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INTRODUCTION

The measurement of the self -diffusivity of water (and other solvents) using
the phenomenon of nuclear magnetic resonance was first reported more than
four decades ago.\ Methodological improvements in these diffusion measure-
ments2 and the subsequent development of magnetic resonance imaging,3
together created the possibility to measure diffusion properties of water in
tissues on a voxel by voxel basis. Diffusion imaging (DI), which was first
realized in 1985,4-6 consists of measuring an apparent diffusion constant
(ADC)7 in each voxel. Both its theoretical underpinnings and its applications
are well-known and are described in a number of excellent books and review
articles!.8

While in tissues such as brain gray matter the ADC measured by diffusion
inutging is largely independent of the orientation of the tissue, in brain white
matter the ADC depends strongly upon the orientation of the tissue.9--\6 Since
the ADC characterizes molecular displacements in only one direction. it
inherently does not provide enough information to describe the three-
dimensional translational displacements of protons (or other labeled nuclei)
necessary to characterize diffusion in brain white matter and odler anisotropic
media. This additional information. however, is provided by the effective or
apparent diffusion tensor of water, Q, in each voxel. The measurement of Q in
each voxel and the analysis and display of the information derived from it is
called diffusion tensor imaging (Dn).\7 Of particular interest are new scalar
parameters that possess properties of a quantitative histological or physiologi-
cal stain and can be displayed as images that elucidate intrinsic features or
characteristics of diffusion in tissues. Examples include images or maps of the
mean diffilsivity and the degree of diffusion anisotropy.
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BACKGROUND

In diffusion imaging (DI). one measures a single scalar apparent diffusion
constant (ADC) in each voxel from a series of diffusion-weighted images
(DWIs). These are just conventional MRIs whose contrast is sensitized or
weighted by the local diffilsivity in each voxel. Specifically. from these OWls.
one uses linear regression of Eq. (1) below to estimate an ADC in each voxel:

(1)
(~ ) = -bD = -bADC,

In \A(O)

where A(b) is the measured echo magnitude in each voxel; b is a constant
called the b-value or b-factor, which is calculated for each gradient pulse
sequence18; and A(O) is the echo magnitude without any applied diffusion
gradients. Whether one is acquiring DWIs or maps of the ADC, 01 is
inherently a one-dimensional technique, that is, it can only meaningfully
measure molecular displacements along one direction.

Diffusion tensor imaging (DTl)17 is a new MRI modality that was
developed to describe diffusion in anisotropic medium for which Eq. (1) is no
longer valid With 011. one estimates an effective diffusion tensor, Q, from
OWls using a more general relationship between the measured echo magni-
tude in each voxel and the applied magnetic field gradient sequencel9-21:

+baDzJ

(A@ ) 3 3 In -A(Q) = - ~ ~ ~Paj - - Trace ~ Q)

.-1 j-l

= - ~a + 2bx,Dxy + 2buDu + b,pyj + 2~Dyx

(1)

Above. ~j is a component of the symmetric b-matrix. Q. and A@ the echo
magnitude for a gradient sequence whose b-matrix is b. Whereas in DI a
b-factor is usually calculated for a gradient sequence applied in one direction.
in DTI the b-matrix is always calculated from all applied gradient sequences
(including all imaging and diffusion gradient sequences).1~21

To understand the role of the b-matrix in DTI. it is useful to view the
diffusion process in the principal frame of the anisotropic medium. by
diagonalizing Q as follows:

Q=~~"¥l (3)

Above. :g is the matrix whose columns are the eigenvectors or principal
directions of Q: EI. E2. and E3; and ~ is the diagonal matrix whose diagonal
elements are the corresponding eigenvalues or principal diffusivities of Q: >-1.
>-2. and >-3- Using Eq. (3), and the fact that Trace(:M ~ = Trace ili M) for two
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matrices M aIM1 M. Eq. (2) can be rewritten as:

