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Abstract

A unifying theoretical and algorithmic framework for diffusion tensor estimation is presented. Theoretical connections among the
least squares (LS) methods, (linear least squares (LLS), weighted linear least squares (WLLS), nonlinear least squares (NLS) and their
constrained counterparts), are established through their respective objective functions, and higher order derivatives of these objective
functions, i.e., Hessian matrices. These theoretical connections provide new insights in designing efficient algorithms for NLS and con-
strained NLS (CNLS) estimation. Here, we propose novel algorithms of full Newton-type for the NLS and CNLS estimations, which are
evaluated with Monte Carlo simulations and compared with the commonly used Levenberg–Marquardt method. The proposed methods
have a lower percent of relative error in estimating the trace and lower reduced v2 value than those of the Levenberg–Marquardt method.
These results also demonstrate that the accuracy of an estimate, particularly in a nonlinear estimation problem, is greatly affected by the
Hessian matrix. In other words, the accuracy of a nonlinear estimation is algorithm-dependent. Further, this study shows that the noise
variance in diffusion weighted signals is orientation dependent when signal-to-noise ratio (SNR) is low (65). A new experimental design
is, therefore, proposed to properly account for the directional dependence in diffusion weighted signal variance.
Published by Elsevier Inc.
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1. Introduction

Diffusion tensor imaging (DTI) is a novel noninvasive
technique capable of providing important information
about biological structures in the brain [1–4]. This tech-
nique depends upon accurate and precise estimation of
the diffusion tensor. The mathematical framework for dif-
fusion tensor estimation is both elegant and simple [1,4].
Its simplicity is due in part to the fact that the model is
transformably linear [5]. However, the diffusion tensor in
its original form as derived from first principles is a nonlin-
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ear model. Recent DTI studies have used several different
models—from linear to nonlinear, and from unconstrained
to constrained [4,6–12].

In general, the methods of estimation in DTI can be
classified as linear least squares (LLS), weighted linear least
squares (WLLS), nonlinear least squares (NLS) and their
corresponding constrained counterparts, which will be
denoted as CLLS, CWLLS and CNLS, respectively [4,6–
12]. The constraint employed in the CLLS, CWLLS, and
CNLS estimations is generally the positive definite con-
straint [11,12], i.e., the requirement that every eigenvalue
of the diffusion tensor estimate be positive. The statistical
comparison among different methods of diffusion tensor
estimation, both unconstrained and constrained, has
been studied in [12]. In the present study, we present a
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theoretical and algorithmic framework for methods of esti-
mation in DTI by investigating the properties of various
least squares objective functions.

There are several numerical methods for solving the
NLS problem in DTI. Yet, the Levenberg–Marquardt’s
(LM) approach has been the method of choice, perhaps,
due to its simple implementation. This simplicity is due in
part to its approximation to the Hessian matrix of the
NLS objective function. Another approach is Newton’s
method (or full Newton-type method) where the complete
Hessian matrix is required in the estimation process. It is
well known that Newton’s method is more robust than
the LM method and can speed up convergence in NLS
problems [13,14], but the complete Hessian matrix is often
not available or known for a given problem. Fortunately, a
previous account has shown that this is not the case in DTI
[15]. In this study, we will show that the Hessian matrices
for various methods of estimation in DTI have simple
and compact forms.

We first review the basic estimation problem in DTI and
discuss various least squares approaches for solving the
problem. We then establish theoretical connections among
the LLS, WLLS and NLS methods and among their con-
strained counterparts. We also derive all the Hessian matri-
ces for the methods of estimation discussed in this paper.
We propose an efficient strategy, which will be called Mod-
ified Full Newton’s method (MFN), for solving both the
NLS and CNLS problem. This strategy entails using the
WLLS solution as the initial guess, adjusting the LM
parameter, and incorporating the full Hessian matrix of
the NLS objective function. A similar strategy is also
adapted for solving the CNLS problem in DTI.

