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There are conflicting opinions in the literature as to whether it is
more beneficial to use a large number of gradient sampling
orientations in diffusion tensor MRI (DT-MRI) experiments than
to use a smaller number of carefully chosen orientations. In this
study, Monte Carlo simulations were used to study the effect of
using different gradient sampling schemes on estimates of ten-
sor-derived quantities assuming a b-value of 1000 smm–2. The
study focused in particular on the effect that the number of
unique gradient orientations has on uncertainty in estimates of
tensor-orientation, and on estimates of the trace and anisot-
ropy of the diffusion tensor. The results challenge the recently
proposed notion that a set of six icosahedrally-arranged orien-
tations is optimal for DT-MRI. It is shown that at least 20 unique
sampling orientations are necessary for a robust estimation of
anisotropy, whereas at least 30 unique sampling orientations
are required for a robust estimation of tensor-orientation and
mean diffusivity. Finally, the performance of sampling schemes
that use low numbers of sampling orientations, but make effi-
cient use of available gradient power, are compared to less
efficient schemes with larger numbers of sampling orientations,
and the relevant scenarios in which each type of scheme should
be used are discussed. Magn Reson Med 51:807–815, 2004.
Published 2004 Wiley-Liss, Inc.†
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Diffusion tensor magnetic resonance imaging (DT-MRI)
(1,2) permits the noninvasive assessment of water diffu-
sion characteristics in vivo. In DT-MRI, a series of diffu-
sion-weighted (DW) images with diffusion-encoding gra-
dients applied in noncollinear and noncoplanar directions
are acquired and the tensor is computed via linear or
nonlinear regression (1). Since the symmetric diffusion
tensor has six unique elements, one can estimate the ten-
sor from just six DW images acquired with the encoding
gradients applied along six unique orientations (plus one
non-DW image). However, due to noise, more images are
usually acquired, which results in an overdetermined sys-
tem and allows for more robust tensor estimation. Since
only six unique sampling directions are required, how-
ever, the value of sampling schemes in which more unique
orientations are used is not immediately clear.

This issue was first addressed by Papadakis et al. (3) and
later by Skare et al. (4), who studied various DT-MRI
sampling schemes in terms of the variance of fractional
anisotropy (FA) measurements as a function of tensor ori-
entation. Papadakis et al. (3) demonstrated that a scheme
employing 24 unique sampling directions outperformed a
scheme with only six directions. Skare et al. (4) concluded
that for estimating anisotropy, a scheme with 30 unique
sampling directions (5) outperformed a scheme with only
six unique sampling directions. Neither study addressed
the question, at what number between six and 30 direc-
tions is no significant benefit derived from increasing the
number of sampling directions further, i.e., when do di-
minishing returns occur? This issue was later addressed
for the specific task of estimating anisotropy (i.e., what is
the minimum number of unique sampling orientations
required for robust estimation of anisotropy?) (6). Three
measures of anisotropy were considered, and simulations
were performed assuming a tensor with a fixed anisotropy
(�1: �2: �3 � 12:1:1). Papadakis et al. (6) concluded that the
minimum number of unique encoding directions, Ne, re-
quired for robust anisotropy estimation was 18 � Ne � 21.

However, in a later study, Hasan et al. (7) used different
criteria to assess sampling-scheme performance, and as-
sumed a tensor with a different anisotropy (�1 : �2: �3 �
4:1:1). They concluded that there is no advantage to using
more than six sampling orientations as long as the selected
orientations point to the vertices of an icosahedron. Batch-
elor et al. (8) recently lent support to this notion by sug-
gesting that icosahedral schemes are functionally equiva-
lent to a sampling scheme in which an infinite number of
orientations are sampled and are therefore, by definition,
rotationally invariant. (However, see Ref. 9 for a brief
discussion of why the assumptions used to make this
assertion are violated.)