In (-~- ) = - T-,..th E A gT) = - T-~-rcT b E A \A(h=.Q) .~--- J.~--~

= - Trace <9.:!!). (4)

The matrix ~ = gr ~ g is just the b-mattix in the principal frame of Q. The
diagonal elements of~: bll', bn', and ~3' represent the projections of the
original b-matrix (measured in the laboratory frame) along the principal
directions of Q. Now, expanding Eq. (4), we obtain d1e following simple
formula:

In(~) = - bU'AI - boz2'A2 - ~'A3 (5)

In the principal frame of the aniSOtropic medium. d1e contribution of each
principal diffusivity on the echo attenuation is seen to be weighted by its
corresponding b' -matrix elemenL Whereas in isotropic diffusion there is a
single b-factor premultiplying the diffusion coefficient, in anisotropic diffu-
sion there are three coefficients premultiplying each of the three principal
diffusivities.

Once a b-matrix element has been calculated for eoch DWI, we estimate
Q from all the DWIs using multivariate linear regressionb of Eq. (2). One
requirement of Dn is that we apply diffusion gradients in a multiplicity (at
least six) noncoUinear direction. 21

Diffusion tensor imaging subsumes diffusion imaging; the former redu~es
to the latter when the sample is isotropic. In such cases, it can be shown that
Eq. (2) reduces to Eq. (1).

Diffrtsion of a Water in an Isotropic, Homogeneous Medium

Diffusion isotropy describes the case in which the translational mobility of
the diffusing molecule is independent of the medium's orientation. Homoge-
neous diffusion refers to the case in which the translational mobility of the
diffusing molecule is independent of the position within the medium. If a
medium is both isotropic and homogeneous. then the translational displace-
ment profile is given by22:

bMultivariale linear re~on is just one of a number of statistical techniques that cooId be
used to estimate !? from die eclkJ d8Ia.
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Above, p(rl'Td) is the probability that a particle located initially at position r =
0 is located at position r at a later time 'Td. Surfaces of constant p(rl'T~ are
concentric spheres ("diffusion spheres"), as we see by setting the exponent of
Eq. (6) equal to a constant When we choose the constant to be 'h,

X2 + y2 + Z2 = (~)2= 2Drd. (7)

Then, the radius of the diffusion sphere, ~, is also the standard deviation
of p(rl'Td), CT, defined by the well-known Einstein fonnula22:

CT= ~ (8)

Thus, the radius of this particular diffusion sphere has the physical interpreta-
tion of being the mean-squared displacement of a particle released at the
center of the sphere at time Td. The translational displacement profile of water
is spherically symmetric in this case, and is completely specified by a single
scalar constant, D, the diffusion coefficient; and the diffusion time, Td.

Diffusion of a Water in an Anisotropic, Homogeneous Medium

Recall that diffusion anisotropy is a property of certain media in which the
b'anslational mobility of the diffusing molecule depends upon the medium's
orientation. In biological tissues such as brain white matter, we can ascribe
anisotropic diffusion (observed in MR spectroscopy or imaging studies) to
spatial variations of molecular mobility (heterogeneity) at micron and submi-
Clan length scales. This phenomenon appears to be caused primarily by the
spatial arrangement of macromolecular, membranous, and fibrous constitu-
ents and their interfaces. In such tissues, diffusion anisotropy can be character-
ized within a macroscopic voxel by an effective diffusion tensor, Q. The
voxel-averaged displacement distribution is now slightly more complicated:

1 (-r'rD-1 1p(rIT~ = IlnlrA- ':1exp A~. (9)

"1;Q1(41M"~- 't'Td

Whereas in an isotropic medium D appears in the variance of the distribution
[Eq. (6)], in an anisotropic medium D appears in the "matrix of variances and
covariances"23 [Eq. (9)]. Whereas 1:53 appeared in the normalization factor of
p(rITd) in Eq. (6), I;QI (~ determinant of;Q) appears in its plJK;e in Eq. (9).
When we construct surfaces of constant probability (again by setting the
exponent of p(rIT~ to a constant), we now obtain instead:

(D"oR - ~,JX2 + 2(DuDy& - Dz,DzJxy + (DuDg - ~u> y2

2(Dz,Dya - DaD,,)xz + 2(Dz,Dg - DuD,Jyz

+ (DuD)')' - ~xy)z2 = 1;QITd, (lOa)
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which, rewritten in a more familiar form.

