
error of the fitting of the data to the D model. In addition,
PCA decompositions were used to study the data variance
introduced by image misalignment. All of the results pre-
sented show that the quality of the DW images datasets is
significantly improved after alignment. When large distor-
tions are present, it is necessary to remap the intensity
values of the aligned DW image according to the Jacobian
matrix of the transformation to avoid directional bias arti-
facts. When relatively small distortions are present, such
artifacts are difficult to detect visually, even though the
directional bias in the tensor field may still be present. The
same can be expected for the b-matrix rotation step. If
significant patient motion is present, it is essential to rotate
the b-matrix to avoid erroneous computation of diffusion
parameters.

Patient motion and eddy current-induced image distor-
tion are common problems in clinical DWI acquisitions.
Gradient preemphasis schemes that are currently imple-
mented in most MRI scanners are very effective in reduc-
ing the impact of eddy currents. In our scanner, eddy
current-induced distortions rarely exceed one or two pix-
els when preemphasis correction is applied. However, gra-
dient preemphasis must be calibrated periodically. Data-
sets acquired immediately after calibration will have fewer
artifacts than those acquired when a long period of time
has elapsed since calibration. This temporal inconsistency
in the quality of DWI data may be problematic in longitu-
dinal studies and in general when the ability to compare
scans acquired over time is desired. In our clinical studies,
the systematic use of our correction scheme significantly
increased the reproducibility of our clinical diffusion
studies. In our experience, misalignment artifacts caused
by patient motion are more problematic, especially in
lengthy acquisitions where several DW images are needed,
or even in short scans with uncooperative patients or with
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FIG. 8. PCA decomposition of the registered DWI dataset (first
16 components). Images are displayed in order of decreasing vari-
ance, starting from the top left. Image variance around the edges of
the brain and in the CSF-white matter interfaces, appears to be
reduced in the third and fourth components.

unsedated pediatric subjects. Our results show that data-
sets containing significant motion can be successfully cor-
rected.

Our DWI normalization method is still unable to cor-
rect some motion artifacts that can be present in DWI
acquisitions. We perform a 3D registration between
brain volumes, rather than a 2D registration between
individual slices. Given that the 3D volumes are assem-
bled from separate slice acquisitions, there may be pa-
tient motion from one slice acquisition to another that
will be uncorrected by our approach. We chose to per-
form a 3D registration because it is generally more ro-
bust than a 2D registration. Moreover, with a 2D regis-
tration, correcting for in-plane motion is feasible, but
correcting for out-of-plane motion is much more diffi-
cult. With our approach we can correct for some types of
out-of-plane motion; for example, in axial images we
can correct for translations in the z-axis and rotations
about the x- and y-axes. We also tested the possibility of
performing the 3D registration first, followed by a 2D
registration to correct for in-plane motion between
slices. However, we did not find that this strategy led to
a significant improvement in the alignment of the im-
ages. Clearly, the order of data acquisition is very im-
portant for a 3D approach to be effective: all slices
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composing a volume should be acquired in the shortest
possible time. One additional problem is that the human
brain is not strictly a rigid structure, and cardiac-in-
duced motion may also deform the brain in ways that we
are not currently able to account for with our model. We
are attempting to characterize the amount of image mis-
alignment due to cardiac pulsation so that we can devise
appropriate correction methods.

Finally, we anticipate that the algorithm presented
here may not be able to properly register images ac-
quired with diffusion weighting much higher than that
used in this study (b = 1100 s mm™?). At very high
b-values, the image signal in the brain parenchyma is
significantly attenuated, so it may be confounded with
signal from the air, nearly eliminating tissue/air bound-
aries that are some of the main features that guide the
image registration process. Under these circumstances,
the probability density functions (intrinsic contrast) of
T,-weighted and DW images is too dissimilar, and even
a mutual information-based registration algorithm
would fail. One possible solution to this problem would
be to perform image registration in a sequential or hier-
archical manner. Rather than registering each heavily
weighted DWI volume to a reference T,-weighted vol-
ume, one can obtain intermediate images that have more

