
Biophysical Chemisrry, 46 (1993) 57-68 
Elsevier Science Publishers B.V.. Amsterdam 

57 

BlOCHE 01730 

The Donnan model derived from microstructure 

Peter J. Basser a and Alan J. Grodzinsky b 

a Biomedical Engineering and Instrumentorion Program, NIK Bethesdn, MD 20892 (USA) 
’ Continuum Electromechanics Group, Department of Electrical Engineering and Computer Science, MIT, Cambridge, 

MA 02139 (USA) 

(Received 18 June 1992; accepted in revised form 20 October 1992) 

Abstract 

The ideal Donnan potential of an ionized polyelectrolyte medium is shown to be an approximate solution 
to a system of Poisson-Boltzmann (PB) equations for a periodic array of charged plates in an electrolyte bath. 
This result, derived using homogenization and scaling methods, demonstrates that the macrocontinuum, 
thermodynamic Donnan, and statistical mechanical PB models describe the same phenomenon: electrostatic 
repulsion between fixed-charged groups (albeit at different length scales). The Donnan approximation is 
accurate at low ionic strength (i.e., where the Debye length is much larger than the separation between 
charged plates), but is less faithful at physiologic and higher ionic strength. This work also provides a 
framework for relating theories of electrostatic repulsive interactions formulated at microscopic and macro- 
scopic length scales. 
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1. Introduction 

Electrostatic interactions among matrix-bound 
ionized charge groups strongly influence the be- 
havior of colloids [ll, polyelectroIyte molecules 
[2,3] and gels [4,5], and biological materials such 
as connective tissues [6,7] and muscle [8]. In this 
paper, we relate coarse- and fine-scale models of 
these interactions, based on the ideal macrocon- 
tinuum Donnan and microcontinuum Poisson- 
Boltzmann (PB) theories. Both models are used 
widely in physical, colloid, and electrochemistry. 

Correspondence to: Peter J. Basser, NIH/NCRR/BEIP, Bldg. 
13, Rm. 3W13, Bethesda, MD 20892 (USA). 

Microcontinuum PB models, like the hexago- 
nal [9] or cylindrical [lo-121 unit-cell models of 
double-layer interaction, can furnish numerical or 
analytic expressions for the space-varying electro- 
static potential, electrostatic stress, and ionic dis- 
tributions between polyelectrolyte molecules, 
given the bath ionic strength and molecular sur- 
face charge density. 

Macrocontinuum models, like the Donnan 
model, assume that the electrostatic potential and 
ionic concentration are uniform within the poly- 
electrolyte phase (in contrast to the microcontin- 
uum models). The Donnan model can be used to 
derive analytic expressions for the electrostatic 
potential difference, osmotic (swelling) pressure, 
and mean ionic concentration within the poly- 
electrolyte phase, given bath ionic strength and 
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matrix volume fixed-charge density. However, the 
ideal Donnan model, although simpler mathemat- 
ically, lacks sufficient microstructural detail to 
predict swelling pressure adequately in some 
regimes. Specifically, it overestimates the eIectro- 
static potential, and thus the osmotic swelling 
pressure in certain colloids at high ionic strength 
(the Hammarsten effect) [131, in cartilage, and in 
other highly charged tissues at physiologic ionic 
strength [7,12]. 

The Donnan model, an equilibrium thermody- 
namic description of charged media, is derived by 
requiring that the electrochemical potentials of 
the mobile ions within interstices of the charged 
medium and the external bath be equal. The 
macrocontinuum length scale is assumed to be 
much larger than the electrical Debye length and 
the dimensions of the polyelectrolyte moIecules, 
and is consistent with a spatially uniform poten- 
tial and ionic concentration within the polyelec- 
trolyte phase. 

The PB equation, a statistical thermodynamic 
description of a charged medium in an elec- 
trolyte, is derived by combining Poisson’s equa- 
tion of electroquasistatics and Boltzmann’s equi- 
librium distribution of mobile ions. The micro- 
continuum length scale is assumed to be much 
smaller than the electrical Debye length and the 
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molecular dimensions of the polyelectrolyte, and 
is consistent with a space-varying potential and 
ionic concentration within the polyelectrolyte 
phase. 