These studies focused mainly on the influence of the
sampling scheme on measures of anisotropy. However, the
influence of the gradient sampling scheme on estimates of
mean diffusivity and tensor orientation remains unknown.
Another issue that remains to be addressed concerns the
benefit of employing “efficient” gradient sampling
schemes. Most DT-MRI sampling schemes with more than
six sampling directions employ a maximum encoding gra-
dient amplitude that is not larger than the maximum gra-
dient amplitude obtainable along one of the physical axes
(i.e., the x-, y-, or z-axis). We refer to these as “unit-sphere”
schemes. However, if a limited number of gradient vectors
are employed, their orientations can be chosen such that
the resultant amplitude can exceed that obtained along the
physical axes. We refer to these schemes as “efficient”
because they make efficient use of the gradient power
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available. Here we consider two such schemes: the com-
monly used dual-gradient scheme (10,11), in which gradi-
ents are applied simultaneously along two physical axes at
the maximum gradient amplitude, and an efficient version
of the icosahedral arrangement initially proposed by
Muthupallai et al. (12). In the former, the resultant gradi-
ent amplitude is greater than that obtained in the unit-
sphere schemes by a factor of �2. In the latter, the icosa-
hedral arrangement is rotated with respect to the coordi-
nate system defined by the physical axes of the gradient
system, so as to maximize the resultant gradient vector
amplitude. The amplitude along one axis is then the max-
imum gradient amplitude, while the amplitude along the
second axis is equal to the maximum gradient amplitude
multiplied by Fibonacci’s golden ratio (13), fr �
(�5 � 1)/ 2. In a study using numerical optimization, this
scheme was recently shown to provide the most optimal
arrangement of six gradients for DT-MRI in terms of min-
imizing the orientational variation in estimates of anisot-
ropy (7).

The advantage of the efficient gradient schemes is that a
given effective diffusion weighting can be achieved with
shorter-duration gradients compared to those used for
unit-sphere schemes. This allows a shorter echo time (TE)
to be obtained and reduces the transverse (T2) relaxation,
and thus yields an enhanced signal-to-noise ratio (SNR)
per unit time. The Appendix shows how an approximation
to the gain in SNR (relative to the unit-sphere schemes)
can be computed for both schemes.

The conflicting data in the literature and the unan-
swered questions prompted us to investigate further the
effect of gradient sampling scheme direction on the results
obtained from DT-MRI experiments.

MATERIALS AND METHODS

Gradient Encoding Schemes

Since one aim of this study was to investigate the effect of
varying the number of unique gradient sampling direc-
tions, a total number of DW images was sought that had a
reasonable number of closely spaced integer factors, fn
(where fn � 6). To this end, we settled on a total of 60 DW
images (fn � 6, 10, 12, 15, 20, 30, and 60). For each unique
number of sampling vectors, the orientations were defined
by the electrostatic repulsion algorithm previously pro-
posed by Jones et al. (5). The n unique sampling vectors are
likened to a series of n “rods” with a point charge at each
end. The rod orientations are iteratively modified so as to
maximize the sum of the squared distances between all
possible “pairs” of charges, effectively minimizing the
sum of the electrostatic repulsive forces. This produces
encoding schemes with almost rotationally invariant con-
dition numbers (4,8), and, for appropriate numbers of gra-
dient orientations, the arrangements correspond to the ver-
tices of Platonic solids. For example, for six directions, the
electrostatic repulsion scheme produces vectors that point
to the vertices of an isosahedron (P. Batchelor, personal
communication). Papadakis et al. (6) later described a
modification to this algorithm in which the repulsive
forces between charges were modeled following an r–n law
(where n is progressively made � 2).

To test the benefits of using the efficient schemes, we
compared the performances of the dual-gradient scheme
originally proposed by Davis et al. (10) (i.e., [�xy, �xz,
�yz, –xy, –xz, –yz]) and the efficient icosahedral scheme
proposed by Muthupallai et al. (12) to that of a scheme in
which 30 directions were distributed uniformly using the
electrostatic algorithm. The SNRs for the three schemes
were appropriately modified (see Appendix) such that the
ratio of the SNRs for the three schemes (i.e., 30 directions
: efficient dual gradient : efficient icosahedral) was 1:
1.328: 1.151.