(lOb)a x2 + 2b xy + dy2 + 2c xz + 2e yz + f Z2 = 1,

is easily recognized as the equation of a three-dimensional ellipsoid, C called

the "diffusion ellipsoid."17,24
Clearly, in an anisotropic medium, six independent parameters (a-f in Eq.

(lOb) or equivalently the six independent coefficients ofQ: Dxx, Dyy, Dzz, Dxy,
Dn, and Dyz) are required to describe the three-dimensional displacements of
particles, whereas in an isotropic medium, only one parameter, D, is sufficient.
These additional parameters are required because in anisotropic media,
displacements generally appear to be correlated in both parallel and perpen-
dicular directions, whereas in isotropic media th~y do not. In fact, the
elements of the diffusion tensor represent the Inagnitude" of the correlations
between the translational displacements in parallel and perpendicular direc-
tions. Specifically, the diagonal elements of Q, Dxx, Dyy, and Dzz represent the
strength of correlations between molecular displacements along the same
directions (i.e., along x, y, and z. respectively), while its off-diagonal ele-
ments, Dxy, Dxz, Dyz, represent strength of correlations in molecular displace-
ments along perpendicular directions (i.e., between x and y, x and z. and y and
z. respectively). In anisotropic media the diagonal elements of the diffusion
tensor are generally unequal, whereas in isotropic media they are all equal. .
Moreover, in anisotropic media the off-diagonal elements are generally
non-zero and may be large (i.e., comparable in magnitude to the diagonal
elements), whereas in isotropic media they all equal zero.

For an anisotropic medium, we can always find a preferred frame of
reference, generally other than the laboratory frame, in which translational
displacements in orthogonal directions appear to be uncorrelated. This is
called the "principal frame." Thus, in this frame all off-diagonal elements of
the diffusion tensor vanish. The new coordinate axes are now coincident with
the principal axes of the diffusion ellipsoid, and the equation describing the
diffusion ellipsoid, Eq. (10), assumes a simpler, familiar form:

( X' ~2 ( y' ~2 ( z' ~2 + + = I (U)
~~ $~ $~ .

Above ~xx', ~yy', and Azz' are the~ ~ diffusivities along the three
respective principal directions; and ,,2~~'rd,~2 ~, v'2~, are the mean-
squared displacements of a molecule along the (three principal) x', y', and z'
directions at time 'rd, respectively. The mean-squared displacements are
represented as the lengths of the major and minor axes of the diffusion
ellipsoid. It is important to note that in most MRI applications, the principal

CBodt :Q. and the coefficient matrix are positive definite.



128 ANNALS NEW YORK ACADEMY OF SCIENCF3

axes of the diffusion ellipsoid are not known a priori, and generally do not
coincide with the x-y-z laboratory axes.20

In summary, the diagonal and off-diagonal elements of Q are essential in
specifying the probability distribution in Eq. (9), and characterizing the size,
shape, and orientation of the diffusion ellipsoid in the (x-y-z) laboratory
coordinate frame. Below we will see that they are also required to calculate
new MRI stains.

