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The effective diffusion tensor of water, D, measured by diffu-
sion tensor MRI (DT-MRI), is inherently a discrete, noisy, voxel-
averaged sample of an underlying macroscopic effective diffusion
tensor field, D(x). Within fibrous tissues this field is presumed to be
continuous and smooth at a gross anatomical length scale. Here a
new, general mathematical framework is proposed that uses mea-
sured DT-MRI data to produce a continuous approximation to D(x).
One essential finding is that the continuous tensor field representa-
tion can be constructed by repeatedly performing one-dimensional
B-spline transforms of the DT-MRI data. The fidelity and noise-
immunity of this approximation are tested using a set of syntheti-
cally generated tensor fields to which background noise is added via
Monte Carlo methods. Generally, these tensor field templates are
reproduced faithfully except at boundaries where diffusion proper-
ties change discontinuously or where the tensor field is not micro-
scopically homogeneous. Away from such regions, the tensor field
approximation does not introduce bias in useful DT-MRI parame-
ters, such as Trace(D(x)). It also facilitates the calculation of several
new parameters, particularly differential quantities obtained from
the tensor of spatial gradients of D(x). As an example, we show that
they can identify tissue boundaries across which diffusion proper-
ties change rapidly using in vivo human brain data. One important
application of this methodology is to improve the reliability and
robustness of DT-MRI fiber tractography. © 2002 Eisevier Science
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field; interpolation; anisotropy; fiber; tractography; curvature.

INTRODUCTION

Diffusion tensor MRI (DT-MRI) provides a measurement o?
an effective diffusion tensor of watd, in each voxel within an
imaging volume (). However, these diffusion measurements a
inherently discrete, noisy, and voxel-averaged. In this work,
view the DT-MRI data as discrete noisy samples of an underlly

ing macroscopic diffusion tensor field(x), wherex = (X, vy, 2)

are the spatial coordinates in the laboratory frame of ref

tissue regions, including white matter, muscles, ligaments, an
tendons.

The main objective in this paper is to develop and describe
mathematical framework to estimate the continuous tensor fielc
D(x), from a discrete set of noisy DT-MRI measurements. A con-
tinuous model is essential for many important new application:
of DT-MRI data in biology and medicine. One application is to
improve statistical estimates of histological and physiological
MRI parameters, including Tradg(x)), the eigenvalues (prin-
cipal diffusivities) ofD(x), and measures of diffusion anisotropy
(1), similarity, and fiber organizatior2( 3). The reliability of
these estimates should improve, and bias in their means and va
ances 4) should be reduced when the approximated diffusion
tensor field is used rather than the noisy tensor measuremer
themselves.

Having a continuous model enables us to compute and dis
play intrinsic architectural or microstructural MRI parameters
based upon tissue fiber geomet?y 8. Some previously sug-
gested tissue characteristics include the degree of fiber twistin
bending, and diverginggj. New parameters are also presented
here to describe architectural features of the tensor field itsel
such as how its principal coordinate axes meander within the
imaging volume. None of these quantities could be reliably es
timated directly from the measured diffusion tensor data, since
their evaluation requires spatial differentiation of noisy tensor
quantities, which would only further amplify the noise. Below,
we show that these parameters can be calculated more reliak
nd robustly using the smoothed representatidi(g]j.

Another important application of this new methodology is
to DT-MRI fiber tractography. Here, fiber tract trajectories are

rr%presented as streamlines obtained by integrating the fibe
Wfrection (vector) field §, 7). However, integrating a noisy di-

ection vector field can cause these computed fiber trajectc
ries to wander off course&’}. Using a smooth representation of

§he direction field, obtained from the continuous representatiol

ence. This field is presumed to be continuous and smooth at

a gross anatomical (voxel) length scale within many soft fibrous, o , _

By an intrinsic parameter, we mean a computed quantity that depicts

characteristic or feature of the tissue, which is independent of the details of th

1To whom correspondence should be addressed at National Institutenwasurement, for instance, of the orientation of the fiber within the magnet, th
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of D(x), however, can improve the fidelity of tract-followingare a generalization of shift invariant spaéds.particular, we

schemesY). Establishing connectivity of neural pathways (i.e choose an atomic spac® (x, B), such that any function in that
establishing continuous links between different regions of th@ace, (x), is of the form

brain) and continuity (i.e., assessing any disjunction between

them) can also benefit from this development. r
Moreover, our method provides a unified image-processing T,00=) > > > ci(kl.m)

framework for performing several generic tasks rapidly and ef- i=1 k I m

ficiently on DT-MRI and other tensor field data. These tasks x B (XAy — K, yAy —1,zA, —m). [1]

include filtering noise, sharpening edges, and detecting bound-

aries; compressing, storing, and transmitting large image fil%'sa;l

ch approximant, (x), in the approximation spac8, (x, B),

. X . aah weighted sum of a finite number of tensor field generators
different resolutions; extracting textural features, segmennﬁ(x A =1 r}, and their shifts are on a uniform grid

images, clustering tensor data, and classifying tissues; and Bhin the imaging volume, as indicated lyl, andm. In our

tecting statistical outliers. DT-MRI application, the dimensionality of the tensor field

Finally, to our knowledge, this is the first demonstration ofg uals 6 (which is the number of independent elements of th
mathematical method that produces a continuous approximat metric 2nd-order diffusion tensor). The coefficientsare
of adiscrete, sampled 2nd-order tensor field. While thiswork h unknown parameters in the continuous model. The scal

applications to DT-MRI, it has a much broader significance i arametersay, Ay, andA,, control the degree of smoothness
other areas of natural sciences (e.g., oceanography, meteorol Nhis representaytion in each direction

and materials sciences). When all scale parameters equal 1, the continuous represe

Thu§, this paperaddre_sses several critical unmet needs 'ntg}ﬁ)n becomes interpolation; i.e., the continuous tensor fiel
analysis E.md representation of meas_ured DT-MRI data. Here p%fsses through each of the discrete tensor data precisely. Wh
(a) describe this general mathematical framework that cont(glﬁe or more of the\; is less than 1, the continuous represen-

_uou_sly approximates discretely sampled _DTTMRI data, (b) te8ion hecomes a data reduction technique that approximates
its fidelity, (c) present several exemplary intrinsic MR paraMeg;<» the discrete tensor data. Additionally, when one or more of

ters for tissue structure and architecture that can be calcula{ﬁ A; are greater than 1, the continuous representation becom
. . . | ’
using the framework, and (d) apply these parametens w/o a data expansion technique that oversamples the discrete ten:

DT-MRI data. data. In our DT-MRI measurements, the resolution along the
z axis (slice-select direction) is approximately half that along
THEORY x andy. To obtain an isotropic grid oB-spline coefficients
one could oversample the data along #hdirection by setting
Continuous Approximation and Representation A; = Vi Ax =V, Ay, whereV, is the voxel aspect ratidf = 2
of a Discrete Tensor Field in our case). However, in practice it can be beneficial to impos

The rigorous theoretical underpinnings of this methodolo
are provided elsewher8)( wherein theorems are proved that la i . - : .
the foundation for the development of a continuous tensor ﬁeldThe qpnmal choice of the coefficient, for agien choice of
representation of discrete, noisy diffusion tensor data. Below, sor field generators and scale parameters is the one that m

describe the essential features of this methodology. The impgé;es the least-squared difference between the original tens

mentation of this tensor field representation method to measu a and the appro_X|mated d|ff_US|_on tensor fiéld (
DT-MRI data is described in the Appendix. 'e showed previously that finding the tensor field generato

To construct a continuous approximation to a diffusion terfan be reduced to finding a continuous representation of each

sor field, we start with a set of continuous basis functions (a > w;@;gdu;'sll ft}ensor compondggts)_( In particular, to represznth
proximants) whose linear combinations define an approxim © field of the symmetric diffusion tensor, we proposed the

tion space. This space should possess the following proper I%Iéowing six tensor field generators used in Eq. [1] to define the

to make the approximation scheme practicable: tensor approximation spacéy (x, B):

e constraint & A; <1, to preserve the measured signal values
t the measurement points.

1. This set of basis functions is sufficiently rich to represent
the diffusion tensor field precisely and accurately. Tyl
: > L B*(x) =b"(x)
2. The mathematical description of the approximation space
is computationally tractable.
3. The approximation of the diffusion tensor field is imple-
mented using algorithms that are fast, robust, and accurate.

B?(x) = b?(x)

O O -

0
0
0

o O O
O O O
o~ O
O O O

3 Atomic spaces are used in solving differential equations by finite elemen
To meet these requirements, we use atomic spa)esvliich methods and in wavelet theory.
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FIG. 1. A graph of the 1-D B-spline functions of order 0 through 3. The B-spline of ondsrobtained by repeating times the convolutions of the box
function (the B-spline of order 0) as indicated in the figure.

0 0 0 01 0 duce artifacts when used for scaling (i.e., smoothing) a gener:
B3x)=b*x)| 0 0 0|, B*)=b'x)|1 0 ol [2] ten_sor field. How_ev_er, when the cubic B-splines are qsed 'thes
00 1 00 0 artifacts are negligibly small and th#(x) constructed in this
L i L _ way perform nearly as well as the true two-dimensional isotropic
0 0 17 0 0 O] basis functions (Fig. 2), but are much more computationally ef:-
ficient to implement. In our implementation we use mainly the
5 _ho 6 __ho
B()=b"0)| 0 0 0, B()=b"0)| 0 0 1} cubic B-splines. If higher order derivatives are needed, it is ad
|1 0 0] [0 1 0] visable to use B-splines of higher polynomial order than three tc

‘ preserve the isotropic properties of the multidimensional basi
Thus, each tensor field generatBt(x), can be expressed infunctions.
terms of a single functiory (x), which now serves as a basis B-spline functions have several other important advantage
for theith component of the tensor field. Furthermore, thesghich make this implementation highly efficient: (1) the gener-
b'(x) are themselves chosen to be a product of one-dimensioagrs have finite spatial extent (i.e., finite support), which speed
functions, i.e.p'(x) = f'(x)g'(y)h'(2). The basis functions are up and simplifies digital processing algorithms; (2) the tensol
now separable in two ways, first with respect to the componetfisid generators can be expressed analytically, thus the tens
ofthe tensor, and second with respect tg, andz. Thus, the task field can be evaluated exactly at any point within the imaging
of finding a continuous tensor fiel®(x), or more precisely the volume; (3) one can control the degree of smoothness an
coefficients of the continuous mode], is reduced to applying
a one-dimensional signal approximation algorithm sequentially
alongx, y, andz coordinates within the imaging volume for
each tensor component. This one-dimensional approximatio
algorithm is described in more detail in the Appendix. In our
implementation, we choosE (x), g' (y), andh! (z) to be the B-
spline functions, which are obtained by repeated convolution:
of the simple box function (Fig. 1). The number of convolutions
determines the order of the B-spline, i.e., linear, quadratic, cubic
etc. The use of the separable basis function provides an easy w

toaccountforthe nonuniform resolutionsdyy, andz directions a) Linear b) Quadratic ¢) Cubic
in a typical DT-MRI experiment, where resolution is typically
higher “in-plane” than along the slice-select direction. FIG. 2. The contour plot of the two-dimensional B-spline functions con-

As Fia. 2 d trat the t di . I spline f ti structed using the assumption of separability. One can see that the separabil
S FIg. emonsirates, the two-dimensional spiine TLnc I%@sumption does not hold well for the B-splines of order 2 and below (linear anc

constructed using a product of linear one-dimensional B-splin@gdratic) while for the cubic B-splines the two-dimensional version does not
is anisotropic (i.e., shows preferential directions) and will prahow any significant difference from the true isotropic two-dimensional splines
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TABLE I between the measured data and the coefficients (see Egs. [A
Forms of the Tensor Field, D(x), Which Can be Used to Describe  and [A.6]). This relationship can be simplified in the case of
Diffusion Properties of Different Media the homogeneous field (see Table 1). In the case of the heter

geneous diffusion tensor field, evaluating the noise propertie

Tensor fieldsP(x) Homogeneous Heterogeneous * )
is more complex, partly due to the fact that the variance of the

Isotropic (D)L (D)) L original diffusion tensor elements is not homogeneous.
Anisotropic RTAR R(X)T A(X) R(X)
Note.In the isotropic casgD) is the orientationally averaged (scalar) mean

diffusivity, and Lis the identity tensor. In the anisotropic caiejs a proper METHODS

rotation matrix andA is the matrix of eigenvaluesD(x)), R(x) and A(x) are

assumed to be piecewise continuous functions gf andz within the imaging Implementation of Algorithms for Tensor

volume. Field Approximation

The first step in the implementation is to choose the appropri

differentiability of the continuous approximation by changingte order of theB-spline functions to generate the basis of the
the polynomial order or degree of the B-spline functions; (4) gjiffusion tensor field and the appropriate scale paramefeys,
adjusting the scale parameters)(of the B-spline represen- pecifically,A; is the ratio of the number of unknown parame-
tation we can choose among oversampling( 1), interpola- t€rsto the number of measured data points for the 1-D approx
tion (A =1, i.e., fitting data points exactly), and approximatioﬁ"lation in thej th direction. This means that the scale parameter
(A <1, i.e., fitting data points approximately); (5) the derivac@nonly take on specific rational valuga,}n, which designates
tives of B-splines can be expressed recursively in terms of tH€ rational number closest to that contains\ in the denom-
original B-splines; and (6) B-spline functions naturally generatgator. For DT-MR imagesN is usually large enough to allow

multiresolution structures that are useful in analyzing signatfficient precision in the range of the scale parameter value
and images at different length scales. between 0 and 1. We further reduce the number of scale par

meters by choosing only on® and by assigning the three val-

Statistical Properties of the Approximated Tensor Field ues of the model aax = {A}nx, Ay ={A}ny, Az={Vi A}nz,
whereV, is the voxel aspect ratio as described earlier and witt