Tensor Simulations

To simulate biologically relevant characteristics, diffusion
tensors, D, were simulated with constant Trace (Tr(D) �
2.1 � 10–3 mm2s–1) (11) but varying FA (14) and orienta-
tion. First, a diagonalized tensor was simulated with eig-
envalues (�1, �2 and �3) given by

�1 � �Tr�D	/3	�1 � 2FA/�3 � 2FA2	1/2	

�2 � �3 � �Tr�D	/3	�1 � FA/�3 � 2FA2	1/2	. [1]

Tensors with different orientations, D�, were then obtained
via the similarity transform:

D� � RTDR,

where R is the rotation matrix. For each value of FA, 500
different orientations of the tensor (uniformly spaced over
the hemisphere) were simulated.

Noise Simulation

Sixty-one images (one image with no diffusion gradients
applied, and 60 DW images) were simulated for each ex-
periment. The combinations of encoding directions (num-
ber of unique directions/number of repeats of each direc-
tion for each experiment) were as follows: (6/10), (10/6),
(12/5), (15/4), (20/3), (30/2), and (60/1).

For each scheme, the noise-free DW intensity, I, was
determined for each sampling direction according to:

I � I0exp��Trace�bD		, [3]

where I0 is the unweighted signal, and, for a given sam-
pling direction |gx, gy, gz|,

b � b� gx
2 gxgy gxgz

gxgy gy
2 gygz

gxgz gygz gz
2 �, [4]

where the resultant diffusion weighting of b � 1000 s/mm2

was assumed for each encoding direction.
Different levels of Gaussian random noise were then

added in quadrature to both the noise-free DW signals and
the noise-free unweighted signal, to give SNRs in the b �
0 image of 5, 10, 15, 20, and 25. The (noisy) tensor was
then recomputed from the noise-contaminated DW sig-
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nals. This was repeated a total of NMC times (where NMC �
10000) for each orientation of the diffusion tensor.

Characterizing Rotational Variance

For each noisy estimate of D, the trace, FA, and principal
eigenvector were determined, giving a distribution of NMC

values at each orientation. For the trace and FA, the mean
of the NMC estimates was computed for each orientation.
To characterize the distribution in the eigenvector esti-
mates at each noise-free orientation, the 95% cone of un-
certainty (CU) was computed as described elsewhere (15).
Briefly, the mean eigenvector was determined by finding
the mean of 10000 dyadic tensors, where each dyadic
tensor is formed by taking the outer product of the princi-
pal eigenvector with itself, i.e.:


�1
j �1

jT� � �� �ε1x
j 	2 ε1x

j ε1y
j ε1x

j ε1z
j

ε1x
j ε1y

j �ε1y
j 	2 ε1y

j ε1z
j

ε1x
j ε1z

j ε1y
j ε1z

j �ε1z
j 	2

�� �
1

NMC
�
j�1

NMC

�1
j �1

jT . [5]

The principal eigenvector �� 1 of the mean dyad, 
�1
j �1

jT
� and

the angular deviation between each of the 10000 Monte
Carlo estimates of �1

j and the mean orientation �� 1 were
determined by:

j � cos�1��� 1 � �1
j 	. [6]

A histogram of the NMC values of j was constructed, and
the 95th percentile was taken as the 95% confidence angle
or CU.

For each quantity (trace, FA, and CU) two summary
measures were determined: 1) the mean taken over the 500
orientations; and 2) the standard deviation (SD) taken over
the 500 orientations (4).

RESULTS

Figure 1 shows the 95% CU as a function of tensor orien-
tation for the dual-gradient sampling scheme (10,11). This
scheme yields large variations in orientational uncertainty
as a function of tensor orientation, with variations of ap-
proximately 50% over the range of orientations.

Figure 2 illustrates the CU as a (, �) response surface for
six different sampling schemes in which the number of
unique sampling directions varies between six and 60, and
the total number of DW images is the same (i.e., 61). There
is a marked reduction in the mean CU and an increased
“flatness” of the surface when the number of unique sam-
pling orientations increases from six to 10. Further im-
provements (albeit less marked) are seen when the number
of sampling orientations is further increased.

Figure 3 shows how the mean (i.e., the mean of the 500
estimates) and SD of the CU varies with the number of
sampling orientations for two different SNRs and a range
of FAs. The reduction in the mean CU with an increasing
number of unique orientations is most marked for tensors
with higher anisotropy. For example, in Fig. 3a, for tensors
with FA � 0.9, the mean CU is reduced by approximately
4° by moving from six unique sampling orientations to 10,
while there is minimal change in the mean CU observed

for tensors with lower anisotropy (e.g., FA � 0.4). The
benefit of increasing the number of sampling orientations
becomes more pronounced as the SNR decreases.