Q U ANTIT A TIVE D IFFU SI 0 N TENSOR
IMAGING-DEVELOPING AND USING MRI "STAINS"

~teriiing D;ffII.Jio. Isoll'OpJ

Moseley and colleagues discovered in animalS2S-27 and Waracb et oL later
showed in humans28.29 that a reduction in the ADC is a sensitive indicator of
the onset and severity of a cerebral ischemic evenL However, Moseley also
showed that while in gray matter (where diffusion is approximately isotropic)
the ADC is independent of the direction of the diffusion sensitizing gradients,
in white matter this is not the case.!3 In white matter, the contrast of the DWI
(or of the ADC) in a voxel also depends on the direction in which the diffusion
sensitizing gradient is applied with respect to the direction of the white matter
fiber tracts in d1at voxel. This introduces an additional source of image
contrast which complicates the interpretation of diffusion images in aniso-
tropic white matter. Why? In white matter, one cannot ascertain whether the
measured image contrast results from a structural/physiologic change (brought
on by the ischemic event itself), or arises from diffusion anisotropy in the
tissue (i.e., the dependence of the ADC to the relative orientation of the
applied diffusion gradient and the local fiber orientation). Clearly, in ischemia
monitoring, diffusion anisotropy in white matter produces an unwanted
artifact that complicates the interpretation of diffusion images.

Diffusion tensor spectroscopy20.JO and diffusion tensor imaging!7.3! pr0-
vided new imaging parameters that solved this and other vexing MR imaging
problems. Associated with each diffusion tensor are scalar quantities known
as invariants d1at are intrinsic to the medium. Specifically, these parameters
(and functions of them) are independent of the orientation of the tissue
structures, their relative orientation to the patient's body within the MR
magnet, the direction of the applied imaging and diffusion sensitizing gradi-
ents, and the choice of the laboratory coordinate system (in which the
components of the diffusion tensor and magnet field gradients are mea-
Sured).20.2! In 1992, the scalar invariants of Q were first proposed as novel MR
parameters and were shown experimentally to be independent of fiber tract
direction in anisotropic skeletal muscle.30

The three fundamental scalar invariants of Q, It. 12, and I). are the
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coefficients of the characteristic equation of Q:

~3 - 11~2 + 12~ - 13 = 0, (12)

which is used to calculate the ~ principal diffusivities (~It ~2 and ~3) of
D. lit 12, and 13 can be calculated directly from the diffusion tensor, or
expressed in terms of ~I, ~2 and ~3:

II = ~I + ~2 + ~3; 12 = ~1~2 + ~2~3 + ~1~3; 13 = ~1~2~3. (13)

Another desirable property of the scalar invariants is that each is independent
of the assignment or order of the principal diffusivities or eigenvalues.
Therefore, if we permute the subscripts of the eigenvalues, the value of a
scalar invariant is unchanged. The same property holds for functions of the
scalar invariants. Moreover, each scalar invariant has a distinct geometrical
(and physical) interpretation. 11 is proportional to the sum of the squares of the
major and minor axes of the diffusion ellipsoid, 12 is proportional to the sum of
the squares of the areas of the three principal ellipses of the diffusion ellipsoid,
and 13 is proportional to the square of the volume of the diffusion ellipsoid.

n. Fint IIlNrialll-The nuce olthe DiffllsiDII TelUor

The first scalar invariants, II can be written in several ways:

II = Trace@) = Do + Dyy + Dzz = 3(D) = ~I + ~2 + ~3 = ~). (14)

It is proportional to the orientationally averaged apparent diffusivity.32 To see
dlis, note that according to the Einstein equation. the mean-squared displace-
ment in the idl principal direction, (ri2), is given by:

~ = 2~T (15)

in a diffusion time T, so the mean-squared displacement averaged along the
dlree principal directions, ((r2)) is

~ + ~ + ~ ~I + ~2 + ~3
({r2)) - - - 2 T = ~ (16)

3 3

This is the same result one obtains by averaging the mean-squared displace-
ment uniformly over all directiOns.32

ClaaracteriVng Diffusion AnuotropJ

Although Trace@ = It characterizes the mean diffilsion properties in a
voxel. it provides no information about diffusion anisotropy within a voxel.
However. the second and third invariants of Q do. One potentially useful
measure of diffusion anisotropy is their ratio. 12/1). which can be interpreted as
.
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the square of the surface-to-volume ratio of the diffusion ellipsoid. We would
expect this quantity be a minimum in an isotropic medium in which the
diffusion ellipsoid is a sphere, and to increase monotonically as the diffusion
ellipsoid becomes more eccentric. However, the surface-to-volume ratio has
units of inverse length. Since we prefer to have a non-dimensional measure of
anisotropy, we can normalize it accordingly:

(2I~ (2(AIA2 + A2A3 + AIA3»3/2
"S-to-V" (17). -.-- .

