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The effective diffusion tensor of water, D
¯

, measured by diffu-
sion tensor MRI (DT-MRI), is inherently a discrete, noisy, voxel-
averaged sample of an underlying macroscopic effective diffusion
tensor field, D

¯
(x). Within fibrous tissues this field is presumed to be

continuous and smooth at a gross anatomical length scale. Here a
new, general mathematical framework is proposed that uses mea-
sured DT-MRI data to produce a continuous approximation to D

¯
(x).

One essential finding is that the continuous tensor field representa-
tion can be constructed by repeatedly performing one-dimensional
B-spline transforms of the DT-MRI data. The fidelity and noise-
immunity of this approximation are tested using a set of syntheti-
cally generated tensor fields to which background noise is added via
Monte Carlo methods. Generally, these tensor field templates are
reproduced faithfully except at boundaries where diffusion proper-
ties change discontinuously or where the tensor field is not micro-
scopically homogeneous. Away from such regions, the tensor field
approximation does not introduce bias in useful DT-MRI parame-
ters, such as Trace(D

¯
(x)). It also facilitates the calculation of several

new parameters, particularly differential quantities obtained from
the tensor of spatial gradients of D

¯
(x). As an example, we show that

they can identify tissue boundaries across which diffusion proper-
ties change rapidly using in vivo human brain data. One important
application of this methodology is to improve the reliability and
robustness of DT-MRI fiber tractography. C© 2002 Elsevier Science

Key Words: MRI; MR; diffusion; DTI; DT-MRI; in vivo; tensor;
field; interpolation; anisotropy; fiber; tractography; curvature.
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INTRODUCTION

Diffusion tensor MRI (DT-MRI) provides a measurement
an effective diffusion tensor of water,D

¯
, in each voxel within an

imaging volume (1). However, these diffusion measurements
inherently discrete, noisy, and voxel-averaged. In this work,
view the DT-MRI data as discrete noisy samples of an unde
ing macroscopic diffusion tensor field,D

¯
(x), wherex = (x, y, z)

are the spatial coordinates in the laboratory frame of re
ence. This field is presumed to be continuous and smoo
a gross anatomical (voxel) length scale within many soft fibr
1 To whom correspondence should be addressed at National Institut
Health, Building 13, Room 3W16, 13 South Drive, Bethesda, MD 20892-57
E-mail: pjbasser@helix.nih.gov.
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tissue regions, including white matter, muscles, ligaments,
tendons.

The main objective in this paper is to develop and describ
mathematical framework to estimate the continuous tensor fi
D
¯
(x), from a discrete set of noisy DT-MRI measurements. A co

tinuous model is essential for many important new applicatio
of DT-MRI data in biology and medicine. One application is
improve statistical estimates of histological and physiologi
MRI parameters, including Trace(D

¯
(x)), the eigenvalues (prin-

cipal diffusivities) ofD
¯
(x), and measures of diffusion anisotrop

(1), similarity, and fiber organization (2, 3). The reliability of
these estimates should improve, and bias in their means and
ances (4) should be reduced when the approximated diffus
tensor field is used rather than the noisy tensor measurem
themselves.

Having a continuous model enables us to compute and
play intrinsic2 architectural or microstructural MRI paramete
based upon tissue fiber geometry (2, 3). Some previously sug-
gested tissue characteristics include the degree of fiber twis
bending, and diverging (5). New parameters are also present
here to describe architectural features of the tensor field its
such as how its principal coordinate axes meander within
imaging volume. None of these quantities could be reliably
timated directly from the measured diffusion tensor data, si
their evaluation requires spatial differentiation of noisy tens
quantities, which would only further amplify the noise. Below
we show that these parameters can be calculated more rel
and robustly using the smoothed representation ofD

¯
(x).

Another important application of this new methodology
to DT-MRI fiber tractography. Here, fiber tract trajectories a
represented as streamlines obtained by integrating the
direction (vector) field (6, 7). However, integrating a noisy di-
rection vector field can cause these computed fiber traje
ries to wander off course (7). Using a smooth representation o
the direction field, obtained from the continuous representa

2 By an intrinsic parameter, we mean a computed quantity that depic
characteristic or feature of the tissue, which is independent of the details o
measurement, for instance, of the orientation of the fiber within the magnet
specifics of the diffusion weighted imaging (DWI) sequences used to estim
the direction, . . .; e.g., see (2, 3).
5 1090-7807/02 $35.00
C© 2002 Elsevier Science

All rights reserved.



U

g
e

s

s
u

t
t
d

a

o

i
e

t

l

o
a
fi
,

u

e
(
m

e

l

t

ors,
d

the

cale
ss

sen-
eld
hen

n-
es or
of
mes

ensor
the
ng

ose
es

min-
nsor

tor
ch of
t
the
the
86 PAJEVIC, ALDRO

of D
¯
(x), however, can improve the fidelity of tract-followin

schemes (7). Establishing connectivity of neural pathways (i.
establishing continuous links between different regions of
brain) and continuity (i.e., assessing any disjunction betw
them) can also benefit from this development.

Moreover, our method provides a unified image-proces
framework for performing several generic tasks rapidly and
ficiently on DT-MRI and other tensor field data. These ta
include filtering noise, sharpening edges, and detecting bo
aries; compressing, storing, and transmitting large image fi
interpolating and extrapolating tensor data; resampling da
different resolutions; extracting textural features, segmen
images, clustering tensor data, and classifying tissues; an
tecting statistical outliers.

Finally, to our knowledge, this is the first demonstration o
mathematical method that produces a continuous approxim
of a discrete, sampled 2nd-order tensor field. While this work
applications to DT-MRI, it has a much broader significance
other areas of natural sciences (e.g., oceanography, meteor
and materials sciences).

Thus, this paper addresses several critical unmet needs
analysis and representation of measured DT-MRI data. Her
(a) describe this general mathematical framework that con
uously approximates discretely sampled DT-MRI data, (b)
its fidelity, (c) present several exemplary intrinsic MR param
ters for tissue structure and architecture that can be calcu
using the framework, and (d) apply these parameters toin vivo
DT-MRI data.

THEORY

Continuous Approximation and Representation
of a Discrete Tensor Field

The rigorous theoretical underpinnings of this methodol
are provided elsewhere (8), wherein theorems are proved that l
the foundation for the development of a continuous tensor
representation of discrete, noisy diffusion tensor data. Below
describe the essential features of this methodology. The im
mentation of this tensor field representation method to meas
DT-MRI data is described in the Appendix.

