#### **Course #412**

#### Analyzing Microarray Data using the mAdb System

April 1-2, 2008 1:00 pm - 4:00pm madb-support@bimas.cit.nih.gov

### Day 2 mAdb Analysis Tools

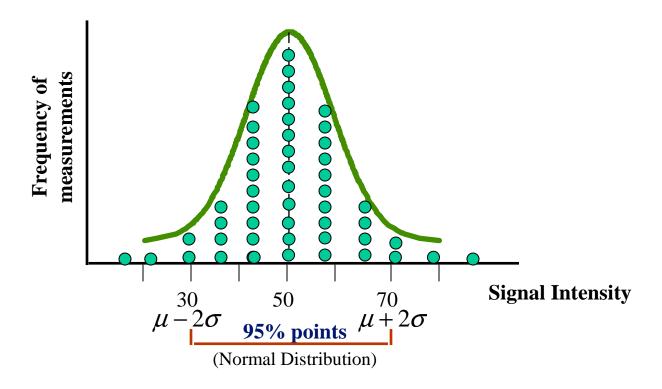
Use web site: http://mAdb-training.cit.nih.gov
User Name on your card
Password on the board

Esther Asaki, Yiwen He

#### Agenda

- 1. mAdb system overview
- 2. mAdb dataset overview
- 3. mAdb analysis tools for dataset
  - Class Discovery clustering, PCA, MDS
  - Class Comparison statistical analysis
    - t-test
    - One-Way ANOVA
    - Significance Analysis of Microarrays SAM
  - Class Prediction PAM

Various Hands-on exercises


#### **Class Comparison**

- Why statistical analysis for gene expression data
- Hypothesis test and two types of errors
- mAdb statistical analysis tools for class comparison
  - t-test
  - One-way ANOVA
  - SAM

#### **Class Comparison**

- Why statistical analysis for gene expression data
- Hypothesis test and two types of errors
- mAdb statistical analysis tools for class comparison
  - t-test
  - One-way ANOVA
  - SAM

#### Distribution for Expression Data



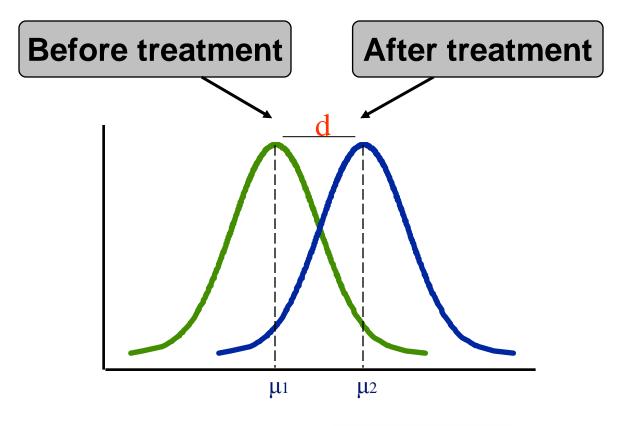
Center: Mean μ Spread: Standard deviation σ

# Sources of Variation in Microarray Data

- Biological variation
  - Random
    - Stochastic mechanism of gene expression
    - Sample heterogeneity
    - Patient to patient variation
  - Due to the biological process under study
- Technical variation
  - Printed probes
  - RNA sample extraction
  - Labeling efficiency
    - Spot size
    - Sample distribution on the arrays
  - Background signals
  - Cross hybridization

#### **Problems with Fold Change**

- Genes with high fold change may exhibit high variability among cell types due to natural biological variability for these genes
- Genes with small fold changes may be highly reproducible and should be biologically essential genes
- Some systematic sources of variation are intensity-dependent. Simple, static fold-change thresholds are too stringent at high intensities and not stringent enough at low intensities.

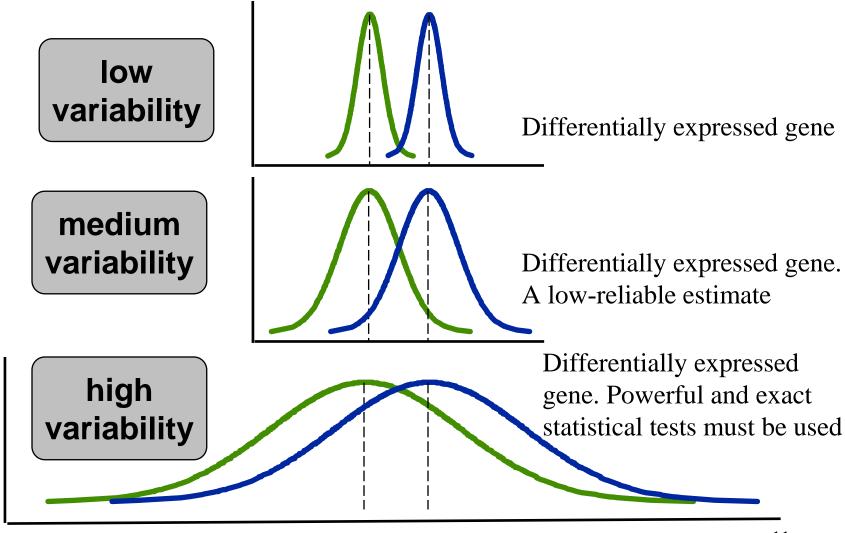

#### Take Home Messages

- Replicates (both biological and technical) are needed to remove random error
- Need normalization to remove systematic variability
- Need robust statistical tests
- Need additional biological validations

#### **Class Comparison**

- Why statistical analysis for gene expression data
- Hypothesis test and two types of errors
- mAdb statistical analysis tools for class comparison
  - t-test
  - One-way ANOVA
  - SAM

#### **Hypothesis Test**




Null hypothesis  $H_0: \mu_1 = \mu_2$ 

$$H_0: \mu_1 = \mu_2$$

Alternative hypotheses  $H_1: \mu_1 \neq \mu_2$ 

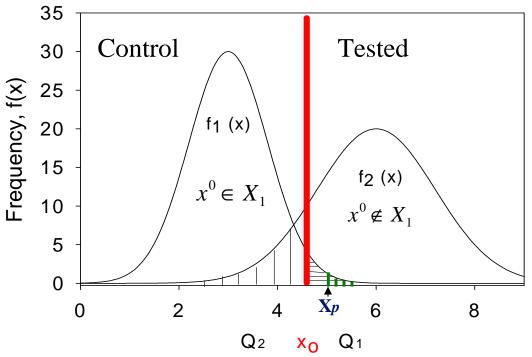
#### Spread (Variability) of Measurements



#### Two Types of Errors

Type I error: Rejecting the null hypothesis while it's true;

Type II error: Accepting the null hypothesis while it's not true.


Accept Ho Reject Ho

*Ho* is true

*Ho* is false

| Correct decision | Type 1 error     |
|------------------|------------------|
|                  | False positive   |
|                  |                  |
| Type II error    | Correct decision |
| False negative   |                  |
|                  |                  |

#### Relation of Type I & Type II Errors



 $f_I(x)$ : expression in control population  $f_2(x)$ : expression in tested population  $x^o$ : the observed value of x

 $Q_1$ =The probability of a type I error (false-positive)  $Q_2$ =The probability of a type II error (false-negative)

- Modifications of  $x_0$  have opposite effects on Type I and type II errors.
- Increasing the sample size (number of replicates) will reduce both errors.
- *p-value*: the probability (significance value) of observing Xp or bigger under H0.

