
JOURNAL OF MAGNETIC RESONANCE, Series B 111, 209–219 (1996)
ARTICLE NO. 0086

Microstructural and Physiological Features of Tissues Elucidated
by Quantitative-Diffusion-Tensor MRI

PETER J. BASSER* AND CARLO PIERPAOLI†

*Biomedical Engineering and Instrumentation Program, NCRR, and †Neuroimaging Branch, NINDS, Building 13,
Room 3N17, 13 South Drive, Bethesda, Maryland 20892-5766

Received April 7, 1995; revised January 31, 1996

Quantitative-diffusion-tensor MRI consists of deriving and dis- Quantitative-diffusion-tensor MRI, which we introduce
playing parameters that resemble histological or physiological here, consists of deriving and displaying new quantitative
stains, i.e., that characterize intrinsic features of tissue microstruc- scalar parameters (from the effective diffusion tensor, DW )
ture and microdynamics. Specifically, these parameters are objec- that measure different intrinsic features of heterogeneous,
tive, and insensitive to the choice of laboratory coordinate system. anisotropic media. These imaging parameters characterize
Here, these two properties are used to derive intravoxel measures

diffusion isotropy, diffusion anisotropy, macrostructuralof diffusion isotropy and the degree of diffusion anisotropy, as
similarity, and fiber-tract organization. We call them ‘‘quan-well as intervoxel measures of structural similarity, and fiber-tract
titative’’ because each parameter behaves like a quantitativeorganization from the effective diffusion tensor, DW , which is esti-
histological or physiological stain.1 In addition, we establishmated in each voxel. First, DW is decomposed into its isotropic and
general criteria and a framework for constructing other in-anisotropic parts, »D … IW and DW 0 »D … IW , respectively (where »D …

Å Trace(DW ) /3 is the mean diffusivity, and IW is the identity tensor) . trinsic quantitative imaging parameters from the diffusion
Then, the tensor (dot) product operator is used to generate a tensor.
family of new rotationally and translationally invariant quantities. MRI parameters that are now used to characterize diffu-
Finally, maps of these quantitative parameters are produced from sion in anisotropic media are not quantitative. Specifically,
high-resolution diffusion tensor images ( in which DW is estimated they are exquisitely sensitive to the choice of the laboratory
in each voxel from a series of 2D-FT spin-echo diffusion-weighted coordinate system and to the applied imaging and diffusion
images) in living cat brain. Due to the high inherent sensitivity of

gradient pulse sequences. As a result, they have little valuethese parameters to changes in tissue architecture ( i.e., macromo-
in drug evaluation studies, multisite studies, or retrospectivelecular, cellular, tissue, and organ structure) and in its physiologic
studies of a single patient. Quantitative diffusion tensor MRIstate, their potential applications include monitoring structural
overcomes these deficiencies.changes in development, aging, and disease. q 1996 Academic Press, Inc.

When the translational mobility of a diffusing molecule
depends upon a medium’s orientation, diffusion is aniso-
tropic. In biological tissues such as brain white matter, skele-

INTRODUCTION tal muscle, kidney, and cardiac muscle [e.g., see (2)] , we
ascribe anisotropic diffusion (as measured by MR spectros-

Diffusion-tensor MRI (DT-MRI) is an MR imaging mo- copy or imaging) to the presence of heterogeneous but spa-
dality that provides unique microstructural and physiological tially ordered macromolecular, membranous, and cellular
information [contained in the six independent components compartments. On the scale of a macroscopic voxel, it is
of the diffusion tensor, DW , and the T2-weighted amplitude, appropriate to use an effective diffusion tensor, DW , to charac-
A(0)] . DT-MRI also presents new challenges, one of which terize diffusion anisotropy (3) . In such anisotropic media,
is to extract and display this information. One approach we use diffusion tensor MRI (1) to estimate an effective
we used previously was to construct three-dimensional fiber diffusion tensor in each voxel, as well as to calculate its
maps and diffusion ellipsoid images (1) which highlight the principal (orthotropic) directions and principal diffusivities.
three-dimensional character of diffusion in tissues and other The former are the mutually perpendicular, preferred direc-
media. Another approach, which we employ here, is to sum- tions along which molecular displacements of the spin-la-
marize (or contract) the information embodied in the six beled molecules are uncorrelated, while the latter are the
independent elements of DW by deriving a new set of scalar diffusivities along these preferred directions. We then use
quantities that measure distinct, intrinsic microstructural fea-
tures of diffusion within tissues (and other media) with 1 The use of the term ‘‘stain’’ in connection with an NMR contrast

mechanism was first brought to our attention by Professor G. Allan Johnson.which we can help assess its physiologic state.
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210 BASSER AND PIERPAOLI

FIG. 1. (a) T2-weighted image showing regions of gray matter, white matter, and CSF-filled ventricles in in vivo cat brain. (b) Diffusion ellipsoid
image constructed from the effective diffusion tensor, DW , estimated in each voxel for the ROI enclosed by the white rectangle.