To construct a continuous approximation to a diffusion t
sor field, we start with a set of continuous basis functions
proximants) whose linear combinations define an approxi
tion space. This space should possess the following prope
to make the approximation scheme practicable:

1. This set of basis functions is sufficiently rich to repres
the diffusion tensor field precisely and accurately.

2. The mathematical description of the approximation sp
is computationally tractable.

3. The approximation of the diffusion tensor field is imp

mented using algorithms that are fast, robust, and accurate

To meet these requirements, we use atomic spaces (9), which
BI, AND BASSER
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are a generalization of shift invariant spaces.3 In particular, we
choose an atomic space,S1(x,B

¯
), such that any function in tha

space,T
¯1

(x), is of the form

T
¯1

(x) =
r∑

i=1

∑
k

∑
l

∑
m

ci (k, l ,m)

× B
¯

i (x1x − k, y1y − l , z1z−m). [1]

Each approximant,T
¯1

(x), in the approximation space,S1(x,B
¯

),
is a weighted sum of a finite number of tensor field generat
B
¯

i (x,1)|{i = 1, . . . , r }, and their shifts are on a uniform gri
within the imaging volume, as indicated byk, l , andm. In our
DT-MRI application, the dimensionality of the tensor fieldr
equals 6 (which is the number of independent elements of
symmetric 2nd-order diffusion tensor). The coefficients,ci , are
the unknown parameters in the continuous model. The s
parameters,1x, 1y, and1z, control the degree of smoothne
of this representation in each direction.

When all scale parameters equal 1, the continuous repre
tation becomes interpolation; i.e., the continuous tensor fi
passes through each of the discrete tensor data precisely. W
one or more of the1i is less than 1, the continuous represe
tation becomes a data reduction technique that approximat
“fits” the discrete tensor data. Additionally, when one or more
the1i are greater than 1, the continuous representation beco
a data expansion technique that oversamples the discrete t
data. In our DT-MRI measurements, the resolution along
z axis (slice-select direction) is approximately half that alo
x and y. To obtain an isotropic grid ofB-spline coefficients
one could oversample the data along thez direction by setting
1z = Vr1x = Vr1y, whereVr is the voxel aspect ratio (Vr

∼= 2
in our case). However, in practice it can be beneficial to imp
the constraint 0<1i ≤ 1, to preserve the measured signal valu
at the measurement points.

The optimal choice of the coefficients,ci , for a given choice of
tensor field generators and scale parameters is the one that
imizes the least-squared difference between the original te
data and the approximated diffusion tensor field (8).

We showed previously that finding the tensor field genera
can be reduced to finding a continuous representation of ea
its individual tensor components (8). In particular, to represen
the field of the symmetric diffusion tensor, we proposed
following six tensor field generators used in Eq. [1] to define
tensor approximation space,S1(x,B

¯
):

B
¯

1(x)= b1(x)

1 0 0

0 0 0

0 0 0

, B
¯

2(x)= b2(x)

0 0 0

0 1 0

0 0 0



.

3 Atomic spaces are used in solving differential equations by finite element
methods and in wavelet theory.
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FIG. 1. A graph of the 1-D B-spline functions of order 0 through 3. T
function (the B-spline of order 0) as indicated in the figure.

B
¯

3(x)= b3(x)

0 0 0

0 0 0

0 0 1

, B
¯

4(x)= b4(x)

0 1 0

1 0 0

0 0 0

 [2]

B
¯

5(x)= b5(x)

0 0 1

0 0 0

1 0 0

, B
¯

6(x)= b6(x)

0 0 0

0 0 1

0 1 0

.
Thus, each tensor field generator,B

¯
i (x), can be expressed i

terms of a single function,bi (x), which now serves as a bas
for the i th component of the tensor field. Furthermore, th
bi (x) are themselves chosen to be a product of one-dimens
functions, i.e.,bi (x) = f i (x)gi (y)hi (z). The basis functions ar
now separable in two ways, first with respect to the compon
of the tensor, and second with respect tox, y, andz. Thus, the task
of finding a continuous tensor field,D

¯
(x), or more precisely the

coefficients of the continuous model,ci , is reduced to applying
a one-dimensional signal approximation algorithm sequenti
along x, y, andz coordinates within the imaging volume fo
each tensor component. This one-dimensional approxima
algorithm is described in more detail in the Appendix. In o
implementation, we choosef i (x), gi (y), andhi (z) to be the B-
spline functions, which are obtained by repeated convolut
of the simple box function (Fig. 1). The number of convolutio
determines the order of the B-spline, i.e., linear, quadratic, cu
etc. The use of the separable basis function provides an eas
to account for the nonuniform resolutions inx, y, andzdirections
in a typical DT-MRI experiment, where resolution is typica
higher “in-plane” than along the slice-select direction.
As Fig. 2 demonstrates, the two-dimensional spline funct
constructed using a product of linear one-dimensional B-spli
is anisotropic (i.e., shows preferential directions) and will pr
e B-spline of ordern is obtained by repeatingn times the convolutions of the bo
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duce artifacts when used for scaling (i.e., smoothing) a gen
tensor field. However, when the cubic B-splines are used t
artifacts are negligibly small and thebi (x) constructed in this
way perform nearly as well as the true two-dimensional isotro
basis functions (Fig. 2), but are much more computationally
ficient to implement. In our implementation we use mainly
cubic B-splines. If higher order derivatives are needed, it is
visable to use B-splines of higher polynomial order than thre
preserve the isotropic properties of the multidimensional b
functions.

B-spline functions have several other important advanta
which make this implementation highly efficient: (1) the gen
ators have finite spatial extent (i.e., finite support), which spe
up and simplifies digital processing algorithms; (2) the ten
field generators can be expressed analytically, thus the te
field can be evaluated exactly at any point within the imag
volume; (3) one can control the degree of smoothness

FIG. 2. The contour plot of the two-dimensional B-spline functions co
structed using the assumption of separability. One can see that the separ
nes
o-

assumption does not hold well for the B-splines of order 2 and below (linear and
quadratic) while for the cubic B-splines the two-dimensional version does not
show any significant difference from the true isotropic two-dimensional splines.
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TABLE I
Forms of the Tensor Field, D

¯
(x), Which Can be Used to Describe

Diffusion Properties of Different Media

Tensor fields,D
¯
(x) Homogeneous Heterogeneou

Isotropic 〈D〉I
¯

〈D(x)〉 I
¯

Anisotropic R
¯

T3
¯

R
¯

R
¯
(x)T3

¯
(x) R

¯
(x)

Note.In the isotropic case,〈D〉 is the orientationally averaged (scalar) me
diffusivity, and I

¯
is the identity tensor. In the anisotropic case,R

¯
is a proper

rotation matrix andΛ
¯

is the matrix of eigenvalues.〈D(x)〉,R
¯
(x) andΛ

¯
(x) are

assumed to be piecewise continuous functions ofx, y, andz within the imaging
volume.

differentiability of the continuous approximation by changi
the polynomial order or degree of the B-spline functions; (4)
adjusting the scale parameters (1) of the B-spline represen
tation we can choose among oversampling (1>1), interpola-
tion (1= 1, i.e., fitting data points exactly), and approximati
(1<1, i.e., fitting data points approximately); (5) the deriv
tives of B-splines can be expressed recursively in terms o
original B-splines; and (6) B-spline functions naturally gener
multiresolution structures that are useful in analyzing sign
and images at different length scales.