#### **Class Comparison**

- Why statistical analysis for gene expression data
- Hypothesis test and two types of errors
- mAdb statistical analysis tools for class comparison
  - t-test
  - One-way ANOVA
  - SAM

### Statistical Analysis

Goal: To identify differentially expressed genes, i.e. a list of genes with expression levels statistically and (more important) biologically different in two or more sets of the representative transcriptomes.

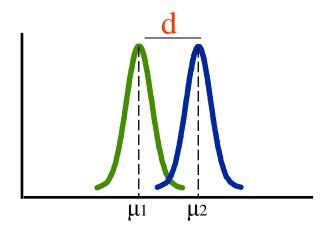
```
• t-test (1 or 2 groups)
```

- One-Way ANOVA (> 2 groups)
- SAM (1, 2, and more groups)

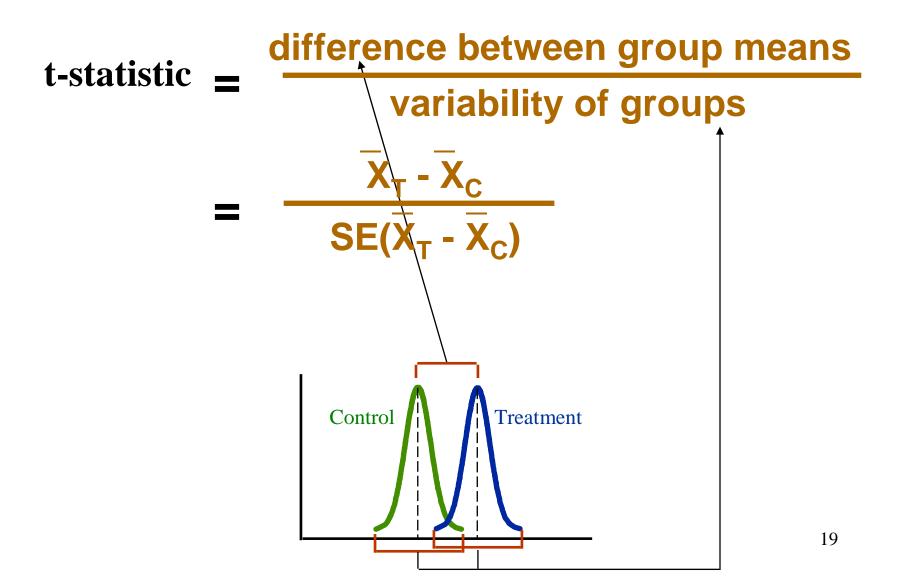
#### Data for mAdb One-Group Test

- Design: Two conditions, tumor vs. normal (or treated vs. untreated), labeled with Cy3 and Cy5, respectively.
- Data: Ratio, one group
- Null hypothesis: mean is equal to 1
- Results: A list of genes with ratio significantly different from 1. i.e. Different expression level in the two conditions.
- Note: due to dye bias, it's better to do a dye swap.

#### Data for mAdb Two-Group Test


- Affymetrix
  - Normal in group 1 and tumor in group2.
  - Paired test if normal and tumor are from the same patient.
- Two-color with common reference
  - Normal as common reference with Cy3, two types of tumor (group 1 and group 2) both with Cy5.
  - Pooled as common reference, normal and tumor (group 1 and group 2) both with Cy5. Paired if normal and tumor are from the same patient.

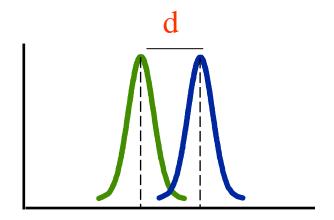
#### **Two-group t-Test**


The t-test assesses whether the means of two groups are statistically different

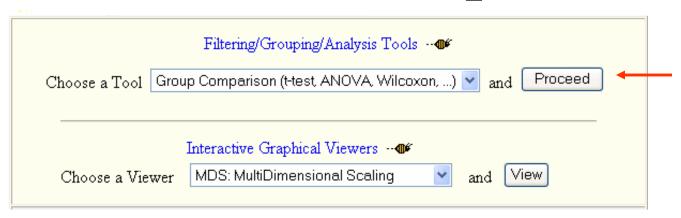
The null hypothesis:

$$H_o: \mu_1 - \mu_2 = 0$$

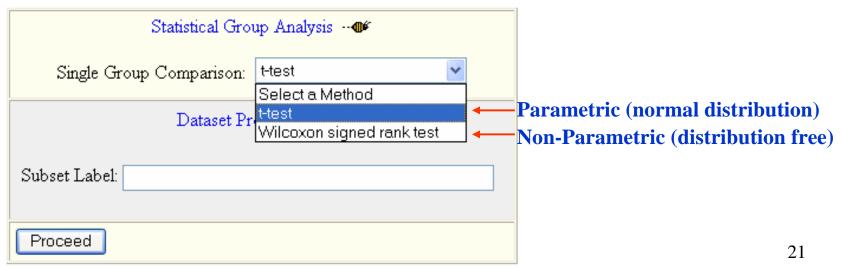



#### t-Test (Cont'd)

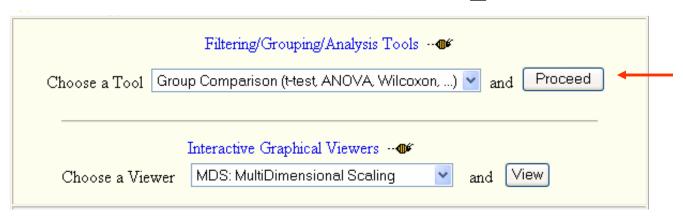



#### **Calculating p-Value (t-Test)**

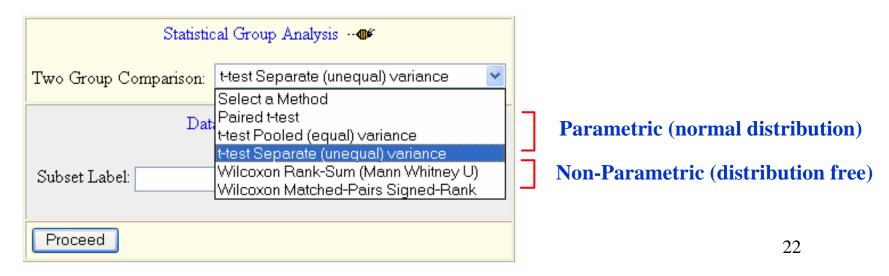
- The p-value is the probability to reject the null hypothesis (  $H_o: \mu_1 \mu_2 = 0$  ) when it is true (e.g. p=0.0001)
- Calculated based on t and the sample sizes  $n_1$  and  $n_2$ .


Large distance d,
low variability,
large sample sizes,
then small p,
i.e. more significant.