these quantities to derive measures of diffusion isotropy, matter fiber tracts are packed in orderly bundles) , but should
show no fiber-tract organization in voxels containing iso-diffusion anisotropy, macrostructural similarity, and fiber-

tract organization. tropic media, such as gray matter and CSF-filled ventricles.
In summary, these new one-dimensional (scalar) measuresTo make the qualitative differences between these terms

clear, consider the T2-weighted image of living cat brain would provide new information about the three-dimensional
character of diffusion in anisotropic tissues, information thatin Fig. 1a and the corresponding diffusion ellipsoid image

(constructed for an ROI containing the internal capsule) in has not been available using other MRI techniques.
We expect these parameters to be useful in elucidatingFig. 1b. In principle, an image of a diffusion anisotropy

index of this ROI should show the same contrast in voxels structural features in normal, diseased, or degenerating tis-
sues. The transformation of less-ordered to ordered, complexcontaining similar types of white matter, irrespective of their

fiber-tract direction. This is because an anisotropy index structures is a characteristic of normal development. This
transformation occurs at a variety of length scales, includingshould measure the degree of preferential mobility within a

voxel, but should be insensitive to the direction along which macromolecular (e.g., in neurofilaments and microtubules) ,
cellular (e.g., in axons) , tissue (e.g., in skeletal muscle,diffusion is preferred. Geometrically, it should characterize

the shape of the diffusion ellipsoid, but not its size or orienta- tendons, ligaments, and lens) , and organ (e.g., in brain white
matter, heart, and kidney). Moreover, preliminary findingstion. A measure of macrostructural (diffusive) similarity

should identify tissues with a similar microstructure, spe- that diffusion-weighted images are sensitive to architectural
changes in the optic nerve prior to myelin deposition (4)cifically with similar principal directions and principal diffu-

sivities. We expect that such a measure would be large in suggest that these new parameters could be useful in as-
sessing and characterizing normal and pathological develop-gray matter and larger still in the CSF-filled ventricles

(where diffusion is largely isotropic) , but it would not neces- mental processes. Interest continues to grow in assessing
developmental changes, particularly when induced by ge-sarily be large in regions containing white-matter fibers

whose fiber direction is changing. Geometrically, a measure netic manipulation or environmental stress. Noninvasive and
nondestructive MRI techniques that can sense these changesof structural similarity should measure the similarity of the

shape, size, and orientation of different diffusion ellipsoids. may become increasingly valuable in such basic studies.
Conversely, the loss or lack of organization and structureOur definition of fiber-tract organization combines notions

of diffusion anisotropy and macrostructural similarity. Fiber- at the molecular, cellular, tissue, and organ length scales is
a characteristic of abnormal development, aging, or degener-tract organization is a property that we wish to ascribe only

to anisotropic media (like white matter) but not to isotropic ation. For example, cardiac muscle fiber disorganization ac-
companies idiopathic cardiac myopathy and is believed tomedia (like the CSF-filled ventricles or most gray matter) .

Essentially, this parameter should measure the macrostruc- contribute to the loss of mechanical stiffness and pumping
efficiency of the heart (5) . A measure of the degree of fibertural similarity of the anisotropic part of the diffusion tensor

in different voxels. Such a measure should highlight regions disorganization may be useful in diagnosing such patholo-
gies, as also described by Wedeen et al. (6) . Tumors inlike the corpus callosum or the optical tract (where white-
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211TISSUE STRUCTURE FROM QUANTITATIVE-DIFFUSION-TENSOR MRI

white matter and muscle are also more disorganized than DWIs using a model that may assume diffusion is isotropic.
Even so, these anisotropy measures suffer from a more seri-the surrounding normal tissues; a parameter that measures

fiber organization may help to demarcate (segment) these ous failing: They inherently depend on (a) the choice of the
laboratory frame of reference (i.e., the x , y , z coordinatedomains. Therefore, objective parameters that measure mi-

crostructural features nondestructively and noninvasively system used to represent the directions of the static B field
and the applied magnetic field gradients in an MR experi-may also be of clinical use.
ment) ; (b) the choice of the direction of the applied diffu-
sion gradients used to acquire the DWIs; (c) the orientationBACKGROUND
and placement of the tissue sample within the magnet; and

Several different scalar indices derived from diffusion- (d) the orientation and position of the macromolecular, cel-
weighted images (DWIs) have been used to characterize lular, and/or fibrous structures within a voxel that produce
diffusion anisotropy. Moseley et al. (7) characterized diffu- the observed diffusion anisotropy.
sion anisotropy in each voxel by the ratio of differences and Clearly, for an anisotropy index (or any other scalar mea-
sums of DWIs with diffusion-sensitizing gradients applied sure of an intrinsic characteristic or feature) to possess the
in two perpendicular directions, e.g., x and y : properties of a quantitative histological stain (such as an

autoradiograph), it should be objective (i.e., its value in
each voxel should be a known monotonic function of a mean-DWIx 0 DWIy