Despite the importance and pervasiveness of 
the Donnan mode1 and PB equation, the connec- 
tion between them has not been elucidated. This 
entails first representing the polyelectrolyte phase 
using the PB equation with boundary conditions, 
and then comparing the solution with that pre- 
dicted by the Donnan model. 

In this paper we show that the macrocontin- 
uum Donnan model can be derived directly from 
a microcontinuum PB model of a composite 
medium, using homogenization and scaling meth- 
ods. First, we review the ideal Donnan theory, 
deriving the well-known Donnan equation relat- 
ing the electrostatic potential and ionic concen- 
trations within the polyelectrolyte phase and ex- 
ternal bath. We then present a system of micro- 
continuum PB equations and interfacial 
(boundary) conditions for a composite medium- 
a periodic array of charged lamina in an ionic 
solution, as depicted in Fig. l-from which we 
derive a homogenized one-dimensional PB equa- 
tion that predicts the (averaged) macroscopic 
electrical potential distribution. Using scaling 
methods, we simplify this homogenized equation 

L 

Fig. 1. Composite microcontinuum model of charged plates (above) and the indicator function, x(x) (below). 
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C/liter interstitial fluid. The relationship be- 
tween the Donnan potential and the volume fiied 
charge density of the polyelectrolyte is found by 
solving eqs. (l)-(3) simultaneously: 

Fig. 2. Macroscopic continuum model of charged medium 
having mean charge density P,,, in a large reservoir, in which 
the salt concentration is cb and the potential, Cp, is zero far 

from the charged medium. 

further in order to compare its predictions to 
those of the Donnan model in low and high ionic 
strength regimes. 

2. The Ideal Donnan model 

Figure 2 shows a charged medium with its 
interstitial eIectrolyte communicating with an ex- 
ternal bath. The ideal Donnan condition corre- 
sponds to the equality of the electrochemical 
potentials of the mobile ions in each phase. For 
an ideal polyetectrolyte and a monovalent salt 
electrolyte this Donnan condition is [13]: 

FF= c;, (1) 
where cb is the concentration of either positive or 
negative mobile ions in the external bath (c+= c- 
=c,), and ? and F are the concentrations of 
these ions in the polyelectrolyte phase. 

The equality of electrochemical potentials of 
the mobile ions in each phase leads to an electro- 
static potential difference. A@,,,,_, [13], be- 
tween the polyelectrolyte phase and the bath: 

A@ Donnan = - Tin 5% , 

( I C- 

where F = 96,487 C/mol is Faraday’s constant, 
R = 8.314 J/(mol K) is the ideal gas constant, and 
T is the absolute temperature in degrees Kelvin. 

Bulk electroneutrality within the polyelec- 
trolyte phase requires that 

where P,,, is the mean density of fixed charges in 

3. The PB equation in each phase 

Figure 1 shows an array of charged, imperme- 
able plates, each being 6 wide, spaced a distance 
L apart. A surface charge density on the plates, 
which is commonly used as a boundary condition 
for the PB equation in charged media [14], is here 
replaced by a uniform fixed-charge density pr 
within the plate (C/liter-plate-volume). Thus, for 
simplicity, the matrix fiied charge is modeled as a 
localized volume density, rather than as a surface 
fixed-charge density. The interstitial electrolyte 
phase has a mobile charge density pe, due to an 
unequal concentration of co- and counter-ions, 
which is a function of position. The interstitial 
electrolyte communicates with an external reser- 
voir with ionic concentration cb. The electrostatic 
potential is assumed to be zero in the external 
bath, several Debye lengths away from the 
charged plates. We treat the ions in the solvent as 
point charges; i.e., they have zero volume. Be- 
cause of symmetry, the distribution of ions varies 
only in the x-direction, perpendicular to the in- 
terface. The dielectric permittivities of the 
space-charge region, the bulk solution, and the 
plates are assumed to be independent of electric 
field strength. There are no other charged species 
or impurities present. 