The performance of the proposed method is compared
with the LM method using Monte Carlo simulations. The
robustness and accuracy of the MFN method is assessed
with respect to the LM method in terms of percent relative
error in the estimated trace and reduced v2 value. The sim-
ulations are also used to assess the validity of the assump-
tion of constant noise variance in a single voxel. The
analysis and the results of this study provide new insights
in constructing more appropriate experimental designs in
which the direction-dependent noise variance is taken into
account in the diffusion tensor estimation.

2. Materials and methods

2.1. Review of DTI estimation

In a DT-MRI experiment, the measured signal in a sin-
gle voxel has the following form [1,4,16]:

s ¼ S0 expð�bgTDgÞ; ð1Þ
where measured signal, s, depends on the diffusion encod-
ing gradient vector, g, of unit length, the diffusion weight,
b, the reference signal, S0, and the diffusion tensor, D.
The symbol ‘‘T’’ denotes the matrix or vector transpose.
Given m P 7 sampled signals based on at least six noncol-
linear gradient directions and at least one sampled refer-
ence signal, the diffusion tensor estimate can be found by
minimizing different objective functions. To facilitate our
theoretical investigation, the objective functions for the
LLS, WLLS and NLS problems are defined as follows:
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The various symbols shown above are defined as:

i = 1,. . ., m,
si = the measured diffusion weighted signal with noise,

ŝiðcÞ ¼ exp
P7

j¼1W ijcj

h i
¼ the diffusion weighted

function at c,
xi = the weights for the WLLS objective function,

F i ¼ yi �
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j¼1W ijcj

is the error term for the LLS objective function,
riðcÞ ¼ si � ŝiðcÞ
is the error term for the NLS objective function,
yi = ln(si),
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is a m · 7 design matrix, and
c = [ln(S0), Dxx, Dyy, Dzz, Dxy, Dyz, Dxz]

T is the param-
eter vector.

In general, the diffusion tensor is assumed to be symmet-
ric positive definite—in other words the eigenvalues of the
diffusion tensor have to be real and positive. By definition
of the design matrix, W, the diffusion tensor estimate is
guaranteed to be symmetric but not positive definite. The
positive definite condition requires more elaborate con-
straints on the diffusion tensor parameter vector,
[Dxx,� � �,Dxz]

T. A typical approach is to apply the Cholesky
parametrization to D [17,11,12]. The Cholesky parametri-
zation states that if U is an upper triangular matrix with
nonzero diagonal elements

U ¼
q2 q5 q7

0 q3 q6

0 0 q4

0
B@

1
CA ð5Þ

and D = UTU then D will be a symmetric positive definite
matrix. Consequently, the parameter vector, c, may be
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written as a vector-valued function of q = [q1, q2, q3, q4, q5,
q6, q7]T so that:

cðqÞ ¼ ½q1; q
2
2; q

2
3 þ q2

5; q
2
4 þ q2

6 þ q2
7; q2q5; q3q6

þ q5q7; q2q7�
T ð6Þ

Rewriting Eqs. (2)–(4) in terms of q, we have,
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and

fCNLSðcðqÞÞ ¼
1

2

Xm

i¼1

si � exp
X7

j¼1

W ijcjðqÞ
" # !2

; ð9Þ

respectively, for the constrained estimations. Note that the
CLLS and the CWLLS objective functions are no longer lin-
ear with respect to the new variables q. The naming conven-
tion adopted here for the constrained LLS and WLLS
methods is for convenience rather than technical correctness.