#### mAdb One-Group Test

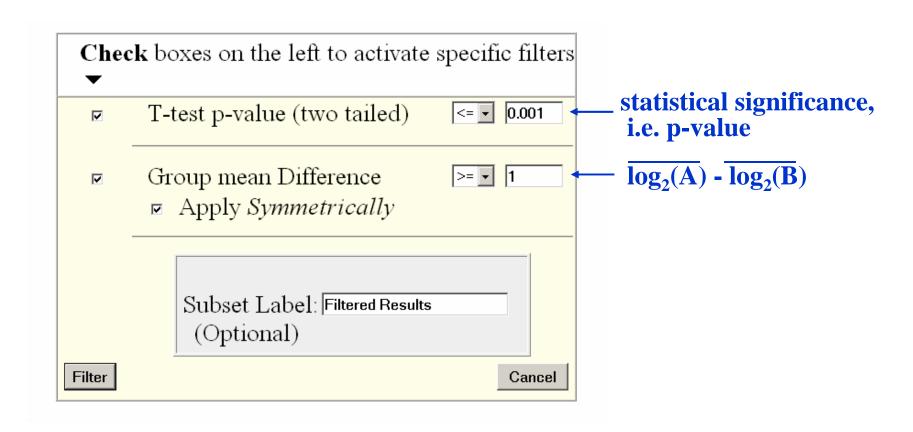



1 group statistic analysis automatically selected for a single group dataset



#### mAdb Two-Group Test




2 group statistic analysis automatically selected for a 2 group dataset



### **Two-Group t-Test Results**

|         |         |         |         |         |         |                     | log2(A) -     | log |
|---------|---------|---------|---------|---------|---------|---------------------|---------------|-----|
| A       | A       | A       | В       | В       | В       | • •                 | • •           |     |
| ЛМ3_А   | JJN3_A  | U266_A  | HDLM2_A | L428_A  | L540_A  | p-Value             | Difference    | e   |
| 52.4309 | 54.9520 | 45.0046 | 0.7800  | 0.6485  | 0.8532  | 1.97 <b>3</b> 7e-06 | 6.07          | 7   |
| 35.1142 | 52.4541 | 42.8235 | 0.7800  | 0.6485  | 0.8532  | 8.9006e-06          | 5.83          | 3   |
| 53.3166 | 74.5535 | 46.5118 | 0.7800  | 0.6485  | 0.8532  | 1.1662e-05          | 6.24          | 4   |
| 5.9693  | 5.9444  | 5.7954  | 9.4782  | 9.6511  | 10.0555 | 1.4619e-05          | -0.72         | 2   |
| 12.2739 | 13.0063 | 9.6026  | 0.7800  | 0.6485  | 0.8532  | 2.4704e-05          | 3.93          | 3   |
| 0.6680  | 0.6954  | 0.6536  | 9.0445  | 8.4780  | 13.0657 | 3.7853e-05          | -3.9          | 9   |
| 3.7943  | 3.4277  | 3.3739  | 7.3190  | 7.6012  | 7.2551  | 4.7738e-05          | -1.07         | 7   |
| 0.6680  | 0.6954  | 0.6536  | 2.3401  | 2.0402  | 2.5358  | 4.9127e-05          | -1.77         | 7   |
| 0.6680  | 0.6954  | 0.6536  | 7.6466  | 6.0506  | 9.6493  | 5.7477e-05          | -3.51         | L   |
| 0.6680  | 0.6954  | 0.9490  | 8.0788  | 8.5636  | 6.8106  | 5.8369e-05          | -3.35         | 5   |
| 0.6680  | 0.6954  | 0.7869  | 68.9017 | 34.0804 | 72.9403 | 6.3509e-05          | -6.28         | 3   |
| 34.7315 | 29.5014 | 60.8882 | 0.7800  | 0.6485  | 0.8532  | 7.1258e-05          | 5.71          | l   |
| 0.6680  | 0.6954  | 0.6706  | 0.8424  | 0.8593  | 0.8532  | 8.4299e-05          | -0.329        | 9   |
| 0.6680  | 0.6954  | 0.6536  | 39.1841 | 17.6407 | 27.2176 | 9.15 <b>3</b> 9e-05 | -5.31         | l   |
| 3.7288  | 2.9875  | 3.1098  | 0.9774  | 0.8392  | 0.8532  | 9.9425e-05          | 1.88          | 3   |
| 0.6680  | 1.3275  | 0.6536  | 26.2949 | 22.3119 | 26.9078 | 0.00014347          | <b>-</b> 4.91 | l   |
| 1.7328  | 1.8435  | 2.0412  | 0.8557  | 0.9196  | 0.8532  | 0.00014599          | 1.09          | 9   |
|         |         |         |         |         |         |                     |               |     |

#### Statistic Results Filtering



#### Multiple Group Comparison

|        | Group 1     | Group 2          | ••• | Group k     |
|--------|-------------|------------------|-----|-------------|
| Gene 1 | $\mu_{1.1}$ | $\mu_{1.2}$      | ••• | $\mu_{1.k}$ |
| Gene 2 | $\mu_{2.1}$ | μ <sub>2.2</sub> | ••• | $\mu_{2.k}$ |
| •••    | •••         | •••              | ••• | •••         |
| Gene n | $\mu_{n.1}$ | μ <sub>n.2</sub> | ••• | $\mu_{n.k}$ |

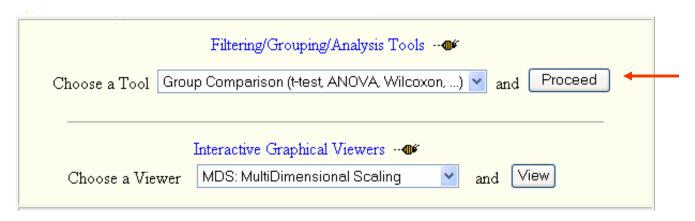
n: Number of genes/probes

k: number of groups, k > 2

#### Data for mAdb Multiple-Group Test

- Time course/Dose response
- Normal vs. multiple types of tumor
- For two-color arrays, must have common reference.
  - More than two types of tumor/treatments, with normal/untreated as common reference
  - Normal, tumor type I, tumor type II, etc. with some common reference.

# Analysis of Variances (ANOVA)

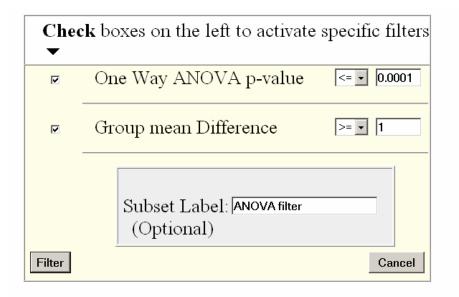

To compare several population means:

$$H_o: \mu_1 = \mu_2 = \dots = \mu_k \quad (k > 2)$$

VS.

$$H_1: \mu_i \neq \mu_j$$
; for some  $1 \le i \ne j \le k$ 

#### mAdb Multiple-Group Test




Multiple group analysis automatically selected for a > 2 group dataset

| Statistical Comparison Ar  | nalysis 🗝                       |          |                                                               |
|----------------------------|---------------------------------|----------|---------------------------------------------------------------|
| Multiple Group Comparison: | Select a Method 🔻               |          |                                                               |
| Dataset Properties         | One way ANOVA<br>Kruskal-Wallis | <b>←</b> | —Parametric, F statistic-based<br>—Non-Parametric, rank-based |
| Subset Label:              | Nuskai-YYailis                  |          | Non-Farametric, rank-based                                    |
| Proceed                    |                                 |          | 28                                                            |