_Itis important to keep in mind that the continuous tenshe constraint than e [0, 1]. The choice of rational scales al-

field is still a statistical estimate of the *true” underlyingo s s to use the same transformation for the reduction an
tensor field. Elsewhere, we showed that the elements of tg,-hqjon operations and ensures that the doubly transform:
diffusion tensor obtained by DT-MRI are distributed acco_rd('contracted and expanded back) discrete signals are samplec

ing to a multivariate Gaussian probability density funCt'Oﬁxactly the same points in the space. Ideally, the valua of

(10) in which D is expressed as a six-dimensional vectogy, 4 pe twice the ratio of the maximal spatial frequency of

D = (Dxx, Dyy, Dzz Dxy, Dyz Dy2)", whose distribution can 6 «nure” (noise-free) signal and the sampling frequency. Note
be written as however, that our approximation method is not a simple low-
1 1. _ pass filter. In cases where structures within the image appear
e exp(— “(D-M)T= XD - M)), [3] all length scales, the choice aof is empirical as the structures
V(2r)°Iz| 2 on the small scales (single or a few voxels) must be blurred i
order to improve estimates of large structures of the diffusior
whereM = (itxx. lyy. Haz Pxy: Bz Iy2)' 1S the six-dimensio- tensor field elsewhere.
nal mean vector, anl is the 6x 6-covariance matrix. Once the B-spline order and the scale parameters are ch
Since the approximate tensor field is always a linear functiq@n, for a given DT-MRI data set, the second step is to calculat
of these measured tensors, the coefficientsf the continuous B-spline coefficients in the, y, andz directions for each of
model will also be normally distributed. Moreover, the meanne six independent diffusion tensor elements using the spati
squared error between the noisy discrete data sampled Witg@barability property described above. Thus, we perform 1-I
the imaging volume and the continuous field representation Wilknsforms repeatedly on the tensor data set using methods |

be x? distributed. . . ported in (1-14, some of which are also summarized in the
The approximated tensor field elements will have a lowe{ppengix.

which the variance of the noise is reducedﬂusmg our appro¥sed for interpolating or approximating the tensor data. Interpc
mation method scales @sAyA,. The “exact” expression for |ation forces the smoothed representation to pass through ea
taining a smoothed representation of lower spatial resolutiol

4 Strictly speaking, this is not an exact relationship because one of the filttRat passes through the data points 0!’“).’ apprOXimate!Y- The di
in Eq. [A.2] is an infinite impulse response (IIR). ference between these two schemes is illustrated in Fig. 3 whe

p(D) =
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sensemnnns Original / )

FIG. 3. lllustration of the difference between interpolating and approximating one-dimensional data using B-spline functions. While the inteypaitdion f
fits the noisy data exactly, the approximation function fits the noisy data only approximately, in a least-square sense. The diamonds repregaigiiaé mbie
dotted line represents the original synthesized continuous curve which was sampled and to which 10% (relative to the peak) Gaussian noise heathimttded.
solid line is the B-spline least-squares approximation using the scaling factof.25, while the thin solid line is obtained using the standard cubic interpolation
of the same data.

the thick solid line is the B-spline least squares approximati@s fiber crossing, kissing, merging, branching, circulating, di-
to the noisy data (diamonds) using the scaling fastet 0.25.  verging, converging, kinking, terminating, etc. Tensor fields are
The thin solid lines represent the cubic B-spline interpolation &dso constructed to represent fiber sheets that twist or bend. W
the same data using the scaling factor= 1. They are com- can also introduce geometric singularities in the tensor field
pared to the “true” curve (dotted line). Only the approximateslich as sources or sinks of fibess {5.

curve furnishes a reasonable estimate of the first derivative.
Testing Noise Immunity

Synthetic Diffusion Tensor Fields to Test Monte Carlo simulations of DT-MRI experiments were per-
the Tensor Field Approximation formed to test noise immunity of the tensor approximation

We have also synthesized a family of continuous diffusion teﬁ(_:heme. This is done by ;ampling the continuous ana'llyticql dif
sor fields that represent structural or architectural motifs with[HSIOn tensor templates in each voxel, and then adding Ricea
atensor field. These “templates” or simulated phantoms are u9&gkground noise to the ideal NMR signab) as described
primarily to test the fidelity of the tensor approximation and tBréviously @). In this way noisy realizations of the tensor field
help identify unexpected pathologies or anomalies that may arl€g'Plates can be generated with known noise characteristics.
in its implementation. In the most general case, these templates
are constructed by writinQ(x) in terms of its three Euler angles,

o (X), 6(x), andy(x), which appear in the rotation matrir(x),
and its three eigenvalues,(x), A2(x), andiz(x), which appear  One method to report the fidelity of the tensor field approxi-

Testing the Robustness and Fidelity
of the Continuous Approximation

as diagonal elements &f(x) (15), mation is to calculate the percentage error between the tens

field template and the approximated tensor field, which we defin
D(X) = R(X)TA(x) R(X). [4 8s

Devising a tensor field with particular geometric or architectural %Errork) = 100x W

featuresis reduced to specifying these six scalar quantities above

as functions ok. Equation [4] is used for the most general case Z_?»_ Zs_ (Dii (X) — Di: (X))

of a heterogeneous, anisotropic tensor field; however, simpler = 100% =1 3J_l 3 : J [5]

expressions than Eq. [4] are used for the homogeneous isotropic, i Zj:l(Dij ()2

homogeneous anisotropic, and heterogeneous isotropic cases. _

These are given in Table 1. whereD(x) is the original analytic tensor field, afi2(x) is the

