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ABSTRACT: This article treats the theoretical underpinnings of diffusion-tensor magnetic resonance imaging (DT-
MRI), as well as experimental design and data analysis issues. We review the mathematical model underlying DT-
MRI, discuss the quantitative parameters that are derived from the measured effective diffusion tensor, and describe
artifacts thet arise in typical DT-MRI acquisitions. We also discuss difficulties in identifying appropriate models to
describe water diffusion in heterogeneous tissues, as well as in interpreting experimental data obtained in such issues.
Finally, we describe new statistical methods that have been developed to analyse DT-MRI data, and their potential
uses in clinical and multi-site studies. Copyright  2002 John Wiley & Sons, Ltd.
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It is now well established that the MR measurement of an
effective diffusion tensor of water in tissues can provide
unique biologically and clinically relevant information
that is not available from other imaging modalities. This
information includes parameters that help characterize
tissue composition, the physical properties of tissue
constituents, tissue microstructure and its architectural
organization. Moreover, this assessment is obtained non-
invasively, without requiring exogenous contrast agents.

This article describes methodological issues related to
the estimation of the effective diffusion tensor of water in
tissue. It also tries to review and showcase new methods
that have been proposed to advance the state of the art in
this burgeoning field. We focus primarily upon diffusion
tensor MRI (DT-MRI) data acquisition, experimental
design, artifacts and post-processing issues. The defini-
tion and physical interpretation of useful MR parameters
derived from the effective diffusion tensor, such as the
Trace as well as measures of diffusion anisotropy, have
been reviewed elsewhere.1 Moreover, several review
articles and book chapters have covered many different

aspects of diffusion tensor MRI.2–5 This article also tries
to identify unresolved issues in DT-MRI data acquisition
and analysis, with the hope of interesting readers to
pursue and address some of these problems.
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In tissues, such as brain gray matter, where the measured
apparent diffusivity is largely independent of the
orientation of the tissue (i.e. isotropic), it is usually
sufficient to characterize the diffusion characteristics
with a single (scalar) apparent diffusion coefficient
(ADC). However, in anisotropic media, such as skeletal
and cardiac muscle6–8 and in white matter,9–11 where the
measured diffusivity is known to depend upon the
orientation of the tissue, no single ADC can characterize
the orientation-dependent water mobility in these tissues.
The next most complex model of diffusion that can
describe anisotropic diffusion is to replace the scalar
diffusion coefficient with a symmetric effective or
apparent diffusion tensor of water, D.12
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Torrey13 first incorporated anisotropic translational diffu-
sion in the Bloch (magnetization transport) equations,14
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which could lead to additional attenuation of the NMR
signal. Analytical solutions to this equation followed for
freely diffusing species during a spin echo experiment15

and, later, for diffusion in restricted geometries.16–18

About a decade after its introduction, Stejskal and Tanner
solved the Bloch–Torrey equation19 for the case of free,
anisotropic diffusion in the principal frame of reference.
However, the Stejskal–Tanner formula is not generally
useable to measure an effective diffusion tensor using
NMR or MRI methods for several reasons. First, this
formula relates a time-dependent diffusion tensor, to the
NMR signal, so one must establish a relationship between
the time-dependent diffusion tensor and an effective
diffusion tensor. Second, in the pre-MRI era in which
the Stejskal–Tanner formula was derived, it was always
tacitly assumed that a homogeneous anisotropic sample
could be physically reoriented within the magnet so that its
principal axes could be aligned with the laboratory
coordinate system. After the development of MRI,
however, this assumption was no longer tenable. Materials
under study were often heterogeneous media whose ‘fiber’
or principal axes were generally not known a priori and
could vary from place to place within the sample. Thus, a
general scheme had to be developed to measure the entire
diffusion tensor (both its diagonal and off-diagonal
elements) in the laboratory frame of reference.20

The NMR measurement of the effective diffusion
tensor20 and the analysis, and display of the information it
contains in each voxel, is called diffusion tensor MRI
(DT-MRI).21 The effective diffusion tensor, D, (or
functions of it) is estimated from a series of diffusion-
weighted images (DWI) using a relationship between the
measured echo attenuation in each voxel and the applied
magnetic field gradient sequence.20 Just as in diffusion
imaging (DI) where a scalar b-factor is calculated for each
DWI, in DT-MRI a symmetric b-matrix is calculated for
each DWI.22 Whereas the b-value summarizes the
attenuating effect on the MR signal of all diffusion and
imaging gradients in one direction,23 the b-matrix
summarizes the attenuating effect of all gradient wave-
forms applied in all three directions, x, y and z.22,24,25

