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Anisotfopic Diffusion: MR Diffusion Tensor Imaging

Peter J. Basser, James Mattiello, and Denis Le Bihan

When NMR diffusion spectroscopy or imaging has

been performed on heterogeneous media, such as tis-

sues, an apparent diffusion constant (ADC) has been
- measured which depends upon tissue microdynamics
and microstructure, as well as upon gradient pulse pa-
rameters. In some-heterogeneous media such as gray
matter, the scalar ADC is independent of the direction
of the diffusion-sensitizing gradient, so that diffusion
_ appears to be isotropic. In contrast, in other heteroge-
neous media, such as white matter (1) or skeletal mus-
cle (2), the ADC depends on the direction of the diffu-
sion-sensitizing gradient, so that diffusion appears to
be anisotropic. Here, the ADC depends on the angle
between the fiber-tract axis and the applied magnetic
field gradient. The largest ADC is observed when the
diffusion-sensitizing gradient is parallel to the fiber-
tract direction and the smallest ADC is observed when
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the diffusion-sensitizing gradient is perpendicular to
the fiber-tract direction (1-5).

In such anisotropic media, we should characterize
diffusive transport by an effective diffusion tensor,
D°%, rather than by a (scalar) ADC, D™ (6-10). While
the importance of using a tensor to describe anisotropic
diffusion was already appreciated thirty years ago by
Stejskal in NMR diffusion spectroscopy (11) and, more
recently, in diffusion imaging (12,13), until recently,
there was no method available to measure it (14). Re-
cently, we proposed such a method that involves (i)
deriving an explicit relationship between diagonal and
off-diagonal elements of D*® and the measured echo
intensity in a pulsed-gradient, spin-echo experiment;
(ii) designing a series of magnetic field gradient se-
quences permitting us to observe the effect of different
linear combinations of the diagonal and off-diagonal
elements of D% on the measured echo; and (iii) esti-
mating D from these experiments (14). Combining
the estimation of D with MR imaging leads to a new
MR imaging modality, called diffusion tensor imaging,
which we have used: (a) to determine orientation of
organized fibrous tissues in vivo (15,16); (b) to infer
the microscopic mean displacements and diffusivities
of water (protons) in vivo; (¢) to derive useful invariant




‘quantities from D*¥ (which depend only on the compo-
sition and local microstructure of the tissue, but not
on fiber direction per se) (15,16); and (d) to correct for
cross-talk, misalignment, and maladjustment of mag-
netic field gradient coils.

THEORY
The Macroscopic Effective Diffusion Tensor, D%

The macroscopic effective diffusion tensor D°f,
given by

Dz Dy’ D)

DT =D D DsF|, [

eff eff £f
D& D' Dz

has two useful physical interpretations. The first is as

a transport parameter that relates the macroscopic dif-

fusive flux vector, J, and the particle concentration

- gradient vector, VC, by a generalized Fick’s law appro-
priate for anisotropic media: :

J'= -Df vC ' [2]

One important consequence of Eq. [2] is that the VC
is not necessarily parallel to J (see Fig. 6) as it is in
isotropic ‘media. Moreover, for uncharged moieties
such as water, DT must be symmetric (6-10), i.e., D°
= (D*®)T—a requirement of the reciprocity theorem,
and the principle of microscopic reversibility (of non-

equilibrium thermodynamics) (8,9). The second inter-
pretation of D° arises from considering a Brownian
(random walk) model of diffusion, where DT embodies
correlations between displacements along x, y, and z

when the mobilities in these directions may be differ-

FIG. 6. A schematic diagram of an array of microscopic
fiber bundles (e.g., bundles of myelinated axons) viewed
at a macroscopic (voxel) length scale. At the macroscopic
length scale, diffusion in this heterogeneous medium ap-
pears to be homogeneous but anisotropic. As a result,
particle flux and concentration gradient vectors obey a
generalized Fick’s law, and are not necessarily parallel
to one another.
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ent. Specifically, D*® appears as the covariance matrix
in the conditional density function, p(r | ro, 7.), the
probability that a particle initially at r, freely translates
to r at time 4.