Using piecewise continuous functions for the six scalar funepproximated tensor field. The quantity above measures, in
tions, we can readily construct heterogeneous tensor fieldet-mean-squared sense, the fractional error between the tw
whose fiber patterns have distinct anatomical correlates sdiids at each point within the imaging volume. We use this
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quantity as a measure of the goodness-of-fit of our B-splidest as the square of the magnitude of the gradj&fu(x)|?,

approximation model to the data, similar 8. detects changes of spatial intensity of a scalar field, €. [7]
detects changes in “intensity” of a 2nd-order tensor field. Be:
DT-MRI Methods cause Eq. [7] is a scalar contraction of two 3rd-order tensors, |

is inherently a rotationally invariant quantity, so that its value is

Healthy volunteers were scanned using a 1.5-T GE SigQ)gchanged when the laboratory coordinate system or the samy
Horizon EchoSpeed equipped with a 2.2-G/cm gradient sgl,qiated.

using an approved NIH clinical protocol. A set of diffusion- ¢ 5 4150 useful to decompose the total diffusion tensor fielc

weighted images (DWIs) was acquired with diffusion gradipq jts isotropic and deviatoric parts (sed)(at each pointx,
ents applied in six isotropically distributed directions usingithin the imaging volume:

an interleaved, spin-echo, echo-planar sequence, employing

navigator echo correction (se&7)). DWI parameters were S

FOVg: 22cm, TE=78 ms, T(R> 5 g)with car%iac gating, voxel %(é) - ﬁi,‘g@“ dgf;ﬁﬁm (8]
size= 3.5x 1.75x 1.75 mm, data matrix= 128x 128. The de-

gree of diffusion weighting, as measured by Tragd{vhereb.  Above, (D(x)) = (Dyx(X) + Dyy(X) + D2Ax))/3 is the scalar ori-
iS the b-matriX 18—20 CaICUIated fOI’ eaCh DWI) iS Varied from entationa”y averaged mean d|ffus|v|ty ata particu|ar p(fD—QK)
approximately 0 to 1000 s/mimAn effective diffusion tensor s the deviation tensor there, ahis the identity tensor. When

was calculated in each voxel according 1) Maps of useful the gradient and contraction operators are applied individuall
DT-MRI parameters were calculated from the diffusion tensag the isotropic and anisotropic partsx), we obtain

such as Trac€l), and diffusion anisotropy measures such as the
lattice index ).

o (PO (9DENY* | (ADENVY
Parameters Derived Using the Continuous Approximation X + ay T Py [9a]

The DT-MRI parameters presented below, which are calcu-
lated from the continuous approximation of the diffusion tens@nd
field, characterize distinct, intrinsic structural or architectural 3 3 3 . )
features of the tissue. We choose to represent quantities that re- Z Z (3 Dij (X)) ’ [9b]
quire spatial differentiation of components of the tensor field or iy 0%k
of the fiber direction field. We expect our methodology to have
a particular advantage in evaluating such quantities, since spaspectively. Equation [9a] is the sum of squares okthe and
tial differentiation of noisy quantities only amplifies noise (€.9z components of the gradient of the orientationally averaged c
see @1)). By first obtaining an approximate, sufficiently smoothnean diffusivity; Eq. [9b] is the sum of squares of the/, andz
continuous representation of the diffusion tensor and of its diregmponents of the gradient of each component of the deviatio
tion field, we can obtain smooth continuous representationsighsor.
spatial derivatives of these quantities as well. Since our methodther tensor-derived parameters characterize features of tl
approximates the tensor field data wiskspline tensor fields, cyrving and twisting of the triad of eigenvectors within the
we can even obtain analytical expressions for these quantitiggging volume, or equivalently, of the three level surfaces tha
within an imaging volume. lie perpendicular to each of the three eigenvectorR@d), at

The spatial rate of change of the tensor field, i.e., the “grgny point. While calculating these quantities is arduous usin
dient” of the tensor field, is a 3rd-order tensor whose elemertistofrel symbols (e.g., se@2)), we propose a simpler means
are to calculate at least one type of curvature measure below.

The curvature of a fiber tract within the imaging volume can
D(X)ij k> [6] be obtained from the fiber tract trajectory, described(sy, and
its local tangent vectot(s). The local curvatureg(s), is given

wherei andj indicate the tensor component, doithdicates the by
coordinate direction along which partial derivatives are taken. A
new scalar function that we propose here summarizes an intrinsic dt(s)
feature of the tensor field. It is obtained by a scalar contraction k(s) = ‘

(tensor inner product) db(x);j « with itself: ds

d ()

3 3 3 which can be plotted as a function®élong a tract. Calculation
330> DM kDX k- [71 of Eq. [10] can be performed either locally at poinby ex-
i=1 j=1k=1 pressings as a function ok, y andz, s(x, y, z), and numerically
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evaluating its infinitesimal neighborhood in the continuous ten-
sor field. Another method is to construct a 3-D space cufsle

a mathematical fiber tract, as if)( The latter allows us to im-
pose additional and much stronger smoothness constraints, t
scaling thes space to yield more reliable estimatesc¢s).

RESULTS

Figure 4 illustrates the improvements in the fiber field direc-
tion map that results from using the approximated tensor field
Noise is added to a tensor field template of a straight nerve fib
(SNR = 15). Figure 4a shows the unapproximated fiber direc-
tion field data, while Fig. 4b shows the results obtained wher
using the approximated tensor data. 2

Figure 5 illustrates the empirical statistical distribution of .. el " 0.95
Trace((x)) in a region of interest (ROI) of a simulated phan- Original A ram——
tom having uniform diffusion properties. These distributions are
plotted against the coarseness of the smoothing window for a 1500 2000
SNR of 15. As the smoothing window size increases, the distri-
bution becomes sharper, but no bias is introduced in the mearFIG. 5. lllustration of an empirical statistical distribution of Trab¥k))
nor is the distribution skewed by the approximation. In fact, tH@ an ROI of a simulated phantom of a tissue having uniform diffusion prop-

. L . . erties and with simulated SNR: 15. These distributions are plotted against
known Gaussian distribution of Trad()) (10) is preserved the scale parametet. DecreasingA (i.e., increasing the smoothing win-

Usmg this approximation scheme, d.emons.tra}ting t.hat_ its 'appﬁ)'w) reduces the variance of the distribution without introducing a bias in
cation does not change the underlying statistical distribution.the mean. Moreover, no skewness is introduced into the distribution by the

Figure 6 illustrates two tensor field templates, one repra;proximation method. Empirical histograms of approximated data are plot
senting two fiber bundles crossing (Fig. 6a) and one a fibtéfi together with the corresponding fit to Gaussian distribution. The Gaus

. . . . . sian plotted on the line corresponding 10 = 1 represents the statistical
formmg a ring (Flg' 6b)' Values used in constructing thes fstribution of the original data. All data are well approximated by the nor-

templates are typical of those obseniadvivo (23) (i.e., for  mq distribution. Gaussian distributions fit to each of the histograms show tha
parenchyma TracB() = 2100 um?/s, for cerebrospinal fluid applying this approximation scheme preserves the underlying distribution o
(CSF) TraceR)=10,000 um?/s, and for white matter, the Trace@(x)).