In DI26 one uses a set of DWIs and their corresponding
scalar b-factors to estimate an ADC along a particular
direction using linear regression. In DT-MRI, we first
define an effective diffusion tensor (by analogy to
Tanner’s definition of an apparent diffusion coeffi-
cient27), from which a formula relating the effective
diffusion tensor to the measured echo can be derived:
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where A (b) and A(b = 0) are the echo magnitudes of the

diffusion weighted and non-diffusion weighted signals
respectively, and bij is a component of the symmetric
b-matrix, b. In DT-MRI a symmetric b-matrix is
calculated for each DWI.22 The b-matrix summarizes
the attenuating effect of all gradient waveforms applied
in all three directions, x, y and z.22,24,25 We then use
each DWI and its corresponding b-matrix to estimate D
using multivariate linear regression* of eqn (1) as in
Basser et al.20

There are two important distinctions between DI and
DT-MRI. First, DI is inherently a one-dimensional
technique, i.e. it is used to measure the projection of all
molecular displacements along one direction at a time.
Therefore, it is sufficient to apply diffusion gradients
along only one direction. DT-MRI is inherently three-
dimensional; one must apply diffusion gradients along at
least six noncollinear, non-coplanar directions in order to
provide enough information to estimate the six indepen-
dent elements of the diffusion tensor from eqn (1).20

Second, the b-matrix formalism forces us to expand the
notion of ‘cross-terms’ between imaging and diffusion
gradients, to account for possible interactions between
imaging and diffusion gradients that are applied in
orthogonal directions, and even between imaging gra-
dients that are applied in orthogonal directions.22,24,25 In
isotropic media, gradients applied in orthogonal direc-
tions do not result in cross-terms; in anisotropic media,
however, they can.

Finally, it is easy to see that DT-MRI subsumes DI. If
the medium is isotropic, then Dxx = Dyy = Dzz = D, and
Dxy = Dxz = Dyz = 0. Then, eqn (1) reduces to a model of
isotropic diffusion with b = bxx � byy � bzz = Trace(b).
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Quantitative parameters provided by diffusion-tensor
MRI can be obtained and explained using a geometric
approach. Intrinsic quantities can be found that char-
acterize different unique features, for example, describ-
ing the size, shape and orientation of the root mean square
(rms) displacement profiles within an imaging volume,
which can be represented as diffusion ellipsoids. Scalar
parameters, functionally related to the diagonal and off-
diagonal elements of D(x, y, z), can also be displayed as
an image, revealing ways in which the tensor field varies
from place to place within the imaging volume.28 These
quantities are rotationally invariant, i.e. independent of
the orientation of the tissue structures, the patient’s body
within the MR magnet, the applied diffusion sensitizing
gradients, and the choice of the laboratory coordinate
system in which the components of the diffusion tensor

*Multivariate linear regression is just one of a number of techniques,
including non-linear regression and singular-value decomposition,
that could be used to estimate D from the echo data.
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and magnet field gradients are measured.21,29 Some
examples are given below.
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The first moment of the diffusion tensor field, or the
orientationally averaged value of the diffusion tensor
field can be calculated at each point within an imaging
volume:

�D� � Trace�D��3 � �Dxx � Dyy � Dzz��3

� ��1 � �2 � �3��3 � ��� �2�

where �1, �2 and �3 are the three eigenvalues and ���
their mean.

Physically, an estimate of �D� can be obtained by
taking the arithmetic average of ADCs acquired in all
possible directions.30 By integrating over all directions
uniformly, we obtain an intrinsic property of the tissue,
which is independent of fiber orientation, gradient
directions, etc. Recently, terms like ‘trace-ADC’, ‘mean
trace’, ‘trace mean’, etc. have been used to signify �D�,
however these terms are not meaningful. We suggest, as
an alternative, the term ‘bulk mean diffusivity’.

Several interesting issues remain unresolved about the
distribution of Trace(D) within tissue. For example, why
is it so uniform within normal adult brain parenchyma? In
particular, why is its value so similar in normal white and
gray matter,31 even though these tissues are so different
histologically? This spatial uniformity has contributed to
the increasing clinical utility of Trace(D) in disease
assessment and monitoring since it makes diseased
regions more conspicuous when juxtaposed against the
homogeneous background of normal parenchyma. A
second reason that makes Trace(D) useful is that it
appears so similar between and among normal human
subjects. In fact, it appears to be quite similar across a
range of normal mammalian brains including mice, rats,
cats,32,33 monkeys34 and humans.31,35 It is worth
considering whether mammalian brains are ‘designed’
to force Trace(D) to lie within such a narrow range of
values and, if so, what these optimal design criteria are.