#### **ANOVA Results and Filtering**

| • •        | • •        | • •          |
|------------|------------|--------------|
| p-Value    | Difference | Groups       |
| 9.6276e-22 | 4.11       | A <b>-</b> B |
| 3.488e-20  | 2.99       | D-C          |
| 2.5008e-19 | 3.59       | A-B          |
| 2.5733e-18 | 2.59       | A-D          |
| 1.4459e-17 | 2.76       | D-A          |
| 5.7703e-17 | 2.89       | A-B          |
| 8.728e-17  | 3.14       | D-B          |
| 1.3957e-16 | 3.95       | C-A          |
| 4.1114e-16 | 4.03       | A-B          |
| 1.4464e-15 | 3.76       | A-B          |
| 2.369e-15  | 3.1        | D-B          |
| 7.4515e-15 | 3.32       | A-B          |
| 8.187e-15  | 2.76       | A-C          |
| 2.5078e-14 | 4.1        | A-B          |
| 2.5526e-14 | 5.68       | D-B          |



← Group Pair for Max Mean Difference

#### **Hands-on Session 4**

- Lab 9
- Total time: 10 minutes

#### **Multiple Comparison**

- Statistical problems with large-scale experiments
  - Many null hypotheses are tested simultaneously in microarray, one for each probe.
  - Although p-value cut off ( $\alpha$ ) of 0.01 is significant in a conventional single-variable test, a microarray experiment for 20,000 gene probes would identify 20,000 x 0.01 = 200 genes just by chance!

#### Multiple Comparison Correction

• False Discovery Rate (FDR)

|                     | Not<br>Rejected                                         | Rejected                   | Total                      |
|---------------------|---------------------------------------------------------|----------------------------|----------------------------|
| H <sub>0</sub> True | $m_0$ – $R_0$                                           | $R_{\scriptscriptstyle 0}$ | $m_0$                      |
| H <sub>1</sub> True | $m_{\scriptscriptstyle 1}$ – $R_{\scriptscriptstyle 1}$ | $R_{\scriptscriptstyle 1}$ | $m_{\scriptscriptstyle 1}$ |
| Total               | m-R                                                     | R                          | m                          |

m: # hypothesis/genes

R<sub>0</sub>: # false positive

R: # significant hypothesis

Probability of false-positive discovery (False Discovery Rate):

$$FDR = E(\frac{R_0}{R} \mid R > 0) \times Pr(R)$$

## Significance Analysis of Microarrays (SAM)

- http://www-stat.stanford.edu/~tibs/SAM/index.html
- Goal is to select a fairly large number of differentially expressed genes (R), accepting some falsely significant genes (R<sub>0</sub>), as long as the FDR is low. i.e. R<sub>0</sub> is relatively small compared to R.
- For one or two groups, SAM computes a t-like statistic d(i) for each probe i (i=1,2...n), measuring the relative difference between the group means.
- For more groups, SAM computes a F-like statistic.

#### SAM for 2 groups

The "relative difference" d(i) in gene expression for two groups I and U of repeated samples is:

$$d(i) = \frac{x_I(i) - x_U(i)}{s(i) + s_0}$$

 $x_I(i)$ : average expression level for gene i in group I,

 $x_U(i)$ : average expression level for gene i in group U,

s(i): standard deviation of repeated measurements,

 $s_o$ : the fudge factor that reduces the "relative differences" of the genes with a small s(i), such as low expressed genes (noise) and genes with similar expression levels.

#### Permutation & the Expected d Values

Group I Group U

| a1 | b1 |
|----|----|
| a2 | b2 |
| a3 | b3 |
| a4 | b4 |

Group I Group U

| b1 | a1 |
|----|----|
| a2 | b2 |
| a3 | b3 |
| a4 | b4 |

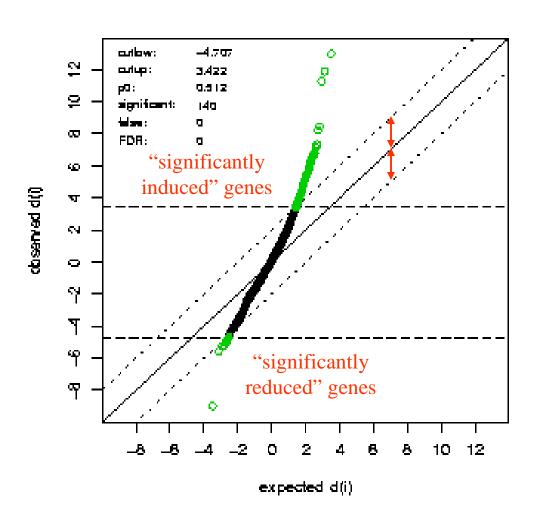
Group I Group U

| b1 | a1 |
|----|----|
| a2 | b2 |
| b3 | a3 |
| a4 | b4 |

*n*: the number of hybridized signals (gene probes)

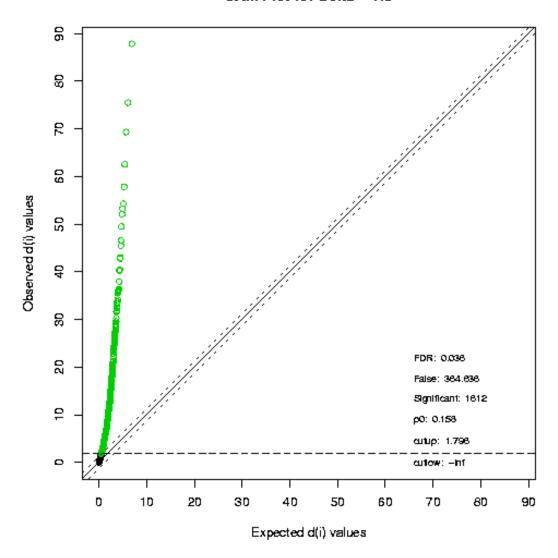
*k*: the number of permutations

Permutation 1: 
$$d_I(1) \le ... \le d_I(n)$$


Permutation p: 
$$d_p(1) \le ... \le d_p(n)$$

Permutation k: 
$$d_k(1) \le ... \le d_k(n)$$

$$\bar{d}(i) = \frac{1}{k} \sum_{i=1}^{k} d_{p}(i)$$


for gene 
$$i$$
 ( $i=1,2,...n$ )

#### **SAM Plot for Delta = 2**



# **SAM Plot Multiple Groups**

SAM Plot for Delta = 1.3



# **Calculating FDR**

- Order the observed d statistics for all n genes so that  $d_o(1) \le ... \le d_o(i)... \le d_o(n)$ .
- Plot the observed  $d_0$  vs. expected  $d_e$
- Select a cutoff value *delta*
- Significant genes (R):  $|d_o d_e| \ge delta$
- False genes from a permutation  $(R_{0p}): |d_p d_e| \ge delta$
- Estimate false discovery (R<sub>0</sub>): median of R<sub>0p</sub>
- Estimate FDR: R<sub>0</sub> / R

#### Data for SAM in mAdb

- You can run SAM on data with 1, 2, or more groups
- Experimental design requirements are the same as those for t-test or ANOVA
- Note: SAM assumes that most of the genes in your dataset are NOT changed. So it is recommended that you run SAM on a larger dataset, instead of a small set with mostly significant genes.