The advantage of increasing the number of unique ori-
entations, in terms of reducing the SD, becomes more
pronounced as the anisotropy increases–but for all levels
of anisotropy, an asymptotic behavior is observed. Follow-
ing Papadakis et al. (6), we assessed the value of Ne for
which increasing the number of sampling directions fur-
ther had a minimal effect by looking at the differential
change of the SD with respect to Ne. The value of Ne for
which the differential change oscillated about zero was
deemed to be the point of “diminishing returns.” In this
case, the limit was reached at 30 unique sampling direc-
tions.

Figure 4 shows the variation in estimated FA over the
500 orientations—both as a surface (Fig. 4a) for a particu-
lar anisotropy (FA � 0.9) and as a plot (Fig. 4b) for a range
of anisotropies. In this case, the asymptotic number of
sampling directions is approximately 20.

Figure 5 shows the SD of the measurements of the trace of
the diffusion tensor obtained over the 500 orientations

FIG. 1. Variation in the 95% CU in degrees, as function of tensor
orientation (FA � 0.9, SNR � 15), for the dual-gradient sampling
scheme (10,11). The azimuth and elevation angles are represented
by  and �, respectively. In the upper panel, the variation is repre-
sented as a 3D surface (which we term the “response surface”) and
the orientations of the sampling vectors are represented as dotted
white lines. In the lower panel, the surface has been collapsed onto
a 2D plane and white stars represent the position of the sampling
vectors.
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(SNR � 15). Again, the advantage of increasing Ne is clearly
demonstrated, with the effect becoming more pronounced as
FA increases. Here the limit for diminishing returns (as de-
fined above) is reached at 30 unique directions, similar to the
results obtained for the 95% CU in Fig. 3.

We compared the 95% CU as a function of orientation
obtained with the unit-sphere gradient scheme (Fig. 6a),
utilizing 30 unique sampling orientations (5) (termed the
“Jones30” scheme by Skare et al. (4)), with the results
obtained using the efficient dual-gradient scheme (Fig. 6b)
and the efficient icosahedral scheme (both of which utilize
six unique sampling orientations). Clearly, the Jones30
scheme produces the flattest response of the three
schemes. The dotted white line shows the mean of the
measurements obtained using this scheme (6.96°). Unsur-
prisingly, improving the efficiency of the other two
schemes (i.e., allowing the resultant gradient vectors to fall
beyond the unit sphere) does not affect the topology of the
response surface much, but it does lower the overall un-
certainty. With the efficient dual-gradient scheme (Fig.
6b), the majority of the estimates of the CU fall below the
average value obtained with the Jones30 scheme (67.1% of
the CU estimates are � 6.96°). However, there are four
broad peaks in the surface corresponding to tensor orien-
tations in which the uncertainty in �1 is substantially
larger than the average Jones30 value. In contrast, with the
efficient icosahedral scheme (Fig. 6c), most of the CU
estimates are larger than that obtained with the Jones30
scheme (albeit with a few sharp “valleys” in the response

FIG. 2. Variation in the 95% CU in degrees, as function of tensor orientation for tensors with FA � 0.9 and SNR � 15, for six different
sampling schemes. For all panels (a–f), the total number of DW images simulated is the same (61), but the number of unique sampling
orientations (arranged using the electrostatic repulsion algorithm of Jones et al. (5)), varies. The number of unique sampling orientations is
(a) 6, (b) 10, (c) 12, (d) 15, (e) 20, and (f) 30.

FIG. 3. Dependence of the mean (inset) and SD in the 95% CU (i.e.,
the mean and SD of the values obtained over the 500 orientations)
on the number of unique sampling orientations, for simulated ten-
sors with FA ranging from 0.4 to 0.9. The figure shows results
obtained at two different SNRs: (a) 5:1 and (b) 15:1.
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surface, in which the uncertainty is less than the average).
For this scheme, 85.8% of the CU estimates are above
6.96°.