As an aside, ‘trace-weighted’ or ‘isotropically
weighted’ DWIs have become a popular means of
depicting regions in which the diffusivity has changed
(particularly dropped) with respect to the surrounding
tissue.36–38 Some isotropically weighted sequences have
already been implemented commercially. In a Trace-
weighted DWI, image intensity is brighter in regions of
low diffusivity, making them more conspicuous. One
way to construct a Trace-weighted image is to take a
geometric mean of N DWIs, which we designate by A(bi),
so that the trace-weighted intensity (TWI) becomes:

TWI �
�������������������N
i�1

A�bi�N

���� �3�

If the DWI signal attenuation is given by:

A�bi� � A�0�e��bi
xxDxx�2bi

xyDxy�2bi
xzDxz�bi

yyDyy�2bi
yzDyz�bi

zzDzz�

�4�
then the conditions for producing a Trace-weighted DWI
are:
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i.e. that the total diffusion weighting along the x, y and z
directions is the same, and
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i.e. that the sum of each of the off-diagonal elements of
the b-matrix is zero. In this way

TWI � A�0� e�� Trace�D� �7�
which results in an image whose intensity is ‘weighted’
by Trace(D).
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The second and higher moments of D have been proposed
for use as diffusion anisotropy measures because they
characterize different ways in which the diffusion tensor
field deviates from being isotropic. This has resulted in a
number of diffusion anisotropy measures based upon the
second moment of the distribution of the eigenvalues of
D: (�1 � ���)2 � (�2 � ���)2 � (�3 � ���)2, such as the
relative anisotropy (RA), and the fractional anisotropy
(FA),1 which characterize the eccentricity of the diffusion
ellipsoid. The RA is just the coefficient of variation of the
eigenvalues, which has been previously used in crystal-
lography as an ‘aspherism coefficient’.39 Anisotropy
measures based upon the higher moments of the diffusion
tensor or the distribution of eigenvalues of D, such as the
skewness or kurtosis, could potentially be used to
characterize diffusion anisotropy more completely, but
the effects of noise make such measures unreliable (see
below).

*���� �������� ���������� �������

Novel anisotropy measures have been proposed that are
based upon a ‘barycentric’ representation of the diffusion
tensor, in which it is decomposed into line-like, plane-
like, and sphere-like tensors corresponding to diffusion
ellipsoids that are prolate, oblate and spherical, respec-
tively.40,41 The information provided by this interesting
approach should be compared systematically with the
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information contained in the first three moments of D, the
mean, variance and skewness. One issue that should be
examined is the sensitivity of the barycentric representa-
tion to the order in which the eigenvalues of D are sorted.
Whereas the moments of D given above are insensitive to
the order of the eigenvalues, dependence on their order
renders quantities susceptible to a statistical bias caused
when these eigenvalues are sorted.34

Another novel anisotropy measure has recently been
proposed by Frank42 to treat cases in which two or more
distinct fiber populations may occupy a voxel. When this
occurs, the diffusion tensor measured using the single
tensor model represents only a powder average of the
underlying tensors. This always results in a reduction in
the measured diffusion anisotropy. Frank’s method is to
measure ADCs in many non-collinear directions, and to
calculate the variance of these ADC measurements about
their mean value, which he defines as a new anisotropy
measure. The sensitivity of this measure to the SNR of
the acquisition, the degree of diffusion sensitization, and
other features of the experimental design should be
further investigated.

,����	����8��� ������������
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Another important development in DT-MRI is the
introduction of quantities that reveal architectural
features of anisotropic structures, such as nerve fiber
tracts in brain. Useful information can be gleaned from
the directional pattern of diffusion ellipsoids within an
imaging volume. Early on, it was proposed that, in
ordered fibrous tissues, the eigenvector associated with
the largest eigenvalue within a voxel is parallel to the
local fiber orientation.21 Imaging methods that apply this
idea include direction field mapping (in which the local
fiber direction is displayed as a vector in each voxel) and
fiber-tract color mapping (in which a color, assigned to a
voxel containing anisotropic tissue, is used to signify the
local fiber-tract direction43–46).