1 R
V| D*(r,) | (4rrr)?
3]

—(r — ro)T Degrcra) ~X(r — 1)\
- exp - 2, )

p(r | ro,7a) =

Equations Governing the Transport of Magnetization

The Block equations (17) with diffusive transport
(18) are well known, and will not be rederived here
(see Chapter 1). For a pulsed-gradient sequence, it is
useful to define the magnetic field gradient vector,
G(?), .

| G(t) = (G:(1), Gy(1), G(H)T [
and _its time integral, .
ko =y [ cunar. 5]

Stejskal and Tanner derived analytic expressions relat-

- ing the measured echo intensity and the applied pulsed

gradient sequence for a 90°-180° spin-echo sequence
(11). For isotropic media, the magnitude of the magnet-
ization at the time of the echo, A(TE), is related to the
scalar self-diffusivity, D, by

) -l

A(0)
D(k(t’) - 2H(t’ — %Fi)k) dr',

where H(t) is the unit Heaviside function and k£ =
k(TE/2).!

From Eq. [6], Tanner defined 2 scalar diffusion coef-
fictent for heterogeneous media, D%, that is averaged
over the echo time, TE (19). The relationship between
the effective diffusivity and the logarithm of the echo
intensity can be written as

A(TE
In ( 2(0))) ~ bD*¥ (71

{6l

where the scalar b-factor [13] is defined as:

T
b= fTE(k(t) 211(: —%E)k)
(k(t)—zH(i —%E)k)‘dt'."

! We have elected to use the quantity k, which is more familiar
to the imaging community than F, which was originally used by
Stejskal and Tanner (1).

(8]
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Moreover, for homogeneous, anisotropic media, Stej-
" skal and Tanner related A(TE), to the diffusion tensor,

D (11):
TE TE) ,\'
- f (k(t') —2H (t’ - T) k)
0

(A(TE))
In =
9]
D (k(t’) - 2H (t’ - -T—ZE> k) dr'.

A(0)
Recently, we defined an effective diffusion tensor, D%,
that is also averaged over the echo time, TE (14, 20).
Moreover, we showed that Eq. [9] could be rewritten
as a linear relationship between the logarithm of the
echo intensity and each component of De°ff (14,20):

ATE)) _ _ Dt
In ( A(O)) ‘ 2 2 byDiF [10]

where b;; are elements of the b-matrix, b (14,20):

TE [/ N ;L I—E_
h_fo (k(t) 2H(t 2)k>
(k(t) - 2H<t _ %—E-) k) dr.

The role that the b-matrix (Eq. [11]) plays in NMR
studies of anisotropic diffusion is analogous to the role
that the scalar b-factor (Eq. [8]) plays in NMR studies
of isotropic diffusion. Diagonal elements of b;; sub-
sume the interactions between diffusion and/or imaging
gradient pulses along the same direction, including
“‘cross-terms’’ (21,22), while off-diagonal elements of
b, couple imaging and/or diffusion gradients in perpen-
dicular directions. Interactions between these orthogo-
nal gradlents had not previously been considered in
NMR diffusion spectroscopy or imaging.

MEASUREMENT OF D*
A Gedanken Experiment

The form of Eq. [10] suggests an experiment to mea-
sure D°. In principle, we can infer D*¥ from a series
of measured echoes using diffusion grad1ents applied
in various oblique (noncollinear) directions. For exam-
ple, in a spectroscopic experiment, the echo attenua-
tion caused only by DT can be produced by applying
a gradient pulse sequence in which G has a component
only in the x-direction (so that only b1 = bxx # 0).
Then,

[11]

A

eff
In ( A(O)) — b D3x. 121
Alternatively, the echo attenuation caused by all com-
ponents of D°¥ (both diagonal and off-diagonal) can
be produced by applying a gradient pulse sequence in

which all three components of G are nonzero, so that '

Ab)\
In|3q5) = — (bDSE + by, D + boDEF

o

+ (biy + byx) DS + (bxz + b2 DEF
+ (byz + byy) DSD). [13]

By applying diffusion sensitizing gradients in at least
six independent oblique directions and measuring the
resulting echo. attenuation, we should be able to
uniquely specify each element of Deffas well as the T»-
weighted signal, A(0).