13 X1X2X3

Rotational invariance of "S-to- V" is assured because it depends solely on the
ratio of two scalar invariants.

Another approach to characterizing diffusion anisotropy is to determine
the magnitude of the anisotropic part of the diffusion tensor in each voxel.
This can be done by decomposing ~ into its isotropic and anisotropic parts33:

~ = (D)! + (Q - (D)!). (18)
iDropic ~ic-- -

The isotropic part of the diffusion tensor is the familiar mean diffusivity, (D),
multiplied by the identity tensor, !. while the anisotropic part of D is what we
call the "diffusion deviatoric" or "diffusion deviation tensor," ~:

~ = ~ - (D)! (19)

The first invariant of ~, II' = Trace <Q.) can be shown to be zero,33 while the
other scalar invariants of~, 12' and 13', are simply related to II, 12 and 13 (e.g.,
see Ref. 34):

dl2 and 13' are easily e~ as functions of dte fcxm Trace (e") (where ~ signifies
multiplication of ~ by icselfn times).

1
li--~2

1
lJ--~):1and

This melh<x1 to generate scalar invariants is well-known in die continuum mechanics literatwe.34
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It was recently proposed as a measure of diffusion anisotropy3S as it (i) is a
scalar invariant quantity and it (ii) measures the magnitude of the anisotropic
part of the diffusion tensor, e in Eq. (18).33 In the context of the OTI
experiment. 12' can also be interpreted as being proportional to the sample
variance of the estimated eigenvalues in each voxel.

While 12' measures the amount by which the measured eigenvalues of:Q
deviate from their sample mean, it does not reflect how they are distributed
about it Conturo et al.36 recently intimated that higher moments could When
might this information be useful? Su~ diffusivity were large along one
principal direction, and were much smaller in the two transverse directions,
that is, At » A2 - A3' Then, the corresponding diffusion ellipsoid would be
"cigar"-shaped. This shape has recently been observed in white matter fibers
in the corpus callosum and in the pyramidal ,tract in monkeys37 and in
humans.38 Now, suppose that At - A2 » A3' This corresponds to a diffusion
ellipsoid that is "pancake"-shaped. While in general, 12' cannot distinguish
between these two cases, the third moment or skewness should be able to.

(At - (>.»)3 + (A" - (A)3 + (A,\ - (A)3I , . ~ -.. . - - - ." SL.- (~)3 = ~ )-~ = ANWDeSS I\. . (22)3

For the cigar-shaped diffusion ellipsoid, the skewness of the estimated
eigenvalues would be negative, while for the pancake-shaped ellipsoid, it
would be positive (depending on whether (A) is significantly greater than or
less than A2). Higher moments of the eigenvalues of ~ may furnish additional
information about their distribution, although they may be increasingly
susceptible to noise (e.g., see Ref. 37).

Other potentially informative anisotropy indices are the ratios of the
principal diffusivities.11 These dimensionless ratios measure the relative
effective diffusivities in the d1ree principal directions. Effectively, they
measure the prolateness or eccentricity of the diffusion ellipsoid, independent
of its size and orientation. If we number the principal diffusivities in
decreasing order, the dimensionless anisotropy ratio, A~3' then measures the
degree of cylindrical symmetry (with A2IA3 = I indicating perfect cylindrical
symmetry). To measure the relative magnitude of the diffusivities along the
fiber-tract direction and the two ttansverse directions, we can calculate Al1A2
and Al1A3, or, as above, measure the eccentricities of the two remaining great
ellipses obtained from the diffusion ellipsoid that also contain its major axis
(i.e., the axis along the fiber tract direction).o Pierpaoli and Basser3' recently
showed that while in principle these quantities are physically meaningful, in
practice they are highly susceptible to noise in the MRIs, which introduces a
bias when the eigenvalues are sorted according to Size.37.39