Statistical Properties of the Approximated Tensor Field

It is important to keep in mind that the continuous ten
field is still a statistical estimate of the “true” underlyin
tensor field. Elsewhere, we showed that the elements o
diffusion tensor obtained by DT-MRI are distributed acco
ing to a multivariate Gaussian probability density funct
(10) in which D

¯
is expressed as a six-dimensional vec

D̃ = (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz)T , whose distribution can
be written as

p(D̃) = 1√
(2π )6|6|

exp

(
− 1

2
(D̃ − M)T6−1(D̃ − M)

)
, [3]

whereM = (µxx, µyy, µzz, µxy, µxz, µyz)T is the six-dimensio-
nal mean vector, and6 is the 6× 6-covariance matrix.

Since the approximate tensor field is always a linear func
of these measured tensors, the coefficients,ci , of the continuous
model will also be normally distributed. Moreover, the me
squared error between the noisy discrete data sampled w
the imaging volume and the continuous field representation
beχ2 distributed.

The approximated tensor field elements will have a lo
variance than the original measured tensor data. The facto

which the variance of the noise is reduced using our appr
mation method scales as1x1y1z. The “exact”4 expression for
the variance ofci can be obtained using the linear relationsh

4 Strictly speaking, this is not an exact relationship because one of the fi
in Eq. [A.2] is an infinite impulse response (IIR).
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between the measured data and the coefficients (see Eqs.
and [A.6]). This relationship can be simplified in the case
the homogeneous field (see Table 1). In the case of the he
geneous diffusion tensor field, evaluating the noise proper
is more complex, partly due to the fact that the variance of
original diffusion tensor elements is not homogeneous.

METHODS

Implementation of Algorithms for Tensor
Field Approximation

The first step in the implementation is to choose the appro
ate order of theB-spline functions to generate the basis of t
diffusion tensor field and the appropriate scale parameters,1 j .
Specifically,1 j is the ratio of the number of unknown param
ters to the number of measured data points for the 1-D appr
mation in thej th direction. This means that the scale parame
can only take on specific rational values,{1}N , which designates
the rational number closest to1 that containsN in the denom-
inator. For DT-MR images.N is usually large enough to allow
sufficient precision in the range of the scale parameter va
between 0 and 1. We further reduce the number of scale p
meters by choosing only one1 and by assigning the three va
ues of the model as1x ={1}N x,1y={1}N y,1z={Vr1}Nz,
whereVr is the voxel aspect ratio as described earlier and w
the constraint that1 ∈ [0, 1]. The choice of rational scales a
lows us to use the same transformation for the reduction
expansion operations and ensures that the doubly transfor
(contracted and expanded back) discrete signals are samp
exactly the same points in the space. Ideally, the value o1

should be twice the ratio of the maximal spatial frequency
the “pure” (noise-free) signal and the sampling frequency. No
however, that our approximation method is not a simple lo
pass filter. In cases where structures within the image appe
all length scales, the choice of1 is empirical as the structure
on the small scales (single or a few voxels) must be blurre
order to improve estimates of large structures of the diffus
tensor field elsewhere.

Once the B-spline order and the scale parameters are
sen for a given DT-MRI data set, the second step is to calcu
B-spline coefficients in thex, y, andz directions for each of
the six independent diffusion tensor elements using the sp
separability property described above. Thus, we perform
transforms repeatedly on the tensor data set using method
ported in (11–14), some of which are also summarized in t
Appendix.

Moreover, the same tensor representation algorithms ca
used for interpolating or approximating the tensor data. Inter
lation forces the smoothed representation to pass through
measured tensor datum exactly, while approximation entails
lters

taining a smoothed representation of lower spatial resolution
that passes through the data points only approximately. The dif-
ference between these two schemes is illustrated in Fig. 3 where
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FIG. 3. Illustration of the difference between interpolating and approximating one-dimensional data using B-spline functions. While the interpolationunction
fits the noisy data exactly, the approximation function fits the noisy data only approximately, in a least-square sense. The diamonds represent the noisy signal. The

dotted line represents the original synthesized continuous curve which was sampled and to which 10% (relative to the peak) Gaussian noise was added. The thick
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solid line is the B-spline least-squares approximation using the scaling fac1 =
of the same data.

the thick solid line is the B-spline least squares approximat
to the noisy data (diamonds) using the scaling factor1= 0.25.
The thin solid lines represent the cubic B-spline interpolation
the same data using the scaling factor1 = 1. They are com-
pared to the “true” curve (dotted line). Only the approximat
curve furnishes a reasonable estimate of the first derivative

Synthetic Diffusion Tensor Fields to Test
the Tensor Field Approximation

We have also synthesized a family of continuous diffusion t
sor fields that represent structural or architectural motifs wit
a tensor field. These “templates” or simulated phantoms are
primarily to test the fidelity of the tensor approximation and
help identify unexpected pathologies or anomalies that may a
in its implementation. In the most general case, these temp
are constructed by writingD

¯
(x) in terms of its three Euler angles

φ(x), θ (x), andψ(x), which appear in the rotation matrix,R
¯
(x),

and its three eigenvalues,λ1(x), λ2(x), andλ3(x), which appear
as diagonal elements ofΛ

¯
(x) (15),

D
¯
(x) = R

¯
(x)TΛ

¯
(x) R

¯
(x). [4]

Devising a tensor field with particular geometric or architectu
features is reduced to specifying these six scalar quantities a
as functions ofx. Equation [4] is used for the most general ca
of a heterogeneous, anisotropic tensor field; however, sim
expressions than Eq. [4] are used for the homogeneous isotr
homogeneous anisotropic, and heterogeneous isotropic c
These are given in Table 1.
Using piecewise continuous functions for the six scalar fun
tions, we can readily construct heterogeneous tensor fie
whose fiber patterns have distinct anatomical correlates s
r0.25, while the thin solid line is obtained using the standard cubic interpola
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as fiber crossing, kissing, merging, branching, circulating,
verging, converging, kinking, terminating, etc. Tensor fields a
also constructed to represent fiber sheets that twist or bend
can also introduce geometric singularities in the tensor fie
such as sources or sinks of fibers (5, 15).

Testing Noise Immunity

Monte Carlo simulations of DT-MRI experiments were pe
formed to test noise immunity of the tensor approximati
scheme. This is done by sampling the continuous analytical
fusion tensor templates in each voxel, and then adding Ric
background noise to the ideal NMR signal (16) as described
previously (4). In this way noisy realizations of the tensor fie
templates can be generated with known noise characteristic

Testing the Robustness and Fidelity
of the Continuous Approximation

One method to report the fidelity of the tensor field appro
mation is to calculate the percentage error between the te
field template and the approximated tensor field, which we de
as

%Error(x) = 100∗ |D¯(x)− D̄
¯
(x)|

|D
¯
(x)|

= 100∗
√√√√∑3

i=1

∑3
j=1(Di j (x)− D̄i j (x))2∑3

i=1

∑3
j=1(Di j (x))2

, [5]

whereD
¯
(x) is the original analytic tensor field, and̄D

¯
(x) is the
c-
lds
uch

approximated tensor field. The quantity above measures, in a
root-mean-squared sense, the fractional error between the two
fields at each point within the imaging volume. We use this
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quantity as a measure of the goodness-of-fit of our B-sp
approximation model to the data, similar toχ2.

