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Abstract—A simplified cable equation that describes the subthreshold behaviour of
a myelinated axon is derived from its microstructure. Specifically, a microcontinuum
cable model of a composite axon is homogenised, yielding a familiar macrocontinuum
cable equation of electrotonus, for which the space and time constants depend on
microstructural electrical parameters. Activating functions for magnetic and electrical
stimulation can be incorporated into this homogenised cable equation as sources or
sinks of transmembrane potential. An integral solution to the forced cable equation is
also presented for the subthreshold regime.
membrane resistance is assumed to be infinite.
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1 Introduction

THRESHOLD STIMULUS strength and its dependence on pulse
duration in nerve axons are useful in determining their
patency (HALLETT and CoOHEN, 1989). Nonlinear cable
models have been developed to predict the transmembrane
potential along myelinated axons following stimulation by
surface electrodes (McCNEAL, 1976; RaTtAYy, 1986; 1987;
1988), by transmembrane current injection (FirzHUGH,
1962; FRANKENHAEUSER and HUXLEY, 1964; GOLDMAN and
ALBuUs, 1968), and, recently, by current-carrying coils
(Basser and RoTH, 1991).

An often-used assumption that simplifies the prediction
of transmembrane potential distribution is that the
myelinated membrane is perfectly insulating (McCNEAL,
1976). As we shall see, this approximation leads to an
underestimate of the effective time constant and an
overestimate of the space constant of the axon in the
subthreshold regime. To overcome this problem, we should
include the impedances of both the myelinated and nodal
regions. However, doing so increases the complexity of the
model, even in the subthreshold regime. (Instead of solving
a system of nonlinear differential equations, now we must
solve a system of nonlinear partial differential equations
with matching boundary conditions at the myelin/nodal
interfaces.) One goal of this paper is to propose a model of
the myelinated nerve that can be used to describe
subthreshold electrical and magnetic stimulation, incorpor-
ating both nodal and myelinated impedances, without
significantly increasing its complexity. We derive a
simplified macroscopic electrotonic model from a nonlinear
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cable model of a composite axon, which includes active
membrane currents.

ANDRIETTI and BERNARDINT (1984) attempted to derive
such a macrocontinuum cable equation from the micro-
structure of a myelinated axon. They used a cable equation
to describe each internode and node of a composite axon,
and required that transmembrane potential and axial
current be continuous at each interface (between adjacent
nodes and internodes). This strategy, which has also been
used to model heat transfer in composite media (CARSLAW
and JAEGER, 1959), unfortunately leads to an intractable set
of matrix equations as the length of the axon goes to infinity.
Nevertheless, numerical solutions of transmembrane po-
tential distribution for nodal current injection agreed well
with analytical solutions to their proposed macro-
continuum equation (ANDRIETTI and BERNARDINI, 1984).

An equivalent subthreshold cable equation for a
composite, myelinated axon can be derived from basic
principles using a homogenisation technique. Similar
methods have been used successfully to derive macroscopic
dynamic equations of poro-elastic and thermally conductive
composite media by space-averaging dynamic equations
valid at a microscopic scale (BENSOUSSAN et al, 1978;
BURRIDGE and KELLER, 1981; KELLER, 1977; 1980; KUNIN,
1982; 1983; SANCHEZ-PALENCIA, 1980. KRASSOWSKA et al.
(1987) used this approach to incorporate periodic
discontinuities introduced by gap junctions in an infinite
string of cardiac cells. In her model, the extracellular
impedance was uniform, whereas the intracellular impe-
dance was discontinuous. In the myelinated axon, the
intracellular impedance is uniform, whereas the extra-
cellular impedance is discontinuous. Homogenisation of a
composite nonlinear cable equation of a myelinated axon
yields a familiar macrocontinuum cable equation describing
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electrotonus of an unmyelinated axon (HODGKIN and
RusHTON, 1946; DAvis and DENO, 1947), the space and time
constants of which depend on nodal and internodal
electrical parameters.