For gradient pulse sequences used in diffusion spec-
troscopy, simple analytic expressions can be derived

* for each element of the b-matrix, b;;. For example, for

symmetric trapezoidal pulses,

8\ € &€
5) T30 _6_>’ (14

bij = ’)’ZGiGj (82 (A -
where, § is the time between the initial rise of the trape-
zoidal pulse and the end of its plateau; 4 is the time
between the initial rise of the first-and second pulses;
€ is the rise time of the ramp; and G; is the maximum
value of the magnetic field gradient along the x; coordi-
nate direction (14). Mattiello et al. (23) proposed for-
mulas for other commonly used gradient pulse se-
quences in spectroscopy (e.g., rectangular and
sinusoidal). Moreover, for spectroscopic pulses, we
can generally use Eqs. [13] and [14] to express the echo
attenuation, A(b), as a quadratic form of D=f. For ex-
ample, for symmetrical trapezoidal pulses:

i (A(G, 8,4,¢€)
"\ A

3
—‘y2(62 (A - g) +35- & )| G 47Dt [15]

. where now we have written the echo attenuation as a

function of the various independent pulse parameters,
and used the relation G = | G| %, where £ is a unit
vector in the direction of the diffusion gradient. If the
medium were isotropic with diffusivity Do, then Eq.
[15] reduces to a familiar expression for the scalar b-
factor (24,25):




) (A(G, 8 4, g)) - bD,

! A(0)

> 8 3 2\ °
= —y*| G |2<82<A - 5) +35— %)Do [16]
‘N.B.:InMR diffusion tensor imaging, the relationship
" between the measured signal and the diffusion tensor

~ diffusion gradient vector, as in Eq. [15].

Estimation of D*® from Echo Intensity Measurements

If measurements of the echo intensity were noise-
free, then we could determine A(0) and the six indepen-
dent elements of the D*® with only seven independent
experiments (§simply by inverting a 7 X 7 matrix con-
structed from Eq. [15]). Since measurements of echo
intensity are noisy, this approach yields poor estimates
of D especially when the signal-to-noise ratio is
small. Therefore, we perform more than seven inde-
pendent trials, and estimate D° statistically. Specifi-
- cally, we use multivariate linear regression (26) of Eq.
[13] to estimaté the components of D°® in a voxel (14).
The optimal D*T minimizes the sum of the squares of
the differences between measured and theoretically
predicted spin-echo intensities. A detailed explanation
of this procedure is given elsewhere (14).
In general, we choose n = 7 noncollinear gradient
directions?. We make m measurements of A(G) at dif-
ferent gradient strengths. These nm observations of
In(A(G)) are stored as an nm X 1 column vector, x.
We define another column vector of parameters to be
* extimated, a, which has seven elements—the six diffu-
sion coefficients and In(A(0)):

= (D&, Dyy, D¢, D, D D, D5d, In(AQ))*.

dicted outcomes as the product of an nm X 7 matrix,
. B (computed from Eq. [13] and the b-matrix for each
experiment) and «, and write the chi-squared parame-
ter, x*(a):

x*(@) = (x — Ba)T2, "'(x — Ba), [18]

which is the weighted sum-of-squares of deviations be-

2 In principle, one can apply field gradients in six noncollinear
directions and perform one trial with all diffusion gradients set to
zero, as others have done. This method typically fails in spéctros-
copy, because when G = 0, the measured echo is often contaminated
by the FID that is usually suppressed by the ‘“‘crushing’ effect of
the diffusion gradients. )

~ cannot be simply expressed as a quadratic form of the.