DISCUSSION

By examining Figs. 1 and 2, the reader can get an intuitive
feel for the benefit of using sampling orientations that are
both numerous and uniformly spaced. One can think of
the response surface as a rubber sheet, and the sampling
vectors as “fingers” that push down on the sheet. When the
fingers push down, the response surface tends to bulge
between the sampling vectors. The more fingers used, the
flatter the surface response. Using the same analogy, one
can envisage the result of different spacings of a fixed

number of sampling vectors. The maxima and minima of
the response surfaces in Figs. 1 and 2a also indicate the
benefit of uniformly arranging the sampling vectors.

Figure 3 indicates that in terms of the absolute uncer-
tainty in the tensor orientation, there is a clear advantage
in moving from six to 10 unique sampling directions, but
little advantage thereafter. Again, the effect is most marked
for low SNR and high anisotropy.

In terms of the SD in the CU, the benefit of increasing the
number of sampling directions further is also demon-
strated in Fig. 3. The SD of the CU over the range of 500
orientations (a surrogate marker of the “flatness” of the
surface response) decreases as the number of sampling
directions is increased. Again, this effect is more pro-
nounced at lower SNR and for tensors with higher anisot-

FIG. 4. a: Variation in the estimated FA as a function of tensor orientation for tensors with FA � 0.9 and SNR � 15:1, for six different
sampling schemes. For each scheme, the number of unique sampling orientations is (a) 6, (b) 10, (c) 12, (d) 15, (e) 20, and (f) 30. b:
Dependence of the variance in FA measurements (variance of the measurements obtained at 500 different orientations) on the number of
unique sampling orientations for simulated tensors with a range of anisotropies.
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ropy, but the point at which increasing the number of
unique sampling orientations further had a minimal effect,
considering a range of SNRs and anisotropies, was approx-
imately 30.

Figure 4 shows the variation in FA with tensor orienta-
tion as a function of the number of unique sampling ori-
entations. The topology of the response surface in Fig. 4a is
very similar to that seen in Fig. 2. This is perhaps unsur-
prising given the relationship between uncertainty in ori-
entation and FA reported elsewhere (15). It is interesting
that the point at which increasing the number of unique
sampling orientations further has a minimal effect (i.e., the
differential change oscillates about zero) occurred at ap-
proximately 20 unique sampling orientations. This is in
perfect accord with the findings of Papadakis et al. (6).

Figure 5 shows a previously unreported effect: the de-
pendence of estimates of mean diffusivity (classically a

“rotationally invariant” quantity (11)) on the sampling ori-
entation. As stated previously, the effect depends on the
anisotropy, but for high anisotropy (FA � 0.7), the asymp-
totic value of number of unique encoding directions is
approximately 30.

Not unexpectedly, Fig. 6 shows that improving the effi-
ciency of a particular sampling scheme by simply rotating
the fixed set of gradient vectors with respect to the axes
defined by the physical axes of the gradients, but without
changing the orientation of the gradient vectors with re-
spect to each other, has little effect on the topology of the
response surface.

Implications for Experimental Design

The trace is fairly uniform in parenchyma at b-values
typically used clinically (b � 1000 s/mm2) (11). This

FIG. 5. a: Variation in the estimated trace of the diffusion tensor as function of tensor orientation for tensors with FA � 0.9 and SNR � 15,
for six different sampling schemes. The number of unique sampling orientations in each scheme is (a), 6, (b) 10, (c) 12, (d) 15, (e) 20, and
(f) 30. b: Dependence of the variance in trace measurements (variance of the measurements obtained at 500 different orientations) on the
number of unique sampling orientations for simulated tensors with a range of anisotropies.
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study shows that sampling schemes with fewer than 30
unique directions introduces variations in estimates of
mean diffusivity that are solely attributable to the dif-
ferent orientation of the tissue. These variations will
effectively increase the SD of measurements obtained
from a region of interest encompassing voxels contain-
ing tissue with different fiber orientations. Such in-
creased variance will reduce statistical power for intra-
subject comparisons of mean diffusivity in different re-
gions of the brain, and will in general spuriously
increase the heterogeneity of the apparent trace within
the parenchyma. One can consider the implications of
this artifactual heterogeneity for studies that use histo-
gram analyses to compare data from subjects. Using a
scheme with more unique sampling orientations, rather
than fewer, will reduce the width of the histograms and
may increase the conspicuity of real patient-control dif-
ferences. The same arguments apply to analyses of re-
gions of uniform diffusion anisotropy.