Sources of transmembrane potential arising from either
electrical or magnetic stimulation are naturally in-
corporated into this homogenised cable equation (BASSER
and RoTH, 1990a; RATTAY, 1988; ROTH and BASSER, 1990).
When the length scale of these applied fields is greater than
the space constant of the equivalent axon, further
simplification of the homogenised cable equation is
achieved by scaling arguments and dimensional analysis
(Basser and RotH, 1990b; 1991). In principle, this model
can be used to predict the transmembrane potential
distribution along the axon caused by electrostatic and
quasimagnetostatic fields.

2 Composite cable equation of a myelinated axon

A diagram of a myelinated axon is given in Fig. 1. It
contains segments with active membranes called nodes of
Ranvier that are ¢ wide and spaced a distance L apart. The
nodes are joined by membranes that are insulated by myelin
sheaths.

node of
Ranvier L -

axonal
membrane

axoplasm

m -
| 11 |

X

Fig. 1 Diagram of a myelinated axon. Below is the indicator
Sfunction y(x), which is 1 within a node of Ranvier and 0
within an internode.

The axon is modelled as a composite medium, following
ANDRIETTI and BERNARDINI (1984), but the composite cable
equation is written in a new form that makes it amenable
to simplification by the two-space method:
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node of Ranvier

Above, Ux, t) is the distribution of transmembrane potential
along the composite cable with respect to rest potential
(which is assumed uniform), and 7,,, 4,, 7, and A, are the
myelin and nodal time and space constants. The function
¥(x) contains microscopic anatomical information about the
axon. As shown in Fig. 1, y(x) is a train of boxcar functions
that are ¢ wide and spaced Lapart. One way to represent
¥(x) is by superposing unit Heaviside functions H(x), i.e.:

z({x) = "im <H<x —nL + i) — H<x —nL — Z)) (2)
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The function x(x) selects the term on the right-hand side of
eqn. 1 that is appropriate for each value of x. For example,
when x is within a node of Ranvier, x(x)=1; the
transmembrane current is produced by the second term on
the right-hand side of eqn. 1. When x lies within the
internodal region, x(x) = 0; the transmembrane current
arises from the first term on the right hand side of eqn. 1.
BURRIDGE and KELLER (1981) call y a characteristic or
indicator function.

The contribution of the active transmembrane ionic
current in eqn. 1 is contained in ¢,,,. It will be shown that
this term is significant only when close to threshold and can
be ignored below it.

In eqn. 1, the space constant of the internodal region,
An(cm), is defined as:

= \/51' ()
ra

and the time constant, t,,, is defined by:
T = Tl 4)

where r,, is the resistance of myelin membrane (kQ cm), r,
is the resistance per unit length of axoplasm (kQcm 1),
and c,, is the membrane capacitance (uF cm™'). Analo-
gously, the space constant of the node, 4,(cm), is defined as:

,
Iy = \/ ’ )
ra

where r, is the resistance of the nodal membrane (kQ cm).
The nodal time constant, t,, is given by:

— (6)

where ¢, is the capacitance of the nodal membrane
(uF cm ™ 1). Using the material parameters given in Table 1
for a myelinated axon, the following space and time
constants can be calculated: i,, = 0-433 cm; t,, = 500 us;
A, = 00061 cm; and 7, = 100 us.

Because Kirchoff's laws were used to derive the cable
equation within every nodal and internodel domain, a
solution to eqns. 1 and 2 should satisfy the continuity
of axial current’and transmembrane potential within each
domain. However, requiring that admissible solutions to
eqns. 1 and 2 be continuous and possess continuous first
derivatives everywhere along the axon implies that
Kirchoff’s laws are automatically satisfied at the interfaces
between adjacent domains. Therefore, implicit in eqns. 1
and 2 is the continuity of current and potential at all
interfaces between nodes and internodes. This formulation
differs from ANDRIETTI and BERNARDINI’s (1984) composite
cable model, in which continuity of current and
transmembrane potential must be explicitly satisfied at each
boundary between adjacent segments. Although FrrzHuGH
(1962; 1969) models the node of Ranvier as a point source of
current, he still has to impose continuity of current and
potential between adjacent nodal and internodal segments.