�)���� 79�� ���	��������

DT-MRI fiber tractography21,47–60 is a method for
following fiber-tract trajectories within the brain and
other fibrous tissues. Here, fiber-tract trajectories are
generated from the fiber-tract direction field in much the
same way that fluid streamlines are generated from a fluid
velocity field. Many unexpected artifacts in DT-MRI
fiber tractography can arise when discrete, coarsely
sampled, noisy, voxel-averaged direction field data48 are
used, or when one attempts to follow incoherently
organized nerve pathways.61,62 These artifacts could
suggest ‘phantom’ connections between different brain
regions that do not exist anatomically. Therefore, great

care must be exercised both in obtaining and in
interpreting such ‘connectivity’ data.47,53

�����������
 �������� ��� �
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A less intuitive, but powerful method of motivating and
developing quantitative imaging parameters from DT-
MRI data is by considering the differential geometry and
algebraic properties of the diffusion tensor field itself,
whose local features are sampled discretely in a DT-MRI
experiment. Until recently, this approach was only of
academic interest since there was no practical method to
obtain a continuous representation of a diffusion tensor
field from the noisy, voxel-averaged, discrete diffusion
tensor data. However, this situation has changed with the
advent of methods to construct such tensor field
representations.57,63,64 For instance, this approach has
lead to new applications such as DT-MRI tractography,
hyperstreamline and hyperstreamsurface imaging,65 con-
nectivity analysis,66 and should lead to other innovations
that were not previously feasible.

For example, in structurally complex anisotropic
media, such as the heart, which has a laminar architec-
ture, one can also attempt to describe the deformation
(curving, twisting, and bending) of the normal, rectifying,
and oscillating ‘sheets’ formed by muscle and connective
tissue. To do this, we can construct surfaces from the
diffusion tensor field, which can be parameterized by two
variables. Concepts of the differential geometry of
surfaces67 can then be used to determine additional
geometric features of sheet shape that can be calculated
and displayed as intrinsic MRI parameters. These include
the First and Second Fundamental Forms, I and II, and the
normal, gaussian and mean curvatures.67 These par-
ameters are intrinsic because they characterize different
features of the local shape of the lamina, independent of
the coordinate frame of reference, and constitute new
parameters.

��)�1�,)2 �( �)����
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Subject motion during data acquisition can cause
ghosting or artifactual redistribution of signal intensities
within DWIs. Artifacts resulting from rigid body motion
are the easiest to correct for, since this involves applying
a uniform phase correction to an entire image. This
problem has been only partially addressed by incorporat-
ing navigator echoes in the DWI pulse sequence.68,69

However, artifacts due to other physiological motion, for
example, eye movements or pulsation of cerebrospinal
fluid, are more difficult to correct. While these artifacts
are mitigated by the use of fast echo-planar DWI
sequences and cardiac gating, no general theoretical

Copyright  2002 John Wiley & Sons, Ltd. NMR Biomed. 2002;15:456–467

DIFFUSION-TENSOR MRI 459



approach has been developed to model and correct for
them.

.��� 	������

Large, rapidly switched magnetic field gradients pro-
duced by the gradient coils during the diffusion sequence
induce eddy currents in the electrically conductive
structures of the MRI scanner, which in turn produce
additional unwanted, rapidly and slowly decaying
magnetic fields. This results in two undesirable effects:
first, the field gradient at the sample differs from the
prescribed field gradient, resulting in a difference
between the actual and prescribed b-matrix; second, a
slowly decaying field during readout of the image causes
geometrical distortion of the DWI. These artifacts can
adversely affect diffusion imaging studies because the
diffusion coefficient or diffusion tensor is calculated in
each voxel from a multiplicity of DWIs assuming that the
gradients actually being applied to the tissue are the same
as the prescribed gradients. Uncompensated image
distortion can lead to significant, systematic errors in
these estimated diffusion parameters. Figure 1 illustrates
a typical artifact arising from uncorrected eddy current
induced distortions—a rim of high anisotropy along the
phase-encode direction.

Unfortunately, single-shot echo-planar image (EPI)
acquisitions are quite susceptible to eddy-current artifacts
so correction schemes have to be used. Alexander et al.70

suggested the use of bipolar diffusion-encoding gradients
and Papadakis et al.71 have also suggested applying
preemphasis to diffusion-encoding gradients as means of
ameliorating the problem at the acquisition stage.