eWbile the ratios of the eigenvalues of D represent the ratios of its principal di1fusivities. it
may be preferable to ~ ~ rati~ of ~ ~ squared diffusion distances. This can be
done simply by taking the square roots of die ratios presented above. i.e. M
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In summary. diffusion anisotropy is an intrinsic feature of the tissue. so its
measures should be independent of the sample' s placement or orientation with
respect to the (laboratory) x-y-z reference frame.3S Characterizing the degree
of diffusion anisotropy is tantamount to characterizing features of the shape of
a three-dimensional diffusion ellipsoid. independent of its orientation. and
size. Thus. it is easy to see that knowing only d1e diagonal elements of the
diffusion tensor is not adequate to characterize diffusion anisotropy. One
should know at least the three eigenvalues of the diffusion tensor. and
preferably higher moments of their distribution. In most MRI applical:ions we
typically do not know the eigenvalues a priori. We generally calculate them
from the estimated diagonal and off-diagonal elements of:!;!.

COMBINING STAINS OF ISOTROPIC AND ANISOTROPIC DIFFUSION

One way to display information simultaneously about isotropic and
anisotropic diffusion using a single image is by representing the three (sorted)
principal diffusivities, ~t, ~2, and ~3' using red, green. and blue (R-G-B)
intensities, respectively.40 Ideally, isotropic regions should appear as a shade
of gray, whereas anisotropic tissues should appear colored. However, this
display method still requires sorting the eig~nvalues in each voxel, (for
example, in decreasing order), making it suSCeptlole to the same bias that
aftlicts images of the ratios of the principal diffusivities.37 Still, this color
imaging scheme is superior to one proposed in which R-G-B colors are
assigned to the DWIs measured in the X-, y-, and z- directions, respec-
tively.41.42 Latour's meth~ does not introduce an orientational artifact. i.e.,
a change in hue or intensity if the laboratory frame or the sample is rotated.
whereas Nakada's meth0(j4t does.

OTHER STAINS DERIVED FROM THE DIFFUSION TENSOR

One might think of a stain as a scalar quantity, but it does not have to be.
The diffusion ellipsoid that we construct in each voxel is also an invariant
quantity whose size, shape, and orientation do not vary with respect to
translation or rotation of the laboratory coordinate system. The same holds for
the eigenvectors of the diffusion tensor.

One of the most intriguing applications of diffilsion tensor imaging is in
developing MRI stains that reveal new a1t'hitectural features of anisotropic
structures such as fiber tract directions in brain and other tissues. So far, we
have concenb'ated our efforts on developing MRI stains based upon diffusion
tensors measured within each voxel. However, useful information also is
found in the pattern of diffusion tensors or quantities derived from them.
which could provide additional insights about tissue organization. structure.
and function. For example, if we take the local nerve fiber tract direction in
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each voxel (given by the eigenvector associated with the largest eigenvalue),
we can sunnise that the fiber-tract pattern or direction field contains useful
biological and clinical information. Its temporal evolution from the embry-
onic to adult stages may be of interest in understanding dynamical processes
in nonna! and abnonnal brain develop~t. Moreover, subsequent alterations
may indicate degeneration, aging, or disease. The geometry of various cortical
regions, in particular, the curving and twisting of fiber tracts may be useful in
elucidating organizing principles of information processing within the brain.