anisotropy ratio is in the rangé, €[2, 10]). In Fig. 6, the

anisotropy ratio in the simulated phantomswas= 3 (A1 /A3 = ry andr; are the inner and outer radii ang and y. are the

3 andi; = A3). The phantoms are constructed using Eq. [4¢oordinates of the center of the ring. For such voxels we se
For the ring phantom we specify that a voxel contains the white = 3k, = 3i3 = 1260 um?/s and choose the Euler an-
matter fiber ifr; < r = /(x — xc)2 4 (Y — Yc)? < r2, where gle, ¢(x), so that the eigenvector associated with the larges

Distribution
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FIG. 4. lllustration of how using the approximated tensor field improves the reliability of fiber tractography. Here, noise is added to a tensor field templ:
a straight nerve fiber (SNR 15). Line segments depicit the principal axis of the largest principal diffusivity of the diffusion tensor at each sampled point. (a)
computed discrete direction field obtained from the raw diffusion tensor data; (b) the fiber direction field and a fiber tract computed from theteppemsaralata.
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FIG. 6. The calculated percent error, according to Eq. [5]. The two tensor field templates (a) representing two fiber bundles crossing, and (b) containi
concentric rings were created to which noiSNR= 25) was added before performing the approximation. A map of the %-error shows that the fit is good
homogeneous regions within the simulated phantoms, and only deviates at the edges where tissue properties change abruptly. The scale pabaifiater w:
“white” on this grayscale image represents the 20% or greater error (35% was the maximal error), while “black” represents 0% error.

eigenvalue is always perpendicular to the line connecting theciated with the largest eigenvalue. This noise is significantl
center of the ringXc, Ye, Z) and a voxel X, y, z) on the cir- greater when only interpolation is used to calculate the curve
cle. Because of symmetry, the other two Euler rotations a@e. A more robust way to estimate the curvaturedk) is
not performed, i.e.9(x) = 0, and¥(X) = 0. The remain- to track its streamline and then estimate the curvature of th
ing voxels are assigned properties of gray matter, for whichsulting space curve, as described under Methods. The radi
the Euler angles are irrelevant since all eigenvalues are equdlcurvature estimated in this way is much more accurate an
A1 = A2 = Az = 700 um?/s. Both these simulated phantomstable as is demonstrated in Fig. 7c.
are quasi-three-dimensional in that they span more than oné-igure 8a illustrates a tensor field template representing
slice; however, there is no variability along tkedimension. highly simplified corpus callosum near a ventricle. A semicir-
To these diffusion tensor phantoms we also add Ricean nots#ar ring is constructed with anisotropic diffusion properties of
as described under Methodgeéting Noise ImmunityWe use brain white matter having its principal fiber directions oriented
these templates to assess the quality of the fit of the diffusiomcumferentially. Above the ring lies a cylindrical region con-
tensor field, as measured using Eq. [5]. A map of the %-err@ining an isotropic medium with the same diffusion properties
is plotted, showing that the fit is good in homogeneous regioas CSF. The remainder of the imaging volume is filled with ar
within the simulated phantoms and only deviates significantiyotropic medium having the same diffusion properties as gra
at the margins where tissue properties change abruptly. matter. Values used in constructing this template are taken froi
Figure 7a shows an anisotropy index of a diffusion tens@23). Figures 8b, 8c, and 8d respectively show results of applyin
template in which circumferentially wound fiber bundles arthe functions given in Egs. [7], [9a], and [9b] to the simulated
organized in concentric rings. Figure 7b shows the radius piiantom shown in Fig. 8a. Figure 8b shows the result of taking
curvature computed locally from the approximated tensor fielde tensor inner product of the gradient of the anisotropic pat
using Eq. [10]. The radius of curvature ranges from dark (smadij the diffusion tensor with itself. This image distinguishes the
to bright (large), as we move from the inner to the outer ringmargin of the white matter with the CSF and with gray matter.
The intra-ring variation in intensity is due to noise added to tHégure 8c shows the result of taking the tensor inner prod
phantom, which introduces large fluctuations in the calculatedt of the gradient of the isotropic part of the diffusion tensor
curvature. The estimates of the curvature in Fig. 7b are so noisith itself. This image distinguishes the margin of the CSF anc
even with a smooth representatioh & 0.5) because the cal- parenchyma but does not distinguish the boundary of the whit
culation of curvature involves higher (second) derivatives of theatter and gray matter. Figure 8d shows the result of taking th
noisy vector fielde1(x), which is the field of the eigenvector astensor inner product of the gradient of the diffusion tensor with
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Anisotropy index of the original phantom

Radius of the curvature of the principal
vector field, €, calculated locally

Radius of curvature of €, calculated from the
followed fiber tracts (space curves)

FIG.7. Adiffusiontensor template (a) in which circumferentially wound fiber bundles are organized in concentric rings. A map of the local radius af,curva
computed from the approximated tensor field £ 0.5), is shown in (b). The radius of curvature ranges from dark (small) to bright (large) from the inner to tt
outer rings. The intra-ring variation in intensity is seen. (c) The curvature obtained by following the field of the eigenvector associated rgiestthgknvalue,
e1(x), and then evaluating the curvature of the obtained 3-D space curve using similar approximation methodology (instead of a tensor field it im&pplied tc
vector-valued 1-D field) witth = 0.1. The “white” in the images represents the following values of radius of curvature, (b) 300 voxels and (c) 120 voxels, wl
“black” represents the radius of 5 voxels in both images. These phantoms are realized ox 2288rid in thex-y plane. The white spots in (c) come from the
trajectories that have exited into the gray matter region.

itself. This image does not distinguish well between anisotropiisappear. Additionally, using splines of higher than 3rd ordel
and isotropic media, but does show clearly the boundaries ls&ould diminish any contribution the separate basis function:
tween the three distinct regions within the simulated phantorould have to this effect.