Post-processing strategies generally aim to warp each
DWI to a common template.72,73 An interesting approach
is to use a mutual information criterion to determine a
warp that maximizes the overlap within a series of
diffusion-weighted images.57,74 Other post-processing
methods that have been proposed include correcting the
phase map using a model of the effects of the eddy
current on it,75,76 and mapping the eddy current induced
fields directly.77,78

�������	 ��	����9�
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Large discontinuities in bulk magnetic susceptibility,
such as those occurring at tissue–air interfaces, produce
local magnetic field gradients that notoriously degrade
and distort DWIs, particularly during echo-planar
imaging. In addition to image distortion, susceptibility
variations within the brain adversely affect DWIs
because the additional local gradients act like diffusion
gradients causing the b-matrix to be spatially varying.
This problem is partly compensated for by the use of the
logarithm of the ratio of the diffusion-weighted to non-
diffusion-weighted intensity [see eqn (1)], in which case
the effect of these susceptibility-induced gradients, which
are present during both diffusion-weighted and non-
diffusion-weighted images, is cancelled.

Susceptibility effects are particularly acute in the brain
in regions adjacent to the sinuses.79 As DWIs are being
acquired increasingly on higher field strength magnets
(3 T and above), these problems will become more
severe. Figure 2 illustrates a typical example of
susceptibility-induced artifacts at 3 T using a single-shot
EPI sequence. It is clear that, at higher field strengths,
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different strategies to those used for imaging at 1.5 T are
needed. While the distortions in Figure 2 are typical of
distortions using single-shot EPI at 3T, diffusion
weighted SENSE acquisitions appear to mitigate these
artifacts.76

����� �����

While at low levels of diffusion weighting the logarithm
of the signal attenuation decreases linearly with increas-
ing b-value, in common with all MRI acquisitions,
background noise causes the DWI intensity to approach a
baseline ‘noise floor’ as one progressively increases the
degree of diffusion weighting. Even above this baseline,
noise in DWIs can introduce significant bias in the
estimates of the eigenvalues, which makes isotropic
media appear anisotropic, and anisotropic media appear
more anisotropic.34 Pierpaoli et al. have proposed the
Lattice Anisotropy index which combines pure measures
of anisotropy with measures of inter-voxel coherence of
eigenvectors in neighboring voxels to try to ameliorate
this problem.34 This bias often makes higher order
measures, such as the skewness or kurtosis, too
inaccurate to be used reliably.

More recently, it was found that RF noise also biases
the mean and variance of the eigenvectors of D.80

Unfortunately, the current understanding of the deleter-
ious effects of this artifact is more advanced than our
understanding of useful remedies to correct for it.80,81

In the presence of noise, it is possible to estimate

negative eigenvalues of the diffusion tensor using the
regression methods described above. Physically, each
of the principal diffusivities of the diffusion tensor
must be non-negative (i.e. the tensor is positive semi-
definite). To ensure this condition, some groups have
imposed the constraint of positive definiteness on the
diffusion tensor explicitly.82 This can be done, for
example, by minimizing the error norm or �2 value
subject to the constraints that the three principal
diffusivities are positive.

-������� �����

Background gradients can be present if the magnetic field
is improperly shimmed, leading to additional signal
attenuation if not properly compensated for. This
problem can often be remedied by measuring the
background gradients directly83 and incorporating them
explicitly in the b-matrix.

Gradient non-linearity and miscalibration can lead to
small but significant errors in the calculation of the
diffusion coefficient or diffusion tensor elements. The
signal attenuation and the gradient pulse sequence must
be known for each DWI. If the gradients are not well
calibrated, or they are not linear, signal attenuation
attributed to the diffusion processes in the sample could
be miscalculated using eqn (1). If the gradients in the x, y
and z directions are coupled to one-another (i.e. there is
cross-talk) because of misalignment of the gradient coils,
then gradients applied in logical directions may have
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components in other directions, which could be particu-
larly problematic in DT-MRI.84,85

Flipping the signs of the diffusion gradients on
alternate averages has been suggested as an aid in
removing cross-terms. However, owing to noise, there is
a question whether such averaging should be done on the
logarithm of the intensity or whether the geometric mean
should be performed on the measured intensities. Clearly,
this method would ameliorate cross-terms arising from
specific interactions between imaging and diffusion
gradients applied in parallel or orthogonal directions,
but not cross-terms arising between imaging gradients,
which, albeit small in MRI clinical applications, would
not be corrected. The advantage of this method is that it
could simplify the analysis of DWI data. In new single-
shot acquisition schemes that acquire DWIs with
gradients applied in many directions,74,86 this strategy
has the disadvantage that twice as many DWIs would
have to be acquired. Moreover, an additional parameter is
required per voxel as a free parameter in the estimation of
the diffusion tensor to determine the cross-terms due to
the imaging gradients alone.