DT-MRI Methods

Healthy volunteers were scanned using a 1.5-T GE Si
Horizon EchoSpeed equipped with a 2.2-G/cm gradient
using an approved NIH clinical protocol. A set of diffusion
weighted images (DWIs) was acquired with diffusion gra
ents applied in six isotropically distributed directions usi
an interleaved, spin-echo, echo-planar sequence, emplo
navigator echo correction (see (17)). DWI parameters were
FOV= 22 cm, TE= 78 ms, TR> 5 s with cardiac gating, voxe
size= 3.5×1.75×1.75 mm, data matrix= 128×128. The de-
gree of diffusion weighting, as measured by Trace(b

¯
) (whereb

¯is the b-matrix (18–20) calculated for each DWI) is varied from
approximately 0 to 1000 s/mm2. An effective diffusion tensor
was calculated in each voxel according to (18). Maps of useful
DT-MRI parameters were calculated from the diffusion tens
such as Trace(D

¯
), and diffusion anisotropy measures such as

lattice index (4).

Parameters Derived Using the Continuous Approximation

The DT-MRI parameters presented below, which are ca
lated from the continuous approximation of the diffusion ten
field, characterize distinct, intrinsic structural or architectu
features of the tissue. We choose to represent quantities tha
quire spatial differentiation of components of the tensor field
of the fiber direction field. We expect our methodology to ha
a particular advantage in evaluating such quantities, since
tial differentiation of noisy quantities only amplifies noise (e.
see (21)). By first obtaining an approximate, sufficiently smoo
continuous representation of the diffusion tensor and of its dir
tion field, we can obtain smooth continuous representation
spatial derivatives of these quantities as well. Since our met
approximates the tensor field data withB-spline tensor fields,
we can even obtain analytical expressions for these quant
within an imaging volume.

The spatial rate of change of the tensor field, i.e., the “g
dient” of the tensor field, is a 3rd-order tensor whose eleme
are

D(x)i j ,k, [6]

wherei and j indicate the tensor component, andk indicates the
coordinate direction along which partial derivatives are taken
new scalar function that we propose here summarizes an intr
feature of the tensor field. It is obtained by a scalar contrac
(tensor inner product) orD(x)i j ,k with itself:
3∑
i=1

3∑
j=1

3∑
k=1

D(x)i j ,k D(x)i j ,k. [7]
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Just as the square of the magnitude of the gradient,|∇c(x)|2,
detects changes of spatial intensity of a scalar field, c(x), Eq. [7]
detects changes in “intensity” of a 2nd-order tensor field. B
cause Eq. [7] is a scalar contraction of two 3rd-order tensor
is inherently a rotationally invariant quantity, so that its value
unchanged when the laboratory coordinate system or the sa
is rotated.

It is also useful to decompose the total diffusion tensor fi
into its isotropic and deviatoric parts (see (2)) at each point,x,
within the imaging volume:

D
¯
(x)

total
= 〈D(x)

isotropic
〉I
¯
+ D̂

¯
(x)

deviation
. [8]

Above,〈D(x)〉= (Dxx(x)+ Dyy(x)+ Dzz(x))/3 is the scalar ori-
entationally averaged mean diffusivity at a particular point,D̂

¯
(x)

is the deviation tensor there, andI
¯

is the identity tensor. When
the gradient and contraction operators are applied individu
to the isotropic and anisotropic parts ofD

¯
(x), we obtain

3

((
∂〈D(x)〉
∂x

)2

+
(
∂〈D(x)〉
∂y

)2

+
(
∂〈D(x)〉
∂z

)2)
[9a]

and

3∑
i=1

3∑
j=1

3∑
k=1

(
∂ D̂i j (x)

∂xk

)2

, [9b]

respectively. Equation [9a] is the sum of squares of thex, y, and
z components of the gradient of the orientationally average
mean diffusivity; Eq. [9b] is the sum of squares of thex, y, andz
components of the gradient of each component of the devia
tensor.

Other tensor-derived parameters characterize features o
curving and twisting of the triad of eigenvectors within th
imaging volume, or equivalently, of the three level surfaces t
lie perpendicular to each of the three eigenvectors ofD

¯
(x), at

any point. While calculating these quantities is arduous us
Christoffel symbols (e.g., see (22)), we propose a simpler mean
to calculate at least one type of curvature measure below.

The curvature of a fiber tract within the imaging volume c
be obtained from the fiber tract trajectory, described byr (s), and
its local tangent vector,t(s). The local curvature,κ(s), is given
by

κ(s) =
∣∣∣∣dt(s)

ds

∣∣∣∣ =
∣∣∣∣∣∣
d
(

r ′(s)
|r ′(s)|

)
ds

∣∣∣∣∣∣ , [10]
which can be plotted as a function ofs along a tract. Calculation
of Eq. [10] can be performed either locally at pointx by ex-
pressings as a function ofx, y andz, s(x, y, z), and numerically
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evaluating its infinitesimal neighborhood in the continuous t
sor field. Another method is to construct a 3-D space curver (s),
a mathematical fiber tract, as in (7). The latter allows us to im-
pose additional and much stronger smoothness constraint
scaling thes space to yield more reliable estimates ofκ(s).

RESULTS

Figure 4 illustrates the improvements in the fiber field dire
tion map that results from using the approximated tensor fi
Noise is added to a tensor field template of a straight nerve fi
(SNR= 15). Figure 4a shows the unapproximated fiber dir
tion field data, while Fig. 4b shows the results obtained wh
using the approximated tensor data.

Figure 5 illustrates the empirical statistical distribution
Trace(D

¯
(x)) in a region of interest (ROI) of a simulated pha

tom having uniform diffusion properties. These distributions
plotted against the coarseness of the smoothing window fo
SNR of 15. As the smoothing window size increases, the dis
bution becomes sharper, but no bias is introduced in the m
nor is the distribution skewed by the approximation. In fact,
known Gaussian distribution of Trace(D

¯
(x)) (10) is preserved

using this approximation scheme, demonstrating that its ap
cation does not change the underlying statistical distribution

Figure 6 illustrates two tensor field templates, one rep
senting two fiber bundles crossing (Fig. 6a) and one a fi
forming a ring (Fig. 6b). Values used in constructing the
templates are typical of those observedin vivo (23) (i.e., for
parenchyma Trace(

¯
D)= 2100 µm2/s, for cerebrospinal fluid

(CSF) Trace(D
¯
)= 10,000 µm2/s, and for white matter, the

anisotropy ratio is in the rangeAr ∈ [2, 10]). In Fig. 6, the
anisotropy ratio in the simulated phantoms wasAr = 3 (λ1/λ3 =

3 andλ2 = λ3). The phantoms are constructed using Eq. [4 set

-
est
For the ring phantom we specify that a voxel contains the white
matter fiber ifr1 < r =

