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ABSTRACT Diffusion of molecules in brain and other tissues is important in a wide range of biological processes and
measurements ranging from the delivery of drugs to diffusion-weighted magnetic resonance imaging. Diffusion tensor imaging
is a powerful noninvasive method to characterize neuronal tissue in the human brain in vivo. As a first step toward under-
standing the relationship between the measured macroscopic apparent diffusion tensor and underlying microscopic com-
partmental geometry and physical properties, we treat a white matter fascicle as an array of identical thick-walled cylindrical
tubes arranged periodically in a regular lattice and immersed in an outer medium. Both square and hexagonal arrays are
considered. The diffusing molecules may have different diffusion coefficients and concentrations (or densities) in different do-
mains, namely within the tubes’ inner core, membrane, myelin sheath, and within the outer medium. Analytical results are used
to explore the effects of a large range of microstructural and compositional parameters on the apparent diffusion tensor and
the degree of diffusion anisotropy, allowing the characterization of diffusion in normal physiological conditions as well as
changes occurring in development, disease, and aging. Implications for diffusion tensor imaging and for the possible in situ
estimation of microstructural parameters from diffusion-weighted MR data are discussed in the context of this modeling
framework.

INTRODUCTION

Nuclear magnetic resonance imaging (MRI) has demon-

strated that the diffusion coefficient of water in brain tissue

decreases quickly after stroke and other brain injuries by

;30–40% (1). The fact that diffusion effects can be visualized

within minutes, much earlier than any other imaging modality

(1,2), has life-saving implications (3). Diffusion tensor imag-

ing (DTI) (4) for noninvasive imaging of the fiber tracts in

white matter has become an indispensable tool for studying

the brain and managing stroke and other disorders such as

tumors, Alzheimer’s disease, multiple sclerosis, dyslexia,

and schizophrenia (4–7). A better exploitation of diffusion

MRI will come from a better understanding of diffusion in

tissues.

Biological tissues are multicompartmental heterogeneous

media composed of cellular and subcellular domains. Dif-

fusion of water is very sensitive to the local environment in

tissues, and is affected by the packing geometry of the cells

and their membrane permeability that controls the exchange

of molecules across the membranes (8,9). The cellular struc-

tures of tissues are in the micron range whereas conductivity

and diffusionmeasurements are generallymade over amacro-

scopic length scale, typically in the millimeter range (5,10,

11). The measured signal originates from all the molecules

that are present, i.e., both from the molecules diffusing

within the cells and the molecules exchanging between these

microcompartments. The term apparent diffusion coefficient

(ADC) was coined to reflect the fact that the measured

diffusion coefficient of water in tissues is reduced from its

bulk value due to geometrical restrictions and permeation

across cell membranes. A change in the measured macro-

scopic transport properties (in millimeter range) reflects the

underlying property changes of these compartments.

The primary purpose of this article is to provide analytical

results for the long-time ADC (actually apparent diffusion

tensor (ADT)) in a simplified model of brain white matter, to

probe the dependencies of the ADT on tissue structure and

composition. In principle, the diffusion coefficient in indi-

vidual compartments, packing geometry, intercellular spacing,

axon diameter, myelin sheath thickness, and permeability of

membranes should all affect the measured apparent diffusion

coefficient ADC, yet the relationship between these micro-

structural quantities and parameters, and the macroscopic

ADC remains obscure. This gap has hindered the full ex-

ploitation of diffusion-weighted nuclear-magnetic-resonance-

based techniques (NMR) for studying the brain and its

disorders. Specifically, we compute the macroscopic diffu-

sion coefficient both parallel and perpendicular to the axis of

symmetry of a neuronal bundle and relate these quantities to

microstructure and compositional parameters.

Water diffusion in tissue has been studied previously both

analytically and numerically by many and it is not possible to

review the literature here. Some relevant references can be

found in Nicholson (10), Sotak (12), Norris (13), Beaulieu

(14), and other articles (8,15–26). Szafer et al. (19) considered

a periodic array of boxes (cells) surrounded by partially per-

meable membranes, embedded in an extracellular medium.

The fact that intracellular and extracellular diffusion coef-

ficients may differ was taken into account. The results were

applied to the changes occurring in ADC after ischemic

insults to brain tissue. They found that although membranes

affect ADC significantly, the change results from the

combined effect of changes in cellular volume fraction,
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and extracellular and intracellular diffusion. Ford et al.

(17,18) modeled white matter as a bundle of cylinders and

used a numerical simulation of water self-diffusion among

permeable cylinders to predict the dependence of MR-based

apparent diffusion coefficients on axonal separation, barrier

permeability, and diffusion time t. Recently, Hwang et al.

(27) employed the finite-difference method on histological

images for simulating restricted diffusion in myelinated

axons. The literature had been reviewed well by Hwang et al.

(27), who stated that the thickness of the myelin sheath had

been ignored in all studies before theirs. They (27) validated

their finite-difference scheme against known analytic solu-

tions for diffusion in a cylindrical pore and in a hexagonal

array of cylinders that do not possess thick skins. Spe-

cifically, Hwang et al. compared their simulation for cases:

a), of a cylindrical pore surrounded by an impermeable

medium, and b), hexagonal arrays of permeable cylinders

using the results of Perrins et al. (28,29) for uncoated cylinders.

Presumably, such numerical studies would benefit from the

solutions provided here in which analytical results for the

thick-walled tube pack are provided. Here, among other

things, we present results for hexagonal packs of coated

cylinders that could serve as a test system to validate such

numerical calculations.

Anatomical sections of white matter reveal that the myelin

sheath on neurons is thick; see Fig. 1. To model myelin, we

incorporate a finite coating thickness having transport prop-

erties represented by its fluid concentration and diffusion

coefficient. The limit of infinitesimal layer thickness is just a

special case, characterized by a lumped permeability param-

eter, k. In our study we consider composite cylinders with an

inner core of radius rc and an outer radius rs such that the

thickness rs � rc of the sheath can vary. The separation

between the centers of cylinders is L. In the model, we treat

the myelin and membrane as a composite and the perme-

ability is determined by the combined effect of the mem-

brane and the myelin sheath. The myelinated axon is actually

a heterogeneous structure having long myelinated links

interrupted by short nodes of Ranvier; see Fig. 1. Both these

segments contribute significantly to the electrical properties

of the myelinated axon, and are presumed to do the same for

the water diffusion properties. None of the previous works

described above nor our work, adequately attributes the

overall water diffusion properties to the nodal membrane,

membrane of the myelinated axon, or the myelin itself.