2.1.1. Theoretical connections among the least squares

methods: zeroth order

Without loss of generality, we will focus on the uncon-
strained methods of estimation in this section. The goal
of this section is to establish connections among the LLS,
WLLS and NLS objective functions via the error terms
defined above, and to understand the assumptions needed
to arrive at the LLS and WLLS objective functions from
the NLS objective function. It can be shown that Eq. (4)
can be written as:
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The derivation of Eq. (10) is shown in Appendix A. Eq.
(10) exhibits a certain symmetry when the error term, Fi,
is small. Assuming |Fi|� 1, we take the first order Taylor
expansion of exp [�Fi] @ 1 � Fi and of exp [+Fi] @ 1 + Fi,
so Eq. (10) can be approximated as
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which gives us two formulae analogous to the WLLS objec-
tive function in Eq. (3). Eq. (11) indicates that the weights,
si and ŝi, are equally appropriate when the error Fi is small.
Therefore, the observed diffusion weighted signals can be
used as weights for the WLLS method. The use of diffusion
weighted signals as the weights for the WLLS objective
function has been previously proposed on different theoret-
ical grounds by Salvador et al. [10] and by Basser et al. [4].
If we assume si’s in Eq. (11) are approximately equal to
some constant, C, then the WLLS objective function can be
reduced to the LLS objective function by setting the con-
stant to unity. Therefore,

fLLSðcÞ ¼
1

2

Xm
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F 2
i : ð12Þ

The restrictive and physically implausible assumption
needed to arrive at Eq. (12) from Eq. (11) clearly shows
the inadequacy of the LLS method.

2.1.2. The theoretical connections among the least squares

methods: higher order

In this section, we will present a higher order expres-
sion of the objective function for all the methods of esti-
mation discussed above. Explicit expressions for the
Hessian matrix, the Jacobian matrix, and the gradient
vector for the NLS method will be presented first but
the derivations of these expressions will be provided in
Appendix B. Expressions for the Hessian matrix and
the gradient vector of the NLS objective function have
simple connections to those of the WLLS and LLS
objective functions based on the analysis presented in
Section 2.1. In the NLS method, the Hessian matrix,
the transpose of the Jacobian matrix, and the gradient
vector can be written as:

r2fNLSðcÞ ¼WTðŜ2 � RŜÞW; ð13Þ

JTðcÞ ¼ �ðŜWÞT; ð14Þ
and

rfNLSðcÞ ¼ �ðŜWÞTrðcÞ; ð15Þ
respectively; where the Hessian matrix is defined as
½r2fNLSðcÞ�ij �

o2fNLSðcÞ
ociocj

and the matrix, S, is a diagonal
matrix whose nonzero elements are the measured diffusion
weighted signals:
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Similarly, R and Ŝ are diagonal matrices whose nonzero
elements are the diffusion weighted functions and the error
terms evaluated at c, respectively:

Ŝ ¼
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We shall derive the same higher order information for
the WLLS and LLS methods from the NLS Hessian matrix
as follows:

(I) r2fNLSðcÞ ¼WTðŜ2 � RŜÞW;
(II) r2fNLSðcÞ ffiWTŜ2W if R ffi 0;
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(III) r2fNLSðcÞ ffiWTS2W if S ffi Ŝ, similar to the
assumption used in Eq. (11);

(IV) r2fNLSðcÞ ffiWTW if S @ I, similar to the assump-
tion used in Eq. (12).

In deriving (II) from (I), we have assumed that the error
matrix, R, is close to zero. If we further assume that S ffi Ŝ,
then we have the Hessian matrix for the WLLS method as
is shown in (III). Pushing a step further by assuming S @ I,
we then arrive at the Hessian matrix of the LLS method,
which is in (IV).

For completeness, the Hessian matrices and the gradient
vectors for the WLLS and LLS methods are:

r2fWLLSðcÞ ¼WTS2W; and ð18Þ
r2fLLSðcÞ ¼WTW; ð19Þ
rfWLLSðcÞ ¼ �ðSWÞTSðy�WcÞ; ð20Þ
rfLLSðcÞ ¼ �WTðy�WcÞ: ð21Þ

Despite the additional information required to specify
the CNLS objective function, its Jacobian, Hessian, and
gradient vector are remarkably similar to its unconstrained
counterparts; these higher order structures are listed below:

r2fCNLSðqÞ ¼ JT
q ðcÞWTðŜ2 � RŜÞWJqðcÞ þ
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and
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The derivations of the above equations are provided in
Appendix C.