DWIx / DWIy
. [1]

ingful physical quantity) and it should be invariant with
respect to arbitrary rotations and translations. These intuitive
criteria are used explicitly below to constrain the set of ad-Douek et al. (8) characterized diffusion anisotropy in a voxel
missible scalar measures of structural features (such as diffu-by the ratio of two apparent diffusion constants (ADCs),
sion anisotropy, structural similarity, and fiber organization)measured with diffusion-sensitizing gradients applied in two
that we derive from the diffusion tensor.perpendicular directions, e.g., x and y ,

THEORYADCx

ADCy

[2]

Measures of Isotropy and Anisotropy

and displayed as a color image (8) . In voxels containing Here we derive new quantitative parameters from the ef-
one particular tissue (such as white matter) when this ratio fective diffusion tensor, DW , by employing tensor operations
was a maximum, its value was assumed to be ADC⊥ / that to date have not been applied in MRI applications. First,
ADC\—the ratio of ADCs perpendicular to and parallel to we decompose DW into isotropic and anisotropic tensors:
the fiber-tract direction (9) . Recently, van Gelderen et al.
(10) proposed a scalar anisotropy index that is proportional DW Å »D … IW

isotropic
tensor

/ (DW 0 »D … IW )
anisotropic

tensor

. [4]
to the standard deviation of three ADCs measured in three
mutually perpendicular directions: ADCx , ADCy , and ADCz ,
divided by their mean value, »ADC … (10) ,

Above, the isotropic part of DW is given by the (isotropic)
identity tensor, IW , multiplied by the (scalar) mean diffusiv-

√
(ADCx 0 »ADC …)2 / (ADCy 0 »ADC …)2 / (ADCz 0 »ADC …)2

»ADC … ity, »D … (11) , where

[3a]

»D …Å Trace(DW )
3

Å Dxx/Dyy/Dzz

3
Å l1/ l2/ l3

3
, [5]

where

and where l1 , l2 , and l3 are the eigenvalues (or principal
»ADC … Å ADCx / ADCy / ADCz

3
. [3b] diffusivities) of DW ; and Dxx , Dyy , and Dzz are its diagonal

elements measured in the laboratory frame of reference. We
call the anisotropic part of DW the diffusion deviatoric orUnfortunately, none of these anisotropy measures is quan-
diffusion deviation tensor, DW :titative. Anisotropy measures based upon DWIs (like Eq.

[1]) are inherently nonobjective; that is, their contrast does
DW Å DW 0 »D … IW . [6]not correspond to a single meaningful physical or chemical

variable or fundamental parameter, but to a complicated
combination of them. This is usually true for anisotropy The term ‘‘deviatoric’’ is apt because DW measures the devia-

tion of DW from being an isotropic tensor, and is analogousmeasures that use the ADC, since they are estimated from
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212 BASSER AND PIERPAOLI

to the stress deviatoric ( tensor) that is widely used in contin- thermodynamic considerations require that DW Å DW T ) , we
can express Eq. [10] in the formuum mechanics and material sciences [e.g., see (12)] . The

latter measures how the (symmetric) stress tensor deviates
from the isotropic mean stress tensor. To form the stress √

DW :DW Å
√

(Dxx 0 »D …)2 / (Dyy 0 »D …)2

/ (Dzz 0 »D …)2 / 2D2
xy / 2D2

xz / 2D2
yz

.deviatoric tensor, sW , the isotropic part of the stress tensor,
p IW , is subtracted from the original stress tensor, sW :

[11]

sW Å sW 0
Trace(sW )

3
IW Å sW 0 pIW . [7] The first three terms on the right-hand side of Eq. [11] are

the sum of the squared deviations between the diagonal ele-
ments of DW and their mean value, »D … ; the remaining three

We recognize p as either the hydrostatic pressure in a fluid terms are the sums of the squares of the off-diagonal ele-
or the mean stress in a solid. (One important difference ments of DW . We see that

√
DW :DW is a scalar measure of the

between the stress and diffusion tensors, however, is that degree to which the diffusion tensor deviates from isotropy
the latter must always be positive definite, whereas the for- ( in a mean-squared sense) , so it is a natural basis for an
mer does not have to be). While this tensor decomposition anisotropy measure.
is not unique, it is the most natural and physically motivated. To show that DW :DW is a scalar invariant measure of anisot-
(Appendix A shows that the eigenvalues of DW and DW are ropy (just as Trace(DW ) is a scalar invariant measure of isot-
simply related, and that both share the same eigenvectors or ropy), we express DW :DW in terms of the eigenvalues of DW
orthotropic directions.) [e.g., as in (13)] . In the principal frame, all off-diagonal

Having decomposed the diffusion tensor into its isotropic elements of DW vanish (i.e., Dxy Å Dxz Å Dyz Å 0) while all
and anisotropic parts, we can obtain a (scalar) measure of its diagonal elements, Dxx , Dyy , and Dzz , are replaced by the
their respective magnitudes (or lengths) . Just as the magni- principal diffusivities, l1 , l2 , and l3 . Equation [11] can be
tude of a vector r is given by the square root of its scalar rewritten as
dot product