Clearly, the parameter space is too large to explore com-

pletely using numerical simulations. In this case, analytical

expressions for the parallel and perpendicular ADCs, ADT,

and other related quantities, are useful in assessing whether

some variables are more important than others in determin-

ing the aggregate diffusion behavior within a biological range

of parameters. This we illustrate by performing a sensitivity

analysis that computes a fractional change in a macroscopic

dependent variable for a given fractional change in an in-

dependent variable or parameter.

GENERAL FORMULATION

Analysis of transport processes, such as diffusion, electrical

conduction, heat transfer, etc., in composite media is a large

and well-developed subject (30,31). Interestingly, the sim-

ilarity in structure and form of their governing equations

allows solutions for one type of transport process to be

mapped to another, provided that the analogous variables in

the constitutive equations can be identified (30,31). In the

case of diffusion, what is often neglected is that the relevant

constitutive parameter—that can be likened to electrical con-

ductivity or the dielectric constant—is the product of the con-

centration and the diffusion coefficient (32,33). This extra

factor of concentration comes from the thermodynamic

formulation of the diffusion process, discussed below.

Many methods are available for measuring the diffusion

coefficient (34). The results derived here can readily be used

to analyze a diffusion experiment that measures concentra-

tion directly, by releasing a precise amount of a nonabsorbing

marker (10) from a point source and measuring the resulting

concentration at a known distance, or by use of other markers

such as tritium or fluorescent dyes (34). In NMR measure-

ments, the diffusion is measured from the part of the signal

decay that is due to incoherent diffusive motion in the pres-

ence of an external magnetic field inhomogeneity. How-

ever, it is generally entangled with relaxation of magnetization

(T1, T2). The relaxation processes of a given spin (typically

proton) that arise from the fluctuating field of the other spins

are important, and can be different in different regions in

general (22). However, for long diffusion times, the relaxa-

tion appears to be single exponential (22). Chin et al. (35)

concluded that for white matter, the overall relaxation is

given by a single exponential (at long times), the sensitivity

of measured ADC to relaxation is small, and the difference in

rate of relaxation in different compartments can be neglected

FIGURE 1 A schematic diagram of a myelinated axon. The axonal

membrane contains short active regions, nodes of Ranvier, which are joined

by long passive segments insulated by myelin. The outer radius of the axon

is rs; its inner radius rc. Diffusion across myelin is hindered by layers of lipid

bilayers (in addition to the myelin sheath). A separate membrane skin can be

added to our calculation, but is not considered here. In the model, we treat

the myelin and membrane as a composite and the permeability is determined

by the combined effect of the membrane and the myelin sheath.
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(17,18,35). Thus, the overall relaxation of magnetization is

factored out and the steady state (i.e., long times) diffusion

coefficient in these tissues can be measured by NMR.

Diffusion currents are driven by gradients in the Gibbs

chemical potential,

m ¼ m
0
1RT lnC1RT ln a: (1)

Here R is the gas constant, T is the temperature, C is the

concentration of the substance that is diffusing, a is the

activity coefficient, and m0 is the chemical potential of

the substance in its standard state. A thermodynamic view of

diffusion and a discussion of how the gradient of chemical

potential acts like a force can be found in any standard thermo-

dynamics book (36). The variable m0 is independent of posi-

tion; we will assume either the substance is ideal (ln a [ 0)

or ln a does not vary with position, and the temperature is

uniform throughout. To be explicit, the particle current

density is given by the constitutive relation

jðrÞ ¼ �DCðrÞ
RT

=mðrÞ

¼ �D=CðrÞ: (2)

We use the analogy of Eq. 2 and the corresponding

constitutive relations between electric currents (displacement

or conduction) and electric potential gradient via dielectric

constant or electrical conductivity. We can apply the

solutions for electrical conductivity or dielectric constants

for composite media made up of coated cylinders (37,38)

(for spheres, see Torquato and Rintoul (39)) by replacing the

electrical potential, V(r, u), by a chemical potential, m(r, u)¼
m0 1 RT ln [C(r, u)], (we lump position-independent R T
ln a with m0). For the corresponding diffusion problem,

the conductivities or dielectric constants of each region are

replaced by the product of the diffusion coefficient and the

concentration of the corresponding region. There are other

terms in the chemical potential that are not displayed here

explicitly—the initial equilibrium concentration differences

in different regions are maintained by such differences in

chemical potentials for the corresponding regions. Here, as

in the other transport problems, we need to consider per-

turbations around the initial chemical potentials (36,33).

The additional factor of concentration plays an important

role in the tortuosity factor of the effective diffusion coef-

ficient (32,40). In a well-connected porous medium made up

of impenetrable grains, the measured diffusion coefficient,

D, of the interstitial fluid approaches, at long times, a nonzero

finite value, that is the bulk diffusion coefficient, D0, reduced

by a geometrical factor, known as the tortuosity a. For an

isotropic medium,

D ¼ D0

a
: (3)

The coefficient a is a dimensionless number that defines

the dc limit of diffusion and conductivity in a restrictive

geometry in terms of diffusion and conductivity of the bulk

fluid, Eq. 4, below. The tortuosity plays an important role in

various transport processes in porous media. In porous media

made of insulating grains, the conductivity of the medium s

is proportional to the conductivity of the interstitial fluid sw

through a geometrical factor F, which also relates to a¼ Ff,
where f is the porosity, i.e., the volume fraction of fluid,

s ¼ sw

F
D ¼ D0

Ff
(4)

s

D
¼ sw

D0

3f: (5)

The extra factor of f for D, in Eq. 4, comes from the fact

that concentration enters into a transport problem involving

diffusion (32) and not one involving electrical conduction.

We use the symbolf to be consistent with the literature and to

draw attention to a basic difference between f and the cor-

responding volume fraction of extra axonal fluid in ourmodel,

1� f, where f is the fraction of volume occupied by the coated

cylinders. Note that in Eq. 4, the only conducting phase is the

interstitial fluid, in contrast to the case of white matter where

the intraaxonal fluid may also be conducting. The details of

the computation of the effective diffusion coefficient for

packs of coated cylinders are discussed in Appendix I.

We use a subscript c to denote the core, s to denote the

sheath, and b to denote extraaxonal (bath) material; see Fig.

2. The equilibrium concentration and diffusion coefficients

of the molecules under investigation inside the core are Cc0

and Dc, those inside the myelin sheath are Cs0 and Ds, and

those outside are Cb0 and Db. We will use Cc(r), etc., to
denote perturbations to the corresponding equilibrium con-

centrations Cc0, etc. (33). The perturbations are due to an

externally imposed concentration or chemical potential gra-

dient, which can be likened to an electric field, Eext, that is

used in the corresponding problem of electrical conductivity

or dielectric constant of composite media (28,37,38). Db, the

diffusion in the extraaxonal bath is hindered, due to the

FIGURE 2 The unit cell for a square array of coated cylinders repre-

senting white matter with a myelin sheath. The equilibrium concentrations

such as Cs0, etc., and corresponding diffusion coefficients Ds, etc., of each

region as well as the inner and outer radii, rc, and rs, respectively, can be

different. The cylinders can be made to touch each other by taking rs/L=2.
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presence of glial cells and other tissues, and is presumably

lower that the free diffusivity of water. We believe that the

presence of glia in the extracellular space is consistent with

an isotropic medium with a diffusion coefficient that is lower

than that of free water.