If the NLS estimate is positive definite then this estimate
is equivalent to the CNLS estimate. This result can be
obtained by replacing the map c (q) with the identity map
so that the Jacobian matrix Jq (c) in Eqs. (22)–(24) reduces
to the identity matrix. Therefore, the gradient vector and
the Hessian matrix of the CNLS method reduce to that
of the NLS method. The reduction from the CNLS method
to the CWLLS and CLLS methods can be analogously
established.
2.2. The modified full Newton’s method

In this section, we present the basic idea of modified full
Newton’s (MFN) method; the specific algorithm is in
Appendix D in a format that allows for ready implementa-
tion of the NLS and CNLS methods. Before presenting the
algorithm, we would like to give a brief introduction to the
LM and the proposed methods in the context of modified
full Newton’s method of function minimization.

Define the least squares objective function,

f ðcÞ ¼ 1

2

Xm

i¼1

riðcÞ2 ¼
1

2
rTr; ð26Þ

where rðcÞ ¼ ½r1ðcÞ � � � rmðcÞ�T. The equation to be solved
in the kth iteration in MFN method can be written as
[13,14]:

HðckÞdk ¼ �rf ðckÞ; ð27Þ
where dk is known as the search step vector, H (ck) is the
generalized Hessian matrix and $f (ck) is the gradient
vector. The gradient vector is written as:

rf ðcÞ ¼ JTðcÞrðcÞ; ð28Þ
where J(c) is known as the Jacobian matrix with
[J (c)]ij = ori(c)/ocj.

It is interesting to note that the key difference in various
approaches of function minimization lies in the expression
of the generalized Hessian matrix. For example, the gener-
alized Hessian matrix for the MFN, Gauss Newton’s, New-
ton’s, and LM methods can be written as:

HMFN ðcÞ � JTðcÞJðcÞ þ
XN

i¼1

riðcÞr2riðcÞ þ kI; ð29Þ

HGN ðcÞ � r2f ðcÞ ¼ JTðcÞJðcÞ; ð30Þ

HNðcÞ � r2f ðcÞ ¼ JTðcÞJðcÞ þ
XN

i¼1

riðcÞr2riðcÞ; ð31Þ

and

HLMðcÞ � JTðcÞJðcÞ þ kI; ð32Þ
respectively; where I is the identity matrix and k is the
Levenberg–Marquardt parameter, which is always
assumed to be a nonnegative real number.

In the MFN algorithm, we take Eq. (29) as our gen-
eralized Hessian matrix. In addition to that, the param-
eter k will be set to zero initially and will remain so
during the iterative process until a higher objective func-
tion value is encountered. This is done so that a full
Newton step can be taken at the first iteration since
the WLLS estimate can be used as a reasonable initial
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guess. For completeness, the algorithm for the MFN
method is shown in Appendix D.

2.3. Methods of comparison and numerical simulations

Monte Carlo simulations similar to those of Pierpaoli
and Basser [18] were carried out to analyze the MFN and
the LM methods by comparing the percent relative error
in estimating the trace, where the percent of relative error
of an estimate ŵ of a known parameter is defined as
j ŵ�w

w j � 100%. Further, we used the reduced v2, v2
m , value

as another measure to gauge the accuracy and the good-
ness-of-fit among these methods [19].

Since the theoretical variance for a given simulation is
known a priori, comparing the normalized histograms of
the v2

m estimates to the theoretical distribution provides
an excellent measure for goodness of fit. Briefly, let ĉ be
the NLS (or CNLS) estimate of the objective function fNLS

(or fCNLS), then 2f NLSðĉÞ
m or 2f CNLSðĉÞ

m

� �
is an unbiased vari-

ance estimate of the DW signals where m = m � p = m � 7
is the number of degrees of freedom; m is the number of
sampled signals; and p the number of parameters. We shall

denote 2f NLSðĉÞ
m or 2f CNLSðĉÞ

m as r2
DW. The v2

m value can be com-

puted by dividing the variance estimate with the known

variance, that is,
r2

DW

r2
Rician

, where r2
Rician is the known variance

of the noise based on the Rician probability density

[20,21]. Intuitively,
r2

DW

r2
Rician

	 1 indicates a good estimate of

r2
DW.