Poisson’s equation relates the potential, Qe,, 
and charge distribution, pe, within the interstitial 
electrolyte solution: 

V’@e = -&/E,, (5) 

in which E, is the permittivity of the interstitial 
fluid. For an array of charged plates, the poten- 
tial depends only on the coordinate perpendicu- 
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lar to the plane of the plates, X, so eq. (5) reduces 
to 

a2@e Pe -=-- 
ax* 8, * 

(6) 

The mobile charge density at each position is 
related to the ionic concentrations by 

p,(x) =F(7(x) -7=(X)). (7) 

Locally, the system is in thermal equilibrium, in 
which only electrostatic and Brownian forces are 
acting on the electrolyte. Therefore, the probabil- 
ity of finding c, at position x is given by the 
Boltzmann distribution [151: 

C,(x) =cb exp[ -zii:(x)), 

where once again ct, is the concentration of the 
electrolyte when Qe = 0 far enough away from 
the charged medium, and zi is the valence num- 
ber. Combining eqs. (6-S) for a binary, monova- 
lent electrolyte solution, we obtain 

a2q, 2Fc, 
- = - sinh 
ax2 E, 

(9) 

In addition, the potential distribution caused 
by fixed charges within the plates is also governed 
by Poisson’s equation: 

d2@f Pf -=-- 
ax2 Ef ’ (10) 

where cf is the permittivity of the plate. At the 
interface between a plate and the interstitial solu- 
tion, the normal component of the displacement 
flux density, D, must be continuous, since we 
have assumed that the fixed charge is uniformly 
distributed within the plate. For a linear medium 
with no surface charge, the surface boundary 
condition corresponding to the continuity of dis- 
placement flux density is given by: 

+ E,, - E, E,, = a,, = 0, (11) 
where us,, is the surface charge density and E, is 
the electric field. For simplicity (but with no loss 
of generality), we now assume that the dielectric 

permittivities are the same in both the solution 
and the fixed-charge media in eq. (11). The gradi- 
ent of potential is therefore continuous at each 
boundary, i.e., 

(12) 

In addition, the electrical potential must also be 
continuous at a boundary; otherwise the electric 
field would be infinite. So, 

@Jc = (Df. (13) 

Equations (9) and (10) specify the microcontin- 
uum PB equations in both domains, while eqs. 
(12) and (13) specify the conditions that must be 
satisfied at their interfaces. 

4. The PB model for the composite medium 

To derive the potential distribution in the 
medium, one might first write the appropriate PB 
equation in each domain with the interfacial jump 
conditions, then attempt to solve this system si- 
multaneously. As a result, for an infinite medium, 
one would then have to solve an infinite number 
of simultaneous differential equations. A more 
prudent approach is to write the PB equation for 
the composite medium in a form that makes it 
amenable to simplification using homogenization 
methods: 

(14) 

Above, @(x, t) is the potential throughout the 
composite medium with respect to the external 
bath that is assumed to be grounded. Information 
about the plate width and spacing is now con- 
tained in x(x), a train of boxcar functions that 
are S wide and spaced L apart, synthesized from 
unit Heaviside functions, H(x), i.e., 

,,x,=~yJ+-nL+~) 

-l+L - J). (15) 
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This indicator function, x(x>, shown in Fig. 2, is 
so defined as to be consistent with its use by 
Burridge and Keller [16]. Within the interior of 
the plate, x(x) = 1, so 

a+ Pr -=-_* 
ax2 E’ 

within the ionic solution, X(.X) = 0, so 

-=_ 

(16) 

(17) 

in agreement with eqs. (9) and (10) above. 
The interfacial conditions, eqs. (12) and (131, 

also are implicit in eqs. (14) and (15). This can be 
seen by integrating eq. (14) across any solution/ 
plate interface-for example, one at n =x0. The 
continuity of the potential gradient can be shown 
by integrating eq. (14) once with respect to X: 