Of course, in a clinical situation in which it is necessary
to scan patients as quickly as possible, it may be imprac-
tical to acquire 30 DW images for each slice location.
Nevertheless, this study has shown that if time is available
for collecting more than the bare minimum of DW images
(i.e., six DW images and one non-DW image), then unique

sampling orientations should be chosen, rather than re-
peats of the same set of sampling orientations. In other
words, one should collect DW data in as many unique (and
uniformly spaced) sampling orientations as time will al-
low.

One can consider the importance of a carefully de-
signed sampling scheme for diffusion tensor tractogra-
phy (16 –25) by conducting a simple thought experi-
ment. Consider two perfectly straight fiber bundles with
uniform and high anisotropy. One bundle is aligned
with the x-axis, and the other is aligned with the y-axis.
We have shown that without due care, the DT-MRI sam-
pling scheme can introduce a bias such that the CU
depends on fiber orientation. Consequently, one could
consider a scheme in which the uncertainty in fiber
orientation is much greater for fibers aligned with the
x-axis than for those aligned with the y-axis. With such
a scheme, the “connectivity,” is assessed in terms of the
number of trajectories passing along the tract, would
appear to be greater along the y-axis than along the
x-axis; hence, the sampling scheme would have intro-
duced bias into our connectivity estimates.

An interesting question is, if only the bare minimum of
DW images are to be collected (i.e., six DW images and one
non-DW image), then which sampling scheme should be

FIG. 6. Comparison of the performance of three sampling schemes: (a) Jones30 (30 unique directions), (b) efficient dual-gradient (six unique
directions repeated five times), and (c) efficient icosahedral (six unique directions repeated five times), in terms of the variation in the 95%
CU as a function of tensor orientation for a tensor with FA � 0.90 and SNR � 15:1. Two views of the surface are shown for each result to
allow the topology to be fully appreciated. The dotted horizontal white line in the lower panel shows the mean of the 500 estimates of the
CU obtained with the Jones30 scheme. In the response obtained with the dual-gradient scheme (b), the majority of values fall below this
average, but there are four wide peaks where the CU is substantially larger than this average. With the efficient icosahedral scheme, the
majority of values are substantially larger than the average value obtained with the Jones30 scheme, with a few sharp valleys.
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used? As noted earlier, Hasan et al. (7), using numerical
optimization, determined that the most optimal arrange-
ment of six sampling vectors, in terms of minimizing the
“total variance” (i.e., the variance of estimates of tensor
elements as a function of tensor orientation), was the effi-
cient icosahedral scheme (which was also used in the
present study). They also showed that the efficient dual-
gradient scheme was suboptimal and represented a local
maximum in their optimization process.

Are there any benefits, then, to using the efficient dual-
gradient scheme? Clearly, of the three schemes examined
here (Jones30, efficient dual-gradient, and efficient icosa-
hedral), the efficient dual-gradient scheme permits the
shortest TE for a given diffusion weighting, and hence
yields an improved SNR per unit time (see Appendix). The
sensitivity of anisotropy measures to noise is now a well-
documented phenomenon (28), with estimates of the an-
isotropy of tissue being increasingly positively biased as
the SNR decreases. Consequently, in the low-SNR domain,
estimates of anisotropy will be less biased with the effi-
cient dual-gradient scheme than with any other scheme.
We have shown in this study that the use of such schemes
introduces substantial orientational bias in tensor-derived
quantities. However, depending on the application, this
form of bias may be of less concern than maximizing the
SNR per unit time. For example, in a serial study of diffu-
sion characteristics in a particular lesion (e.g., a multiple
sclerosis lesion), the patient will be oriented in approxi-
mately the same manner for each successive scan session.
Consequently, the orientational bias introduced by a
scheme like the efficient dual-gradient scheme will be of
little concern, and one may choose to focus on obtaining
measures of anisotropy that are the least affected by the
noise-induced bias reported by Pierpaoli et al. (28). Fur-
ther, if one is only interested in characterizing diffusion
within gray matter (in which diffusion is isotropic at the
voxel length scale), then no orientational bias will be pre-
sented, and, again, the efficient dual-gradient scheme
should be employed.