We will consider both a square pack, Fig. 2, and a hexag-

onal pack of cylinders, Fig. 3. In both cases, the cylinder

centers are separated by a distance L, the radius of the inner
cylinder is rc, and that of the outer is rs, and thus the sheath

thickness is given by Dt ¼ rs � rc. Only the ratios of these

lengths will appear in the answer. We do not expect to be

able to infer the packing geometry from DTI experiments.

We use the hexagonal geometry because the square lattice

arrangements do not admit the high packing densities con-

sistent with what has been reported in axon bundles in vivo

(10). The hexagonal packing geometry permits regular but

higher packing densities. The square lattice packing geom-

etries are included for completeness.

The boundary conditions are such that chemical potentials

and normal particle currents are continuous at the interfaces:

mcðrÞ ¼ msðrÞ r ¼ rc
msðrÞ ¼ mbðrÞ r ¼ rs

Dc

@CcðrÞ
@n

¼ Ds

@CsðrÞ
@n

r ¼ rc

Ds

@CsðrÞ
@n

¼ Db

@CbðrÞ
@n

r ¼ rs

: (6)

Mathematical details are considered in Appendix I. If we

denote the products of concentration and diffusion by e, i.e.,

Cs0Ds ¼ es, etc., we can directly use the previous results

(28,29,37,38), to compute the effective concentration times

the effective transverse diffusion coefficient Ceff Dt,eff. Here,

the effective concentration Ceff is:

Ceff ¼ ð1� f ÞCb0 1 f
r
2

c

r2s
Cc0 1 f 1� r

2

c

r2s

� �
Cs0: (7)

The effective properties for coated cylinders depend on

what Nicorovici et al. (37,38) call g, the crucial quantity:

g2l�1 ¼
ðeb � esÞðes � ecÞr2ð2l�1Þ

c 1 ðeb 1 esÞðec 1 esÞr2ð2l�1Þ
s

ðeb 1 esÞðes � ecÞr2ð2l�1Þ
c 1 ðeb � esÞðec 1 esÞr2ð2l�1Þ

s

:

(8)

The longitudinal effective diffusion coefficient Dl,eff is

given by the volume averages:

Dl;effCeff ¼ ð1� f ÞDbCb0 1 f
r
2

c

r
2

s

DcCc0 1 f 1� r
2

c

r
2

s

� �
DsCs0;

(9)

for all packing geometries.

Before giving results for transverse diffusion coefficients

for a specific packing geometry, a few general comments that

hold for all packing geometries are useful. A reasonable mea-

sure of diffusion anisotropy can be given by the ratio Dl,eff/

Dt,eff, which can be obtained from the ratio of Eqs. 9 and 27.

Note that this ratio is independent of Ceff. Moreover, using

the longitudinal and transverse ADCs, we can obtain an esti-

mate for the angular profile of ADC as a function of the polar

angle, u,

ADCt;eff ¼ Dt;eff cos
2
u1Dl;eff sin

2
u: (10)

This relationship, first introduced by Boss and Stejskal

(41) results in a peanut- or pumpkin-shaped ADC profile when

plotted versus the polar angle, u. A rotationally invariant

quantity that is proportional to the orientationally averaged

bulk diffusivity is the trace of the diffusion tensor

TraceðDÞ ¼ Dl;eff 1 2Dt;eff ¼ 3ÆADCæ: (11)

ÆADCæ, the mean apparent diffusion coefficient, and the

degree of anisotropy, are two very useful parameters rou-

tinely used in characterizing white matter.

In square (see Fig. 2) and hexagonally symmetric packs

(see Fig. 3), the symmetry dictates (42) that the diffusion

tensor be described by two principal diffusivities—one par-

allel to the axis of the cylinders and another perpendicular to

it, lying in the transverse plane (i.e., diffusion is isotropic in

the transverse plane and two transverse components of the

tensor are identical). The form of the ADT in the principal

frame of reference is given by

ADT ¼
Dl;eff 0 0

0 Dt;eff 0

0 0 Dt;eff

0
@

1
A: (12)

Square array

For a square array, f ¼ pr2s =L
2 is the fraction of volume

occupied by the coated cylinders. As explained in Appendix

FIGURE 3 Nearest neighbors around the central cylinder of a portion of

a hexagonal array of coated cylinders. To simplify, only one cylinder is

depicted as coated, and only the outer radius is shown for the others. The

Wigner-Seitz cell is shown by dashed lines (inner hexagon). Centers of

cylinders are separated by a distance L, hence f ¼ ð2=
ffiffiffi
3

p
Þðpr2s =L2Þ, where

rs is the outer radius.
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I, to the lowest order in multipolar expansion, we obtain the

Maxwell-Garnett formula:

Dt;effCeff ¼ DbCb0 1� 2f

g1 1 f

� �
: (13)

A truncation to third order gives (37,38),

Dt;effCeff ¼ DbCb0 1� 2f g1 1 f � 0:305828f
4
g5

g3g5 � 1:402960f 8

� ��1
" #

:

(14)

The higher-order corrections can be obtained in the manner

outlined in Appendix I.

Hexagonal array

Although for the square lattice geometry, the maximum

value of f is p/4 � 0.785, published values of the intra-

cellular space based on iontophoretic measurements are typi-

cally higher, ;0.82 (10). To treat the physiological range of

axon spacing, we must consider hexagonal (and possibly

other) packing geometries that afford higher packing densities.

For a hexagonal array,

f ¼ 2pr
2

sffiffiffi
3

p
L
2: (15)

Thus, the maximum packing density is about f ¼ 0.907.

To the lowest order in multipolar expansion, we obtain again

the Maxwell-Garnett formula, Eq. 13, the same as that for a

square array. In fact, the Maxwell-Garnett formula holds for

all structures, including disordered systems and is accurate

for small f, i.e., in the dilute limit. Next to the same degree of

accuracy as in Eq. 14 gives:

Dt;effCeff ¼ DbCb0 1� 2 f g1 1 f� 0:07542 f
6
g7

g5 g7 � 1:06028 f
12

� ��1
" #

:

(16)

In the absence of a sheath, Eq. 24 holds, and we recover

Eq. 13 of Perrins et al.