�*�.3 2.3.,)�*(

One of the advantages of using the single effective
diffusion tensor formalism in tissue is that it provides a
great deal of new information without making many
explicit assumptions about the underlying tissue archi-
tecture and microstructure. The only explicit assumption
is that the diffusion characteristics can be represented by
a single symmetric gaussian displacement distribution.
We can appreciate its conceptual economy by consider-
ing the great complexity of minimal models one could
propose to represent the actual known biological
compartments with tissues.

Inferring the microstructure and the underlying
architectural organization of tissue using diffusion
imaging data is complicated by several factors. First,
homogeneity within each voxel cannot be assured.
Numerous microscopic compartments exist within brain
parenchyma. A priori, we must assume that gray matter,
white matter and cerebrospinal fluid (CSF) could occupy
the same macroscopic voxel. The crudest model one
could pose, then, for these three compartments is:

A
A0

� f1e�Trace�bDwm� � f2e�Trace�b�Dgm � f3e�Trace�b�Dcsf

�8�
where Dwm represents the diffusion tensor for white
matter, and Dgm and Dcsf represent the apparent diffusion
coefficients for gray matter and for CSF, respectively,
which are assumed to be isotropic. In this model, the
three compartments are not assumed to be exchanging.
We could further simplify this model by requiring that the

f-coefficients sum to one. This would implicitly involve
assuming that the T1 and T2 in each compartment were
the same. Even so, this model contains 1 � 7 � 2 � 1
= 11 parameters to estimate in each voxel.

If we were to assume that there is an additional white
matter compartment, described by two individual diffu-
sion tensors, D1

wmand D2
wm,such as in regions where white

matter fibers cross,34 the model would be further
complicated, involving 18 free parameters:

A
A0

� f1e�Trace�bD1
wm� � f2e�Trace�bD2

wm�

� f3e�Trace�b�Dgm � f4e�Trace�b�Dcsf �9�
If the diffusion processes within the white matter fiber
compartments were cylindrically symmetric, either
described by cylindrically symmetric prolate or oblate
ellipsoids, then we could impose additional constraints on
the diffusion tensors, D1

wmand D2
wm,which would reduce

the number of free parameters to estimate each tensor
from 6 to 4.87 This is because only two parameters are
needed to specify the orientation of the ellipsoid in space,
and two parameters to specify its principal diffusivities.

Additionally, intra and extracellular compartments
without exchange can further complicate the model.
Returning to the model in eqn (8), we now have to add
two additional compartments for isotropic gray and
anisotropic white matter, although obviously not for CSF:

A
A0

� f1e�Trace�bDint
wm� � f2e�Trace�bDext

wm� � f3e�Trace�b�Dint
gm

� f4e�Trace�b�Dext
gm � f5e�Trace�b�Dcsf �10�

Already, we have accumulated 1 � 7 � 6 � 2 � 1 � 1
= 18 free parameters for this model. If we use the rule of
thumb that one would like to obtain at least four times as
many DWIs as the number of free parameters to estimate
them, we require now at least 72 DWIs. Generally,
however, the number of these distinct tissue types and
their distribution within the voxel is unknown. At an
ultrastructural level, gray and white matter are them-
selves generally quite heterogeneous, having a distribu-
tion of macromolecular structures of varying size, shape,
composition and physical properties (such as T2, D).
Thus, even the model in eqn (10) is quite naive.

Several groups have recently tried to address the
problem of multiple white matter compartments in the
brain. Their approach was to use a two-compartment
model with non-exchanging spins, in which each
compartment is characterized by its own diffusion
tensor.88,89

A
A0

� f1e�Trace�bD1� � f2e�Trace�bD2� �11�

Even with this simple model, there are 14 free parameters
to estimate. As each white matter compartment is added,
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another six parameters are needed to prescribe the
diffusion tensor. This leads to a proliferation of free
parameters to estimate. It also taxes experimental
resources and one’s ability to design an efficient
experiment. Which diffusion gradient directions and
gradient strengths are optimal? How many DWIs are
needed? How can we tell if this model is adequate? These
become complicated multifactorial problems to consider.
At present, a general framework for assessing the
adequacy of different models to describe water diffusion
within a voxel has yet to be proposed and implemented.

*���� 	���
�������

Differences in relaxation parameters can lead to different
rates of echo attenuation in each compartment, making it
more difficult to explain the cause of signal loss within a
voxel. There are also irregular boundaries between
macromolecular and microscopic-scale compartments.
Different macromolecular structures comprising these
boundaries may affect the displacement distribution of
water molecules differently, necessitating even more
complex models. Water molecular motion may be
restricted or hindered. Even within a compartment, some
water will be associated with certain macromolecules
while some will be free to diffuse.