Without doubt, the most useful application of diffusion
imaging to date is in the study of acute ischemia (29,30),
where the prime interest is looking for reductions in the
trace of the diffusion tensor. As the reduction is typically
of the order of 30%, the variation in trace values due to
differences in orientation seen in Fig. 5a are again going to
be of little concern. In that particular application, it would
be preferable to maximize the SNR and hence use a sam-
pling scheme that places the sampling vector amplitudes
beyond the unit sphere, such as the efficient dual-gradient
or efficient icosahedral schemes described above.

Our results were obtained exclusively from Monte Carlo
simulations, and have not been validated in vivo. How-
ever, a validation of these findings would necessitate ori-
enting an anisotropic structure (such as a white-matter
fasciculus) in 500 different orientations within the scan-
ner, which would clearly be impossible. It would be pos-
sible to perform such a validation using an anisotropic
diffusion phantom that could be more readily reoriented
within the scanner. However, to date, such a phantom has
not been designed.

CONCLUSIONS

Our results show that robust determination of mean diffu-
sivity, FA, and tensor orientation requires a DT-MRI sam-
pling scheme in which at least 30 unique and evenly
distributed sampling orientations are employed. (The op-
timal arrangement of 30 sampling orientations obtained by
use of the electrostatic repulsion algorithm (as employed
in this study) was previously tabulated in Ref. 4.) How-
ever, for anisotropy measurements only, the measure-
ments will be robust when at least 20 unique sampling
orientations are used. Schemes with a lower number of
sampling orientations can introduce biases and correla-
tions between tensor orientation and apparent diffusion
characteristics, even if they make efficient use of available
gradient strength. For applications such as fiber-tractogra-
phy, and particularly “probabilistic” approaches, one
should use as many unique sampling orientations as time
will allow. However, when time is limited and only the
minimum number of DW images can be collected for DT-
MRI (i.e., six DW images and one non-DW image), in most
cases the efficient dual-gradient scheme should be em-
ployed. In summary, when designing a DT-MRI experi-
ment, one should consider 1) the type of information to be
extracted from the diffusion tensor, and what biases may
be introduced by the sampling scheme; and 2) the amount
of imaging time available. The choice of sampling scheme
will then become a trade-off between minimizing bias and
minimizing scan time.
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APPENDIX

In this Appendix, we aim to estimate the improvement in
SNR per unit time of the efficient sampling schemes as
compared to the unit-gradient schemes. It is assumed that
the DT-MRI acquisition is based on a conventional DW
spin-echo sequence and that the duration of the imaging
gradients is minimal, such that the duration of the diffu-
sion encoding gradients, �, is equal to TE/2.

Using the standard Stejskal-Tanner expression (26) for
the diffusion weighting, b,

b � �2G2�2�� �
�

3� , [A1]

where G is the amplitude of the diffusion-encoding gradi-
ents, � is their temporal separation, and � is the gyromag-
netic ratio, and assuming that � � � � TE/2, an approxi-
mate expression for TE is obtained:

TE � � 12b
�2G2�1/3

. [A2]

If we now define the ratio of the maximum gradient am-
plitudes applied in an efficient scheme to that applied in
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the unit-gradient scheme as �, then from Eq. [A2] the ratio
of TEs using the two schemes is found to be

TEefficient

TEunit sphere
� ��	��2/3	. [A3]

We can then define the ratio of the SNRs, �, as

� �
SNRefficient

SNRunit sphere
� exp�TEunit sphere � TEefficient

T2
�

� exp�TEunit sphere�1 � ���2/3		

T2
�. [A4]

For the efficient dual-gradient scheme (10,11), � � 1.414,
whereas for the efficient icosahedral scheme (12), � �
1.176. Assuming a typical TE for a unit-sphere gradient
sampling scheme of 110 ms and a white-matter T2 of 80 ms
(27), � � 1.328 for the dual gradient scheme, and � � 1.151
for the efficient icosahedral sampling scheme.
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