√
(x − xc)2+ (y− yc)2 < r2, where

λ1 = 3λ2 = 3λ3 = 1260µm2/s and choose the Euler an
gle, φ(x), so that the eigenvector associated with the larg
FIG. 4. Illustration of how using the approximated tensor field improves
a straight nerve fiber (SNR= 15). Line segments depicit the principal axis of t
computed discrete direction field obtained from the raw diffusion tensor data;
ATION OF DT-MRI DATA 91
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FIG. 5. Illustration of an empirical statistical distribution of Trace(D
¯
(x))

in an ROI of a simulated phantom of a tissue having uniform diffusion pro
erties and with simulated SNR= 15. These distributions are plotted again
the scale parameter1. Decreasing1 (i.e., increasing the smoothing win-
dow) reduces the variance of the distribution without introducing a bias
the mean. Moreover, no skewness is introduced into the distribution by
approximation method. Empirical histograms of approximated data are p
ted together with the corresponding fit to Gaussian distribution. The Ga
sian plotted on the line corresponding to1 = 1 represents the statistica
distribution of the original data. All data are well approximated by the no
mal distribution. Gaussian distributions fit to each of the histograms show
applying this approximation scheme preserves the underlying distribution
Trace(D

¯
(x)).

r1 and r2 are the inner and outer radii andxc and yc are the
coordinates of the center of the ring. For such voxels we
the reliability of fiber tractography. Here, noise is added to a tensor field template of
he largest principal diffusivity of the diffusion tensor at each sampled point. (a) The
(b) the fiber direction field and a fiber tract computed from the approximated tensor data.
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FIG. 6. The calculated percent error, according to Eq. [5]. The two tensor field templates (a) representing two fiber bundles crossing, and (b) cont

concentric rings were created to which noise (SNR= 25) was added before performing the approximation. A map of the %-error shows that the fit is good in
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homogeneous regions within the simulated phantoms, and only deviates
“white” on this grayscale image represents the 20% or greater error (35%

eigenvalue is always perpendicular to the line connecting
center of the ring (xc, yc, z) and a voxel (x, y, z) on the cir-
cle. Because of symmetry, the other two Euler rotations
not performed, i.e.,θ (x) = 0, andψ(x) = 0. The remain-
ing voxels are assigned properties of gray matter, for wh
the Euler angles are irrelevant since all eigenvalues are e
λ1 = λ2 = λ3 = 700µm2/s. Both these simulated phantom
are quasi-three-dimensional in that they span more than
slice; however, there is no variability along thez dimension.
To these diffusion tensor phantoms we also add Ricean n
as described under Methods (Testing Noise Immunity). We use
these templates to assess the quality of the fit of the diffu
tensor field, as measured using Eq. [5]. A map of the %-e
is plotted, showing that the fit is good in homogeneous reg
within the simulated phantoms and only deviates significa
at the margins where tissue properties change abruptly.

Figure 7a shows an anisotropy index of a diffusion ten
template in which circumferentially wound fiber bundles a
organized in concentric rings. Figure 7b shows the radiu
curvature computed locally from the approximated tensor fi
using Eq. [10]. The radius of curvature ranges from dark (sm
to bright (large), as we move from the inner to the outer rin
The intra-ring variation in intensity is due to noise added to
phantom, which introduces large fluctuations in the calcula
curvature. The estimates of the curvature in Fig. 7b are so n

even with a smooth representation (1 = 0.5) because the cal-
culation of curvature involves higher (second) derivatives of t
noisy vector fieldε1(x), which is the field of the eigenvector as
t the edges where tissue properties change abruptly. The scale parameter.5. The
as the maximal error), while “black” represents 0% error.
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sociated with the largest eigenvalue. This noise is significan
greater when only interpolation is used to calculate the cur
ture. A more robust way to estimate the curvature ofε1(x) is
to track its streamline and then estimate the curvature of
resulting space curve, as described under Methods. The ra
of curvature estimated in this way is much more accurate
stable as is demonstrated in Fig. 7c.

Figure 8a illustrates a tensor field template representin
highly simplified corpus callosum near a ventricle. A semic
cular ring is constructed with anisotropic diffusion properties
brain white matter having its principal fiber directions orient
circumferentially. Above the ring lies a cylindrical region con
taining an isotropic medium with the same diffusion propert
as CSF. The remainder of the imaging volume is filled with
isotropic medium having the same diffusion properties as g
matter. Values used in constructing this template are taken f
(23). Figures 8b, 8c, and 8d respectively show results of apply
the functions given in Eqs. [7], [9a], and [9b] to the simulat
phantom shown in Fig. 8a. Figure 8b shows the result of tak
the tensor inner product of the gradient of the anisotropic p
of the diffusion tensor with itself. This image distinguishes t
margin of the white matter with the CSF and with gray matt
Figure 8c shows the result of taking the tensor inner pr
uct of the gradient of the isotropic part of the diffusion tens
with itself. This image distinguishes the margin of the CSF a
he
-

parenchyma but does not distinguish the boundary of the white
matter and gray matter. Figure 8d shows the result of taking the
tensor inner product of the gradient of the diffusion tensor with
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FIG. 7. A diffusion tensor template (a) in which circumferentially wound fiber bundles are organized in concentric rings. A map of the local radius of cue,
computed from the approximated tensor field (1 = 0.5), is shown in (b). The radius of curvature ranges from dark (small) to bright (large) from the inner t
outer rings. The intra-ring variation in intensity is seen. (c) The curvature obtained by following the field of the eigenvector associated with the largest eigenvalue,
ε1(x), and then evaluating the curvature of the obtained 3-D space curve using similar approximation methodology (instead of a tensor field it is appliea 3-D

vector-valued 1-D field) with1 = 0.1. The “white” in the images represents the following values of radius of curvature, (b) 300 voxels and (c) 120 voxels, while

e

o
a

a

d

s

er
ns

uct
d.
dif-
in
ut

f a
im-

age of the tensor inner product of the gradient of the anisotropic
“black” represents the radius of 5 voxels in both images. These phantoms
trajectories that have exited into the gray matter region.

itself. This image does not distinguish well between anisotro
and isotropic media, but does show clearly the boundaries
tween the three distinct regions within the simulated phant
The “square of the magnitude of the gradient” in Fig. 8b
pears to be larger at multiples of 45◦ than at multiples of 90◦.
This effect is generally not as pronounced as this figure wo
suggest, particularly when high-resolution images are simul
(the phantom in Fig. 8 is created on a 64× 64 grid). Also, such
effects are not observed when ourin vivo data are processe
(Figs. 9 and 10). Although this artifact could be partly due
our use of separable basis functions, we attribute it prima
to the different textures of the discrete boundary (between
CSF and GM) in the 45◦ and 90◦ regions of our template, a

can be seen in Fig. 8a. In the future we plan to simulate pa
volume effects in our templates and expect such asymmetr
are realized on a 128× 128 grid in thex-y plane. The white spots in (c) come from th

pic
be-
m.
p-

uld
ted

to
rily
the

disappear. Additionally, using splines of higher than 3rd ord
should diminish any contribution the separate basis functio
could have to this effect.

Figure 9a shows a Trace(D
¯
(x)) axial image of a normal sub-

ject. Juxtaposed in Fig. 9b is an image of the tensor inner prod
of the gradient of the isotropic part of the diffusion tensor fiel
Note that the boundaries between regions in which there are
ferences in Trace(D

¯
(x))—i.e., between CSF and parenchyma

the gyri and sulci, and in the ventricles—are clearly visible, b
otherwise, the image is of relatively uniform intensity.