The “square of the magnitude of the gradient” in Fig. 8b ap- Figure 9a shows a Trade(x)) axial image of a normal sub-
pears to be larger at multiples of 4&han at multiples of 90 ject. Juxtaposed in Fig. 9b is an image of the tensor inner produ
This effect is generally not as pronounced as this figure woubdithe gradient of the isotropic part of the diffusion tensor field.
suggest, particularly when high-resolution images are simulatddte that the boundaries between regions in which there are di
(the phantom in Fig. 8 is created on a %464 grid). Also, such ferences in Trac&(x))—i.e., between CSF and parenchyma in
effects are not observed when darvivo data are processedthe gyri and sulci, and in the ventricles—are clearly visible, but
(Figs. 9 and 10). Although this artifact could be partly due totherwise, the image is of relatively uniform intensity.

our use of separable basis functions, we attribute it primarily Figure 10a shows a lattice anisotropy index axial image of ¢
to the different textures of the discrete boundary (between thermal subject. Juxtaposed in Fig. 10b is the corresponding im
CSF and GM) in the 45and 90 regions of our template, asage of the tensor inner product of the gradient of the anisotropis
can be seen in Fig. 8a. In the future we plan to simulate partfrt of the diffusion tensor field (equivalent to the square of the
volume effects in our templates and expect such asymmetrynbagnitude of the gradient). Note that the boundaries betwee
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FIG. 8. (a) A simulated phantom of a highly simplified brain region containing the corpus callosum. (b), (c), and (d) Respectively show results of apf
the functions given by Egs. [7], [9a], and [9b] to this phantom. (b) The scalar product of the anisotropic part of the gradient of the diffusiorttetssf. Whis
image highlights the margins of the white matter (WM) with the cerebrospinal fluid (CSF) and with gray matter (GM). (c) The scalar product of tlcepadtrop
of the gradient of the diffusion tensor with itself. This image distinguishes the margin of the CSF and parenchyma but does not distinguish theflvehitelar
matter and gray matter. (d) The scalar product of the gradient of the diffusion tensor with itself. This image does not distinguish well betwepit amdot
isotropic media, but does show clearly boundaries between the three distinct tissue types within the simulated phantom. The scale paraméesaiigdriEs
was 0.8. The “white” in the images represents the following values of the magnitude of the gradient (the square root of what is displayeein{is)\iogel,

(c) and (d) 140Q.m?/s voxel, while “black” is equal to 0.

white matter and gray matter are highlighted, but no signal @l pointsx within the imaging volume. The imposition of this

observed in the CSF or in gray matfsar se constraint would sacrifice the simplicity and efficiency of our
implementation. However, the positive definiteness constrair
DISCUSSION can be imposed when estimating the discrete diffusion tensc

in each voxel with quadratic programmin2¢j or another con-

Having implemented and examined the behavior of the costrained optimization scheme. In practice, this is seldom don
tinuous model of diffusion tensor data, we conclude that apprdxecause, at SNRs typical of most clinical DWI acquisitions,
imation has many advantages over interpolation. The advantdga diffusion tensors within an imaging volume are actually
is particularly evidentin estimating quantities thatinvolve spatiaibt positive definite. However, even if all the original discrete
differentiation of tensor components or other quantities derivéghsors are positive definite, the approximated or interpolate
from them. The main limitation of this technique is its smoothHensors are not guaranteed to be positive definite. Still, the cor
ness constraint, which tends to blur structures on the order dfrsuous approximation of the tensor field, which spatially av-
single or a few voxels. erages the discrete tensor data, tends to reduce the likelihot

Itis worth mentioning that our continuous approximation doe observing nonpositive definite tensors compared to inter
not ensure that the approximate tensor field is positive definitegatation.
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Gradient of the Isotropic Part of D

FIG. 9. (a) An axial image of Trac&(x)) in a normal subject. Juxtaposed in (b) is the corresponding image of the magnitude of the gradient of the isotr
part of the diffusion tensor field. Clearly visible are the boundaries between isotropic regions having different average diffusion progedsesesueen brain
parenchyma and CSF containing regions. Otherwise, the image has a relatively uniform intensity. The scale parameter used for these figures ‘wdst€’8. Th
in (b) represents the value 14p0n%/s/voxel of the magnitude of the gradient while “black” is equal to 0.

In practice, instead of approximating the entire diffusion temalized deviation tensor field:
sor field, we approximate its isotropic and anisotropic parts se-
quentially. This is because in homogeneous isotropic regions
structure may be introduced where there is none. This is a curi-
ous but easily explained property of our continuous tensor field
representation: in an homogeneous isotropic tensor field, onlyin homogeneous isotropic regions, such as within norma
the isotropic part of the tensor field is continuous, while thgssue parenchyma, the isotropic part now appears uniform
anisotropic part is discontinuous. The tensor field approximahereas only at boundaries between parenchyma and CSF, su
tion scheme, however, attempts to generate a continuous terzgoin the ventricles, sulci, and gyri, are there significant spa
field representation for both isotropic and anisotropic parts. fial variations. Moreover, the anisotropic part is small in these
making the anisotropic part of the field continuous, complex ategions.
tifactual structures are introduced, such as swirls, eddies, anth homogeneous anisotropic regions, the normalized anisotrc
coherent microdomains, which are not present in the origingic part is also quite uniform. Significant variations are seen a
data. To remedy the problem, we first fit a continuous approxhe boundaries of anisotropic regions, such as at the margins
mation to the isotropic part d(x): the corpus callosum. We find no angular dependence in uniforr
tensor field patterns in which fibers are systematically rotatec
about the solid angle. This indicates that no orientational artifac
was introduced by the approximation routine.

The heterogeneous anisotropic case offers intriguing pos
Once calculated, we use it to approximate the remaining naibilities for constructing tensor field templates whose fiber

1

D(X)aniso = ( DX

)(D(x) — o). [12)

D(X)iso = (D(X))L. [11]
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Gradient of the Anisotropic Part of D

FIG.10. (a)Alattice anisotrophy index axial image of a normal subject’s brain. Juxtaposed in (b) is the corresponding image of the magnitude of the grac
the anisotropic part of the diffusion tensor field. Note that the boundaries between white and gray matter are highlighted, but no signal is seengreg 8tatter
per se Clearly visible are boundaries between regions of differing diffusion anisotropy, such as between coherent white matter tracts and braimepdteschy
scale parameter used for these figures was 0.8. The “white” in (b) represents the valu@é/s&oxel of the magnitude of the gradient while “black” is equal to 0.

architecture is biologically relevant. These include tensor fields in CSF and normal gray matter (in the absence of systemat
whose principal fiber axes are helically wound about a toruatifacts), as well as in homogeneous anisotropic regions, suc
like the muscle fibers of the heaBg, 26; “kiss” (i.e., approach as in coherently organized white matter fiber tracts whose fibe
each other) or cross, both of which are found in the optic chiirection is relatively uniform. We expect this quantity to be
asm; converge or diverge, such as in the pyramidal tract; alagge, however, at the boundaries between coherently organiz
twist, bend, and/or circulate, such as in cortical white matter ahite matter and isotropic regions, where anisotropic diffusior
in uterine smooth muscle. properties are changing rapidly in space, and in regions whel