To facilitate the comparison between the normalized
histogram and the theoretical density curve, we will need
the reduced v2 probability density. We provide here an out-
line of this derivation. Let the v2

m probability density be gv2
m
,

Fig. 1. Reduced v2 probability density curves w
and the Chi-square v2 probability density be gv2 . Then, the
v2 density can be written as [19]

gv2ðxÞ ¼
2�m=2

Cðm
2
Þ xðm=2Þ�1e�x=2: ð33Þ

The v2
m probability density can be obtained by making a lin-

ear transformation on the random variable, x, so that the
new random variable, y, can be written as y = x/m:

gv2
m
ðxÞ ¼ mgv2ðmxÞ: ð34Þ

The expected value and variance of a random variable with
v2

m density are:

Ev2
m
½x� ¼ 1 and Varv2

m
½x� ¼ 2=m: ð35Þ

The plot of the v2
m density with different numbers of degrees

of freedom is shown in Fig. 1.
The magnitude MR image is derived from the complex

signals and is used for diffusion tensor estimation; there-
fore, noise characteristics of the magnitude MR signal will
affect the accuracy of the tensor estimate. It is well known
that noise in MR magnitude signals follows the Rician dis-
tribution [20–22]. Therefore, the theoretical variance used
to generate Gaussian noise r2

Gaussian for each of the real
and complex components will have to be transformed
appropriately with respect to Rician density when the noise
variance in the magnitude image is of interest. Provided
here is an exact formula taken from Koay and Basser
[22] for expressing the variance in magnitude MR signal
in terms of the variance of the Gaussian noise in the two
quadrature channels and a correction factor, n. This
correction factor is written in terms of SNR in order to
facilitate simulation studies. Let h = SNR, the noise
variance in magnitude MR signal can be expressed as [22]:

r2
Rician ¼ nðhÞr2

Gaussian; ð36Þ
ith different numbers of degrees of freedom.
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where

nðhÞ ¼ 2þ h2 � p
8

e�h2=2 ð2þ h2ÞI0ðh2=4Þ þ h2I1ðh2=4Þ
� �2

� �
ð37Þ

and I0 and I1 are the modified Bessel functions of order
zero and one, respectively.

Two different simulations are carried out in this work.
The first simulation focuses on the distributional properties
of the v2

m estimate and of the trace estimate as obtained by
various nonlinear LS algorithms. In this type of computa-
tionally expensive simulation, we have to be selective in the
choice of physiologically relevant tensors in order to reduce
computation cost and, more importantly, to make the sim-
ulation results concise and representative. Therefore, we
have chosen two specific tensors for this simulation: two
cylindrically symmetric tensors with the same trace value
of 2.190 · 10�3 mm2/s, but different FA values of 0.5398
and 0.8643. Other relevant simulation parameters are listed
here, diffusion weight (b = 1000 s/mm2), the reference sig-
nal (S0 = 1000 a.u.) and the parameter vectors c,
([ln(1000) s/mm2, 1.236 · 10�3, 4.765 · 10�3, 4.765 · 10�3,
0, 0, 0]T mm2/s and [ln(1000) s/mm2, 1.758 · 10�3,
2.158 · 10�3, 2.158 · 10�3, 0, 0, 0]T mm2/s).

The second simulation is based on simulated human
brain tensor data. Its goal is to complement the first simu-
lation by accounting for a wide range of tensor shapes. In
this simulation, we focus on the human brain map of the
mean value of the relative error in estimated trace. The
clinical DT-MRI human brain images were acquired from
a healthy volunteer using a high angular scheme [27,28]. All
images were co-registered [23] and robust tensor estimation
[7] was used to eliminate ‘‘outliers’’ from the data. The
computed tensors, combined with the relevant parameters
mentioned above, were then used to create the simulated
diffusion weighted signals and one non-diffusion weighted
signal using the single diffusion tensor model of Basser
[4]. Gaussian noise was added in quadrature [18] so as to
simulate images with a signal-to-noise ratio (in the non-dif-
fusion weighted image) of 5 in each pixel. This particular
approach allows us to investigate the response of anatom-
ically specific tensors in the brain under the same simula-
tion conditions, which would otherwise be quite difficult
experimentally. In this way, we are able to identify regions
in the brain where the constrained methods are likely to be
useful, i.e., in regions where negative eigenvalues are more
prevalent.