SPECIAL CASES

Although the formulas given here are straightforward, they

are still quite complex, and it is useful to consider a few

limiting cases that give additional insight. For example,

when the diffusivity of the molecules in myelin is extremely

small compared to those of the intra- or extraaxonal fluid, the

contributions from the interior part of the axon will be

‘‘screened out’’, as shown below.

Thin myelin: permeability approximation

In the usual permeability approximation, the limit of thin

skin is used where Dt ¼ rs � rc/0 with Ds=ðDtÞ/k, giv-

ing rise to a jump condition:

Db

@CbðrÞ
@n

jr¼rs
¼ Dc

@CcðrÞ
@n

jr¼rc
¼ Ds

CsðrsÞ � CsðrcÞ
Dt

� �
/k½CsðrsÞ � CsðrcÞ�: (17)

Now we can see that Eq. 8 gives, with Dt/0,

g2l�1/
eb 1 ec;k;2l�1

eb � ec;k;2l�1

; (18)

where

1

ec;k;2l�1

¼ 2l� 1

rck
1

1

ec
: (19)

All the results for longitudinal and transverse diffusion

coefficients are easily generalized for the thin myelin case

using Eq. 18 instead of the full Eq. 8.

Nearly impermeable myelin

Because a thick myelin sheath is nearly impermeable, and

acts as a diffusion barrier, we expand the factor g2l�1 in Eq. 8

in a series (DsCs0)/(DbCb0),

g2l�1/112
DsCs0

DbCb0

11
rc
rs

� �4l�2

1� rc
rs

� �4l�2;
DsCs0

DbCb0

11
rc
rs

� �4l�2

1� rc
rs

� �4l�2 � 1;

(20)

to the linear order in (DsCs0)/(DbCb0).

All the results for longitudinal and transverse diffusion

coefficients are easily generalized for the nearly imperme-

able myelin case by using Eq. 20 instead of the full Eq. 8.

Note that Eq. 20 does not depend on properties of the core.

This is intuitively obvious; when the diffusivity in the sheath

is practically zero, it acts as a barrier so that Dt,effCeff is

dominated by diffusion outside the sheath and the core con-

tribution drops out (is shielded out). In the electrical problem,

this limit corresponds to an array of insulating cylinders with

g2l�1 [ 1 and the effective conductivity is given by that of

the extraaxonal fluid reduced by a formation factor de-

termined completely by the geometrical structure factors

fS2l�1g and by f. Similarly, for diffusion, cellularity (i.e., the

factor f and the geometrical structure factors S2l1 ) determines

Dt,effCeff. Thus, the core properties drop out (in the lowest

approximation); however, the effective concentration Ceff

involves the properties of the core.

In the extreme limit, when CcDc¼ CsDs¼ 0, all transport

comes from the bath molecules–but they have a tortuous path

to follow in the transverse direction. The Maxwell-Garnett

form for transverse diffusivity is Dt,eff ¼ Db/(11 f), whereas
Dl,eff ¼ Db. Note that for the case of electrical conductivity,

the volume fraction of the conductive material will enter the

expression for the longitudinal conductivity, but not for

Dl,eff, due to the additional concentration factor mentioned

earlier. In this approximation we can write the tortuosity
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tensor (we use a caret to distinguish it from the scalar

counterpart) as

âMaxwell-Garnett ¼
1 0 0

0 1

11 f
0

0 0 1

11 f

0
@

1
A: (21)

To be explicit,

ADTMaxwell-Garnett ¼ Db

1 0 0

0 1

11 f
0

0 0 1

11 f

0
@

1
A: (22)

Similarly, for insulating cylinders of volume fraction f im-

mersed in a bath of conductivity sw having a volume fraction

f ¼ 1 � f, the overall conductivity tensor is

sMaxwell-Garnett ¼ sw

f 0 0

0 f

2�f
0

0 0 f

2�f

0
@

1
A: (23)

No myelin

The results from Rayleigh (28) and Perrins (29) of uncoated

cylinders can be used in this case. To be explicit if rc/rs or
ec/es, the myelin sheath is effectively absent:

g2l�1/
ðeb 1 esÞ
ðeb � esÞ

: (24)

All the results for longitudinal and transverse diffusion

coefficients are easily generalized for the nonmyelin case

using Eq. 24 instead of the full Eq. 8.

The diffusion tensor can still be anisotropic, even in the

absence of a myelin sheath. Let us illustrate this using the

lowest order of the Maxwell-Garnett form, Eq. 13, for trans-

verse diffusivity:

Dl;eff

Dt;eff

¼

ðCb Dbð1� f Þ1Cc Dc f ÞðCc Dcð1� f Þ1Cb Dbð11 f ÞÞ
Cb DbðCb Dbð1� f Þ1Cc Dcð11 f ÞÞ :

(25)

Note that in Eq. 25 above, the system will be anisotropic

even when Db ¼ Dc, but Cb 6¼ Cc; the anisotropy vanishes

only when Cb Db ¼ Cc Dc.

That there can be anisotropy even in the absence of a myelin

sheath (and membrane) is obvious, although, as Beaulieu

(14) notes, there is much confusion in the literature. To

understand the anisotropy in absence of a sheath or mem-

brane, consider, for example, the case when cylinders with

high values of Cc Dc (containing highly diffusive molecules)

are inserted in a bath with small values of Cb Db (containing

poorly diffusive molecules). The longitudinal transport, mainly

dominated by the cylinders, can be high; whereas the trans-

port perpendicular to the cylinder axes will be low, as the

molecules within the cylinders have to diffuse through the

bath in the transverse direction but not in the longitudinal

direction. This phenomenon can be likened to resistors in

series (transverse direction) and resistors in parallel. Recall

that in our model, the sheath is a composite of membrane and

myelin. Even without a membrane or myelin, one can ob-

serve anisotropy as long as the bundles are aligned and have

different diffusivity from the ‘‘bath’’ material.

It is obvious how to incorporate terms involving higher

powers in f, and refine the above formulas for effective dif-

fusion or conductivity. We do not pursue that here because

our main point is that the presence of the myelin sheath is

not essential to cause the anisotropy in diffusion or conduc-

tivity.

RESULTS AND DISCUSSIONS

Analytical solutions for the ADT and quantities derived from

it, such as the mean ADC, ÆADCæ, and the degree of diffusion
anisotropy, can be used to explore the effects of small changes

in model parameters associated with normal conditions as

well as a number of developmental and disease processes

known to affect myelinated axon structure and function. For

a particular set of assumed parameters, we can assess the

relative importance of each microstructural parameter by

computing the fractional change in the ÆADCæ or degree of

diffusion anisotropy for a unit fractional change in a param-

eter of interest. This result provides us with a way to compare

the relative importance of different independent experimen-

tal parameters in the model. We can also consider the effect

of changes in these different parameters on the ÆADCæ and
anisotropy ratio for tissue swelling accompanying vasogenic

edema (increasing L) or deswelling (decreasing L) accom-

panying hydrocephalus. We can consider the effect of redis-

tribution of fluid from the extracellular to intracellular space

that occurs in acute stroke or cytotoxic edema (decreasing L,
increasing rc and rs). We can also consider the effects of

myelination occurring in normal development (increasing

rs), or dysmyelination (decreasing Ds) and demyelination

(decreasing rs) that occur in diseases like leukodystrophy and
multiple sclerosis, respectively.