Another unknown is whether there is exchange
between compartments, which can also affect the
relaxation rates of the spin system. How water moves
within and between compartments is still not well
understood. Owing to differences in blood flow and
thermal conductivity, temperature cannot be assumed to
be uniform throughout a tissue sample. It is well known
that temperature affects the measured diffusivity (�1.5%
per 1 °C)90–92 and is predicted to have the same effect on
all diffusion tensor components.

For all these reasons, the underlying cause of diffusion
anisotropy has not been fully elucidated in brain
parenchyma, although most investigators ascribe it to
ordered, heterogeneous structures, such as large oriented
extracellular and intracellular macromolecules,
supermacromolecular structures, organelles, and mem-
branes. In the central nervous system (CNS), diffusion
anisotropy is not simply caused by myelin in white
matter, since several studies have shown that, even before
myelin is deposited, diffusion anisotropy can be
measured using MRI.93–96 Thus, despite the fact that
increases in myelin are temporally correlated with
increases in diffusion anisotropy, structures other than
the myelin sheath must be contributing to diffusion
anisotropy.97 This is an important point, because there is
a common misconception that the degree of diffusion
anisotropy can be used as a quantitative measure or
‘stain’ of myelin content, when in reality no such simple
relationship exists.

;-�) �*.2 � ).33 +2 �"*+) )�22+. �) �
3*; 9�6�3+.<

Suppose, for generality, we have N non-interacting
compartments, each described by its own diffusion
tensor, but each with the same T1 and T2. Expanding
the model describing the diffusion attenuation about
Trace(bDi) = 0 gives

A
A0

�
�N

i�1

fi e�Trace�bDi�

	
�N

i�1

fi 1 � Trace�bDi� � 1
2
�Trace�bDi��2 � � �

	 


�12�

This can be rewritten as:

A
A0

	
�N

i�1

fi � Trace b
�N

i�1

fiDi

� �

� � � � � 1 � Trace�bDeff � � � � � �13�

In the vicinity of Trace(bDi) = 0, eqn (13) can be well
approximated by the following expression:

A
A0

	 e�Trace�bDeff � where Deff �
�N

i�1

fiDi �14�

Thus, in this case, the single effective diffusion tensor
model produces a quantity, Deff, which is just the
weighted average of each of the diffusion tensors within
the volume. The expression in eqn (14) shows that, in the
vicinity of Trace(bDi) = 0, the attenuation due to two
compartments that are rapidly exchanging and due to two
compartments that are non-exchanging are the same.
Figure 3 illustrates the diffusion-weighted intensities
plotted as a function of b for a two-compartment system
under both the rapid-exchange and no-exchange models.
It has been assumed that compartment 1 has a volume
fraction, f1 = 0.70 and ADC1 = 1.02 
 10�3 mm2 s�1, and
compartment 2 has a volume fraction, f2 = (0.3 = 1–0.70),
and ADC2 = 0.18 
 10�3 mm2 s�1. (These values were
suggested for the intra- and extracellular tissue compart-
ments of white matter by Clark et al.98) Note that, in the
figure, at low b-factors the difference between the non-
exchanging and rapidly exchanging intensities is very
small.

Hence, while DT-MRI produces a well-defined
effective diffusion tensor in the linearly decaying regime
of the relationship between the logarithm of the signal
attenuation and the elements of the b-matrix, it provides
no information about features of the individual compart-
ments. The interpretation of the effective diffusion tensor
is not necessarily clear in a more complex tissue at higher
b-values.
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Recently, with the advent of stronger magnetic field
gradients, several groups have reported multi-exponential
decay of the MR signal intensity as a function of b-
value.98,99 Some have inferred from this data that
properties of distinct tissue compartments can be mean-
ingfully observed using DT-MRI. Clearly, there is
interesting biological information to be gleaned in the
non-linear regime that may help to resolve some of these
issues. High b-value acquisitions are being treated by
others in this issue, so only a few points will be made
below that pertain to the DT-MRI aspects.

Putting aside the complexities of obtaining stable
estimates of discrete exponentials (i.e. diffusion relax-
ography), numerous microstructural and architectural
configurations could produce the same multi-exponential
relaxation data. For example, Peled recently showed that
a system of impermeable tubes with a distribution of
diameters consistent with those found in histological
brain slices could give rise to multi-exponential
decay.100 Similar behavior is expected when there is a
statistical distribution of any relevant physical property
or microstructural dimension within a voxel. With the
exception of CSF, it is unlikely that a particular
exponential can ever meaningfully be assigned to a
particular and distinct tissue compartment. Clearly,
without invoking additional a priori information about
tissue structure, tissue composition, the physical proper-

ties of the different compartments and their spatial
distribution, determining tissue microstructural and
architectural features from the NMR signal is an ill-
posed intractable inverse problem.