We shall adopt the following convention on the
algorithms mentioned above when discussing the
results: NLS-LM (NLS estimation using the LM
method), NLS-MFN (NLS estimation using the MFN
method), CNLS-LM (CNLS estimation using the LM
method) and, CNLS-MFN (CNLS estimation using
the MFN method). Finally, the LM method used in
this study was taken from a routine in JMSL of Visual
Numerics� called NonlinLeastSquare which is based on
MINPACK routine LMDIF by Moré et al. [24]. The
MFN routine for the NLS and CNLS methods was
developed in-house using the Java programming lan-
guage together with the QR decomposition routine
from JAMA [25].

3. Results and discussion

The results on the distributional properties of the v2
m

estimate and of the trace estimate are summarized in
Figs. 2 and 3. The results on the average value of the
relative error in estimating the trace in the simulated
human brain map are shown in Fig. 4. Fig. 5 shows
the difference in these average values among various
methods considered in this paper. The results of Figs.
2 and 3 are computed from a collection of 50,000 simu-
lated tensors. In Figs. 4 and 5, the results on each pixel
are computed from a collection of 10,000 simulated ten-
sors. The histograms of the v2

m estimate and of the trace
estimate are plotted in Figs. 2 and 3, respectively. Each
histogram in the panel is computed using different meth-
ods, i.e. the NLS-LM, the NLS-MFN, the CNLS-LM or
the CNLS-MFN method.

In Fig. 2, the results of the v2
m estimate associated with

the first tensor with medium FA of 0.539 at SNR = 5
and SNR = 15 are shown in panels A and B, respective-
ly. Similarly, the results associated with the second tensor
with FA = 0.864 at SNR = 5 and SNR = 15 are shown
in panels 2C and D, respectively. In each panel, the the-
oretical distribution is shown in gray. It is interesting to
note that the v2

m histogram of the NLS-MFN method is
shifted to the left of the theoretical distribution in Figs.
2A and C, which implies that the v2

m estimated by the
NLS-MFN method is, in general, lower than the known
distribution! Low v2

m values do not necessarily indicate a
better fit, but rather a problematic estimate of the vari-
ance, i.e., r2

Rician. This anomaly of having a lower v2
m val-

ue than expected might not have been noticed without
the Newton-type method of optimization, i.e., the
MFN method. More importantly, this anomaly suggests
that the signal variance is orientation dependent, that
is, the variance depends on the gradient direction. There-
fore, a new experimental design capable of obtaining
multiple replicates in each gradient direction is needed.
This new experimental design would allow estimation
of the mean signal and signal variance on each gradient
direction, the analytically exact correction scheme pro-
posed by Koay and Basser [22] can be used to estimate
diffusion weighted signals that are Gaussian distributed.
This approach reduces considerably the effects of the
noise floor. This research topic is currently under inves-
tigation. Note that the pathologies of the rectified noise
floor on tensor-derived quantities have been investigated
by Jones and Basser [9].

The results in Fig. 3 are arranged similarly to those in
Fig. 2. It is interesting to note here that a systematic shift
in the distributions of the trace estimate as computed by
the LM method, i.e., NLS-LM and CNLS-LM, can be seen



Fig. 2. Histogram of reduced v2 values for two different SNR levels and FA values calculated from 500,000 simulated tensors: (A) SNR = 5, FA = 0.539,
(B) SNR = 15, FA = 0.539, (C) SNR = 5, FA = 0.864, and (D) SNR = 15, FA = 0.864. Note that the theoretical reduced v2 curve in (B) and in (D) is
superimposed on that of MFN.
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quite easily at SNR = 5. The quantitative information on
these shifts is tabulated in Table 1 as the percent of relative
error in estimating the trace. The results in Table 1 can be
summarized as follows: (I) in NLS estimation, the MFN
method has a lower relative error in estimating the trace
than the LM method, (II) in CNLS estimation, the MFN
method is also better than the LM method, and (III) the
CNLS-MFN method has lower relative error in estimating
the trace than other methods considered in this paper.