[17}- -

Next, we express an nm X 1 column vector of pre-
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tween the observed and predicted echo intensities. For
each of the m x n independent trials, the squared de-
viation is weighted by the corrected reciprocal error
variance for that measurement, x2/o;?, which are the
diagonal elements of the covariance matrix, 3~
These diagonal elements account for the expected
variation in each trial, and correct for the distortion
introduced by the loganthrmc transformation of (A(G)/
A0)) (27).

Minimizing x?(a) with respect to each of the seven
unknown parameters in « yields seven linear (normal)
equations. The optimal estimated parameters, aop:,
are:

Gopr = (BTZ~'B)"1(BT3~\)x = M~'(BTS~)x

[19]

where M~'is a7 X 7 matrix whose diagonal elements
are the error variances of the seven estimated param-
eters, aopt.

Alternatively, we could use nonhnear regression
methods, such as the Levenberg-Marquardt algorithm,
on the untransformed form of Eq. [10] relating the echo
intensity and the diffusion tensor:

3 3 .
A(G) = A(0) exp ( -2 bf,-Dz-ff). [20]
i=1j=1

In summary, we have reduced the problem of mea-
suring D°® using NMR methods to a routine problem

~of statistical estimation, just as Tanner [19] used Eq.

[7] to estimate D°¥ in microscopically heterogeneous

but macroscoplcally isotropic media using weighted '

linear regression. Mdreover, we do not

' neglect off diagonal components of D°% g priori (i.e.,
we do not constrain them to be zero), as others have.’

Instead, we assume that each component of D may
contribute to the measured echo intensity (as in Eq.
[13]), and we assess its importance only after D°® has
been estimated.

Extending Diffusion Spectroscopy to Diffusion Tensor
Imaging

To perform diffusion tensor imaging, we imbed the

.spin-echo diffusion sequence into an imaging se-

quence. Specifically, we obtain a series of diffusion-
weighted images by applying diffusion sensitizing gra-

dients in at least seven oblique directions, just as in -

diffusion tensor spectroscopy. Using Eq. [11], we now
calculate a b-matrix for each image off-line, either nu-
merically or analytically, as described by Mattiello [23]
and in Chapter 5. From these diffusion-weighted im-

“-ages, we estimate an effective diffusion tensor in each

voxel. Thus, the relationship between diffusion tensor
spectroscopy and diffusion zensor imaging is analogous




144 / 1C: APPLICATIONS

to the relationship between diffusion spectroscopy and
diffusion imaging. Just as Le Bihan and others used
Egs. [7] and [8] to estimate D°f within each voxel,
which they called MR diffusion imaging (21,28), we use
Egs. [41, [5], [10], and [11] to estimate D°f in each

voxel, which we call MR diffusion tensor imaging.
J

APPLICATIONS OF DIFFUSION TENSOR
IMAGING '

The Principal Coordinate Axes and Principal
Diffusivities .

For each estimated D%, whether it is measured for

an entire tissue sample or for an individual voxel, we
can construct a local orthogonal coordinate system (the
principal coordinate axes) along which diffusive fluxes
and concentration gradients are decoupled. Alterna-
tively, this fiber frame is the one in which correlations
between macroscopic particle displacements in orthog-
onal directions vanish. We also calculate three diffu-
sion coefficients in these three principal directions
(principal diffusivities). Because D" is symmetric and
positive definite, its three eigenvectors (principal coor-
dinate directions), €;, €2, and €3, are orthogonal. Re-
lated to them are three positive eigenvalues (principal
effective diffusivities), A1, A2, and A3 that satisfy:

Dffe; = Ae; for i ={1,2,3} [21]

The three equations in Eq. [21] can be rewritten in
matrix form as :

D**E = EA with E = (e | 2| €3) and

A0 0
TA={0 A 0, [22]

0 0 As

where A is the diagonal matrix of eigenvalues and E
" is the matrix of orthonormal eigenvectors, arranged in
columns. ' _

As suggested above, in media such as brain white
matter and skeletal muscle, the macroscopic anisot-
ropy described by D at a macroscopic (voxel) length
scale is due to microscopic heterogeneity—primarily
ordered semipermeable membranes, fibers, or macro-
molecules that retard diffusion (3). So, in anisotropic
tissues, the principal directions of D°¥ should coincide
with the orthotropic directions of those structures. In
particular, the eigenvector associated with the largest
eigenvalue (diffusivity) defines the tissue’s fiber-tract
axis, while the two remaining eigenvectors, which are
perpendicular to it, define the two remaining ortho-
tropic axes.