FIG. 9. PCA decomposition of an unregistered DWI dataset (first
16 components). Images are displayed in order of decreasing vari-
ance, starting from the top left. Data variance around the edges of
the images and in the CSF-white matter interfaces is apparent in
nearly all components.
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similar probability density functions and are thus easier
to register. For example, replicate volumes acquired
with the same strength and orientation of the diffusion
gradients can first be registered among themselves (with
a rigid body transformation) and averaged to increase
SNR. The next step would be to obtain “trace-weighted”
volumes with improved SNR and anisotropy informa-
tion removed. Compared to the original DWI volumes,
trace-weighted volumes will have a probability density
function more similar to that of T,-weighted volumes.
Trace-weighted volumes can be obtained by computing
the geometric average of a set of volumes acquired using
b-matrices that must have certain properties (see Ref.
27 for more details on how to compute a trace-weighted
DWI). Volumes obtained from the first averaging step
can be registered among themselves and geometrically
averaged. The resulting trace-weighted volume with the
lowest b-value can in turn be registered to the T,-
weighted volume, becoming the reference image for the
trace-weighted volume with the second lowest b-value.
This process can be repeated to register all trace-
weighted volumes up to the highest b-value, achieving
the goal of always registering volumes with similar con-
trast. The various transformations involved in this pro-
cess can be combined and applied to each original DWI
volume, avoiding artifacts originating from sequential
interpolations. We are currently testing this approach,
and we hope that it will extend the ability of our method
to register heavily DW images.

APPENDIX
Derivation of Eq. [8]

Assuming that b,,4,(y,..t) is approximately constant dur-
ing the readout and in steady state for the acquisition of
different slices, the pixel values for volume o are

N/2-1 P/2-1

_2mmn 2mlp
IL(m, 1, q)= 2 exp<—1 N ) > eXp(—] P)

n=-N/2 p=-P/2

X f dye f AV W15 Yazs G8as)expli(d, + dby))  [AL1]

5 4 T B % 10 11 12 13 14 16 18
Component

where W is the magnetization density of the object, ¢, =
YG1Vars §2 = V(GoVar + beddy(ya]'recho]’ and G, is the
product of the readout gradient and the sample time, and
G, is the area of the phase-encode blip. The value of the
double integral in Eq. [A1] is the measurement raw data in
slice q for readout point n and phase-encode p, and the
double sum is the discrete Fourier transform in the recon-
struction. Exchanging the order of the sums and the inte-
grals, and regrouping, Eq. [A1] becomes

I(m, I, q) = f dy, f dy,W(Vars YVazr qSas)

N/2-1 P/2-1

X 2 exp(—in®,) E exp(—ip®,) [A.2]

n=—N/2 p=—P/2
where ®, = vG,(y,, — ms,), s; = 27w/NyG,, is the pixel
size in the y, direction, ®, = vG,(y.2 + Bbeaay(ys) —

Is,), s, = 2w/PyG, is the pixel size in the y, direction,
and

[A.3]

The sums in Eq. [A2] can be evaluated analytically (26),
transforming Eq. [A2] into

I(m, I, q)=f dymf

X d_Vqu(Yal» Vaz» @8az) HW(® 1) Hp(D,) [A.4]
where
~®\ sin(N /2)
HN((I)) = GXP<1 E W [A5]

H(®), the PSF of the acquisition, is large only close to the
points where the denominator vanishes. The contribution
to the integral from the lines centered at ® # 0 is wrapped
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around due to aliasing and vanishes if the FOV is large
enough. To evaluate the integrals in Eq. [A4], we perform
he change of variables

Xa1 = You — 1S4 [A.6]
Xou2 = Va2 + Bbeddy(Ya) - ISZ [A7]
which transforms Eq. [A4] into
I(m, I, q) —J’ qulf dx W
X (X1 + M8y, Yor(Xo) s G503)J(X)HN(YG1 X1 ) Hp(YG,Xn)  [A.8]
6 als Ja?
where J(x,) = ‘% Jacobian determinant of the

inverse of transformation [A6] and [A7], and y,.,(x,) is
computed from Eq. [A7]. If we view H(®P) as an approxi-
mation of a dirac delta function, Eq. [A7] tells us that the
measured image I,(m,l,q) is the true image shifted in the
x,-direction and weighted by the Jacobian determinant. If
the distortion is small compared to the distance over
which b4, changes appreciably, the inverse of Eq. [A7]
can be approximated as

Y(xZ = Xa2 — Bbeddy(xa) + ]SZ [Ag]
with
beddy(xa) = beddy(ya)- [Alo]
The Jacobian then becomes
d(Bb, d(Bb.,
F—1+ (B ddy)E N B ddy)’ (A.11]

0X, Y

and Eq. [A8] can be written as

I(m, 1, q) = W(ms,, Is, — Bbega(ms,, Is,, qss), qss)

a(Bbeddy)

Vs ) [A.12]

.

where the function W, is the undistorted image of volume
smoothed by the PSF.
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