The results on the simulated human brain data are
shown in Figs. 4 and 5. Fig. 4 is the whole brain map of
the average value of the relative error in estimating trace.
The results show that the CNLS-MFN method has the
lowest relative error among the methods considered here.
The images shown in Figs. 4 and 5 indicate that the
MFN method has lower relative error in estimating trace
than the LM method in almost every region of the brain
except in the ventricles and in the sulci where the results
between the methods are comparable. Further, the differ-
ence between the NLS and the CNLS estimations by the
same method of optimization, the LM method or the
MFN method, can also be discerned, particularly, in the
genu of the internal capsule and in the Corpus callosum,
Figs. 5B and D. An obvious feature of Figs. 5B and D is
that the figures closely resemble the FA map! This shows
that the constrained methods are most relevant in the white
matter regions.

Analysis of the algorithms presented here is an interest-
ing area of study and is under investigation. A detailed dis-
cussion of this topic is beyond the scope of this paper. It
suffices to say that the computation time per estimation
for the methods discussed in this paper was approximately
1 ± 0.5 ms on a Dell Precision 670 with dual Intel Xeon
3.5-GHz processors.



Fig. 4. The average value of the percent relative error in estimating trace by the (A) NLS-LM, (B) CNLS-LM, (C) NLS-MFN, and (D) CNLS-MFN
methods based on simulated human brain data with SNR = 5, b = 1000 s/mm2 and a 23 gradient direction set. These images show that the MFN method
has lower relative error in estimating trace than does the LM method in almost every region of the brain except in the ventricles and sulci. Interestingly, the
difference between the NLS and the CNLS estimations by the same method of optimization, the LM method or the MFN method, can readily be discerned
in the genu of the internal capsule and in the Corpus callosum (B and D); these regions are known to have high FA values.

Fig. 3. Histogram of estimated trace values for two different SNR levels and FA values: (A) SNR = 5, FA = 0.539, (B) SNR = 15, FA = 0.539, (C)
SNR = 5, FA = 0.864, and (D) SNR = 15, FA = 0.864.

122 C.G. Koay et al. / Journal of Magnetic Resonance 182 (2006) 115–125
4. Conclusion

The Hessian matrices for various least squares problems
are explicitly derived. Simulation results indicate that the
accuracy of a diffusion tensor estimate can be substantially
improved by explicitly including the Hessian matrix in the
least squares estimation algorithm. The proposed con-
strained nonlinear least squares estimation based on the
modified full Newton’s method has lower relative error in
estimating the trace than other methods discussed in this



Table 1
Percent of relative error in estimating the trace

SNR 5 (%) SNR 15 (%)

Medium FA High FA Medium FA High FA

NLS-MFN 10.76 14.10 1.10 1.49
NLS-LM 29.22 33.39 4.21 5.44
CNLS-MFN 8.70 7.24 1.08 1.31
CNLS-LM 23.82 20.10 4.19 5.21

Fig. 5. The difference in the average percent of relative error in estimating trace between (A) NLS-LM and NLS-MFN, (B) CNLS-LM and CNLS-MFN,
(C) NLS-LM and CNLS-LM, and (D) NLS-MFN and CNLS-MFN. These images again show that the MFN method has lower relative error in
estimating trace than does the LM method. The differences between the NLS and the CNLS estimations by the same method of optimization is more
readily discernible in (C and D) and, as commented on Fig. 4, these differences are most distinct in the genu of the internal capsule and in the Corpus
callosum. It is interesting to note the similarity in features between these images (C and D) and a typical FA map.
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paper. The proposed method not only provides a more
accurate tensor estimate but also a more accurate Hessian
matrix. The importance of the Hessian matrix can be
gleaned from recent works by Chang et al. [29], Carew
et al. [30] and Koay et al. [31], where the inverse of the Hes-
sian matrix is used for computing the variance–covariance
matrix of the estimated DTI parameters. Therefore, the
proposed framework will be very useful in testing optimal
experimental designs in DTI as well as in fiber tractography
where the variability in the major eigenvector can be accu-
rately quantified.
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Appendix A