For comparing the relative importance of different inde-

pendent experimental parameters, it is useful to choose pa-

rameters that are representative of white matter in the central

nervous system (CNS), and then consider perturbations in

these parameters associated with various developmental and

disease states. For the analysis of sensitivity to perturbations,

we assume the initial values for diffusion coefficients and

concentrations, as we do not know their exact values. These

assumed numbers are either based on values known for other

cells, such as erythrocyte (33), or based on reasonable guess.

The sensitivity of measured diffusion to the changes in un-

derlying parameters, rather than their actual values, is what

we wish to emphasize.
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Specifically, we perform a sensitivity analysis on the mean

ÆADCæ and the anisotropy ratio with respect to variations in

microstructural dimensions and compositional parameters.

The results are qualitatively similar for both packing geom-

etries and are provided in Tables 1 and 2 for the square

packing geometry, and in Tables 3 and 4 for the hexagonal

packing geometry. In the case of the normal myelinated

axon, as well as for vasogenic edema, hydrocephalus, cyto-

toxic edema, and dysmyelination cases, the microstructural

parameters whose effects are most pronounced are L (axon

spacing), rs (outer radius of the axon), and f (volume fraction

of axons). The observed fractional change in both the ÆADCæ
and the anisotropy ratio for a unit fractional change in these

parameters is significant, and an order of magnitude larger

than for the other independent parameters in the model. This

result is reasonable, because the intraaxonal region is largely

screened out due to the use of conservative values of myelin

and bath dimension, intraaxonal diffusivities, and water

concentrations, so that the behavior of ÆADCæ and the de-

gree of anisotropy are dominated by the extraaxonal dimen-

sions.

Many studies suggest the existence of diffusion anisotropy

in white matter before the appearance of myelin (14,43–45).

To address this issue, we can use Eq. 25 above to assess

whether diffusion anisotropy can be expected in a bundle of

unmyelinated axons.

When present, myelin is the major barrier to diffusion and

the cause of anisotropy. In normal white matter develop-

ment, the thickness of the myelin sheath increases. We can

recapitulate this process heuristically by considering the case

where the normalized thickness of the myelin sheath, (rs �
rc)/rc, grows from zero to a finite value (;0.5), which is

somewhat larger than that reported histologically by Rushton

(46). Fig. 4 shows the mean ÆADCæ as a function of the radius
of the myelin sheath. As myelin thickness increases, the mean

ADC progressively drops, which is in qualitative agreement

with findings by Neil et al. (43). In Fig. 5, the anisotropy

ratio is plotted versus the radius of the myelin sheath. Some

TABLE 1 Square pack: sensitivity function for hADCi, the mean ADC (top row) › ln((2Dt,eff 1 Dl,eff)/3) / › ln X with corresponding

parameter X values (bottom rows) for normal situations and various physiologically or clinically relevant perturbations

Db Dc Ds Cb0 Cc0 Cs0 L rc rs f ÆADCæ/Dw

Normal 0.71 0.20 0.080 0.39 �0.22 �0.17 6.29 0.21 �6.51 �3.15 0.18

20 7.5 0.3 0.95 0.88 0.5 17.66 6.0 8.57 0.74 –

Vasogenic edema 0.80 0.14 0.06 0.40 �0.23 �0.16 3.91 0.081 �3.99 �1.96 0.22

20 7.5 0.3 0.95 0.88 0.5 18.56 6.0 8.57 0.67 –

Hydrocephalus 0.65 0.25 0.099 0.36 �0.20 �0.16 8.33 0.32 �8.65 �4.66 0.14

20 7.5 0.3 0.95 0.88 0.5 17.31 6.0 8.57 0.78 –

Cytotoxic edema 0.52 0.33 0.15 0.26 �0.27 0.004 7.45 0.88 �0.88 �3.72 0.16

20 7.5 0.3 0.95 0.88 0.5 17.20 7.2 8.57 0.78 –

Demyelination 0.97 0.06 �0.03 0.20 �0.26 0.05 0.67 �0.07 �0.59 �2.64 0.47

20 7.5 0.3 0.95 0.88 0.5 17.66 6.0 4.28 0.74 –

Dysmyelination 0.41 0.28 0.31 0.12 �0.17 0.04 4.20 0.38 �4.59 �2.1 0.24

20 7.5 3.0 0.95 0.88 0.5 17.20 6.0 8.57 0.78 –

The last column gives the ÆADCæ normalized wrt that of water. Concentrations are with respect to unit molarity of bulk water, lengths are in micrometers, and

diffusion coefficients are in units of 10�10m2/s.

TABLE 2 Square pack: sensitivity function for anisotropy (top row) › ln(Dl,eff/Dt,eff) / › ln X with corresponding parameter X

values (bottom rows) for normal situations and various deviations

Db Dc Ds Cb0 Cc0 Cs0 L rc rs f Anisotropy

Normal �0.12 0.31 �0.19 �0.12 0.31 �0.19 �9.61 0.14 9.46 4.80 3.23

20 7.5 0.3 0.95 0.88 0.5 17.66 6.0 8.57 0.74 –

Vasogenic edema �0.14 0.25 �0.11 �0.14 0.25 �0.11 �4.14 0.21 3.93 2.07 2.37

20 7.5 0.3 0.95 0.88 0.5 19.94 6.0 8.57 0.67 –

Hydrocephalus �0.07 0.34 �0.28 �0.07 0.347 �0.28 �16.57 0.003 16.57 10.44 4.68

20 7.5 0.3 0.95 0.88 0.5 17.3 6.0 8.57 0.78 –

Cytotoxic edema 0.03 0.41 �0.44 0.028 0.41 �0.44 �15.32 �1.53 1.53 7.66 4.18

20 7.5 0.3 0.95 0.88 0.5 17.20 7.2 8.57 0.78 –

Demyelination �0.18 0.13 0.053 �0.18 0.13 0.05 �0.73 0.099 0.63 30.13 1.43

20 7.5 0.6 0.95 0.88 0.5 17.66 6.0 4.28 0.74 –

Dysmyelination 0.30 0.12 �0.42 0.30 0.12 �0.42 �2.85 �0.44 3.29 1.43 1.68

20 7.5 3.0 0.95 0.88 0.5 17.20 6.0 8.57 0.78 –

The last column gives the anisotropy for the case considered. Concentrations are with respect to unit molarity of bulk water, lengths are in micrometers, and

diffusion coefficients are in units of 10�10m2/s.
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diffusion anisotropy is observed when no myelin is present,

but the fact that anisotropy increases with increasing myelin

thickness supports the hypothesis that, although not the only

determinant of diffusion anisotropy in white matter, myelin

significantly contributes to it (14). Recall, in the model, we

treat the myelin and membrane as a composite and the per-

meability is determined by the combined effect of the mem-

brane and the myelin sheath.