#### mAdb SAM Data

| Redisplay | Show Array Details at the top Background Color - None - Limiting display to to 25 gene | Contrast 2                                            |
|-----------|----------------------------------------------------------------------------------------|-------------------------------------------------------|
|           | Show Data Values                                                                       | Use Names in Column Heading                           |
|           | <ul><li>Apply log2 transform</li></ul>                                                 | <ul> <li>Use Description in Column Heading</li> </ul> |
|           | Show Gene Symbols                                                                      | <ul> <li>Show Map Information</li> </ul>              |
|           | Show UniGene Cluster                                                                   | Show BioCarta Pathways                                |
|           | Show KEGG Pathways                                                                     |                                                       |
|           | Show GO Tier 2 Component                                                               | ☐ Show GO Tier 3 Component                            |
|           | Show GO Tier 2 Function                                                                | Show GO Tier 3 Function                               |
|           | Show GO Tier 2 Process                                                                 | ☐ Show GO Tier 3 Process                              |
|           | ✓ Show Gene Description                                                                | ☐ Show GO Terms                                       |

Save a Feature Property List (used with the Feature Properties Filtering tool).

Data for Subset: bl and nb

from Dataset: Small, Round Blue Cell Tumors

(SRBCTs), Nature Medicine Vol 7, Num 6, 601-673

**(2001)** 

Filter/Group by Array Property 63 arrays and 2308 genes in the input dataset

20 arrays and 2308 genes in the output dataset.

8 arrays assigned to Group A 12 arrays assigned to Group B

Filter/Group by Array Property:

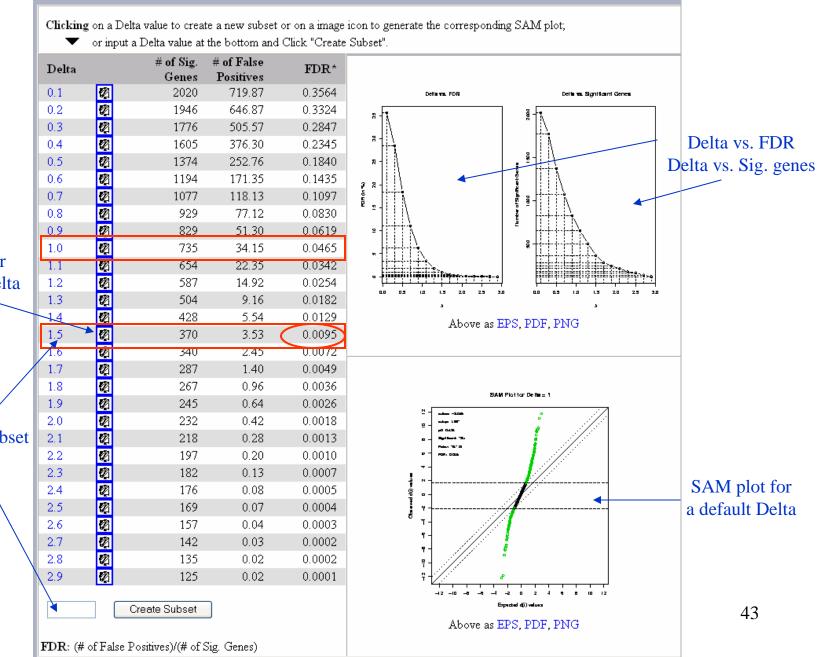
Group A: Array/Set Name Contains 'bl' Group B: Array/Set Name Contains 'nb'

| A      | A      | A      | A      | A      | A      | A      | A      | В      | В      | В      | В      | В      | В      | В      | В      | В      | В      | В      | В      | • •     | •     |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|-------|
| BL-C5  | BL-C6  | BL-C7  | BL-C8  | BL-C1  | BL-C2  | BL-C3  | BL-C4  | NB-C1  | NB-C2  | NB-C3  | NB-C6  | NB-C12 | NB-C7  | NB-C4  | NB-C5  | NB-C10 | NB-C11 | NB-C9  | NB-C8  | Well ID | Featu |
| 0.2989 | 0.1856 | 0.1045 | 0.3178 | 0.1437 | 0.3493 | 0.3796 | 0.0683 | 1.2511 | 1.2422 | 0.7843 | 0.7208 | 1.7054 | 1.3452 | 0.6575 | 0.5909 | 1.2263 | 1.2744 | 0.9407 | 0.5555 | 1080460 | IMAGI |
| 0.0839 | 0.1283 | 0.0994 | 0.0494 | 0.0563 | 0.0557 | 0.0640 | 0.1203 | 0.2242 | 0.1277 | 0.1423 | 0.0817 | 0.2167 | 0.1268 | 0.0779 | 0.1264 | 0.1296 | 0.0573 | 0.1279 | 0.1944 | 1080461 | IMAGI |
| 1.0989 | 1.7574 | 0.2362 | 0.9711 | 1.0739 | 1.8981 | 1.3961 | 0.5926 | 1.4717 | 2.8900 | 1.1627 | 0.6389 | 1.5466 | 3.1923 | 1.3970 | 0.3217 | 1.2785 | 1.2974 | 1.8580 | 0.7071 | 1080462 | IMAGI |
| 1.3145 | 1.3695 | 1.2625 | 1.2685 | 0.1198 | 0.1243 | 0.3185 | 0.1137 | 0.1005 | 0.1199 | 0.1469 | 1.6185 | 1.7928 | 1.5470 | 0.9163 | 1.2627 | 1.1213 | 1.4351 | 1.3606 | 1.6350 | 1080463 | IMAGI |
| 0.3285 | 0.1284 | 0.1687 | 0.0573 | 0.3935 | 0.3372 | 0.4620 | 0.6383 | 0.4352 | 0.4861 | 0.2977 | 0.1188 | 0.1924 | 0.1024 | 0.0945 | 0.1382 | 0.1177 | 0.0674 | 0.1523 | 0.1829 | 1080464 | IMAGI |
| 0.7530 | 0.5325 | 0.9698 | 1.0432 | 2.3396 | 2.0050 | 2.1145 | 1.7212 | 2.8457 | 1.3993 | 2.5561 | 1.3040 | 0.9871 | 0.6740 | 0.8526 | 1.1709 | 1.7376 | 1.5479 | 1.3387 | 1.6884 | 1080465 | IMAGI |
| 3.0222 | 4.8113 | 4.6305 | 3.7375 | 3.3334 | 4.5251 | 3.3524 | 3.8142 | 3.5181 | 2.9483 | 5.7054 | 5.4201 | 5.6752 | 4.1266 | 4.8610 | 4.5579 | 4.0917 | 6.9131 | 4.7579 | 6.3929 | 1080466 | IMAGI |
| 2.2284 | 1.1472 | 0.6647 | 0.5825 | 1.0947 | 2.2200 | 1.6359 | 1.2144 | 1.4148 | 0.8492 | 0.4446 | 0.6343 | 1.1375 | 0.7132 | 0.5911 | 0.5642 | 1.1463 | 0.6698 | 0.6328 | 0.6956 | 1080467 | IMAGI |
| 1.4646 | 2.8207 | 2.2148 | 1.2009 | 2.2681 | 1.4484 | 1.6515 | 1.8208 | 0.5277 | 2.2907 | 1.7167 | 1.0464 | 1.4179 | 2.7042 | 0.5633 | 0.7576 | 3.5107 | 2.8599 | 1.8068 | 0.7471 | 1080468 | IMAGI |
| 2.0438 | 2.6476 | 1.4568 | 1.6544 | 1.8761 | 2.7953 | 3.0725 | 1.8915 | 1.8990 | 1.4719 | 0.9198 | 1.4198 | 2.2044 | 1.8135 | 1.0141 | 1.0629 | 1.3173 | 1.1249 | 1.7079 | 1.1799 | 1080469 | IMAGI |
| 4.3938 | 4.5243 | 5.8249 | 5.6817 | 4.6666 | 5.2114 | 4.0503 | 4.6079 | 4.0354 | 3.6700 | 7.2208 | 5.0586 | 5.3212 | 4.6734 | 3.8197 | 4.2099 | 4.1700 | 5.8854 | 5.5536 | 6.8372 | 1080470 | IMAGI |