The Effective Diffusion Ellipsoid

The effective diffusion tensor, D°%, inherently con-
tains more information than a scalar ADC. Some of
this information can be represented graphically by an
effective diffusion ellipsoid. To motivate its use, recall
that in Eq. [3] D*®(7,) could be interpreted as a covari-
ance matrix of the translational displacement probabil-
ity, p(r | o, 72). We can construct an effective diffusion
ellipsoid by setting the quadratic form in the exponent
of p(r | ro, 74) in Eq. [3] to ', i.e.,

(r = ro) ™D (I)(r — 1)
=1, 23]

27d

The shape of the effective diffusion ellipsoid has a
useful physical interpretation. If we imagine that the
tissue were homogeneous and anisotropic, with a diffu-
sion tensor D = D*f(r,)), then Eq. [23] defines a surface
of constant mean translational displacement of spin-
labeled particles at a diffusion time ¢ = 74. To make
this explicit, we first transform® from the ‘‘laboratory”

~ coordinate frame (r), in which the components of

D*f(r,) are measured, to the ‘‘principal” or *‘fibers”
coordinate frame (r') within a particular voxel centered
at rg, using

- r' = EX(r — ro). [24]
Then, using Egs. [24] and [22], we diagonalize (D) -1
in Eq. [23]:

FTA= !

21’4

-1 [25]

N

© When expanded, Eq. [25] defines an ellipsoid:

x" 2 yl 2 Z, 2
<V2’\17‘1> * <\/27‘2"'d) * (\/2/\3Td> =1 - [28l

The ellipsoid’s major axes are the mean effective diffu-
sion distances (1 /(x/%) = +/2A7,) in the three principal
(orthotropic) directions at time 74. Viewed from the
laboratory frame, the effective diffusion ellipsoid also
depicts the fiber-tract direction. Referring to Eq. [31,.
we can see that in ‘‘fiber’”’ frame the displacement dis-
tribution is also locally uncorrelated. Representative
diffusion ellipsoids are shown in Figs. 7 and 8.

In microscopically heterogeneous systems, the esti-
mated effective diffusion coefficients may depend
upon diffusion time. When the diffusion time is small
with respect to the time to diffuse to the nearest barrier,
A — 83 << < r? >/D, the effective diffusion tensor may
be isotropic; and the corresponding diffusion ellipsoid
would appear spherical. When the diffusion time is
long, then the macroscopic molecular displacements

3 We should also ensire that E has the properties of coordinate -
transformation, e.g., det(E) = 1. .. ..
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FIG. 7. Diffusion ellipsoid of a pork loin sample obtained
using diffusion tensor spectroscopy. Its fiber axis is ap-
proximately aligned with the x-axis of the laboratory
frame of reference. Laboratory coordinates x, y, and z are
displayed in um. The eigenvector (orthotropic direction)
corresponding to the largest eigenvalue (principal diffu-
sivity) defines the potar axis of the ellipsoid.

will appear anisotropic and the diffusion ellipsoid -

would become more prolate. In heterogeneous tissues
like muscle, we might expect D°®(r,) to be isotropic for
very short diffusion times, until a significant number of
protons encounter diffusional barriers (19). However,
for media with impermeable barriers, the Gaussian dis-
placement distribution assumed above would not be
adequate (29).