While we have previously used tensor algebraic approaches to obtain
information about the pattern of diffusion tensors in an image,33 we can also
apply concepts from differential geometry to identify new and useful features
of the diffusio!l tensor field. One way to exploit constructs of differential
geometry is to treat each diffusion tensor estimated in each voxel as a discrete,
volume-averaged sample of a diffusion tensor field. In some cases, we can
establish a correspondence between the three normalized orthogonal eigenvec-
totS of the diffusion tensor: £1, £2, and £3, and the three orthogonal vectors that
describe a space curve, r(s), in three dimensions: t(s), o(s), and b(s) (where s
is the arc length). Above, t(s) is the unit tangent vector to the curve, o(s) is the
principal normal vector, and b(s) is the binormal vector. Together, they
constitute a "moving trihedron" that follows the space curve.43 These vectors
also define three mutually orthogonal planes, the normal plane, the rectifying
plane, and the osculating plane which are normal to t(s), o(s), and b(s),
respectively. If we assume that the fiber tracts are continuous from voxel to
voxel, we can use the spatial variation of these vectors to characterize intrinsic
local features of these curves, namely, their torsion and curvature. The
curvature vector, k(s), is defined below as follows:

dt
k(s) = 'd;

and its magnitude is the curvature, K(S). The torsion, T(s), is defined as

db
'T(s) = - - . D.

ds
Once t(s), o(s), and b(s) are detennined in each voxel, we can plot scalar
functions of them. K(r) and T(r) in each voxel so that now the curvature and
torsion are displayed in each voxel. These intrinsic, rotationally and transla-
tionally invariant parameters specify new characteristics of the fiber-tract
pattern within each voxel. (N.B.: In tissues like skeletal muscle and white
matter, we can safely assign the tangent vector to be parallel to the eigenvector
associated with the largest eigenvalue in a voxel. However, the eigenvectors
are known to within a factor of -1. Therefore, a convention for determining a
positive and negative fiber direction must be established. To this author's
knowledge, developmental or histological reasoning do not suggest such a
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convention at the present time. A right-handed coordinate system can then be
constructed coincident with all three eigenvectors. The assignment of the n
and b vectors could be performed on the basis of the relative magnitudes of
the remaining eigenvalues.)

VECTOR CALCULUS OPERATIONS APPLIED
TO THE FIBER DIRECl'ION FIELDS

Other vector operations applied to me diffusion tensor field should provide
new information. The divergence of a vector field produces a scalar field mat
is rotationally and translationally invariant, like me omer stains we have
discussed so far. Such is the case if we compute the divergence of the tangent
vector field given as a function of r, t (r), as well as for n(r), and b(r):

V . t(r); V . n(r); V. b(r); (258)

where

at.(r)
ax

aty(r)+-+
c)y

at,,(r)
az

v . t(r) = (25b)

The divergence of a vector field is often used to identify whether and where
there are so~ or sinks of a flowing quantity. such as charge or beat. In our
application. it would be used to identify regions of convergence or divergence
of the fiber tracts. In voxels where fiber tracts radiate or tenninate. we expect
ct>(r) = V . t(r) to be non-zero. Peskin proposed that the direction field vector.
t(r), describing the muscle fiber directions in the heart are divergence-free,
i.e.. V . t(r) = 0.44 One would not expect this to apply in the brain. where
nerve fiber tracts cross and temlinate in certain regions. Using diffusion tensor
imaging, one can. in principle, test these hypotheses directly.

Since we estimate a diffusion tensor in each voxel, we only obtain a
discrete sample of the tensor field. Thus. we must calculate the gradients of
the direction vectors t(r). n(r), and b(r) numerically. A reasonable approach is
to use centered differences to obtain a discrete approximation to V . t(r):

tx(r + dxi) - tx(r - AD) ty(r + 4yJ) - ty(r - 4yj)
V . t(r) = -'+ -~..'.~

2Ax 24y
tz(r + 4zk} - 1z(r - 4zk}

(26)Uz

Another potentially revealing vector operation that produces a scalar
invariant of a vector field is the magnitude of the curl or circulation of the
directibn vector field:

~v X t(r)1 (27a)
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where

v x t(r) = i (~ - ~ )+ J(~ - ~ ) + k (~ - ~
iJy az 8z ax ax

If aD die fibers in a local area were straight. IV X t(r)1 would vanish; where
diey curl, IV X t(r)1 is positive. Owing to previously acquired fiber maps in
human and animal brains, it is reasonable to expect that this quantity will not
be zero everywhere. We would expect it to be large in the cortical area of the
brain, where there are many convolutions and U-fibers d1at have recently been
made visible using diffusion tensor MRI methods.38

A discrete approximation to this expression is obt8ined by using the
formula:

(28)

One obvious problem with implementing differential geometric measures
with real data is that they are inherently noisy. These measures require taking
spatial derivatives of vectors, like local direction vectors, which are them-
selves random variables. Differentiation just amplifies the uncertainty. FIlter-
ing methods will undoubtedly have to be developed to obtain smoothed maps
of these quantities. However, as the signal-to-noise ratio, quality, and acquisi-
tion rate in OWl increase, differential geometry-based measures should play
an increasingly important role as MRI stains.

In summary, new invariant MR. stains can also be derived from the
diffusion tensor field per se, not just from the individual diffusion tensors
measured in each voxel. In regions (e.g., along some white matter tracts and in
the cortex) where this tensor field is expected to be continuous, invariant
measures of fiber tract or sheet architecture (torsion. twisting, etc.) should be
infomlative. Moreover, at interfaces between tissue types where we expect the
diffusion tensor fields to be discontinous (e.g., at the boundary of white matter
fiber tracts and CSF-fiIIed ventricles), differential geometric approaches
should aid in identifying these boundaries, both in oorma1 and pathological
tissues.

iJyr~) .

(27b)
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CONCLUDING REMARKS

Diffusion tensor MRI provides a new paradigm for probing tissue structure
at different levels of hierarchical organi~.ation. While experimental diffusion
times are consistent with measurements of molecular displacements on the
order of microns, these molecular motions are ensemble-averaged within a
voxel, and then subsequently assembled into multislice or 3-D images of
tissues or Otgans. Thus, dlis single imaging medlod permits us to sbldy and
elucidate complex structural features spanning length scales from the macr0-
molecular to the macroscopic!

If one is interested in using a scalar quantity to characterize an intrinsic
feature of an anisotropic medium. such as its degree diffusion anisotropy, that
parameter should be invariant to translation and rotation of the laboratory
coordinate system. If, in addition, that parameter is physically meaningful, it
should possess characteristics of a quantitative physiological or histological
stain. Scalar invariants of the diffusion tensor and functions of them possess
these desirable properties.

The development of fast, high-quality, high-resolution DWI sequences38.4S
and user-friendly software with which to estimate diffusion tensors and
produce images of quantitative ..stains" derived from them have greatly
facilitated the clinical implementation of DT - MRI.
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DISCUSSION

QUFSTION: In the diffusion tensor fOrDlulation that you referred to, a tenD
that we will call "q" effectively introduces a spatial scaling in the measure-
ment of the diffusion coefficienL It seems to me that that tenn might be an
interesting parameter because in isotropic diffilsion fields, there should be a
scaling of the diffilsion coefficient that reveals the size of the cell and could
distinguish cases where fluid is transferred from inside to outside the cell in
some swelling processes. Have you looked at that parameter?

BASSER: There is another approach. which is called displacement imaging,
that addresses that issue directly. You can measure the proton displacements
using much shorter-duration diffilsion gradients that are much larger than
what we used in this study, and then estimate a conditional probability
distribution of particles being at certain plac'es at certain times. In our
particular imaging application, owing to the use of long diffusion times and of
imaging gradients, we don't have the ability to measure that probability
distribution directly. We are also spatially averaging over a very large number
of structures, which are not necessarily homogenous. So we are performing a
spatial homogenization as well. So your question is on target. but it is very
difficult to make these measurements using clinical scanners in a clinical
environmenL