√
rrr , the magnitude of a tensor, such as DW , is

given by the square root of the (scalar) generalized tensor √
DW :DW Å

√
(l1 0 »D …)2 / (l2 0 »D …)2 / (l3 0 »D …)2

product or tensor dot product,
√
DW :DW (12) , where

Å
√
3 Var(l) . [12]

DW :DW Å ∑
3

iÅ1

∑
3

jÅ1

D2
ij Å l2

1 / l2
2 / l2

3 . [8] This quantity is a scalar invariant. It is also the sum of the
squares of the deviations between the principal diffusivities
of DW and its mean diffusivity, »D … (see Eq. [5]) , or alterna-

This generalized tensor product shares another property with
tively, three times the sample variance of the three eigenval-

the vector dot product: They both are independent of the
ues of DW within a voxel. For completeness, we can rewrite

position and orientation of the laboratory coordinate system
Eq. [12] (using Eq. [5] and a little algebra) , as

in which their respective components are measured. In par-
ticular, DW :DW (given in Eq. [8]) is a scalar invariant because √

DW :DW Å
√

1
3 ((l1 0 l2) 2 / (l2 0 l3) 2 / (l3 0 l1) 2) .it is a function solely of the eigenvalues of DW , and because

it is independent of their assignment or order ( i.e., if we
[13]

permute the subscripts of the eigenvalues, the value of an
invariant quantity is unchanged.)

Taking the magnitude of the anisotropic part of DW , and
Referring to Eq. [6] , we see that the magnitude or length

dividing it by the magnitude of the isotropic part of DW , we
of the isotropic part of DW is

obtain a measure of the relative anisotropy, RA:√
»D … IW : »D … IW Å »D …

√
IW :IW Å »D …

√
3, [9]

RA Å
√
DW :DW√

»D … IW : »D … IW
Å 1√

3

√
DW :DW
»D …

Å
√
Var(l)
E(l)

. [14]
which is proportional to the scalar mean diffusivity, »D … ,
whereas the magnitude of the anisotropic part of DW is given

RA is quantitative (i.e., physically meaningful and invariant)by
and dimensionless. For an isotropic medium, RA Å 0. RA
also represents the ratio of the sample standard deviation
[

√
Var(l) ] to the sample mean [E(l)] of the three eigenval-

√
DW :DW Å

√
∑
3

iÅj

∑
3

jÅ1

(Dij 0 »D …Iij)
2 . [10]

ues of DW in each voxel (l) .
Alternatively, we propose a measure of the fractional an-

isotropy, FA:If we use Eq. [5] and exploit the symmetry of DW ( i.e.,
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213TISSUE STRUCTURE FROM QUANTITATIVE-DIFFUSION-TENSOR MRI

(with an effective diffusion tensor DW ) , we can form a simi-
FA Å

√
3
2

√
DW :DW√
DW :DW

. [15] larity image by calculating the (scalar) matrix product,
DW :DW *, where DW * is the effective diffusion tensor in any arbi-
trary voxel. To obtain a measure of local similarity, we canThe FA index measures the fraction of the ‘‘magnitude’’ of
sum the matrix products between the reference diffusionDW that we can ascribe to anisotropic diffusion. Like RA, FA
tensor, DW (r) , and those in other voxels, DW (r *) , weightingis quantitative and dimensionless. For an isotropic medium,
their scalar matrix products by a function of the distanceFA Å 0. For a cylindrically symmetric anisotropic medium
between them. Since this measure is a weighted sum of(i.e., with l1 @ l2 Å l3) , FA Å 1. Pierpaoli et al. (14)
scalar invariants, it too is a scalar invariant. A natural wayrecently presented images of the FA index in living human
to do this is to define a correlation measure of structuralbrain, which are bright in regions where there are anisotropic
similarity, S(r) , by convolving DW (r) :DW (r *) with a kernel,structures (such as the corpus callosum and the ventral inter-
K(r 0 r *) , integrating their product over the entire imagingnal capsule) , but are dark in more isotropic regions (such
volume, V :as in gray matter and in CSF-filled ventricles) .

Measures of Macrostructural Diffusive Similarity S(r) Å 1
V

*
V

DW (r) :DW (r *) K(r 0 r *) dr* 3

DW (r) :DW (r)
. [17]

So far, we have considered only intravoxel parameters,
specifically quantities that characterize diffusion isotropy With no a priori information, it is optimal to choose a nor-
and anisotropy within a voxel. However, to measure macro- malized isotropic Gaussian convolution kernel (although
structural features, we must examine the pattern or distribu- other windows could be chosen if additional a priori informa-
tion of diffusion tensors within an image volume. Such a tion were available):
measure might characterize the degree of macrostructural
(diffusive) similarity. However, this requires intervoxel

K(r 0 r *) Å 1√
(2ps 2) 3

expS0(r 0 r *)T(r 0 r *)
2s 2 D .

comparisons. Below, we show how to measure the similarity
of diffusion tensors quantitatively.