Figure 10a shows a lattice anisotropy index axial image o
normal subject. Juxtaposed in Fig. 10b is the corresponding
rtial
y to
part of the diffusion tensor field (equivalent to the square of the
magnitude of the gradient). Note that the boundaries between
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FIG. 8. (a) A simulated phantom of a highly simplified brain region containing the corpus callosum. (b), (c), and (d) Respectively show results of
the functions given by Eqs. [7], [9a], and [9b] to this phantom. (b) The scalar product of the anisotropic part of the gradient of the diffusion tensor with itself. This
image highlights the margins of the white matter (WM) with the cerebrospinal fluid (CSF) and with gray matter (GM). (c) The scalar product of the isotric part
of the gradient of the diffusion tensor with itself. This image distinguishes the margin of the CSF and parenchyma but does not distinguish the bounday of white
matter and gray matter. (d) The scalar product of the gradient of the diffusion tensor with itself. This image does not distinguish well between anisoropic and
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erages the discrete tensor data, tends to reduce the likelihood
isotropic media, but does show clearly boundaries between the three distin
was 0.8. The “white” in the images represents the following values of the
(c) and (d) 1400µm2/s voxel, while “black” is equal to 0.

white matter and gray matter are highlighted, but no signa
observed in the CSF or in gray matterper se.

DISCUSSION

Having implemented and examined the behavior of the c
tinuous model of diffusion tensor data, we conclude that appr
imation has many advantages over interpolation. The advan
is particularly evident in estimating quantities that involve spa
differentiation of tensor components or other quantities deri
from them. The main limitation of this technique is its smoo
ness constraint, which tends to blur structures on the order

single or a few voxels.

It is worth mentioning that our continuous approximation doe
not ensure that the approximate tensor field is positive definite
t tissue types within the simulated phantom. The scale parameter used forthese figures
agnitude of the gradient (the square root of what is displayed), (b) 1.5µm2/s/voxel,

is

n-
x-

age
al
ed
-
f a

all pointsx within the imaging volume. The imposition of thi
constraint would sacrifice the simplicity and efficiency of o
implementation. However, the positive definiteness constr
can be imposed when estimating the discrete diffusion te
in each voxel with quadratic programming (24) or another con-
strained optimization scheme. In practice, this is seldom d
because, at SNRs typical of most clinical DWI acquisitio
few diffusion tensors within an imaging volume are actua
not positive definite. However, even if all the original discre
tensors are positive definite, the approximated or interpol
tensors are not guaranteed to be positive definite. Still, the
tinuous approximation of the tensor field, which spatially a
s
at

of observing nonpositive definite tensors compared to inter-
polation.
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FIG. 9. (a) An axial image of Trace(D
¯
(x)) in a normal subject. Juxtaposed in (b) is the corresponding image of the magnitude of the gradient of the is
part of the diffusion tensor field. Clearly visible are the boundaries between isotropic regions having different average diffusion properties, such as between brain
parenchyma and CSF containing regions. Otherwise, the image has a relatively uniform intensity. The scale parameter used for these figures was 0.8. The “white”
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in (b) represents the value 1400µm2/s/voxel of the magnitude of the gradient

In practice, instead of approximating the entire diffusion te
sor field, we approximate its isotropic and anisotropic parts
quentially. This is because in homogeneous isotropic reg
structure may be introduced where there is none. This is a c
ous but easily explained property of our continuous tensor fi
representation: in an homogeneous isotropic tensor field,
the isotropic part of the tensor field is continuous, while t
anisotropic part is discontinuous. The tensor field approxim
tion scheme, however, attempts to generate a continuous te
field representation for both isotropic and anisotropic parts
making the anisotropic part of the field continuous, complex
tifactual structures are introduced, such as swirls, eddies,
coherent microdomains, which are not present in the orig
data. To remedy the problem, we first fit a continuous appro
mation to the isotropic part ofD

¯
(x):

D(x)iso = 〈D(x)〉I . [11]

¯ ¯

Once calculated, we use it to approximate the remaining n
while “black” is equal to 0.

n-
se-
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ar-
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xi-

malized deviation tensor field:

D
¯
(x)aniso=

(
1

〈D(x)〉
)

(D
¯
(x)− 〈D(x)〉I

¯
). [12]

In homogeneous isotropic regions, such as within nor
tissue parenchyma, the isotropic part now appears unifo
whereas only at boundaries between parenchyma and CSF
as in the ventricles, sulci, and gyri, are there significant s
tial variations. Moreover, the anisotropic part is small in the
regions.

In homogeneous anisotropic regions, the normalized aniso
pic part is also quite uniform. Significant variations are see
the boundaries of anisotropic regions, such as at the margi
the corpus callosum. We find no angular dependence in unif
tensor field patterns in which fibers are systematically rota
about the solid angle. This indicates that no orientational arti
was introduced by the approximation routine.
or-
The heterogeneous anisotropic case offers intriguing pos-

sibilities for constructing tensor field templates whose fiber
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FIG. 10. (a) A lattice anisotrophy index axial image of a normal subject’s brain. Juxtaposed in (b) is the corresponding image of the magnitude of thef

the anisotropic part of the diffusion tensor field. Note that the boundaries between white and gray matter are highlighted, but no signal is seen in CSF or in gray matter
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Information about curvature could provide new informa-
per se. Clearly visible are boundaries between regions of differing diffusion
scale parameter used for these figures was 0.8. The “white” in (b) represen

architecture is biologically relevant. These include tensor fie
whose principal fiber axes are helically wound about a tor
like the muscle fibers of the heart (25, 26); “kiss” (i.e., approach
each other) or cross, both of which are found in the optic c
asm; converge or diverge, such as in the pyramidal tract;
twist, bend, and/or circulate, such as in cortical white matte
in uterine smooth muscle.

The gradient of the isotropic part ofD
¯
(x) identifies boundaries

between homogeneous isotropic regions having different m
diffusivities, 〈D(x)〉, such as at boundaries between CSF a
brain parenchyma at the margins of the ventricles, and in s
and gyri. Since〈D(x)〉 is approximately uniform within norma
brain parenchyma (23, 27), we expect little variation in its gra
dient. However, one could speculate that in acute or chro
stroke, or in other clinical conditions in which the distributio
of Trace(D

¯
(x)) changes within brain parenchyma, the gradie

of the isotropic part ofD
¯
(x) could help identify the borders o

the affected territory.
On the other hand, simulations with template data sugg
that the variation in the gradient of the deviation tensor sho
be small within relatively homogeneous isotropic regions, su
anisotropy, such as between coherent white matter tracts and brain parencma. The
s the value 1.5µm2/s/voxel of the magnitude of the gradient while “black” is equal to

lds
us,

hi-
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nt

as in CSF and normal gray matter (in the absence of system
artifacts), as well as in homogeneous anisotropic regions, s
as in coherently organized white matter fiber tracts whose fi
direction is relatively uniform. We expect this quantity to b
large, however, at the boundaries between coherently organ
white matter and isotropic regions, where anisotropic diffusi
properties are changing rapidly in space, and in regions wh
nerve fiber direction changes rapidly with position. We also e
pect this quantity to be large in regions where fibers cross,
where powder averaging of the various underlying tensor fie
reduces the measured diffusion anisotropy (4).