/ 

X0+y a24, 
Tdn= 

a@(% + Y) a@(%-r) 

x0-y ax ax - ax 

= I x”+yh( u) du. 
x0-y 

P) 

Above, y is a small positive number, h(n) is the 
right-hand side of eq. (14), and u is a dummy 
variable. It follows directly that the gradient of 
potential is continuous in the limit as y ap- 
proaches zero, since h(x) is bounded ’ on the 
interval (x, - y <x <x0 + y), i.e., 

= lim 
i 

“+‘h(u) du = 0, 
y-0 x0-y 

thus demonstrating that eq. (14) implies continu- 
ity of the electric field at the interface, 

(20) 

1 The boundedness of h(x) is an Ansatz of the two-space 
method, but in this case it is easy to justify on physical 
grounds. The function h(x) is the right hand side of eq. 
(14), which is just the charge density. Requiring that the 
charge density be finite is tantamount to requiring that the 
electric field be nowhere infinite in the medium. 

By integrating eq. (14) with respect to X, we 
obtain: 

%$(x,+x) 3@(xo - Y) = 
ax 

ax + /IU+;2( u) du. 
x0-y 

(21) 

Integrating again between the limits ---/I and /3 
(where p is another small positive number), 

= 
a@( ;- ~‘1 (2p) + ,“,,:‘~yxh( u) du dx, 

0 

(22) 

Taking the limit as y and j3 approach zero, 

lim lim(@(x,+/3)-@(x,-o)) 
p-o y40 

= lim lim 
p-+0 y+o i 

ao(;C- Y) (2p) 

B 
+ 

II 
-0 x0-y 

(23) 

both terms on the right-hand side of eq. (23) must 
vanish. Therefore, 

@(xi) =@+I& (24) 

showing that eq. (14) also implies continuity of 
the potential at an interface. Therefore, eq. (14) 
is the PB model for the composite medium. 

5. Deriving a homogenized PB equation 

Homogenization methods are mathematical 
procedures that are used to simplify complicated 
governing equations by averaging them. While 
they have been used widely in continuum me- 
chanics, to our knowledge they have not been 
applied in physical chemistry and colloid sciences. 
The method employed here to homogenize the 
composite PB model, eqs. (14) and (151, is based 
upon the two-space method [17-201. 

Two spatial variables are identified: x ‘, which 
describes variations in potential on the order of 
the spacing between plates-O(l); and y(x’) = 
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X’/LY, which changes more rapidly than x’ and 
describes smaller scale variations on the order of 
the plate thickness-O(S). We introduce a small 
perturbation parameter, (Y N 0(6/L). The poten- 
tial is assumed to depend upon both length scales; 
therefore, eqs. (14) and (1.5) can be rewritten as: 

a% x’,< ( 1 ff 
ax2 

-h d,f =h(n’, ( i Y(X'))Y 

(25) 

where once again h(x, y(x’)) is the right-hand 
side of eq. (14). Since the potential depends upon 
both x’ and y(x’), the chain rule requires that 
the partial differentiation operator with respect 
to x’ be replaced by the following operator in x’ 
and y: 

a a Ia 
-'--+-_. 
ax ad (Y ay 

(26) 

Therefore, eq. (25) above becomes: 

( 

a2 2aa ia2 
-+;Gax'+;;"ayZ @WY> 
ax” I 

=h(x’, y). (27) 

The potential is now expanded as a power series 
in the perturbation parameter, CY: 

@(C Y, a> = @&‘, Y) + @1(X’, y)a 

f@z(X’, y)a2+O((r3) + I... 