Just as the dot product between two vectors measures their [18]
degree of similarity or colinearity, the generalized tensor

We chose an isotropic convolution kernel so that no direc-(dot) product between two tensors measures their similarity.
tional bias is introduced. We also require that the convolutionA reasonable measure of structural (diffusive) similarity be-
kernel have an area equal to one, to normalize the result.

tween media in different voxels is
√
DW :DW * . However, to use

This formula can be evaluated efficiently (even for 3-D data
this formula as a measure of (diffusive) similarity, we must

sets) using the convolution theorem of discrete Fourier trans-
demonstrate that it possesses the required properties of a

forms (15) . Equation [18] extends the formalism introduced
quantitative measure (i.e., objectivity as well as translational

by Marr (16) to smooth images.
and rotational invariance) . These properties are demon-

For discrete MR images, Eqs. [17] and [18] do not apply
strated in Appendix B, where we also show that DW :DW * can

since the diffusion tensors are not continuous functions of
be expressed in terms of the eigenvalues (lk and l*s ) and

position, but voxel-averaged quantities defined within each
eigenvectors (1k and 1 *s ) of DW and DW *, respectively, i.e.,

voxel. We must therefore replace the integral in Eq. [17]
with a discrete sum over voxels within the image space:

DW :DW * Å ∑
3

kÅ1

∑
3

sÅ1

lkl*s (1T
k 1 *s )2 . [16]

S(r)

Geometrically, we can use Eq. [16] to devise scalar mea- Å ∑
l

∑
m

∑
n

{ ∑
3

kÅ1

∑
3

sÅ1

lk(r)ls(r *)[1T
k (r)1 s(r *)]2}

sures of the similarity of the size, shape, and orientation of
two different diffusion ellipsoids constructed from DW and 1√

(2ps 2) 3
expS0(r 0 r *)T(r 0 r *)

2s 2 DDxDyDz ,DW *. Since all lk and l*s are positive, and so are (1T
k 1 *s )2 ,

every term in Eq. [16] is positive. Note that the eigenvectors
1k and 1 *s of two different diffusion tensors are generally not

[19a]parallel or orthogonal to one another.
Now that we have developed an invariant quantity that having used the substitutions

measures the similarity of diffusion tensors in different vox-
r * Å ( lDx , nDy , mDz)T ;els, we can construct new scalar images from the diffusion

tensor image [i.e., the image in which every voxel contains r Å ( iDx , jDy , kDz)T ; and
an estimated diffusion tensor (1)] . To measure macrostruc-
tural similarity with respect to a particular reference voxel dr * 3 Å DxDyDz , [19b]
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214 BASSER AND PIERPAOLI

where Dx , Dy , and Dz represent the individual voxel di- tion coefficient. The term containing the delta function, [1
0 d(r 0 r *)] , eliminates the contribution produced by themensions. These definitions apply for both isotropic and

anisotropic voxels. To mitigate errors introduced at the inner product of the reference deviatoric with itself,
DW (r) :DW (r) . Since O(r) is a weighed sum of scalar invari-boundaries of the imaging volume, we can pad the multislice

or 3-D images with zeros. The correlation length s in Eq. ants, it too is a scalar invariant. It can also be displayed as
an image whose intensity should be large where the fiber-[18] should now be at least as large as the smallest voxel

dimension. tract direction field is regular or relatively uniform. For ex-
ample, in normal brain, we would expect a gray-scale image

Fiber-Tract Organization Measures of O(r) to be bright in organized regions (such as the corpus
callosum and the optical tract) , and dark in less-organized

To measure the degree of fiber-tract organization, we use
regions (such as fluid-filled ventricles, in gray matter, and

a measure of the similarity between the anisotropic parts (or
even some more-disordered regions of white matter) .

deviatorics) of diffusion tensors in different voxels, DW :DW *.
For MR images, we replace the integral with a sum over

In Appendix C we derive the generalized tensor product
discrete voxels in the image space

between the diffusion deviation tensors in a reference and
an arbitrarily chosen voxel, DW :DW *, in terms of their eigenvec-
tors and eigenvalues, obtaining O(r) Å ∑

l

∑
m

∑
n
H∑

3

kÅ1

∑
3

sÅ1

lk(r)ls(r *)[1T
k (r)1s(r *)]2

DW :DW * Å ∑
3

kÅ1

∑
3

sÅ1

lkl*s (1T
k 1 *s )2 0 1

3 ( ∑
3

kÅ1

lk)( ∑
3

sÅ1

l*s ) . [20]
0 1

3
∑
3

kÅ1

lk(r) ∑
3

sÅ1

ls(r *)J
Equivalently, Eq. [20] can be written as

1 1√
(2p)3s 2

expS0(r 0 r *)T(r 0 r *)
2s 2 DDW :DW * Å DW :DW * 0 3 »D … »D * … , [21]

where we have used Eq. [5] above. Therefore, the tensor 1 (1 0 d(r 0 r *))DxDyDz [23]
product between two diffusion deviation tensors is the tensor
product between their respective diffusion tensors minus and use the substitutions in Eq. [19b] above.
three times the product of their respective mean diffusivities.
Since DW :DW * and »D … »D * … are both invariant, DW :DW * is also