Thus, the gradient of the isotropic part of the diffusion tens
detects heterogeneity in isotropic regions, and the gradien
the anisotropic part of the diffusion tensor detects heterogen
in anisotropic regions. Interestingly, while these quantities
based solely on algebraic and geometric features of the diffus
tensor field itself, they reflect distinct spatial variations in loc
tissue composition and microstructure.
uld
ch
tion about development of nerve fiber tracts, the evolution of
gyri and sulci during normal or abnormal development, and
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possibly information about microstructural changes that m
occur in neurodegenerative diseases. Without a method to
vide a continuous approximation to the diffusion tensor fie
the calculation of radius of curvature, mean curvature, or a
other like parameters would not be practicable. Noise in
tensor field would be amplified by spatial differentiation rend
ing these quantities meaningless. Even so, as Fig. 7b indic
calculated values of the curvature from the continuous ten
field can still be noisy and nonuniform in regions that are su
posed to have uniform curvature. There are many mathema
complexities associated with obtaining proper estimates of c
vature from the noisy diffusion tensor MRI data whose cons
eration is beyond the scope of this paper. A partial solution
this problem is to track a fiber and evaluate the curvature of
space curve using similar approximation methods, but now w
a much larger scale factor. However, if the scaling factor use
1= 0.1, which yields a great improvement in terms of the va
ance of the estimated curvature (Fig. 7c), changes of curva
on the order of 10 voxels would not be detectable. When u
with in vivoDT-MRI data this can be a serious limitation.

In this work we also provide examples of certain differe
tial variables that can be estimated using the continuous
smooth tensor field model. Taken together, DT-MRI parame
characterizing variations in the isotropic and anisotropic ten
fields can improve tissue segmentation by helping to better
fine boundaries between different tissue types, such as betw
white and gray matter. Still, we envision that by using our a
proximation method more sophisticated concepts and meth
of differential geometry can now be developed and applied
the tissue segmentation problem.

Implications for Fiber Tractography

DT-MRI fiber tractography is a new method for followin
the trajectories of nerve and other fibrous tissues. Its under
nings can be found in (15, 28–30). Recently, several groups
have reported success in following fiber tracts and even in
vidual fascicles on a gross anatomical length scale (7, 31–36).
An assumption used in all these studies is that the eigenve
associated with the largest eigenvalue of the diffusion tenso
coincident with the vector tangent to the fiber tract (1). How-
ever, the discrete eigenvector field used to construct continu
fiber tracts is calculated from noisy DT-MRI data. Errors in t
diffusion tensor field propagate as errors in the fiber tract
rection field,εε1(x, y, z), from which fiber tract trajectories are
calculated (7, 37, 38), as illustrated by the “cone of uncertainty
(37, 38). Conturoet al.interpolate noisy DWI data between vox
els to increase the apparent resolution of their diffusion ten
data (31). We showed previously that interpolating DT-MRI da
causes computed fiber tracts to swerve off course sooner th
the tensor field were approximated, since noise in DWIs int

duces accumulated errors in the computed fiber tract trajecto
(7 ). The methodology presented here is capable of generatin
continuous, reduced-noise approximation to the measured
ATION OF DT-MRI DATA 97
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MRI data that makes following coherently organized fiber tra
more reliable and robust, as demonstrated in (7).

Microscopic (Underlying) Field vs Macroscopic
(Voxel-Averaged) Field

The microscopic tensor field is one that describes water
fusion on a microscopic scale, whereas the measured effe
tensor field describes the tensor field on a voxel-averaged ma
scopic scale. If we assume no intercompartment mixing of sp
the measured macroscopic tensor field is a voxel average of
microscopic tensor field. While tense macro and micro fie
should be similar in voxels containing tissue whose distribut
of fiber directions is uniform, a significant disparity could exi
between these fields in voxels whose distribution of fiber
rections is nonuniform, such as regions where fibers diverg
converge (splay), bend or twist, branch or merge, etc. Gener
in these regions, the macroscopic field is a powder averag
the heterogeneous microscopic tensor field within the voxel4).
An important long-term goal is to develop techniques to ide
tify regions in which such powder averaging occurs, and in
themicroscopictensor field from thesemacroscopicvoxel-scale
measurements. Some progress has recently been reported
area (39, 40).

This approximation treats discrete data as samples of the
derlying continuous field. Although the DT-MRI data are voxe
averaged samples of the underlying field, these two data sets
be very different when the underlying field contains features t
are on a scale finer than that of a single voxel. However, si
we assume that the underlying diffusion tensor field is smo
(i.e., it changes on scales larger than a voxel), the differe
between the voxel-averaged and point estimates is neglig
The shortcoming of this assumption is that it forces a prescri
degree of smoothness of the tensor field at sharp boundaries
interfaces. This explains why the “percent error maps” abo
show high intensity at borders between tissues, why borders
pear somewhat enlarged, and in some cases, why tractogr
schemes that follow these smoothed tensor fields sometimes
duce artifactual fiber trajectories (7). Work is underway to treat
internal boundaries and piecewise discontinuities in the ten
field more naturally and robustly within the framework of th
continuous tensor field approximation.

CONCLUDING REMARKS

This new methodology takes noisy, voxel-averaged, and
crete statistical samples of an underlying macroscopic effec
diffusion tensor field as its input, and produces a continuo
smooth tensor field approximation as its output, specifica
approximated isotropic and anisotropic diffusion tensor fiel
One of our essential findings is that the continuous tensor fi

ries
g a

DT-

representation can be constructed by performing repeated one-
dimensional B-spline transforms of the DT-MRI data, greatly
simplifying this complex task.



U

e
p
d
a

p
u
u
s
b

a

a

t
o

a
lu
r

a
-
te

te

he

ap-
lar,
n-

se a
the
per
that
ed
to

-

pa-
ed

be

l,

n

sti-

n,
ed

u-

ch
98 PAJEVIC, ALDRO

To test the fidelity of this approximation scheme, we dev
oped a family of continuous tensor fields or templates, sam
them discretely, reconstructed a continuous field from these
crete data, and then compared the original and approxim
tensor fields. We also tested the method’s noise immunity
adding background noise to these templates using Monte C
methods. The templates are accurately reproduced exce
boundaries where material properties change discontinuo
or where the field is not microscopically homogeneous, s
as in regions where fiber tracts cross, merge, etc. Beside
ing able to recover the original noiseless tensor field relia
this approximation scheme substantially reduces the varia
of quantities derived from DT-MRI. New MR parameters th
characterize different structural and architectural features w
proposed and displayed usingin vivo DT-MRI data obtained
from the human brain, which could not have been evaluated
curately from noisy DT-MRI data. This new methodology h
already been successfully incorporated into a scheme for
lowing nerve and other fiber tract trajectoriesin vivo (7 ).