Records 1 to 25 of 2308 total records displayed.

#### mAdb SAM

#### mAdb Dataset Display


Edit Data for Subset: bl and nb groups from Dataset: Small, Round Blue Cell Tumors (SRBCTs), Nature Medicine Vol 7, Num 6, 601-673 (2001) Filter/Group by Array Property 63 arrays and 2308 genes in the input dataset 20 arrays and 2308 genes in the output dataset. 8 arrays assigned to Group A 12 arrays assigned to Group B Filter/Group by Array Property: Group A: Array/Set Name Contains 'bl' Group B: Array/Set Name Contains 'nb' View the complete History. Expand this Dataset. Access Datasets in your Temporary area. Post a copy of this Dataset to other mAdb users. Filtering/Grouping/Analysis Tools -- @ Choose a Tool SAM: Significance Analysis of Microarrays Proceed Interactive Graphical Viewers --View MDS: MultiDimensional Scaling Choose a Viewer Dataset Retrieval & Display Options -- @ Dataset formatted for Eisen Cluster V Retrieve Redisplay Show Array Details at the top of the page Background Color - None -Contrast 2 Limiting display to to 25 genes

### mAdb SAM

#### mAdb SAM Options

| SAM help                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| *** Notice ***                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| By default, any genes with missing values are removed for SAM analysis.  Currently you can chose to replace those missing values with row mean values.  A mAdb "Missing Value Imputation" tool is in final testing and is expected to be available soon, which offers more option for handling missing values. |  |  |  |  |  |  |  |  |  |
| Handling Missing Values: Remove                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| Number of permutations: 500                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| Use a fixed random seed (reproducible results):                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| Continue                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |

#### mAdb SAM Results I



SAM plot for a particular Delta

SAM result subset

#### mAdb SAM Results II

✓ d.value Stand. Deviation ✓ q.value ✓ Fold Change Save a Feature Property List (used with the Feature Properties Filtering tool). Records 1 to 25 of 370 total records displayed. d.value Stand. Deviation q.value Fold Change Well ID Feature ID Map UniGene Gene -12.1298 0.2684 0 0.0518 1081305 IMAGE:183337 6p21.3 Hs.77522 HLA-DMA -11.8486 0.3205 0 0.0384 1082374 IMAGE:840942 6p21.3 Hs.814 HLA-DPB1 ALDH7A1 11.7632 0.2149 12.3195 1081310 IMAGE:563673 5q31 Hs.74294 11.0799 0.2100 0 10.7428 1081326 IMAGE:784593 2q23.3 Hs.6838 ARHE 9.7225 0.2372 9.1553 1081886 IMAGE:504791 6p12.1 Hs. 169907 GSTA4 9.5226 0.2314 0 8.3336 1082121 IMAGE:377048 2a12-a34 Hs. 121576 MYO1B 9.5000 0.3766 18.2186 1082060 IMAGE:629896 5q13 Hs. 103042 MAP1B 9.4193 Hs.75823 AF1Q 0.3259 0 12.8741 1081201 IMAGE:812105 1g21 9.2278 0.2293 7.7811 1082481 IMAGE:204545 2p13.1 Hs.8966 TEM8 9.1644 0 14.6853 1080695 IMAGE:878280 0.3089 4p16.1-p15 Hs.155392 CRMP1 20q13.31 -8.8426 0.2167 0.1633 1081617 IMAGE:814526 Hs.236361 RNPC1 3q25.1-q25.2 8.6979 0.3444 0 11.1301 1081525 IMAGE:486110 Hs.91747 PFN2 8.1327 11.4990 1082603 IMAGE:308231 Hs. 121576 MYO1B 0.3580 2q12-q34 -8.1047 0.4404 0 0.0448 1082375 IMAGE:80109 6p21.3 Hs.198253 HLA-DQA1 8.1040 0.1935 4.6185 1082036 IMAGE:813742 16p12.1-p11.2 Hs.70500 KIAA0370 -8.0900 0.2531 0 0.1701 1080610 IMAGE:745343 2p12 Hs. 1032 REG1A 7.9838 0.2486 6.2752 1081034 IMAGE:823886 17 Hs.296842 -7.8279 0.3406 0 0.0956 1081295 IMAGE:241412 13q13 Hs.154365 ELF1 -7.5480 0.2898 0.1597 1080582 IMAGE:236282 Xp11.4-p11.21 Hs.2157 SAM d statistics Significance value Average(B)/Average(A) (lowest FDR) (for 2-group only) (normalized distance)

#### mAdb SAM Results III

 ✓ d.value
 ✓ Stand. Deviation

 ✓ q.value
 ✓ Max Group Mean Difference

 ✓ Groups

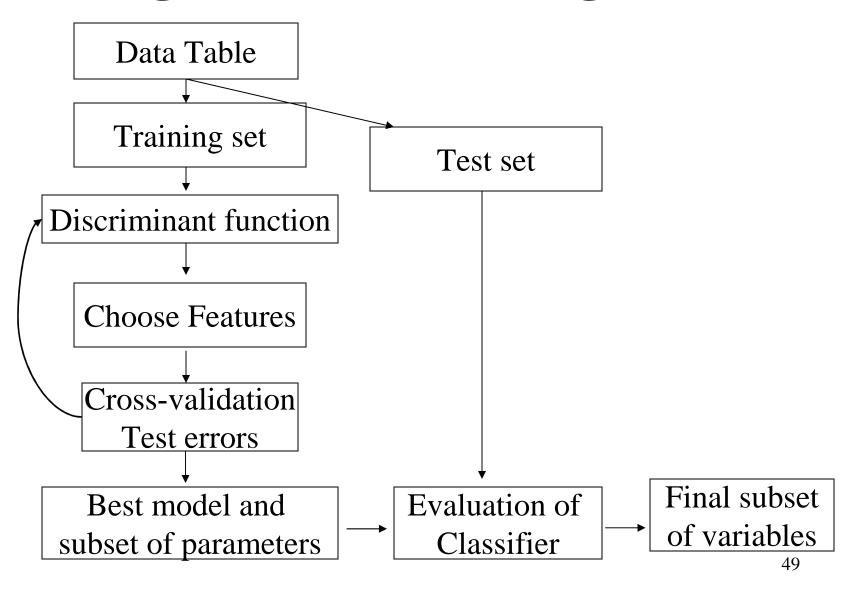
Save a Feature Property List (used with the Feature Properties Filtering tool).