Scalar Invariants of D

Perhaps more important than identifying fiber direc- -

tion is identifying quantities that are independent of it.
Three scalar quantities that possess this property are
the invariants I,, I, and I5 (30) associated with DT in
each voxel. They are functions only of the eigenvalues
(principal diffusivities) of D°f:

I, = Ay + Ay + Az = Tr(D) = Tr (A); [27a]
Iz = A1A + )t3A1>+ /\2/\3; [27b]
13 = A])\z/\3 + |Qeff| = |A I. [270]

These scalar quantities I;; I, and I; are invariant with
respect to rotation of the coordinate system and conse-
quently are independent of the choice of the laboratory
reference frame in which D is measured, or equiva-
lently, the orientation of the sample within the magnet.
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FIG. 8. Diffusion ellipsoid of the same pork loin sample
shown in Fig. 7, now rotated by 41° in the x-z’plane. The
polar axes (i.e., fiber axes) of the diffusion ellipsoid follow
the mechanical rotation of the tissue sample. This is evi-
denced by the tipping of the polar axis of the diffusion
ellipsoid by 42° (see also Fig. 7). Both effective djffusion
ellipsoids shown here and in Fig. 9 are only slightly pro-
late, presumably because the diffusion time, 22.5 ms, cor-
responds to a mean diffusion distance of only 4.7 um,
which may be too short for the spin-labeled protons to
encounter diffusion barriers.

These quantities have the same values irrespective of
the relative orientation of the ‘‘laboratory’ and
““fiber’’ frames of reference. In addition, they are in-
sensitive to the scheme by which the eigenvalues of
Def are ordered (or numbered). As such, these invar-
iants measure intrinsic properties of the medium, such
as mean proton mobility, and have been predicted to
be useful in characterizing the local microstructure and
microdynamics within anisotropic tissues (15,31).
Moreover, they (or functions of them) are readily mea-
sured and monitored.

"Ratios of the principal diffusivities are the most natu-
ral indices of the degree of diffusion anisotropy. These
dimensionless anisotropy indices measure the ratio of
the effective diffusivities both parallel to and perpen-
dicular to the fiber-tract directions. For example, one
dimensionless anisotropy ratio, A»/A3, measures the ro-
tational symmetry of the diffusion ellipsoid around the
longest (fiber) axis (with A»/As = 1 indicating perfect
rotational symmetry), while A;/A, and A;/A; measure
the relative magnitude of the diffusivities in the fiber

-.and transverse directions, and thus the eccentricity of

the diffusion ellipsoid. These definitions embody our
intuitive notion that an anisotropy index is a character-
istic’ of the tissue and should be independent of the
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sample’s placement or orientation with respect to the
(laboratory) x-y-z reference frame. An anisotropy ratio
proposed by Douek et al. (3), defined as the quotient
of two diagonal elements of the diffusion tensor (e.g.,
D,./D,,) would be expected to vary as the sample is
rotated (20). This deficiency is shared by an anisotropy
ratio recently proposed by van Gelderen et al. (32).

Experimental Results

Diffusion tensor spectroscopy and imaging have
been performed on a variety of platforms and on var-
ious_‘ media, including water, pork loin, gels, and ex
vivo cat brain (Figs. 7 and 8). Diffusion tensor imaging
was performed using FT spin-echo and echo-planar im-
aging sequences (12) on the same samples (Figs. 9-11).
These  experiments are described elsewhere
(14-16,20,31,33,34). We also demonstrated the feasi-

 bility of in vivo diffusion tensor imaging by acquiring

a sufficient number of diffusion-weighted echo-planar
images (12) in under 30 minutes to construct diffusion
ellipses, and invariant images (33,34). Figure 12 (top
left) shows a proton image of lateral ventricles and cor-

pus callosum in living human brain, acquired using

EPI.
The multivariate linear model (Eq. [10]) was found
to fit both diffusion spectroscopy data sets faithfully

* (14). In addition, the diffusivity, Do (in Eq. [30]), esti-

mated by assuming water is isotropic and homogene-
ous, is close to published values at 14.7°C (13). More-
over, while individual elements of Deff estimated for
pork loin (in Eq. [31] and [32]) may differ by hundreds
of percent, the eigenvalues and scalar invariants of D%
differed by no more than one percent. This is what we
expect since the invariant quantities reflect intrinsic
properties of the medium (e.g., the trace of Dt is pro-
portional to the mean water mobility). These invariant
quantities reflect microstructural and/or microdynamic
changes within the tissue, but should not be affected by
the sample’s orientation within the magnet, suggesting
their potential utility as MR imaging parameters (15).