Continuity of current at any boundary between a node
and an internode in eqn. 1 is demonstrated below. Imagine
there is a boundary x = x,. Because of the assumed
continuity of the first derivative of ¥, we can now employ
the fundamental theorem of integral calculus to integrate
the left and right sides of eqn. 1 with respect to x across the
interface.

J‘x"” 62de _WVlxg+a) V(xe—a)
ox?

0x 0x

xota
= j h(u, t)du 7)
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Table 1 Material parameters for a myelinated axon

Physical variables Unit
x distance along the nerve-fiber axis cm
t time s
Vix, t) transmembrane potential mV
f(x, 0 activating function mV c¢cm™?2
Nerve model Unit
Ena sodium Nernst potential at 37°C 3535 mV
E, leakage Nernst potential at 37°C —80-01 mV
INa sodium conductance 1-445 x 10°> mS cm 2
gL leakage conductance 0-128 x 10* mS cm ™2
d (Tasaki, 1955) width of node of Ranvier 10 x 1074 cm
d, outer diameter of myelin sheath 15 x 1073 cm
d; (Hursh, 1939) inner diameter of axonal membrane 074,
C, (Tasaki, 1955) nodal capacitance per unit area 5.0 uF cm?
C,, (Tasaki, 1955) myelin capacitance per unit area 50 x 1073 uF cm ™2
R, (Tasak1, 1955) nodal resistance area 0-02 kQ cm?
R, myelin resistance area 100 kQ cm?
R, (ScHWARTZ, et al., 1979) axoplasm resistivity 0-14 kQ cm
c,=C,nd, nodal capacitance per unit length uF cm™ !
Cn=C,m d myelin capacitance per unit length uF cm™!
r,= nodal resistance length kQ cm
n i
P = % myelin resistance length kQ cm
nd;
4R, .
r,=——> axoplasm resistance kQ cm™!
nd?

Above, « is a small positive number, h(x, ) is the right-hand
side of eqn. 1 and u is a dummy variable. It follows directly
that the axial gradient of the transmembrane potential is
continuous in the limit as « approaches zero, as long as
h(x, t)is bounded on the interval (x, — o < x < xo + %), 1.€.:

, (aV(xo +a) OV(xg— a)>
lim - T =
>0 O0x 0x
xota
= lim f h(u, t)du = 0 (8)
a—>0 Jxp—a

Because axoplasmic resistivity is assumed continuous
between nodes and internodes (ANDRIETTI and BERNARDINI,
1984), eqn. 1 implies continuity of the axial current, i.e.:

V(xq) Vixg)
Fa =r, )
0x dx
It is also easy to show that continuity of transmembrane
potential is implicit at the boundary between any internodal

and nodal region. By integrating eqn. 1 with respect to x
with an indefinite limit of integration, we obtain:

Wixo +x) _Vixo —2) f

ox = o h(u, t)du (10)

Integrating again between —f and p (where f is
another small positive number) with respect to x, we obtain:

Vixo + B) — Vixo — p) = ’W(x"

(Zﬁ)

xotz
j J h(u, t)du dz

(11)

Taking the limit as « and f§ both approach zero:
lim lim (V(xg+ p)— V(xo — B) =

B—>0 a—>0

_ B xotz
lim lim (W("—"@ 2h) +J f hu, £)du dz>
8x B Xo— &

B—>0 a—>0
(12)

Both terms on the right-hand side of eqn. 12 vanish.
Therefore we are left with:

Vixg) = V(xo) (13)

verifying continuity of the transmembrane potential
between adjacent segments.

3 Deriving an equivalent cable equation of a
composite axon

In the two-space method, two spatial variables are
identified: x’, which describes large-scale variations in
transmembrane potential of the order of the internodal
distance; and y(x') = x'/e, which describes small-scale
variations of the order of the nodal width 4. Typically,
¢ ~ 0(1073) for a myelinated axon. The transmembrane
potential is assumed to depend on both length scales, and
so eqn. 1 can then be written in the following form:

62V<x’,x,t> /
€ X o
=h<x,6,f>=h(x,y(x), t) (14)

ox?