MATERIALS AND METHODSinvariant.
Now that we have defined an invariant measure of similar-

MR data were obtained with a General Electric 2.0 Tity for anisotropic structures, we can again apply the convo-
Omega MR system (GE NMR Instruments, Fremont, Cali-lution averaging procedure used above to develop a measure
fornia) equipped with self-shielded gradients (Acustar 290)of fiber organization. To retain information about local order
capable of producing pulses up to 4.0 G/cm. A homebuilt( i.e., tissue domains with similar structure and orientation)
quadrature coil (13 cm diameter) was used as a radiofre-within the vicinity of the reference voxel, we again weight
quency transmitter and receiver. We acquired 21 axialthe scalar matrix products between deviatorics in neigh-
multislice diffusion-weighted 2D spin-echo images of livingboring voxels more heavily than we do those between distant
cat brain in under 3 h. Imaging acquisition parameters wereones. By analogy, we define a correlation measure of organi-
as follows: four axial slices, 2 mm slice thickness, TR/TEzation, O(r) :
of 2000/70, two repetitions per image, 90 mm field of view,
40 kHz bandwidth, 128 1 256 in-plane resolution. DifferentO(r)
levels of diffusion weighting were obtained by varying the
strength of pairs of trapezoidal gradient pulses placed onÅ 1

V *
V

DW *(r)√
DW (r) :DW (r)

:
DW (r *)√

DW (r *) :DW (r *) both sides of the 1807 pulse between 0 and 3 G/cm (17–
19) . The diffusion sensitizing gradients had a duration of

1 K(r 0 r *)[1 0 d(r 0 r *)]dr * 3 . [22] 19 ms and were separated by a time interval of 20 ms. The
highest b-matrix values were on the order of 850 s/mm2.
Diffusion gradients were applied in seven noncollinear direc-The normalization of the deviatorics in the integrand guaran-

tees that the anisotropic macrostructural similarity index will tions (20) . From the measured T2-weighted signal, A(TE),
and the b matrix calculated from each sequence (21) , wealways lie between 0 and 1, with 0 indicating no order and

1 indicating a locally uniform fiber-tract pattern. The tensor estimated DW in each voxel, using weighted multivariate linear
regression of (20) :product in the integrand of Eq. [22] now resembles a correla-
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215TISSUE STRUCTURE FROM QUANTITATIVE-DIFFUSION-TENSOR MRI

FIG. 3. The fractional anisotropy index, Eq. [15], evaluated from the
FIG. 2. Image of Trace(DW ) for cat brain, calculated using Eq. [5] . estimated effective diffusion tensor in each voxel.

Trace(DW ) arises naturally as an invariant imaging parameter from the de-
composition of the effective diffusion tensor into its isotropic and aniso-
tropic parts, as in Eq. [4] .

ant quantity as a useful MRI parameter whose value is
independent of the orientation of anisotropic structures
within a voxel (22 ) . Figure 2 shows an image of Trace(DW )
Å 3 »D … for the live cat.lnSA(TE)

A(0) D Å 0 ∑
3

iÅ1

∑
3

jÅ1

bijDij . [24]
The invariant relative anisotropy index given in Eq. [14]

embodies the three-dimensional character of diffusion an-
isotropy. It is particularly instructive to compare this index

The indices above were calculated from DW estimated in each
voxel.

EXPERIMENTAL RESULTS AND DISCUSSION

Figure 2 shows the isotropic part of the diffusion tensor,
Trace(DW ) in cat brain, calculated from DW in each voxel using
Eq. [5] . Figure 3 shows the fractional anisotropy index, Eq.
[15], calculated from DW in each voxel. Figure 4 shows the
organization index, Eq. [23] calculated from the series of
multislice images. For ease of implementation, we used a
rectangular window including only nearest neighbor voxels
rather than the Gaussian window suggested above.

One of the novel contributions of this work is the use of
the tensor decomposition (Eq. [4]) and the tensor product
(e.g., in Eq. [8]) to derive intrinsic parameters characteriz-
ing features of isotropic and anisotropic diffusion in tissues
and other media. This approach also provides a unified con-
ceptual framework with which to present these invariant
parameters.