(28a) 

Each function Gi(x’, y) is assumed to be 
bounded. Similarly, we expand the right-hand 
side of eq. (14) using the same perturbation ex- 
pansion: 

h(x’, Y, a> =h,( x’, Y) +A,(& Y)” 

Shz(x’, y)&+ O(cy3) + . ..I 

(**b) 

Substituting eqs. (28a,b) into eq. (27) and group- 
ing terms with Iike powers of 0, we get: 

=O, (29b) 

and 

(yo a%w, Y) + 2d a@dL Y) 

ai2 ay ad 

+ 
a2qlA Y) 

ay2 
=h,(x’, y>- (294 

Integrating the (Y-’ equation, eq. (29a), twice 
over the interval between y0 and y, we obtain: 

@0(X’, y) = @0(x’, Yo) + (Y - Yo) 

(30) 

where y0 is an arbitrary constant of integration. 
Since @,, is bounded for all values of y, including 
the limit as y approaches infinity, the second 
term on the right-hand side of eq. (30) vanishes. 
Therefore, 

aQj,W5 Y) =. 
ay Y’YO 

for any yO, which implies that 

@0(x’, Y) = @0(x’)* (32) 

Physically, this means that the zeroth-order solu- 
tion to the electrostatic potential varies on a 
macroscopic length scale. Moreover, eq. (32) sim- 
plifies the (Y-’ equation, eq. (29b), so that inte- 
grating it with respect to y yields: 

@1(X’> Y) =@1(x’, Y,) + (Y -Yo) 

x a@,(6 Y) 

ay Y=Yo 

In order for @,(x’, y) to be bounded, 

aqd, Y) 
z 

ay 0 
Y'YO 

so that 

@1(x’, Y) =@I(+ 

(33) 

(34) 

(35) 
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Finally, integrating eq. (29c) with respect to y, 
using eqs. (32) and (35), 

1 8$(x’, y) y 

Y -Yo aY y. 

d%+,(X’) 1 Y 
=- 

dx’* 
+--- 

/ 
h,(x’, u) du, 

Y -Yo Yg 

(36) 
where u is a dummy variable. The term’ on the 
left-hand side of eq. (36) is continuous and 
bounded (Mjp,(x’, y)/ay is bounded because the 
electric field is finite). Therefore, in the limit as 
y + 03, the equation for the lowest order term in 
the perturbation expansion, eq. (29a-c), is given 
by: 

d%,( x’) 

dx’* 
= lim y~m&-po(“. u> du 

= <h,(x’)). (37) 

This integral is an average of Iz~(x’, y) over y, 
but it no longer explicitly depends upon this 
small-scale variable. This is the desired simplifi- 
cation: small-scale variations in potential have 
been eliminated by integration, but their macro- 
scopic effect is preserved. 

We perform the integration called for in eq. 
(37), using the result that 

sinh 
F@(x’, Y, a) 

RT 

= sinh 
F@o(x’) 

i i RT 
+ O(a), (38) 

so that h(x’, y) in eqs. (14) and (15) becomes 

h(x’, 
2Fc, 

Y) = (1 -x>- sinh 
E 

(39) 

With no loss of generality, x is now written as a 
function of y: 

xw=~Y[“i~Y-nL+~) 

-H ay-nL-; 1 )I 
. (40) 

This form of x guarantees that h(x’, y> will be 
continuously differentiable with respect to x’ 
[16-M]. Because x(y) has a period L/a in eq. 
(40), (h(x’)) reduces to: 

(41) 

producing a forced PB equation for @,(x’): 

6 Pf --- 
L E’ 

Equation (42) is simplified 
tial by the thermal voltage: 

F@o(x’) 
40(x’) = RT > 

(42) 

by scaling the poten- 

(431 

from which we obtain 

6 FP, --- 
L RT& (44) 

Substituting the definition of the Debye length, 

1/K, 

2F2c, 
2 

x=K, (45) 

which is the space constant of the electrostatic 
field between adjacent plates, we obtain the 
equation that the zeroth-order perturbation func- 
tion must satisfy: 

d240( x’) 
dx12 

6 FP~ 
K2 sinh(&(x’)) - LE. 

(46) 

Homogenization redistributes the charge in the 
plate and ionic solution uniformly over the 
medium, but weighs them according to their re- 
spective volume fractions. Heuristically, we un- 
derstand eq. (46) by treating the composite 
medium as both random and nonperiodic. The 
indicator function x becomes a random variable, 
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and eq. (14) is a stochastic differential equation. 
Taking either an ensemble or volumetric average 
of eq. (14), and noting that 

and lx)=:, (47) 

we produce a mean differential equation identi- 
cal to eq. (46). 