where the right-hand side of eqn. 1 is written as
h(x’, y(x), ). As x’ and y(x') are treated as independent
variables, the partial differentiation operator with respect
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to x must be replaced by the following operator in x’ and
y by the chain rule:

0 ¢ 1a

= - 15
ox 0x' g dy 13)
Therefore, eqn. 14 becomes:

o +2 ¢ ¢ + L VX, y, )y = h(x, y, 1) (16)
TN A, IR X, ¥, = X, Y,
ox? g0y ox &2 0y? Y Y

The transmembrane potential is expanded as a power
series in the perturbation parameter, &:

V(X,, y’ t’ 8) = UO(X” ya t) + vl(xls ya [)8
+ v,(x', y, De? + O(e3). .. (17)

Each function v(x’, y, t) is assumed to be bounded. We also
expand the right-hand side of eqn. 16 in the same way:

h(x', y, t, €) = ho(X', y, t) + hy(X', y, De
+ hy(x, y, )2 + O(e). .. (18)

Substituting eqns. 17 and 18 into eqn. 16 and grouping
terms with like powers of ¢, we obtain:

0%vy(X, y, t
e 2 7”70( 2)”7):0 (19a)
dy
0 [Ovg(x', v, 1) Qvy(X, y,t
e~ 1 < olx ,y )+ v(X, y, 1) -0 (19h)
Oy ox' Oy
0. %X, y,1) 0 dvy(x',p,0)
£0: - e
ox'? dy X
O%v,(x', v, t
L0y 90
dy

With no loss of generality, we can integrate the ¢ 2

equation, eqn. 194, with respect to y in the interval (0, y):

QUO(X,’ Vs [)

Vo(X', v, 1) = vo(X', 1) + ¥ (20)

ay y=0

As v, 18 bounded for all values of y and ¢, the second term
on the right-hand side of eqn. 20 must vanish in the
following limit:

Qvg(X', y, 1)
Yy —"

Ii
im 2

y—>x

=0
y=0

(21)

so that -
y=0 Uy

Ove(X', y, 1)

This implies that v, is independent of y, i.e.:

UO(X/’ ¥, t) = UO(xlv t) (22)

Integrating the &~ !

using eqn. 22 yields:

equation, eqn. 19b, with respect to y

ovy(x, y, t
n(X =00+ y M (23)
cy y=0
For vy(x’, y, t) to be bounded, we again require that:
cvy(xXp.0)

- =0 (24)
cy

»y=0

or

UYL ¥ 1) = 0y(X 1) (25)
Finally, using eqns. 22 and 25 in the integration of the £°
equation (eqn. 19¢) with respect to y yields:

¥ A2 00(: ot L[
_ ¢ Uo(xX', 1) 4 J ho(x, u, t)du (26)
¥

Ay'2
0 X 0

I évy(x, v, t)

¥ cy
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where u is a dummy variable. In the limit as y approaches
infinity, the term on the left-hand side of eqn. 26 vanishes
by the assumption of the boundedness of dv,(x', y, t)/0y.
This quantity is bounded on physical grounds. If it were
not, the electric field would be infinite, which is a physical
impossibility. Therefore, the equation for the lowest-order
term in the perturbation expansion is given by:

v/, t 1 (*
%: lim f ho(x', u, )du 27)
y— >0 [¢]

The expression on the right-hand side of eqn. 27 is the mean
value of h(x', y, t) with respect to the small variable y, which
is denoted by <{hy(x',t)). As this quantity no longer
explicitly depends upon y, small-scale variations in nodal
impedance have been eliminated by integration, although
their macroscopic effect has been preserved.