Fig. 6 shows the orientational ADC profile (41) using the

parameters for normal tissue, computed using the formula

given in Eq. 40. Some features of microstructure can be

gleaned from this figure. First, the narrow wasp waist of this

peanut is indicative of a very low effective diffusivity in the

transverse direction. The anisotropy ratio can be estimated

from this construction. However, it not clear, from the form

of Eq. 40 and the shape of this profile, how to relate ADC to

the numerous microstructural, compositional, and physical

parameters that characterize even this simplified model of

white matter. We view these diffusion peanuts as glyphs that

summarize gross features of the diffusion process, but do not

provide insight into tissue microstructure, composition, or

physical properties therein.

One advantage of formulating this model of diffusion in

a pack of axons, is that some of the results can be applied to

other transport processes occurring in white matter. For

instance, the diffusion tensor data obtained in a DTI exper-

iment can be scaled to describe the electrical conductivity

tensor required to calculate electric field and current density

distributions (6). This is particularly important in developing

a realistic electrical model of the brain in EEG (11) and in

magnetic stimulation (47) applications.

Next we wish to comment on how our calculations relate

to DTI. In these measurements, in one way or another, there

is an attenuation in the measured magnetization due to ran-

dom phases the spins acquire during their Brownian dif-

fusive motion. In the lowest order of approximation, the

attenuation exponent depends on the mean-square displace-

ment. Here we have considered only the long-time limit of

TABLE 3 Hexagonal pack: sensitivity function for hADCi, the mean ADC (top row) › ln((2Dt,eff 1 Dl,eff)/3) / › ln X with corresponding

parameter X values (bottom rows) for normal situations and various physiologically or clinically relevant perturbations

Db Dc Ds Cb0 Cc0 Cs0 L rc rs f ÆADCæ/Dw

Normal 0.69 0.24 0.077 0.43 �0.23 �0.20 5.53 0.23 �5.77 �2.77 0.17

20 7.5 0.3 0.95 0.88 0.5 18.25 6.0 8.57 0.8 –

Vasogenic edema 0.82 0.13 0.048 0.41 �0.24 �0.17 3.06 0.046 �3.11 �1.53 0.24

20 7.5 0.3 0.95 0.88 0.5 19.94 6.0 8.57 0.67 –

Hydrocephalus 0.59 0.31 0.10 0.39 �0.19 �0.20 9 7.66 0.39 �8.05 �3.83 0.14

20 7.5 0.3 0.95 0.88 0.5 17.71 6.0 8.57 0.85 –

Cytotoxic edema 0.49 0.38 0.13 0.31 �0.28 �0.24 6.14 0.86 �0.86 �3.07 0.15

20 7.5 0.3 0.95 0.88 0.5 17.71 7.2 8.57 0.85 –

Demyelination 0.97 0.06 �0.03 0.21 �0.27 0.06 0.70 �0.08 �0.62 �1.83 0.46

20 7.5 0.6 0.95 0.88 0.5 18.48 6.0 4.28 0.78 –

Dysmyelination 0.47 0.27 0.26 0.21 �0.20 �0.01 3.23 0.30 �3.53 �1.62 0.25

20 7.5 3.0 0.95 0.88 0.5 18.25 6.0 8.57 0.8 –

The last column gives the ÆADCæ normalized wrt that of water. Concentrations are with respect to unit molarity of bulk water, lengths are in micrometers, and

diffusion coefficients are in units of 10�10m2/s.

TABLE 4 Hexagonal pack: sensitivity function for anisotropy (top row) › ln(Dl,eff/Dt,eff) / › ln X with corresponding parameter

X values (bottom rows) for normal situations and various physiologically or clinically relevant perturbations

Db Dc Ds Cb0 Cc0 Cs0 L rc rs f Anisotropy

Normal �0.23 0.39 �0.16 �0.23 0.39 �0.16 �5.27 0.35 4.92 2.64 2.77

20 7.5 0.3 0.95 0.88 0.5 18.25 6.0 8.57 3 0.8 –

Vasogenic edema �0.16 0.25 �0.09 �0.16 0.25 �0.09 �2.13 0.27 1.86 1.06 2.07

20 7.5 0.3 0.95 0.88 0.5 19.94 6.0 8.57 0.67 –

Hydrocephalus �0.23 0.47 �0.23 �0.23 0.47 �0.23 �9.69 0.33 9.36 4.84 3.43

20 7.5 0.3 0.95 0.88 0.5 17.71 6.0 8.57 0.85 –

Cytotoxic edema �0.19 0.53 �0.34 �0.19 0.53 �0.34 �8.04 �8.11 8.11 4.02 3.39

20 7.5 0.3 0.95 0.88 0.5 17.71 7.2 8.57 0.85 –

Demyelination �0.19 0.13 0.056 �0.19 0.13 0.06 �0.78 0.10 0.67 9.51 1.46

20 7.5 0.6 0.95 0.88 0.5 18.48 6.0 4.28 0.78 –

Dysmyelination 0.13 0.18 �0.31 0.13 0.18 �0.31 �0.65 �0.22 0.87 0.32 1.47

20 7.5 3.0 0.95 0.88 0.5 18.25 6.0 8.57 3 0.8 –

The last column gives the anisotropy for the case considered. Concentrations are with respect to unit molarity of bulk water, lengths are in micrometers, and

diffusion coefficients are in units of 10�10m2/s.
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the diffusion coefficient. The diffusion coefficient, by def-

inition, is the mean-square displacement divided by time. In

general, the mean-square displacement and the diffusion

coefficient are time dependent (48). However, if the mean-

square displacement becomes finite at long time, the dif-

fusion coefficient goes to zero upon dividing by time, and

one can no longer assess the attenuation exponent from the

diffusion coefficient (zero).