6. Deriving the Donnan potential from the ho- 
mogenized PB model 

Suppose the polyelectrolyte matrix is in equi- 
librium with an infinite reservoir in which the salt 
concentration is c,, and a0 = 0 far from the 
charged medium. Let us consider the general 
case in which the potential, 4, is observed on a 
macroscopic length scale, VV% L, within the 
medium, For example, this case could represent a 
measurement of the potential within the charged 
medium using a glass microelectrode or a 
voltage-sensitive dye that has a finite resolution 
W, where W>z L. Thus, we define a new nondi- 
mensional variable, x, by normalizing x’ by its 
characteristic length W, i.e., 

X’ 
TC=--. 

W 
(48) 

Resealing eq. (46) and using eq. (451, we obtain: 

6 Pf --- 
L 2Fc; 

(49) 

For a tissue like cartilage or a charged gel equili- 
brated at physiological ionic strength, both the 
Debye length, Z/K, and the intermolecular spac- 
ing, L, may be on the order of nanometers, while 
W may be on the order of micrometers to mil- 
limeters. Therefore, with WB l/~, we can ig- 

nore the spatial variation in C& in eq. (49): 

sinh(&(YW))-i&. (50) 
b 

Equation (SO) implies that C#Q, is a constant, i.e., 

At equilibrium, no macroscopic potential varia- 
tions are measurable at the resolution of this 
experiment, so that the electrical potential ap- 
pears to be uniform, and the electric fieId ap- 
pears to vanish within the charged medium. Us- 
ing eq. (431, we can solve eq. (50) for @,: 

(52) 

Using a well-known identity, eq. (52) becomes: 

Q,=Jgh SPi (i ) (L - 6)2Fc, 

(53) 

which is identical to the ideal Donnan potentia1 
given in eq. (4) when 

SP* -- 
Pm- L-6’ (54) 

Recall that p,,, is the average charge density 
obtained by dividing the total fixed charge by the 
fluid volume. Note that the right-hand side of eq. 
(54) is also the average fixed charge density, i.e., 
the total charge per plate divided by the elec- 
trolyte volume between plates. With this identifi- 
cation, the resealed zeroth-order potential that 
solves the microcontinuum PB equation is the 
Donnan potential of a uniformly charged medium, 
eq. (4). This is the relationship we set out to 
establish. 

The uniformity of electrical potential in the 
charged medium is an explicit assumption of the 
Donnan model that is seldom examined or chal- 
lenged. Here we showed that W B- L is a neces- 
sary condition to satisfy this assumption. By con- 
trast, when W is on the order of L, the electrical 
potential will vary spatially at the microscopic 
level. 
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7. Calculating higher order corrections to @J in 
the PB micromodel 

While we have established that the Donnan 
potential approximates the solution to the micro- 
continuum PB model, we have yet to assess the 
quality of the approximation it represents. To 
assess the accuracy of eq. (53), we should deter- 
mine higher-order terms in the perturbation ex- 
pansion of the potential, eq. (28a), and their 
relative contributions (or solve the PB model 
numerically). The homogenization method used 
above provides a means to calculate these terms, 
just as the activity coefficients are used to correct 
the Donnan condition when polyelectrolyte con- 
centration is high [13]. We include below the 
equations for the first-order perturbation, to 
which we will refer when we consider the cases of 
low and high ionic strength limits of the PB 
model. 