In Fig. 11, we show an image of Tr(D°¥) for ex vivo
cat brain. Principal diffusivities and the scalar invar-
iants may provide additional information with which to
segment tissue types. The effective diffusion ellipsoids
shown in Fig. 10 are constructed in 16 X 16 voxels
from the same tissue sample. '

Although it is well known that the ADC varied as
an anisotropic sample was rotated with respect to the
direction of the applied magnetic field gradient (2), sug-
gesting anisotropic diffusion, only the diagonal ele-
ments of the apparent diffusion tensor, Dy, D;,, and
D,., were ever considered in diffusion spectroscopy
and imaging experiments (1-4,12,35). To date, diffu-
sion imaging of anisotropic media consisted of applying
diffusion sensitizing gradients in one of three orthogo-
nal directions, x, y, or z (as measured in the laboratory
frame of reference) and estimating an ADC in each of
these three directions. In NMR imaging studies, these
ADCs wefe sometimes identified as the diagonal ele-
ments of a diffusion tensor, Dy, Dy,, or D
[1,3,12,36,37], while off-diagonal elements of D% were
not considered. However, from Eq. [10] and measured

" data, we see that contributions from off-diagonal ele-
_ ments of D arising from interactions between imaging

and/or diffusion gradients in both parallel and perpen-
dicular directions can contribute sighificantly to the
measiired signal intensity. ,

Serious errors are made in estimating D*¥ when its
off-diagonal elements are not considered (23) both in
spectroscopy and in imaging. First, one is precluded
from determining a material’s orthotropic axes, in par-
ticular its fiber orientation (15), because in estimating -
De%, ignoring its off-diagonal elements is tantamount
to assuming that the principal axes (gigenvectors) of
D= are aligned with the x-y-z coordihate axes of the
laboratory frame of reference, and that the principal
diffusivities (eigenvalues) of D°f are equal to the diago-
nal elements of D*¥. In MR imaging, these conditions
are virtually impossible to satisfy, since one seldom
knows the fiber directions within an anisotropic biolog-
ical or nonbiological specimen a priori, and these fiber

FIG. 9. A raw proton.image of a sagittal sec-
tion of an excised cat brain with the cerebel-
ium at the top. The box encloses a (16 x 16
- pixel) region of interest coritaining & portion
of the corpus callosum and a ventricle filled
with CSF. For this ROI, we estimated an ef-
fective diffusion tensor in éach voxel.
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FIG. 10. Effective diffusion ellipsoid image of the ROl shown in Fig. 9. The 16 X 16 array of
ellipsoids is displayed above as a gray scale image of the first scalar invariant of the effective
diffusion tensor, Tr(D°"). Juxtaposed is an image of the effective diffusion eilipsoids that were
constructed from D°% estimated in each of the 16. x 16 corresponding voxels. Their shapes are
consistent with known tissue composition and fiber orientation in this region of brain tissue. For
example, the fibers within the corpus callosum are properly oriented (i.e., they correlate with
known anatomy), while a ventricle filled with CSF is depicted by a large spherical ellipsoid indicat-
ing isotropic diffusion. Gray and white matter are also easily distinguished. Moreover, spatial
gradients in fiber-tract orientation on a multi-voxel length scale are aiso seen.