APPENDIX

We describe the details of the implementation of the con
uous tensor field approximation. The essential building bl
of our implementation is the optimalB-spline approximation
in 1-D. It is based on a scale conversion algorithm which fin
the optimal approximation to the original signal at a given sc
1 (13). The only difference in our implementation is the exc
sion of the postfiltering step, as described in the block diag
of the algorithm in (13). Hence our model is determined once w
obtain the optimalB-spline coefficientsci . Below we describe
how these coefficients are obtained and how they are use
representD

¯
(x).

Optimal B-Spline Approximation in 1-D
for an Arbitrary Scale Factor 1

Lets(k) be a discrete one-dimensional signal (k∈ Z, s(k)∈ l2)
andsn(x) be the correspondingB-spline representation (interpo
lation) of the same signal inL2. These two are related through

sn(x) =
+∞∑

k=−∞
c(k)βn(x − k), [A.1]

wherec(k)∈ l2 are theB-spline coefficients andβn(x) is theB-
spline of ordern. The coefficients are obtained from the origin
signals(k) using a directB-spline transform, which is a convo
lution operation of the original data with the appropriate fil
(11, 12); i.e.,

c(k) = bn
INV⊗ s(k), [A.2]
where⊗ indicates the convolution operation andbn
INV is the

impulse response of theB-spline filterbn (the samples of the
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B-spline function of ordern at integer values). Note thatbn
INV is

the infinite impulse response (IIR) filter. Similarly, the discre
values of the interpolated signal, represented withB-spline co-
efficientsc(k), can be obtained through convolution, i.e., t
indirect B-spline transform:

s(k) = bn ⊗ c(k). [A.3]

In many situations, however, it can be advantageous to
proximate the signal, rather than to interpolate it. In particu
if the original signal is noisy, introducing a smoothness co
straint and approximating the data can be beneficial. We u
constraint that imposes the reduction of the space in which
signal is represented (effectively it is a constraint on the up
frequency bound). Thus, the desired transform is the one
yields the optimalB-spline coefficients representing the scal
down version of the signal through a relationship, similar
Eq. [A.1]; i.e.,

sn
1(x) =

+∞∑
k=−∞

c1(k)βn(x1− k). [A.4]

One way to find the optimalB-spline coefficients,c1(k), is
to explicitly minimize the approximation error. Efficient algo
rithms can be designed based on this scheme (9, 11, 12); how-
ever, they are designed only for the cases where the scale
rameter1 is an integer. A more general approach is describ
in (13), in which the minimization task is modified and can
stated as follows: Given a functionf (x) in the original space Sx,
find its minimum least square error approximationf1(x) in the
space scaled down by factor1, i.e., Sx1. In this approach we
equatef (x) with the B-spline expansion of the original signa
i.e., sn(x), and similarly f1(x) with sn

1(x). Here the (approx-
imately) optimalB-spline coefficients can be obtained for a
arbitrary scale factor1. By projecting thesn(x) into the scaled
space off1(x) we obtain theB-spline coefficientsc1(k) as

c1(k) = 1〈sn(x), βn(x1− k)〉, [A.5]

where〈 〉 represents the inner product of two functions. Sub
tutingsn(x) from Eq. [A.1] we obtain

c1(k) = 1
∞∑

l=−∞
c(l )〈βn(x − l ), βn(x1− k)〉. [A.6]

The inner product in Eq. [A.6], known as the sampling functio
is a convolution of twoB-splines and can be easily evaluat
analytically for the piecewise constant and piecewise linearB-
splines. However, for higher-order splines, approximate form
las described in (14) are used.

A general way of calculating the sampling function, whi

we use, is to perform the convolution in the Fourier domain, i.e.,
multiplication of the corresponding Fourier transforms of the
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two splines. Note that this is also an approximate method si
B-splines are bounded functions and their Fourier transfo
are unbounded. The scaling function itself is bounded since
a convolution of two bounded functions.

Although there are several approximations made in obtain
the B-spline coefficients, they are formal in nature. In practi
the performance of this algorithm is nearly optimal. Once theB-
spline coefficients,c1(k), are determined we can obtain the co
tinuous representation of the approximated signal at any p
x using Eq. [4].

Multidimensional Approximation of Tensor
Valued Functions

As already described under Theory, finding the tensor fi
representation could be reduced to finding a continuous re
sentation of each of its individual tensor components (8) and
letting the functionsbi (x) which now serve as a basis for th
components of the tensor field be a product of functions, i
bi (x) = f i (x)gi (y)hi (z). Since the basis functions are now se
arable, the task of finding theB-spline coefficients of the con-
tinuous model,ci (k, l ,m), is reduced to sequentially applyin
Eq. [A.6] along thex, y, and z coordinates within the imag-
ing volume for each tensor component. Consider a compon
of the diffusion tensor,D

¯
i (x). The 1-D curvesD

¯
i (x, y0, z0) are

processed alongx for all discrete values,y = y0 andz = z0.
The coefficients obtained in this first stage,D

¯
i
(c)(k, y, z), are then

similarly processed alongy for all k0 andz0, and then alongz in
a similar fashion. Ultimately, we obtain the desired coefficien
ci (k, l ,m). Note thatci (k, l ,m) corresponds toc1(k) in the pre-
vious subsection on the 1-D approximation, i.e., theB-spline
coefficients of the approximated signal. This avoids using
notationci

111213
(k, l ,m).

Once the coefficientsci (k, l ,m) are obtained, the tensor fiel
can be determined at any pointx(x, y, z) using Eq. [1]. Hence,
the value of the tensor components at an arbitrary pointx(x, y, z)
can be expressed as

Dxx(x) =
∑
i, j,k

c1(i, j, k)βn(x1x − i )βn(y1y − j )βn(z1z− k)

... [A.7]

Dzz(x) =
∑
i, j,k

c6(i, j, k)βn(x1x − i )βn(y1y − j )βn(z1z− k).

Although the summation extends over the whole range of
dices, in practice, it is necessary to use only a small numbe
neighboring coefficients due to finite and small support of
B-spline functions. For theB-spline of ordern, the range of
indices needed to evaluate the function along one of the dim
sions isjmin=dx−(n+1)/2e, and jmax=bx+(n+1)/2c,where
dxe(bxc) is the smallest (largest) integer greater (smaller) th

x. For example, for the cubic spline, we need to sum ove
indices in each dimension (total of 6× 64 summands in
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Eq. [A.7]). We usually choose the cubicB-splines. However, if
the derivatives higher than second order are needed (e.g., c
lation of the torsion of a curve requires the third-order derivativ
we must use higher-order splines. Additionally, an advanat
of using higher-order splines is that they improve separabi
properties of the derivatives, but at the expense of longer c
putation time. The evaluation of the derivatives of the ten
field is straightforward, since derivatives of theB-splines can be
expressed recursively in terms of theB-splines or lower order
using simple linear operations onB-spline coefficients (12).

Precompiled C-libraries of this implementation for seve
computer platforms and instructions for how to use them
available at http://mscl.cit.nih.gov/spaj/dti/bcadt/. These are a
available by e-mail upon request to the authors.
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