The equation for @,(x’) is obtained by re- 
grouping terms that share a common factor of a, 
i.e., 

a%(xr, Y) + a%w Y) + d%(d) 

ay2 ad ay dnr2 

cash 

(55) 
Therefore,. using the definition of the Debye 
length, we obtain 

a%(xf, Y) 

a? + a*@2(xr, Y> + d’@P,(x’) 
ad ay dx” 

= (I- ;)K’ cosh( F@“” )QI(x’). (56) 

Integrating this equation with respect to y, we 
obtain: 

a@,(x’, Y) + a@,(x’, Y) 

ay ad 

.cosh( F@$‘))@I(x+ -yO). (57) 

In the limit as y + 03, we see that the expression 
in braces on the right-hand side must vanish 
because of the physical assumptions of bounded- 
ness of @Jx’, y) and @Jx’, y); therefore, 

x cash 

In principle, by substituting an expression for 
Q&x’) into eq. (581, and applying appropriate 
boundary conditions, we could solve for @,(x’). 
However, we have not found a general analytical 
expression for @,&x’), so we would have to deter- 
mine higher order corrections numerically. Even 
so, we can consider eq. (58) in the limiting cases 
of “high” and “low” ionic strength, and thus 
determine the first-order correction to @ for the 
composite PB model. 

8. Comparison between the PB and Donnan mod- 
els at “low” ionic strength 

Within the context of the Donnan and PB 
models, high and low ionic strength are relative 
terms. Low ionic strength corresponds to the 
Debye length being larger than the separation 
between plates, i.e., l/~ *L. Consider again 
that the charged matrix is in equilibrium with the 
infinite reservoir, in which the salt concentration 
is cb and Q0 = 0 far from the charged medium. 
With the condition l/~ > L > 6, we now choose 
L as our characteristic length, and redefine the 
nondimensional variable, x, so that: 

x =x’/L. (59) 

Normalizing Q0 as in eq. (431, eq. (46) then 
becomes: 

d%( XL) 

dx2 =(&)‘[il-:) 

xsinh(&(xL)) - ps - 

b 1 
(60) 



66 P.J. Basser, A.J. Grodzins~ /Biophys. Chem. 46 (1993) 57-68 

Because, by assumption, (LX)’ -K 1, the right- 
hand side of eq. (60) is close to zero. Therefore, 
we can obtain an approximate solution to eq. (60) 
using perturbation methods. As in eq. (28a), we 
can expand #J&XL) as a power series of the 
perturbation parameter y = (LK>~ 

where the fi(x> are bounded functions. We then 
substitute eq. (61) into eq. (60), use eq. (381, and 
collect terms in like powers of y: 

and 

w-4 

ww 

The solution to the y equation is f,(x) = LLX + Qo. 
Either symmetry (i.e., fo(x> =f,$-x)> or by the 
boundedness of fi(x>, we see that f&x> = &. To 
determine $o, we substitute f,<x> = I$,, into eq. 
(62b): 

PC sinh( $o) - - - 

the right-hand side of which is now constant. 
Integrating (63b) two times with respect to X, we 
obtain the solution fl(x) = qx2/2 f IX + s. Again, 
by the boundedness of f&x>, we require that 
q = r = 0, so that 

6 Pf sinh(4,)-Lz 
b 

(64) 

Equation (64) again implies that I#J~ is given by 
the Donnan equation (far from the boundary 
layer at the interface of the bath and the charged 

medium); at low ionic strength. Therefore, we are 
left with: 

By symmetry, the solution of eq. (58) is G,(x) = 0. 
Therefore the Donnan approximation is accurate 
to O((Y~), i.e., @LX> = Got O((Y’). This result 
agrees qualitatively with that of Buschmann [121, 
who showed that both the Donnan theory and PB 
unit-cell models accurately predict potential dif- 
ference in proteoglycan solutions at low ionic 
strength. Intuitively, when ((1/fcLj2 B 1, the po- 
tential between the plates predicted by a PB unit 
cell model is nearly uniform, so that the assump- 
tion of uniform potential implicit in the Donnan 
model is satisfied. 