FIG. 11. Image of the first scalar invariant,
Tr(De™), calculated for the same sagittal sec-
tion of-excised cat brain shown in Fig. 9. The
box indicates the ROI from which the diffu-
sion ellipsoids were constructed in Fig. 10.
Tr(D*™) provides information not contained
in the raw image shown in Fig. 9. For exam-
ple, itis relatively easy to distinguish regions
of CSF, gray and white matter, fissures, and
the corpus callosum. ‘
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“FIG. 12. Diffusion ellipse image of lateral ventricles and
corpus callosum in living human brain, acquired using
EPI. The diffusion ellipse image constructed from Deffis
the projection of the diffusion ellipsoid image onto the
coronal plane. The larger ellipses indicate fluid in the ven-
tricular space, while the highly organized, small ellipses
indicate white matter fiber tracts in the corpus callosum.

directions invariably change within the field of view.
Second, by ignoring off-diagonal elements of D°f, one
incorrectly estimates D°, precluding the accurate esti-
‘mation of functions derived from it, such as the trace
of D%, For example, the ADCs one estimates from
diffusion-weighted images by applying diffusion-sensi-
tizing gradients in each of the three perpendicular di-
rections, ADCx, ADC,, ADC,, are generally not equal
to the diagonal elements of the effective diffusion ten-
sor, D¥, DS, and DS, respectively (15), contrary to
recent claims (32). Therefore, there is no basis for the
claim that ADC, + ADC, + ADC, possesses the desir-
able rotational invariance that the trace of D*¥ does
31).

Hardware Tuning Using Diffusion Tensor
Measurements

We have also proposed the use of Def to correct
measurement errors caused by misalignment and im-
proper scaling of the time-dependent B-field gradients
used in diffusion NMR imaging and spectroscopy. Be-
cause the effective diffusion tensor is estimated from
an equation (e.g., Eq. [15]) whose b-matrix elements
scale with | G |*, D° is inherently more sensitive to
the magnetic field gradient than is the phase, which

depends only on | G |. A process, formally equivalent '
to ““whitening”’ of signals (38), potentially can improve
the accuracy of diffusion NMR spectroscopy and imag-
ing (15), both in the initial installation of magnetic field
gradients and in the subsequent interpretation of
spin-echo signals in diffusion spectroscopy and
imaging.

Moreover, we hope to maximize the information
gain per experiment by improved statistical estimation
methods and experimental design.

CONCLUSION

We have described a method to estimate the compo-
nents of D in a voxel from spin-echo experiments.
In contrast to diffusion MRI, diffusion tensor MRI in-
herently contains higher-order intravoxel microstruc-
tural and microdynamic information. The eigenvectors
of Df can be used to construct a local frame of refer-
ence within a voxel (which we associate with the local

- orthotropic directions of the medium); and the eigen-

vector of the largest eigenvalue defines the local fiber-
tract axis. The eigenvalues of D°® are the diffusion
coefficients in these orthotropic directions. The effec-
tive diffusion ellipsoid displays the mean diffusion dis-
tances along each of the three principal directions at a
diffusion time defined by the gradient pulse sequence.
The three scalar invariants of D°f, which are readily
measured and monitored, contain complementary in-
formation about mobility and microstructure that is in-
dependent of fiber orientation per se, and may reflect
subtle changes in compartmental volumes, permeabil-
ities, and viscosities. :

Characterizing the D of protons or metabolites
within anisotropic media may have great potential sig-
nificance. For example, in ontogeny, it would provide
a means of monitoring the development of anisotropic
tissues and ordered structures in vivo, both noninva-
sively and nondestructively. In physiology, it would
provide a means to infer cell-membrane, intracellular,
and interstitial diffusivities from an appropriate micro-
structural model of the tissue structure. In anatomy,
it would provide a means of producing fiber-tract orien-
tation maps, of segmenting different tissue types, and
even of visualizing muscle and nerve fiber tracts indi-
vidually. In pathophysiology, it may provide a means
of diagnosing and monitoring the progression of var-
jous diseases, such as diffuse demyelination, ischemia
(including stroke), and edema (even helping to distin-
guish between cytotoxic, vasogenic, and interstitial
edemas). Finally, this technique can potentially be
used to test nonmagnetic samples nondestructively
(e.g., gels and in vitro cell and tissue cultures).
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