When the particles inside the axon are trapped by an

impermeable myelin sheath, their mean-square displacement

eventually saturates and the diffusion coefficient goes to

zero. One needs to take this fact explicitly into account when

computing the attenuation of magnetization that depends on

the mean-square displacement. The mean-square displace-

ment has to be computed directly (48) and not via (zero)

diffusion coefficient. For the model considered here, the

attenuation of magnetization has been computed explicitly in

a recent article (49). To characterize water diffusion in brain

white matter, Assaf et al. (49) proposed a framework that

incorporates both hindered and restricted models of water

diffusion and an experimental methodology that embodies

features of diffusion tensor and q-space MRI. They propose

a model of white matter diffusion anisotropy that contains

a hindered extraaxonal compartment, whose diffusion

properties are characterized by an effective diffusion tensor,

and an intraaxonal compartment, whose diffusion properties

are characterized by a restricted model of diffusion within

cylinders. The hindered model primarily explains the

Gaussian signal attenuation behavior observed at low b (or

q) values; the restricted non-Gaussian model does so at high

b (or q).
The full time dependence when the particles are exchange-

able between core and the bath has been investigated in

a simulation by Ford et al. (18), but analytical results are still

not available.

Caremust be taken in using the results for diffusion directly

in DTI. It is the mean-square distribution of the accumulated

phase that matters and this depends on the pulse sequence

used. Often the relationship between root mean-square phase

and root mean-square displacement is not straightforward.

For an extremely hard gradient pulse, of strength g and

duration d, the decay exponent from the restricted axonal fluid

will be time independent ; q2r2c ; where q ¼ ggd. The free

part of the fluid gives the decay exponent ;q2Defft, where
q ¼ ggd. But when the duration d of the gradient is long

compared to the diffusion time across the core, the usual

motional narrowing arguments that are based on the Gaussian

phase approximation may be invoked and the decay exponent

from the restricted axonal fluid will be tE ; g2g2r4c=D where

tE is the echo time. These points still need to be fully de-

veloped in the context of DTI.

CONCLUSIONS

Here we have presented a simplified, but self-consistent

modeling framework for predicting the long-time apparent

diffusion coefficients of water parallel and perpendicular to

a ‘‘pack’’ of myelinated axons. Values assumed for white

matter suggest that the orientationally averaged ÆADCæ and
the diffusion anisotropy ratio are fairly insensitive to intra-

cellular dimensions and diffusion properties, and is primarily

FIGURE 4 Mean diffusion coefficient ÆADCæ ¼ (2Dt,eff 1 Dl,eff)/3 as

a function of the myelin sheath radius rs develops from its minimum value of

rc to that allowed by hexagonal close pack. Here, rc ¼ 6 mm, Db ¼ 2 3

10�9m2/s, Cb0 ¼ 0.95, Dc ¼ 7.5 3 10�10m2/s, Cc0 ¼ 0.88, Ds ¼ 3 3

10�11m2/s, Cs0 ¼ 0.5, L ¼ 18.2 mm.

FIGURE 5 Degree of diffusion anisotropy Dl,eff/Dt,eff as a function of the

myelin sheath radius rs develops from its minimum value of rc to that

allowed by hexagonal close pack. Here rc ¼ 6 mm, Db ¼ 2 3 10�9m2/s,

Cb0 ¼ 0.95, Dc ¼ 7.5 3 10�10m2/s, Cc0 ¼ 0.88, Ds ¼ 3 3 10�11m2/s,

Cs0 ¼ 0.5, L ¼ 18.2 mm.

FIGURE 6 Angular profile of ADCt,eff ¼ Dt,eff cos
2 u 1 Dl,eff sin

2 u in

units ofDb as a function of the polar angle, u in a hexagonal close pack. Here

the parameters rc ¼ 7.2 mm, rs ¼ 9.77 mm, Db ¼ 23 10�9m2/s, Cb0 ¼ 0.95,

Dc ¼ 7.5 3 10�10m2/s, Cc0 ¼ 0.88, Ds ¼ 3 3 10�11m2/s, Cs0 ¼ 0.5,

L ¼ 17.71 mm are chosen to represent cytotoxic edema.
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affected by changes in the outer diameter of the axons, the

extracellular volume fraction, and interaxonal spacing.

The main conclusion of our model is that the low diffusion

coefficient in the myelin sheath makes it a diffusion barrier

for the axonal fluid. In that case, the bath or the extraaxonal

fluid mainly determines the overall diffusion coefficient,

although the concentration factor is affected by the axonal

fluid; ADC and the anisotropy are dominated by the f and
type of packing.

APPENDIX I: HIGHER-ORDER CORRECTIONS
AND MATHEMATICAL DETAILS

This appendix is to fill in the gaps in the text and to show how to compute

more accurate results than those given above.

The chemical potential is expanded in terms of multipoles, as in any

standard electrostatics problem (28). For example,

mðr; uÞ ¼ A0 1 +
N

l¼1

ðAl r
l
1Bl r

�lÞcos lu r$rs: (26)

There are corresponding expansions in other regions with different coef-

ficients that are eliminated by the use of boundary conditions, Eq. 6, as

worked out by Nicorovici et al. (37,38) and by Perrins et al. (29). If we

denote the products of concentration and diffusion by e, i.e., Cs0Ds¼ es, etc.,

we can directly use the previous results (29,37,38) to compute the effective

transverse diffusion coefficient Dt,eff

Dt;effCeff ¼ DbCb0ð1� 2p
B1

M
Þ Square

¼ DbCb0ð1� 4p
B1ffiffiffi
3

p
M
ÞHexagon: (27)

Here, the effective concentration, Ceff, is given by Eq. 7.

Ceff is the volume average of concentrations. In Eq. 27, M is the local

chemical field, whereM¼Mext1Mpol, the sum of the external fieldMext and

the ‘‘polarization’’ fieldMpol.Mext is the applied chemical field, analogous to

the applied electric field of Rayleigh’s problem.Mpol, the depolarization field,

drops out by assuming that the sample has a long needle shape (see below).

Both for hexagonal and square packs, due to symmetry, only the mul-

tipole coefficients B2l�1, l¼ 1, 2, 3, . . . of odd orders survive. In a hexagonal

pack all B2l�1¼ 0 for 2l� 1¼ 3, 6, 9, .. i.e., the multipoles that are multiples

of 3, also vanish (see below). Rayleigh found the recursion relation below

between the coefficients:

ð2l� 1Þ!g2l�1

B2l�1L
4l�2

r
4l�2

s

1 +
N

m¼1

ð2l1 2m� 3Þ!
ð2m� 2Þ! S2l12m�2B2m�1

¼ Mextdl;1; (28)

where S2l12m�2 are the lattice sums (28,29,37,38) or the structural constants

that depend on the specific lattice used. These are of the form:

S2l12m�2 ¼ +
N

j¼1

L

xj 1 i yj

� �2l12m�2

; (29)

where fxj, yjg denote the coordinates of center of the jth cylinder and

i ¼
ffiffiffiffiffiffiffi
�1

p
. The sum runs over all the cylinders. As noted by Lord Rayleigh

(28), for a square array S2 ¼ p and S6 ¼ S10 ¼ S14 ¼ . . . ¼ 0, etc. In hex-

agonal packs (29), on the other hand, S2 ¼ 2p=
ffiffiffi
3

p
, and only other nonzero

S2l12m�2 have 2l1 2m� 2 as a multiple of 6, for example, S6 ¼ �5.86303,

etc.