9. Comparison between the PB and Donnan mod- 
els at high ionic strength 

In the Donnan and PB models, high ionic 
strength corresponds to the Debye length being 
smaller than the separation between plates, i.e., 
l/~ <L,. This is the case for cartilage and other 
tissues under physiological conditions [7]. One 
serious deficiency of the Donnan model is that it 
overestimates the mean potential in this regime 
[7,121. Under the conditions, L > l/~ > S, the 
potential will vary between plates. Scaling argu- 
ments can no longer be used to simplify the 
homogenized PB equations. Instead, the full dif- 
ferential equations for each term in the perturba- 
tion expansion of @ must be solved, although it is 
possible to use higher order terms in the pertur- 
bation expansion of @ to extend the range of 
applicability of the Dorman model. Since eq. (46) 
has no analytic solution, these corrections must 
be determined numerically, which we have not 
attempted to do in this paper. 
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10. Concluding remarks 

Equation (531, derived using homogenization 
and scaling methods, demonstrates that the 
macrocontinuum, thermodynamic Donnan, and 
statistical mechanical PB models describe the 
same phenomenon: electrostatic repulsion be- 
tween fixed-charged groups (albeit at different 
length scales). 

Further, we have shown that @ predicted by 
the ideal Donnan is an approximation to @J calcu- 
lated using a composite PB model. 

For a physiologic or high ionic strength bath, 
we have shown that the ideal Dot-man @ is not 
guaranteed to be accurate to more than O(cu). 
However, for a low ionic strength bath, the Don- 
nan @ is in excellent agreement with @ predicted 
for the composite PB model, and is accurate to 
O(c?). 

Homogenization methods, like the averaging 
procedure presented above, provide a bridge be- 
tween the micro- and macrocontinuum domains, 
often leading to simple macroscopic governing 
equation that retains microstructural and micro- 
scopic information [16]. These perturbation and 
scaling techniques are particularly useful in ana- 
lyzing systems of colloids, gels, and polyelec- 
trolytes in which the molecular length scale 6, the 
separation between molecules, L, and the resolu- 
tion of a measurement, W (or the electrical space 
constant, l/~) differ from one another by several 
orders of magnitude. 

In principle, this homogenization technique can 
be extended to two- and three-dimensional mod- 
els of electrostatic repulsion between charged 
cylinders, spheres, cubes, and even media in which 
fixed charges are randomly distributed within an 
electrolyte phase. Burridge and Keller [16] were 
able to extend their one-dimensional two-space 
method [17,18] to three dimensions with little 
difficulty. By analogy with their work, we expect 
that a three-dimensional model of electrostatic 
repulsion will behave qualitatively like our one- 
dimensional model, and that the extension to 
three dimensions will be straightforward. Finally, 
we foresee using this homogenization method to 
calculate corrections to the Donnan potential in 
high and Iow salt regimes. 
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Nomenclature 

X 

s 
L. 

x(x) 
@4x) 
@f(X) 
cp,(x) 

E,(x) 
E,(x) 
.? 
F 
R 
T 
8 

&f 
Ee 

P,(X) 

Pf 

Pm 

cb 

C+ 

C- 

F 

Y 

C 

thickness coordinate, m 
width of plate, m 
separation between plates, m 
indicator function, dimensionless 
electrical potential of the composite, V 
electrical potential within the plate, V 
electrical potential within the elec- 
trolyte, V 
electric field within the plate, V/m 
electric field within the electrolyte, V/m 
valence number, dimensionless 
Faraday constant, 94,487 C/mol 
universal gas constant, 8.314 J/mol K) 
absolute temperature, K 
dielectric permittivity of electrolyte and 
plate, F/m 
dielectric permittivity of plate, F/m 
dielectric permittivity of electrolyte, 

F/m 
free charge density in the electrolyte, 
mol/L interstitial fluid 
fixed charge density in the plate, mol/L 
plate volume 
average fixed charge density, mol/L in- 
terstitial fluid 
concentration of salt in electrolyte bath, 
mol/L 
positive ion concentration in bath, 
mol/L 
negative ion concentration in bath, 
mol/L 
positive ion concentration in charged 
phase, mol/L 
negative ion concentration in charged 
phase, mol/L 
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