The gradient of the isotropic part B{x) identifies boundaries nerve fiber direction changes rapidly with position. We also ex:
between homogeneous isotropic regions having different mgaect this quantity to be large in regions where fibers cross, i.e
diffusivities, (D(x)), such as at boundaries between CSF amghere powder averaging of the various underlying tensor field
brain parenchyma at the margins of the ventricles, and in suteduces the measured diffusion anisotrofly (
and gyri. SincgD(x)) is approximately uniform within normal  Thus, the gradient of the isotropic part of the diffusion tensol
brain parenchyma2@, 27), we expect little variation in its gra- detects heterogeneity in isotropic regions, and the gradient ¢
dient. However, one could speculate that in acute or chroriie anisotropic part of the diffusion tensor detects heterogenei
stroke, or in other clinical conditions in which the distributionin anisotropic regions. Interestingly, while these quantities ar
of TraceQ(x)) changes within brain parenchyma, the gradiefiased solely on algebraic and geometric features of the diffusic
of the isotropic part oD(x) could help identify the borders of tensor field itself, they reflect distinct spatial variations in local
the affected territory. tissue composition and microstructure.

On the other hand, simulations with template data suggesinformation about curvature could provide new informa-
that the variation in the gradient of the deviation tensor shoulidn about development of nerve fiber tracts, the evolution o
be small within relatively homogeneous isotropic regions, sudyri and sulci during normal or abnormal development, anc
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possibly information about microstructural changes that m&yRI data that makes following coherently organized fiber tract
occur in neurodegenerative diseases. Without a method to pmwre reliable and robust, as demonstratedjn (
vide a continuous approximation to the diffusion tensor field,
the callculation of radius of curvature, mean curvature, or any Microscopic (Underlying) Field vs Macroscopic
other I|l§e parameters Woy]d not be prac.ncable.. N0|se in the (Voxel-Averaged) Field
tensor field would be amplified by spatial differentiation render-
ing these quantities meaningless. Even so, as Fig. 7b indicated,he microscopic tensor field is one that describes water dif
calculated values of the curvature from the continuous tendgfion on a microscopic scale, whereas the measured effecti
field can still be noisy and nonuniform in regions that are SuFﬁ'nSOTﬁij describes the tensor field on a voxel-averaged macr
posed to have uniform curvature. There are many mathematigg@pic scale. If we assume no intercompartment mixing of spins
complexities associated with obtaining proper estimates of ciffe measured macroscopic tensor field is a voxel average of th
vature from the noisy diffusion tensor MRI data whose considRicroscopic tensor field. While tense macro and micro fields
eration is beyond the scope of this paper. A partial solution §ould be similar in voxels containing tissue whose distribution
this problem is to track a fiber and evaluate the curvature of ti§fiber directions is uniform, a significant disparity could exist
space curve using similar approximation methods, but now wigigtween these fields in voxels whose distribution of fiber di-
amuch larger scale factor. However, if the scaling factor used&tions is nonuniform, such as regions where fibers diverge c
A =0.1, which yields a great improvement in terms of the varkonverge (splay), bend or twist, branch or merge, etc. Generall
ance of the estimated curvature (Fig. 7c), changes of curvatiftéhese regions, the macroscopic field is a powder average «
on the order of 10 voxels would not be detectable. When usé# heterogeneous microscopic tensor field within the veel (
with in vivo DT-MRI data this can be a serious limitation. ~ An important long-term goal is to develop techniques to iden-
In this work we also provide examples of certain differertify regions in which such powder averaging occurs, and infer
tial variables that can be estimated using the continuous dfi@microscopidensor field from thesmacroscopivoxel-scale
smooth tensor field model. Taken together, DT-MRI parametdR£asurements. Some progress has recently been reported in't
characterizing variations in the isotropic and anisotropic tensdiea 89, 40.
fields can improve tissue segmentation by helping to better de-This approximation treats discrete data as samples of the ur
fine boundaries between different tissue types, such as betwéeHying continuous field. Although the DT-MRI data are voxel-
white and gray matter. Still, we envision that by using our agveraged samples of the underlying field, these two data sets c:
proximation method more sophisticated concepts and methdgsvery different when the underlying field contains features tha

of differential geometry can now be devek)ped and app“ed ase on a scale finer than that of a single voxel. However, sinc
the tissue segmentation problem. we assume that the underlying diffusion tensor field is smoott

(i.e., it changes on scales larger than a voxel), the differenc
between the voxel-averaged and point estimates is negligible
The shortcoming of this assumption is that it forces a prescribe
DT-MRI fiber tractography is a new method for followingdegree of smoothness of the tensor field at sharp boundaries a
the trajectories of nerve and other fibrous tissues. Its underpifterfaces. This explains why the “percent error maps” above
nings can be found in16, 28-30. Recently, several groupsShow high intensity at borders between tissues, why borders a
have reported success in following fiber tracts and even ingiear somewhat enlarged, and in some cases, why tractograp
vidual fascicles on a gross anatomical length sc&e8{—36. schemesthat follow these smoothed tensor fields sometimes pr
An assumption used in all these studies is that the eigenvedigee artifactual fiber trajectorie®)( Work is underway to treat
associated with the largest eigenvalue of the diffusion tensoiiféernal boundaries and piecewise discontinuities in the tensc
coincident with the vector tangent to the fiber tratt (How- field more naturally and robustly within the framework of this
ever, the discrete eigenvector field used to construct continug@§tinuous tensor field approximation.
fiber tracts is calculated from noisy DT-MRI data. Errors in the
diffusion tensor field propagate as errors in the fiber tract di- CONCLUDING REMARKS
rection field,e1(X, y, 2), from which fiber tract trajectories are
calculated 7, 37, 39, as illustrated by the “cone of uncertainty” This new methodology takes noisy, voxel-averaged, and dis
(37, 39. Conturcet al.interpolate noisy DWI data between vox-crete statistical samples of an underlying macroscopic effectivi
els to increase the apparent resolution of their diffusion tenatiffusion tensor field as its input, and produces a continuous
data @1). We showed previously that interpolating DT-MRI datamooth tensor field approximation as its output, specifically.
causes computed fiber tracts to swerve off course sooner thaapgproximated isotropic and anisotropic diffusion tensor fields
the tensor field were approximated, since noise in DWIs intr®ne of our essential findings is that the continuous tensor fiels
duces accumulated errors in the computed fiber tract trajectoniepresentation can be constructed by performing repeated on
(7). The methodology presented here is capable of generatingjimensional B-spline transforms of the DT-MRI data, greatly
continuous, reduced-noise approximation to the measured Bimplifying this complex task.