Another approach to analyzing tissues with multiple
compartments is to use three-dimensional q-space tech-
niques, originally developed by Callaghan.101,102 Most
recently, this strategy has been suggested by Tuch et al.
for use in clinical scanners, using conventional diffusion-
weighted images.89,103 In principle, the potential benefits
of using such an approach are numerous: q-space MRI
would provide a probability displacement distribution
within each voxel in a model-independent way. This
method would also allow one to vary the diffusion time
and the length scale probed independently and system-
atically.

However, unlike ‘q-space’ MRI in which ‘high’ and
‘low’ q-values provide an unambiguous physical inter-
pretation of the length scale probed and the diffusion time
of the experiment, in clinical DWI acquisitions, neither of
these experimental quantities is well defined. True three-
dimensional q-space MRI requires ultrashort (�1 ms)
and ultrastrong (�500 G cm�1) gradient pulses. Produ-
cing these using a whole body or even a head gradient set
would clearly cause a severe shock to the patient. If one
attempts to use DWIs with longer duration and weaker
diffusion gradient pulses, one loses the ability to infer the
underlying displacement distribution, the diffusion time
and the length scale probed.
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Since the diffusion tensor data is statistically estimated in
each voxel, we must treat it as a set of random variables.
However, the statistical analysis of DT-MRI data is
complicated by several factors. Although in an ideal DT-
MRI experiment D has been shown to be distributed
according to a multivariate normal distribution,104 and
thus Trace (D) has been shown to be normally
distributed,105 the parametric distribution of many other
derived DT-MRI parameters is either unknown or known
not to be normal. In these cases, we are precluded from
using statistical hypothesis testing methods that assume
an underlying normal distribution to determine whether
an observed difference between different regions of
interest (ROI) is statistically significant. In such cases,
empirical methods like the bootstrap—which allows
determination of the distribution of a statistical parameter
empirically without knowledge of the form of its
distribution a priori—show great promise in diffusion
imaging studies.106 This is particularly true now that
many single-shot DWIs can be acquired during a single
scanning session. Bootstrap methods become more
practicable and accurate as more raw data are available.
One promising application of this empirical statistical
method is to assure data quality and to test for systematic
artifacts that might be present during the acquisition. In
this way, statistical properties of measured DT-MRI
parameters can be studied meaningfully on a voxel by
voxel basis.

�+3)��2�). �(� �+3)��2+" .,) 2)+��.2

In performing multi-site or longitudinal diffusion tensor
imaging studies, several additional issues arise. The most
basic is how to compare high-dimensional diffusion
tensor data from different subjects or from the same
subject acquired at different time points. Applying
warping transformations developed for scalar images,
can produce nonsensical results when applied to DT-MRI
data without taking appropriate precautions.107 Our
understanding of admissible transformations that can be
applied to warp and register diffusion tensor field data is
still limited.

A second issue to consider is the proliferation of
measures derived from the diffusion tensor to character-
ize different features of the isotropic and anisotropic
diffusion. Consistent definitions of quantities such as the
orientationally averaged diffusivity, RA, FA, etc. should
be employed. It is advisable to use the same imaging
acquisition hardware, reconstruction software and post-
processing routines to control for unnecessary variability.
All sites should use a well-characterized phantom, even if
it is an isotropic phantom, to ensure that no systematic

artifacts occur, and that the DWI acquisition is stable in
time and across platforms.

,*(,3+��(0 �.���&2

DT-MRI provides new means to probe tissue structure at
different levels of architectural organization. While
experimental diffusion times are associated with water
molecule displacements on the order of microns, these
molecular motions are ensemble-averaged within a
voxel, and then subsequently assembled into multi-slice
or three-dimensional images of tissues and organs. Thus,
this imaging modality permits us to study and elucidate
complex structural features spanning length scales
ranging from the macromolecular to the macroscopic,
without the use of exogenous contrast agents.

New structural and functional parameters provided by
DT-MRI, such as maps of the eigenvalues of the diffusion
tensor, its Trace, measures of the degree of diffusion
anisotropy and organization and estimates of fiber
direction all advance our understanding of nerve path-
ways, fiber continuity and, potentially, functional con-
nectivity in the CNS.
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