The derivation of Eq. (11) from Eq. (10) is shown
below:

fNLSðcÞ ¼
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Appendix B

In this appendix, we will derive the gradient vector, the
Jacobian matrix and the Hessian matrix of the NLS objec-
tive function. Given the NLS objective function

fNLSðcÞ ¼
1

2

Xm

i¼1

si � exp
X7

j¼1

W ijcj

" # !2

;

the derivative of fNLS (c) with respect to cl is

ofNLSðcÞ
ocl

¼
Xm

i¼1

rið�ŝiÞ
X7

j¼1

W ij
ocj

ocl

 !" #
¼ �

Xm

i¼1

riŝiW il

¼ �
Xm

i¼1

W T
liŝiri:

In matrix notation, the gradient vector has the following
form:

rfNLSðcÞ ¼

ofNLSðcÞ
oc1

..

.

ofNLSðcÞ
oc7

2
6664

3
7775 ¼ �WTŜr ¼ JTr;

where the transpose of the Jacobian matrix is JT ¼ �WTŜ.
The second order derivative of the NLS objective func-

tion will be established as follows:
o2fNLSðcÞ
ockocl

¼
Xm

i¼1

o

ock
rið�ŝiÞW il½ �

¼
Xm

i¼1

ŝ2
i W ilW ik þ rið�ŝiÞW ilW ik

� �
¼
Xm

i¼1

W T
ki ŝ2

i � riŝi

� �
W il:

In matrix notation, the full Hessian matrix is

r2fNLSðcÞ ¼WTðŜ2 � RŜÞW:
Appendix C

In this appendix, we derive the gradient vector and the
Hessian matrix of the constrained nonlinear least squares
method.

fCNLSðcðqÞÞ ¼
1

2

Xm
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" #
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i¼1
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oql

ofNLSðcÞ
oci

by change of variables. In matrix

notation, the gradient vector is
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In matrix notation, we have

r2fCNLSðcÞ ¼ JT
q ðcÞWTðŜ2 � RŜÞWJqðcÞ þ

Xm

i¼1

riŝiPi:
Appendix D

In this appendix, we provide the MFN algorithm for
both the NLS and CNLS estimations. In the CNLS estima-
tion, the initial guess has to be modified slightly before
being used in the MFN algorithm.
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MFN algorithm:
At the initial iteration, let c0 be the solution to the

WLLS problem, k = 0, and flag = true. When the Hessian
and the gradient vector have to be evaluated at new c the
flag will be set true.

Then at the kth iteration,

1. if(flag == true) Evaluate HMFN(ck) and $f(ck)
2. Solve (HMFN(ck) + kI) dk = �$f(ck) for dk

3. If (f(ck + dk) < f(ck)) {
}E

}

k = 0.1 · k
Accept dk by setting ck+1 = ck + dk

flag = true

lse {
if (k== 0), set k = 0.0001
else k = 10.0 · k
Reject dk by setting ck+1 = ck

flag = false
4. Repeat these steps, (1, 2 and 3), until 0 6 �dT
k

rf ðckþ1Þ < e1 and jf ðckþ1Þ � f ðckÞj < e2 where e1

and e2 are small positive numbers.

As mentioned in the text, a slight modification is needed for
the CNLS method because the initial guess is taken from
the WLLS method rather than the CWLLS method. There-
fore, the parameter vector, q, for the CNLS method has to
be obtained from the modified Cholesky factor [26] derived
from the diffusion tensor estimate of c. The modified
Cholesky factorization is one of the approaches to make
a non positive definite symmetric matrix sufficiently posi-
tive definite [13,26].
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