Implications for Fiber Tractography
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To test the fidelity of this approximation scheme, we deveB-spline function of orden at integer values). Note thag,,, is
oped a family of continuous tensor fields or templates, samplig infinite impulse response (IIR) filter. Similarly, the discrete
them discretely, reconstructed a continuous field from these dislues of the interpolated signal, represented Bithpline co-
crete data, and then compared the original and approximatfficientsc(k), can be obtained through convolution, i.e., the
tensor fields. We also tested the method’s noise immunity mdirect B-spline transform:
adding background noise to these templates using Monte Carlo
methods. The templates are accurately reproduced except at s(k) = b" ® c(k). [A.3]
boundaries where material properties change discontinuously
or where the field is not microscopically homogeneous, suchin many situations, however, it can be advantageous to af
as in regions where fiber tracts cross, merge, etc. Besides p@ximate the signal, rather than to interpolate it. In particular
ing able to recover the original noiseless tensor field reliably,the original signal is noisy, introducing a smoothness con-
this approximation scheme substantially reduces the varianggaint and approximating the data can be beneficial. We use
of quantities derived from DT-MRI. New MR parameters thatonstraint that imposes the reduction of the space in which th
characterize different structural and architectural features weignal is represented (effectively it is a constraint on the uppe
proposed and displayed usiimg vivo DT-MRI data obtained frequency bound). Thus, the desired transform is the one th:
from the human brain, which could not have been evaluated gelds the optimaB-spline coefficients representing the scaled
curately from noisy DT-MRI data. This new methodology hagown version of the signal through a relationship, similar to
already been successfully incorporated into a scheme for fglg. [A.1]; i.e.,

lowing nerve and other fiber tract trajectoriassivo (7).
+00
APPENDIX SA(¥) = Y ca(k)B"(xA — k). [A.4]
k=—00
We describe the details of the implementation of the contin- ) ) . . ,

uous tensor field approximation. The essential building block ©N€ Way to find the optimaB-spline coefficientsca (k), is
of our implementation is the optima-spline approximation tp explicitly minimize the approxmaﬁuon error. Efficient algo-
in 1-D. It is based on a scale conversion algorithm which find&hms can be designed based on this schednéX, 13; how-

the optimal approximation to the original signal at a given scaf¥e": they are designed only for the cases where the scale

A (13). The only difference in our implementation is the exclul@MeterA is an integer. A more general approach is describex
in,(13), in which the minimization task is modified and can be

sion of the postfiltering step, as described in the block diagrdth o X , -
of the algorithmin £3). Hence our model is determined once Wétate_d as_fo_llows. Given a functidi(x) in the 9“9'_”6" sp_aceXS
obtain the optimaB-spline coefficients; . Below we describe 1Nd its minimum least square error approximatity(x) in the

how these coefficients are obtained and how they are used§ce scaled down by factay, i.e., Sc. In this approach we
represenB(x). equatef (x) with the B-spline expansion of the original signal,

i.e., s"(x), and similarly fa(x) with s} (x). Here the (approx-
imately) optimal B-spline coefficients can be obtained for an
arbitrary scale factoA. By projecting thes"(x) into the scaled
space off 5 (x) we obtain theB-spline coefficientg, (k) as

Optimal B-Spline Approximation in 1-D
for an Arbitrary Scale Factor A

Lets(k) be adiscrete one-dimensional sigiked(Z, s(k) € 1,)
ands"(x) be the corresponding-spline representation (interpo- ca(k) = A(S"(X), BN(XA — K)), [A.5]
lation) of the same signal ih,. These two are related through

. where( ) represents the inner product of two functions. Substi-
neoy = Ny tuting s"(x) from Eq. [A.1] we obtain
S"X)= > cK)B"(x — k) [A1]

k=—00

ca) =AY cl)p"(x—=1), B"(xA —K)).  [A6]

l=—00

wherec(k) €1, are theB-spline coefficients and"(x) is the B-
spline of orden. The coefficients are obtained from the original
signals(k) using a direcB-spline transform, which is a convo-The inner product in Eq. [A.6], known as the sampling function,
lution operation of the original data with the appropriate filtés a convolution of twoB-splines and can be easily evaluated
(11,12;i.e., analytically for the piecewise constant and piecewise lifgar
splines. However, for higher-order splines, approximate formu
c(k) = by ® s(k), [A.2] las described ini4) are used.
A general way of calculating the sampling function, which
where® indicates the convolution operation abfl,, is the we use, is to perform the convolution in the Fourier domain, i.e.
impulse response of thB-spline filterb” (the samples of the multiplication of the corresponding Fourier transforms of the
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two splines. Note that this is also an approximate method sir€g. [A.7]). We usually choose the cubi8:splines. However, if
B-splines are bounded functions and their Fourier transforrige derivatives higher than second order are needed (e.qg., calc
are unbounded. The scaling function itself is bounded since itlédion of the torsion of a curve requires the third-order derivative)
a convolution of two bounded functions. we must use higher-order splines. Additionally, an advanatag
Although there are several approximations made in obtaining§ using higher-order splines is that they improve separability
the B-spline coefficients, they are formal in nature. In practicgroperties of the derivatives, but at the expense of longer com
the performance of this algorithm is nearly optimal. OnceBhe putation time. The evaluation of the derivatives of the tensor
spline coefficients;, (k), are determined we can obtain the corfield is straightforward, since derivatives of tBesplines can be
tinuous representation of the approximated signal at any poaxpressed recursively in terms of tBesplines or lower order

x using Eq. [4]. using simple linear operations @tspline coefficientsy(2).
Precompiled C-libraries of this implementation for several
Multidimensional Approximation of Tensor computer platforms and instructions for how to use them are
Valued Functions available at http://mscl.cit.nih.gov/spaj/dti/lbcadt/. These are als

As already described under Theory, finding the tensor fie?(ya"able by e-mail upon request to the authors,

representation could be reduced to finding a continuous repre-
sentation of each of its individual tensor compone®sand
letting the functionso' (x) which now serv is for th

etting the tu (f:ttcf)] E? ( ) fi Cld bo se g a? af?as St ort .e We thank Carlo Pierpaoli for providing DT-MR images that appear in this
components of the tensor lie € a product of tunctions, I'@tudy using an approved NIH clinical protocol and for carefully reading this

b'(x) = f'(X)g'(y)h' (2). Since the basis functions are NOw sefinanuscript. We also thank Jeffrey Duda—a former summer student in ou
arable, the task of finding thB-spline coefficients of the con- laboratory—for implementing early versions of several of these tensor field

tinuous modelg; (k, I, m), is reduced to sequentially applyingapproximation algorithms in IDL.
Eq. [A.6] along thex, y, and z coordinates within the imag-
ing volume for each tensor component. Consider a component REFERENCES
of the diffusion tensom)' (x). The 1-D curved' (x, Yo, Zo) are
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