The function hy(x', y, t) can be rewritten in terms of x’
and y:

T OUo(X', 1)

ho(x', y, 1) = (1 — x(y))<iz o + UO(;’”>

T, Ovo(x', 1) N vo(x', 1)
2 a A2

+ 1) < + Pionlvo(X's t))> (28)

where the function y is now expressed in terms of y:

@ nL 1 nL. 1
X(J/)="=Z_:w (H<J’— 5+2>—H<y—5—2>>

(29)

This form of y guarantees that h(x’, y,t) is continuously
differentiable with respect to x’ (KELLER 1980). Because x(y)
has a period L/§, <ho(x', t)> in eqn. 27 reduces to:

L/26
ho(x', t, u)du (30

—(L/29)

d
<h0(xl9 [)> = i j

Homogenisation has produced as equivalent cable equation
of the following form:

O?oo(x's1) T Oug(x's1)
oxt &

vo(x', 1) 0 ,
22 + | Dunltolx', )

(31

in which the effective space and time constants 4 and
are functions of the space and time constants of the
myelinated and nodal membrane; ie.:

. ) 0 1+(5 1\~ 12
A= —_ —_— -
L) 22 LA
2((4 0 rm+5't"
e L)2" L2

These equivalent space and time constants in eqn. 32 are
rewritten in terms of membrane resistances and capaci-
tances of the node and internodes using eqns. 3-6:

. | o\ r, N dr,\ 2
/= — |2 .
L/r, Lrv,
.2 3 d
t=/{1~—- FuCp +  TuCh
L L

An axon with the properties given in Table 1 has the
following equivalent space and time constants: . =
0-208 cm and 7 = 192 ps.

(32)

(33)

Kyoto World Congress supplement July 1993



These expressions, eqns. 31 and 33, are similar but not
identical to formulas for 4 and 7 suggested by ANDRIETTI
and BERNARDINI (1984). Although these authors showed
gond agreement between analytical solutions to a simplified
cable equation and numerical solutions to their segmented
cable model for both nodal and transmembrane potential
stimuli and a particular set of membrane parameters, they
were unable to demonstrate the correspondence between
eqns. 31 and 33 and derive the cable model for a composite
myelinated axon. Above, it has been shown that the
homogenised cable equation is the lowest-order approx-
imation to a microcontinuum segmented cable model of a
myelinated axon using the small-perturbation parameter &.
Additional advantages of the two-space method are that:

(a) it furnishes an estimate of the accuracy of the solutions
for a particular geometry: O(e?).

(b) it provides an iterative prescription for calculating
higher-order terms in the perturbation expansion of
Ux, t), and

(c) it permits the treatment of nonlinear equations
describing membrane kinetics.

In eqn. 31, the active nodal membrane ¢,,, is assumed to
be distributed uniformly over the entire axon, and the
total active membrane current per unit internodal length
is unchanged. Because ¢,,,(vo(x’, 1)) is multiplied by /L
in eqn. 31, and it is already small (except when v, is
close to threshold potential) we can safely ignore
DionlVo(X', 1))0/L in most calculations of subthreshold
response (BASSErR and RotH, 1991).

4 Applications to electrical and magnetic
stimulation

It has not yet been established whether the full nonlinear
equation, eqn. 31, coupled with the kinetic equations of the
membrane, accurately predict the suprathreshold behaviour
of the myelinated axon. However, there are many interesting
phenomena that one can predict in the subthreshold regime,
such as the response of a myelinated nerve stimulated by
applied electric fields produced, for instance, by elec-
tromagnetic induction (during magnetic stimulation) or by
electrodes (in electrical stimulation).

Typically, the characteristic length of applied electric
fields is several centimetres. In electrical stimulation, for
instancg, it is often the separation between cathodic and
anodic electrodes. In magnetic stimulation, the characteris-
tic length is of the order of the diameter of the stimulating
coil (BAsser and ROTH, 1990b) in the far field limit (BASSER,
1993). However, the dimensions of the anatomical structures
which determine the response of the axon to stimulation
are typically several orders of magnitude smaller. For
instance, the space constant of the internode of a myelinated
axon, its characteristic length, is typically no greater than
0-3 cm, whereas the space constant of the node of Ranvier
is typically O(10~?) cm (TAsAKI (1955), and its width is only
about 0-0001 cm (Tasakl, 1955). A detailed microcontinuum
model using a microscopic length scale commensurate with
the dimensions of a node of Ranvier would require
millions of computational elements to predict the
macroscopic transmembrane potential distribution along a
myelinated axon. Therefore it is useful to have developed a
macrocontinuum model of the response of the myelinated
axon that correctly incorporates a microscopic level of
anatomical detail.