The first parameter that arises naturally from this de-
composition is the magnitude of the isotropic part of DW ,

FIG. 4. The organization index (Eq. [23]) evaluated using three contig-
»D … ( see Eq. [5 ] ) , the mean diffusivity obtained by aver- uous axial slices of in vivo cat brain. The image was implemented using a
aging the translational displacement distribution uni- simplified algorithm in which the convolution kernel was a box function

that included only nearest-neighbor voxels.formly in all directions (11 ) . We first proposed this invari-
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to the ‘‘SD’’ anisotropy measure proposed by van Gelderen we must specify it when using them. It will be interesting
to study systematically how these measures of isotropy, an-et al. (Eqs. [3a] , [3b]) , which is not rotationally or transla-

tionally invariant. The primary difference between these two isotropy, similarity, and organization in tissues and other
media are affected by voxel size (e.g., in microscopic diffu-measures is that Eq. [14] contains the sum of the squares

of the off-diagonal elements of DW , whereas Eqs. [3a] , [3b] sion tensor imaging studies) (24) . Finally, if the voxel di-
mensions are not significantly smaller than the regions indo not. (One can see this by comparing DW :DW in Eq. [11]

and the numerator in Eq. [3a]) . From this, we predict that which there are distinct tissue types, then their correlation
length, s, will always be too large to resolve any local orderthe SD measure of anisotropy will depend on the orientation

of the anisotropic structures with respect to the laboratory or structural similarity. Such is the case in the corpus callo-
sum in Fig. 4.coordinate frame, and thus will introduce an artifact into the

measurement of anisotropy that depends upon orientation. Although it does possess the required properties of a quan-
titative MRI parameter, we do not want to leave the impres-Based upon the form of Eq. [3a] , we can even predict how

this artifact will manifest itself. The error in the SD measure sion that the invariant organizational measure proposed in
Eq. [23] is the only admissible measure of local order. Otherwill be smaller for anisotropic structures that lie parallel to

one of the laboratory coordinate (x–y–z) axes, but may be measures, including some based on the Shannon information
(25) , are attractive. However, to estimate them requires seg-as large as 100% for structures oriented obliquely to all

of the coordinate axes, making those anisotropic structures menting a high-dimensional parameter space; ironically, this
leaves us with the same problem that we posed in the Intro-appear almost isotropic.

Generally, knowing the ADCs measured in any three or- duction—to reduce the complexity of a high-dimensional
data set like the diffusion tensor image.thogonal directions (as in Eqs. [3a] , [3b]) is not sufficient

to characterize diffusion anisotropy. By examining the form
of the scalar invariant DW :DW in Eq. [12], and the anisotropy CONCLUSIONS
measures we propose in Eqs. [14] and [15], we see that to
characterize diffusion anisotropy adequately requires at least One of our aims has been to propose new and useful

MRI parameters that behave as physiological or histologicalknowing the three eigenvalues of DW . Since in most MRI
applications we do not determine them a priori, we must ‘‘stains’’, as well as a formal prescription for deriving them

from the effective diffusion tensor, DW . The specific parame-generally resort to calculating them from the diagonal and
off-diagonal elements of the estimated diffusion tensor, DW ters we propose stain for intrinsic structural and physiologi-

cal features such as diffusion isotropy, diffusion anisotropy,(1, 20) .
Equation [20] has an interesting potential application: It structural similarity, and fiber-tract organization. A quantita-

tive physiological stain must be insensitive to an arbitrarycould be used to discriminate between different structural /
architectural motifs, such as between isotropically or aniso- rotation and translation of the laboratory coordinate system.

We show that to characterize diffusion anisotropy (26) , wetropically packed fibers, or between flat or twisted fiber
sheets ( in which, for example, 12 and 13 rotate around 11) . must at least know all three eigenvalues of DW , and that to

characterize the degree of structural similarity or fiber-tractThis application may be of use in elucidating fiber architec-
tural motifs in the heart (6, 23) . organization adequately, we must know both the eigenvalues

and eigenvectors of DW (and those in surrounding voxels) .The organizational index, shown in Fig. 4, shows high
contrast in the corpus callosum and ventral internal capsules, This information can be calculated directly using all ele-

ments ( i.e., both diagonal and off-diagonal elements) of thewhere we know that the nerve fiber tracts run parallel to
each other. In cortical regions containing white matter, the estimated diffusion tensor, DW , but cannot be calculated from

the apparent diffusion coefficients, ADCs obtained in two orcontrast is lower. Anatomically, these are regions in which
we know the fiber patterns are less coherent. There is virtu- three orthogonal directions. In general, measurements based

upon ADCs obtained in two or three orthogonal directionsally no observed contrast in the gray matter or in the CSF-
filled ventricles, where there is effectively no macroscopic cannot be used to assess tissue anisotropy quantitatively, or

any other feature that is related to it.organization.
While the scalar invariant MRI parameters are insensitive In previous studies, it has been demonstrated that with

fast diffusion-weighted imaging sequences, such as high-to the orientation of the sample, to the orientation of the
gradients, and to the laboratory coordinate system, they may resolution diffusion-weighted EPI (27) , we can measure an

effective diffusion tensor, DW , in vivo in each voxel in underbe affected by other independent parameters in the NMR
experiment, such as voxel dimension. When we discretize 30 min (14) , a reasonable period in which to make a clinical

assessment. The new imaging parameters proposed abovethe structural similarity and fiber organization measures (as
in Eqs. [19a] and [23a]) , we introduce a new length scale: can be calculated from DW in each voxel almost instantly,

using conventional software packages. Therefore, as fast im-the characteristic length of the voxel. These invariant mea-
sures are not guaranteed to be independent of voxel size, so agers become more widely available, so should one’s ability
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to glean new structural and physiological information calcu-
lated from diffusion tensor images.