Records 1 to 25 of 400 total records displayed.

| • •             | • •              | • •      | • •                       | •                   | •       | • •           |  |  |  |
|-----------------|------------------|----------|---------------------------|---------------------|---------|---------------|--|--|--|
| d.value         | Stand. Deviation | q.value  | Max Group Mean Difference | Groups              | Well ID | Feature ID    |  |  |  |
| 87.8794         | 0.5766           | 0        | 4.1071                    | A-B                 | 1081848 | IMAGE:770394  |  |  |  |
| 75.5112         | 0.5097           | 0        | 2.9854                    | D-C                 | 1082414 | IMAGE:784224  |  |  |  |
| 69.3372         | 0.6445           | 0        | 3.5930                    | A-B                 | 1080705 | IMAGE:377461  |  |  |  |
| 62,5424         | 0.4836           | 0        | 2.5858                    | A-D                 | 1082413 | IMAGE:814260  |  |  |  |
| 57.8456         | 0.5291           | 0        | 2.7609                    | D-A                 | 1081462 | IMAGE:796258  |  |  |  |
| 54.2733         | 0.4645           | 0        | 2.8916                    | A-B                 | 1081004 | IMAGE:1435862 |  |  |  |
| 53.2386         | 0.5035           | 0        | 3.1403                    | D-B                 | 1081653 | IMAGE:859359  |  |  |  |
| 52.0802         | 1.2099           | 0        | 3.9545                    | C-A                 | 1082509 | IMAGE:295985  |  |  |  |
| 49.4837         | 1.1140           | 0        | 4.0322                    | A-B                 | 1080566 | IMAGE:365826  |  |  |  |
| 46.5782         | 1.0812           | 0        | 3.7594                    | A-B                 | 1081778 | IMAGE:866702  |  |  |  |
| 45.4725         | 0.4809           | 0        | 3.1012                    | D-B                 | 1080460 | IMAGE:21652   |  |  |  |
| 42.9725         | 0.8917           | 0        | 3.3179                    | A-B                 | 1082104 | IMAGE:52076   |  |  |  |
| 42.7721         | 0.5400           | 0        | 2.7641                    | A-C                 | 1081301 | IMAGE:810057  |  |  |  |
| 40.4288         | 1.1435           | 0        | 4.1011                    | A-B                 | 1082167 | IMAGE:43733   |  |  |  |
| 40,3929         | 2.6457           | 0        | 5.6842                    | D-B                 | 1080646 | IMAGE:296448  |  |  |  |
|                 |                  | <b>↑</b> |                           |                     |         |               |  |  |  |
| SAM d statis    | tics Sig         | nificano | ce value Group            | Group pair with max |         |               |  |  |  |
| (normalized dis | tance) (         | lowest l | FDR) d                    | difference          |         |               |  |  |  |

### **Hands-on Session 5**

- Lab 10
- Total time: 10 minutes


## Agenda

- 1. mAdb system overview
- 2. mAdb dataset overview
- 3. mAdb analysis tools for dataset
  - Class Discovery clustering, PCA, MDS
  - Class Comparison statistical analysis
    - t-test
    - One-Way ANOVA
    - Significance Analysis of Microarrays SAM
  - Class Prediction PAM

# Class Prediction Supervised Model for Two or More Classes

- Prediction Analysis for Microarrays (PAM)
- http://www-stat.stanford.edu/~tibs/PAM
- Provides a list of significant genes whose expression characterizes each class
- Estimates prediction error via cross-validation
- Imputes missing values in dataset

# Design of the PAM algorithm



### Calculating the Discriminant Function

For each gene i, a centroid (mean) is calculated for each class k.

Standardized centroid distance:

Class average of the gene expression value minus the overall average of the gene expression value, divided by a standard deviation-like normalization factor (NF) for that gene.

 $d_{ik} \, (\text{centroid distance}) = (\text{class k avg - overall avg}) \, / \, \text{NF}$ 

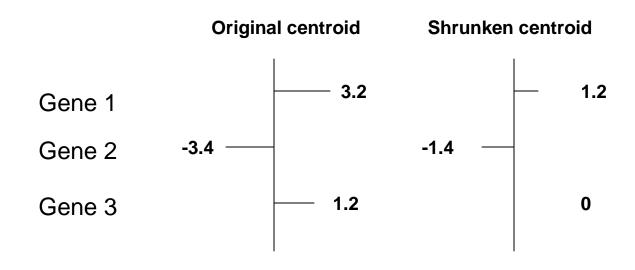
Creates a normalized average gene expression profile for each class.

# Reducing the Feature Set

#### Nearest shrunken centroid:

To "shrink" each of the class centroids toward the overall centroid for all classes by a threshold we call  $\Delta$ .

#### Soft threshold:


To move the centroid towards zero by  $\Delta$ , setting it to zero when it hits zero.

After shrinking the centroids, the new sample is classified by the usual nearest centroid rule, but using the shrunken class centroids.

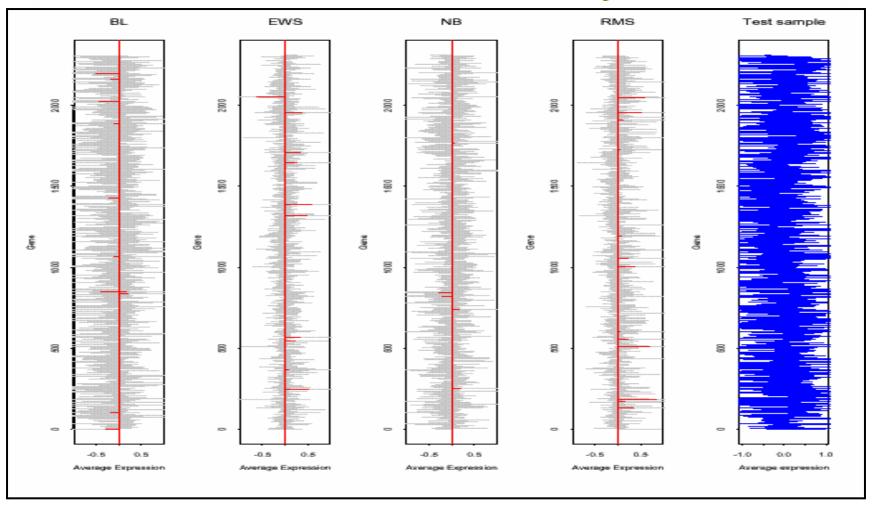
# **Shrinking the Centroid**

Threshold  $\Delta = 2.0$ :

a centroid of 3.2 would be shrunk to 1.2; a centroid of -3.4 would be shrunk to -1.4; and a centroid of 1.2 would be shrunk to 0.