An electric field applied externally to a nerve is
represented in the cable equation as sources or sinks of
transmembrane potential f(x, ) added to the right-hand
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side of eqn. 1. In electromagnetic stimulation, the activating
function f(x,t) = —0de(x, t)/dx, where &(x,t) is the net
applied electric field in the direction of the nerve fibre axis
(Basser and RoTH, 1990a; RoTH and Basser, 1990). In
electrical stimulation, f(x, t) = 0*V,(x, t)/0*x, where V(x, t)
is the applied extracellular potential (RATTAY, 1986; 1988).

These source terms can also be expanded as a power
series of the perturbation parameter ¢, i.c.:

f(X,, Y, t: 8) :fO(x,’ Vs t) + .fl(x/a ¥, [)8
+ (X, y, e + O). ... (34)
If this forcing function is carried along as a term in

h(x', y(x'), t) in eqn. 14, it is easy to show that the resulting
forced cable equation is:

O%vg(x'y 1) T p(X,1) welx, 1)
< == Lt 35
axrz )LZ at /12 /0(‘: ) ( )

It is possible to express the transmembrane potential
vo(x’, ) as a convolution of the activating function
(RATTAY, 1986; 1988) and a kernel appropriate for
electrotonus in a myelinated nerve. This solution can be
obtained by solving eqn. 35 for the transmembrane
potential in the subthreshold regime for electrical or
magnetic stimulation. If it is assumed that there is no
stimulation prior to ¢t =0, ie. vy(x,0) =0, and that the
stimulus is bounded, i.e. vo( 4 o0, t) = 0, then the transmem-
brane potential can be obtained by Fourier and Laplace
transform techniques:

UO(X> H=-

A J‘t 1 o
2\/5 0 \//t”“—_}’ -

t_nv .~.V2
X exp<—( - ,)_<x” g) [i“)dé dy

(36)

In eqn. 36, fo(x', t) is a single-pulse or a periodic-pulse train.
This formula, proposed by Davis and bENG (1947) for an
unmyelinated axon, also applies to magnetic and electrical
stimulation of myelinated axons using the appropriate
space and time constants: eqns. 32 or 33.

If the characteristic lengths of the spatial variations in
the activating function (RATTAY, 1986; 1988) are substan-
tially greater than the space constant of the homogenised
axon, then it is possible to use dimensional analysis to
further simplify the cable equation, eqn. 35 (Basser and
RotH, 1990a; 1991). This simplification has led to the
prediction of scaling relationships between threshold
stimulus strength, pulse duration and axon diameter by
requiring that the transmembrane potential equal the
threshold potential of the membrane, ie. vy(x,t) =V,
(BAsser and RoTH, 1990b; 1991).

Finally, using the homogenised model, we can assess the
validity of the assumptions used by McNEeaL (1976) in
modelling excitation of a myelinated nerve. He writes, ‘The
most serious error in the [his] model is introduced by the
assumption that the myelin sheath is a perfect insulator,
which it is not’. Surprisingly, ignoring leakage and
capacitance of the myelinated membrane leads to a
significant underestimate of the effective time constant of
the axon and an overestimate of its effective space constant.
We can see this from eqn. 31 or 32. Although the resistance
of the myelin membrane is much greater than that of the
node, so is its relative area. These effects nearly cancel each
other out, producing an effective resistance of the membrane
that has contributions from the myelin and node that are
of the same order of magnitude. This is also the case for
the membrane capacitance. The contributions from the
nodal and myelinated regions are of the same order of

JolS, )
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magnitude. As a result, the axon time constant is signifi-
cantly underestimated and the effective space constant is
significantly overestimated.

5 Concluding remarks

This simplified cable equation has applications beyond
the scope of electrical and magnetic stimulation. It has
recently been reported that sensory responses have been
observed during echo-planar MRI (BOURLAND et al., 1990;
BUDINGER ef al., 1990). Another timely application is in
calculating the response of axons to induced electrical fields
caused by high-voltage power lines. This model may also be
appropriate to describe the electrical behaviour of skeletal
muscle fibres (ANDRIETTI and BERNARDINI, 1984).
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