The effective diffusion coefficient is given by B1 alone in Eq. 27, but its

value is affected by all multipole coefficients B2m�1, m ¼ 1, 2, . . ., N, which

all are functions of composite properties. As in Rayleigh (28) or in

Nicorovici et al. (37,38), by a suitable choice of sample shape, we make

Mpol ¼ 0 so that M/Mext. Mext, in turn, drops out because the ratio B1/M

determines the effective diffusion coefficients.

To keep the calculation to a reasonable size, the recursion relation is

generally truncated. This is most conveniently done using the method of

Nicorovici et al. (37,38) using a symmetric matrix w with elements

W2l�1;2m�1 ¼ w½2l� 1; 2m� 1�

¼ ð2l1 2m� 3Þ!S2l12m�2
rs
L

� �2l12m�2ffiffiffiffiffiffiffiffiffiffiffiffi
2l� 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� 1

p
ð2l� 2Þ!ð2m� 2Þ!

: (30)

This equation corresponds to Eq. 21 of Nicorovici et al. (37); we change

the indexing notation slightly making it explicit thatW2l�1,2m�1¼ w[2l� 1,

2m � 1] relates B2l�1 and B2m�1. Matrix W and the diagonal

matrix DNic
2l�1;2m�1ðgÞ ¼ g2l�1d2l�1;2m�1 together define their matrix A ¼

DNic(g)1W. The effective diffusion coefficient is given by the first element

of A�1.

Square array

For a square array, Eq. 27 gives (37):

Dt;effCeff ¼ DbCb0 1� 2p
rs
L

� 	2

ðA�1Þ
11

� �
; (31)

which upon simplification becomes:

Dt;effCeff ¼ DbCb0½1� 2f ðA�1Þ11�: (32)

Here f ¼ pr2s =L
2 is the fraction of volume occupied by the coated cylin-

ders. To the lowest order in multipolar expansion, we obtain the Maxwell-

Garnett formula by truncating at N ¼ 1 for l ¼ 1, and using g1 as given by

Eq. 8:

Dt;effCeff ¼ DbCb0 1� 2f

g1 1 f

� �
: (33)

A truncation to N ¼ 3 gives:

A �
g1 1wð1; 1Þ wð1; 3Þ wð1; 5Þ

wð3; 1Þ g3 1wð3; 3Þ wð3; 5Þ
wð5; 1Þ wð5; 3Þ g5 1wð5; 5Þ

0
@

1
A:

(34)

Using this in Eq. 32 and the known values of structure constants (37,38),

gives

Dt;effCeff ¼ DbCb0 1� 2f g1 1 f� 0:305828f
4
g5

g3g5 � 1:402960f
8

� ��1
" #

:

(35)

As the intercylinder spacing decreases, or the contrast between the products

of DiCi among different components i become disparate, the higher and

higher-order terms become more important. This change can be accommo-

dated easily by making the dimensions of the matrix A larger and larger. For

example, to obtain results to N ¼ 4 one needs to consider:
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Hexagonal array

For a hexagonal array (29),

Dt;effCeff ¼ DbCb0 1� 4pffiffiffi
3

p rs
L

� 	2

ðA�1Þ11
� �

; (37)

which upon simplification, using

f ¼ 2pr
2

sffiffiffi
3

p
L
2; (38)

gives,

Dt;effCeff ¼ DbCb0½1� 2f ðA�1Þ
11
�; (39)

which is the same form as Eq. 32, but with completely different structural

constants. To the lowest order in the multipolar expansion, we obtain the

Maxwell-Garnett formula by truncating at N ¼ 1 for l ¼ 1:

Dt;effCeff ¼ DbCb0 1� 2f

g1 1 f

� �
; (40)

which is the same as for a square array Eq. 33; and, as before, g1 as given by

Eq. 8. The Maxwell-Garnett formula holds for all structures, including for

disordered systems and is accurate for small f. We now consider the higher-

order terms.

We note above (29) that in hexagonal packs terms with only odd

multipoles, except those that are multiples of 3, survive. Apart from

S2 ¼ 2p=
ffiffiffi
3

p
, only nonzero Sl have l as a multiple of 6, for example, S6 ¼

�5.86303, etc. In this case, to degreeN¼ 3,we need to consider the inverse of

this matrix:

A �
g1 1wð1; 1Þ wð1; 5Þ wð1; 7Þ

wð5; 1Þ g5 1wð5; 5Þ wð5; 7Þ
wð7; 1Þ wð7; 5Þ g7 1wð7; 7Þ

0
@

1
A:

(41)

We emphasize again that for the hexagonal pack, matrix elements, w(2l� 1,

2m � 1), are completely different from the corresponding ones for the cubic

pack. Similarly, all the structure factors S2l12m�2 are different in the two

different structures.

Dt;effCeff ¼ DbCb0 1� 2 f g1 1 f� 0:07542 f
6
g7

g5g7 � 1:06028 f 12

� ��1
" #

;

(42)

to the same degree of accuracy (N ¼ 3) as before in Eq. 35.

This extends Perrins et al.’s calculation (29) to the case where the

cylinders are coated. In the absence of a sheath, Eq. 24 holds, and we recover

Eq. 13 of Perrins et al.

Dt,effCeff depends on three quantities: the volume fraction f of myelinated

axons, the sets of geometrical factors fS2l�1g, and the material property

dependent parameter set fg2l�1g. Note that the specific properties of axon

core, sheath, etc., appear via the set fg2l�1g. In other words, for a given lattice
the results have the same geometrical or structural factors, the specific form of

Eq. 8 distinguishes one case from another.

It is interesting to note that Eq. 18 does depend on 2l � 1, the order of

dipole. Equation 3 in Latour et al. (33) implies that only the dipolar term l ¼
1 was kept, which is correct for the Maxwell-Garnett approximation, as

noted above. For l¼ 1, Eq. 18 implies that the core diffusion coefficient was

augmented by a term that is proportional to the skin permeability times the

radius of the core region. A similar result applies for a stack of flat

membranes (9) with rc replaced by intermembrane separation. Higher-order

multipoles become increasingly important as the cylinders begin to touch.

Incorporating the higher-order multipoles requires using the new ‘‘crucial’’

Eq. 18 that is a function of the order 2l � 1. Neglecting them may be the

cause of the discrepancy reported by Ford (17,18) between the simulated

values (17,18), and the values estimated using the formula of Latour et al.

(33) that sets l ¼ 1.
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