LW Å

l1 0 0

0 l2 0

0 0 l3

; LW * Å

l*1 0 0

0 l*2 0

0 0 l*3

. [B1c]
APPENDIX A

It is easy to show that the isotropic part of DW vanishes
Here, it is convenient to introduce index notation and the(i.e., its trace is zero) . This can be demonstrated using Eqs.
Einstein summation convention (28) ( i.e., any index ap-[5] and [6]:
pearing twice in an expression is automatically summed over
the range of values that index assumes). Using Eq. [B1a],Trace(DW ) Å Trace(DW ) 0 »D …Trace( IW )
we can rewrite DW :DW * as

Å 3 »D … 0 3 »D … Å 0. [A1]

DW :DW * Å DijD *ij Å EikLklEjlE *isL *stE *j t . [B2]
In addition, the eigenvalues of DW and DW are related. The
eigenvalues of DW are determined from the characteristic Since, LW and LW * are diagonal matrices, we can rewrite Eq.
equation: [B1c] as

ÉDW 0 lIWÉ Å 0 [A2]
Lkl Å lkdkl and L *st Å l*s dst

whereas the eigenvalues for DW are given by (no summation over s and k !) , [B3a,b]

ÉDW 0 l*IWÉ Å ÉDW 0 »D … IW 0 l*IWÉ where dpq is the Kronecker delta (28) . Substituting Eq.
[B3a,b] into [B2] and simplifying, we obtainÅ ÉDW 0 ( »D … / l*) IWÉ Å 0. [A3]

DW :DW * Å EiklkdklEjlE *isl*s dstE *j t Å lkEikEjkl*s E *isE *j s . [B4]Equations [A2] and [A3] show that the characteristic equa-
tions for DW and DW are identical, except that the eigenvalues

By commuting and regrouping terms, Eq. [B4] becomesof DW and DW , l and l*, respectively, differ by the mean
diffusivity, »D … , i.e.,

DW :DW * Å lkl*s (EikE *is)(EjkE *j s)
l Å »D … / l* or l* Å l 0 »D … . [A4]

Å lkl*s (ET
kiE *is)(ET

kjE *j s) . [B5]

It follows directly that DW and DW also possess the same eigen-
The quantities in parentheses above represent the dot productvectors, 1i , since in both cases we must solve the same set
between eigenvectors of DW and DW *. Since j and i are dummyof matrix equations to obtain them,
indices, these dot products can be rewritten as

(DW 0 li IW )1i Å 0. [A5]
ET

kiE *is Å ET
kjE *j s Å 1T

k 1 *s . [B6]
This means that these two tensors share the same principal

Now using Eq. [B6], Eq. [B5] becomesor orthotropic directions.

APPENDIX B DW :DW * Å lkl*s (1T
k 1 *s )2 Å ∑

3

kÅ1

∑
3

sÅ1

lkl*s (1T
k 1 *s )2 , [B7]

To express DW :DW * in terms of the eigenvalues and eigen-
vectors of DW and DW *, we first diagonalize them according to which is what we set out to show.

Now, to show that DW :DW * is an invariant quantity, we need
DW Å EW LW EW T; DW * Å EW *LW *EW *T [B1a] only show that the right-hand side of Eq. [B7] is invariant.

Although it is well known that all eigenvalues of a symmetric
where EW and EW * are matrices whose columns are the ortho- matrix are invariant under any proper rotation of the labora-
normal eigenvectors of DW and DW *, respectively, i.e., tory coordinate system [ for a proof see (29)] , we still must

show that 1T
k 1 *s is invariant. This seems clear from geometri-

EW Å (11É12É13) ; EW * Å (1 *1É1 *2É1 *3 ) [B1b] cal considerations and is also easy to demonstrate algebrai-
cally.

If AW is a transformation matrix between eigenvectors inand where LW and LW * are the diagonal matrices containing
the eigenvalues of DW and DW *, respectively: two laboratory frames
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AW 1 0
k Å 1k and AW 1 * 0

s Å 1 *s , [B8] Dkk Å ∑
3

kÅ1

Dkk Å ∑
3

kÅ1

lk and D *ww Å ∑
3

wÅ1

D *ww Å ∑
3

sÅ1

l*s ,

and AW is a proper orthogonal transformation (30) , i.e., [C5]

AW TAW Å AW 01AW Å IW , [B9] we can now use Eqs. [C5] and Eq. [16] to write Eq. [C4]
in terms of the eigenvectors and eigenvalues of DW and DW *,

then the inner (dot) product of the eigenvectors is the same as in Eq. [20].
in both frames:
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