### Reduce Gene Number




# Sample

- 63 Arrays representing 4 groups
  - BL (Burkitt Lymphoma, n1=8)
  - -EWS (Ewing, n2=23)
  - NB (neuroblastoma, n3=12)
  - RMS (rhabdomyosarcoma, n4=20)
- There are 2308 features (distinct gene probes)
- No missing values in array data sets
- Each group has an aggregate expression profile
- An unknown can be compared to each tumor class profile to predict which class it most likely belong

### **Class Centroids**

SL&DM @Hastie & Tibshirani March 26, 2002 Supervised Learning: 31



Compare model with new tumor tissues to make diagnosis 55

# Classifying an Unknown Sample

 Comparison between the gene expression profile of a new unknown sample and each of these class centroids.

• Classification is made to the nearest shrunken centroid, in squared distance.

#### **K-fold Cross Validation**

•The samples are divided up at random into K roughly equally sized parts.

**Entire Data Set** 

50 Group A

25 Group B

25 Group C

K = 5

1

10 Group A

5 Group B

5 Group C

2

10 Group A

5 Group B

5 Group C

3

10 Group A

5 Group B

5 Group C

4

10 Group A

5 Group B

5 Group C

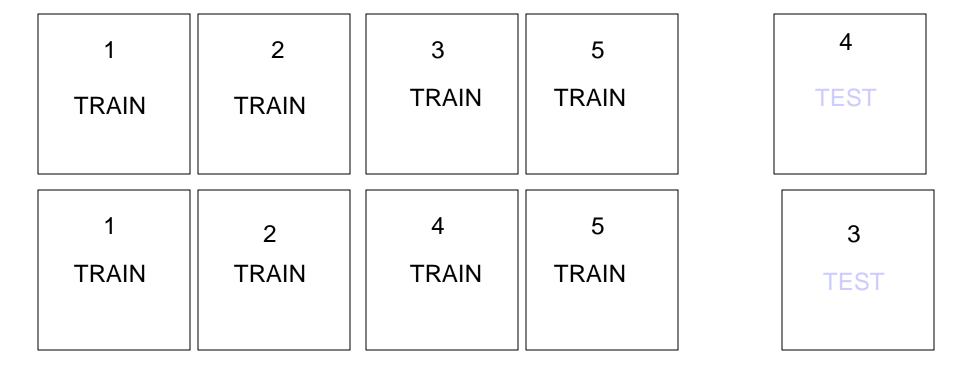
5

10 Group A

5 Group B

5 Group C

57


### **K-fold Cross Validation**

For each part in turn, the classifier is built on the other K-1 parts then tested on the remaining part.

1 2 3 4
TRAIN TRAIN TRAIN TRAIN

5 TEST

### **K-fold Cross Validation**



etc....

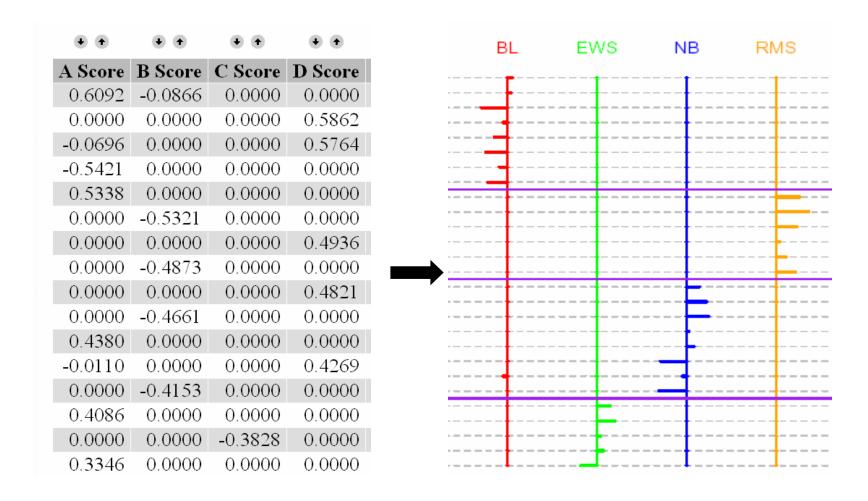
### **Estimating Misclassification Error**

• PAM estimates the predicted error rate based on misclassification error, which is calculated by averaging the errors from each of the cross validations.

• The model with lowest Misclassification Error is preferred.

### **PAM Results**

Clicking on a Delta value creates a new data Subset or enter


▼ a Delta value at the bottom and Click "Create Subset".

| Shrinkage<br>Delta | # of<br>Genes | Misclass.<br>Error |                         |     | 2308 1494 436 193 87 39 21 10 7 4 0 |
|--------------------|---------------|--------------------|-------------------------|-----|-------------------------------------|
| 0.000              | 2308          | 0.032              |                         | æ   |                                     |
| 0.262              | 2289          | 0.032              |                         | 0.8 | 1                                   |
| 0.524              | 2145          | 0.032              |                         |     |                                     |
| 0.786              | 1878          | 0.032              |                         | 9.0 |                                     |
| 1.048              | 1494          | 0.032              | ē                       |     | 7                                   |
| 1.309              | 1137          | 0.032              | - E                     | 97  | #                                   |
| 1.571              | 853           | 0.016              | Misclassification Error | 0   | 1 <sub>⊤7</sub> 4                   |
| 1.833              | 609           | 0.016              | 188                     |     |                                     |
| 2.095              | 436           | 0.016              | <u>8</u>                | 02  | - <del></del>                       |
| 2.357              | 330           | 0.016              |                         |     |                                     |
| 2.619              | 244           | 0.016              |                         |     | Misslessic setion sman              |
| 2.881 **           | 193           | 0.000              |                         | 00  | Misclassification error             |
| 3.143 **           | 151           | 0.000              |                         |     |                                     |
| 3.404 **           | 107           | 0.000              |                         |     | 0 2 4 8                             |
| 3.666 **           | 87            | 0.000              |                         |     | Value of threshold                  |
| 3.928 **           | 68            | 0.000              |                         |     | AL PRO PRE DIVO                     |
| 4.190 **           | 52            | 0.000              |                         |     | Above as EPS, PDF, PNG              |
| 4.452 **           | 39            | 0.000              |                         |     |                                     |
| 4.714              | 32            | 0.016              |                         |     | 2308 1494 436 193 87 39 21 10 7 4 0 |
| 4.976              | 23            | 0.063              |                         |     |                                     |
| 5.238              | 21            | 0.143              |                         |     |                                     |
| 5.499              | 16            | 0.238              |                         |     |                                     |
| 5.761              | 11            | 0.238              |                         | 0.8 | -  = â                              |
| 6.023              | 10            | 0.286              | Misclassification Error |     |                                     |
| 6.285              | 9             | 0.317              | i i i                   | 90  |                                     |
| 6.547              | 7             | 0.333              | 123                     | -   |                                     |
| 6.809              | 5             | 0.397              | 88                      | 0.4 | 1 / /                               |
| 7.071              | 4             | 0.508              | ž                       | 02  |                                     |
|                    | Cre           | ate Subset         |                         | 0.0 |                                     |
|                    |               |                    |                         |     | 61                                  |
|                    |               |                    |                         |     | Value of threshold                  |

Link leads to the dataset with PAM model →

Create new model by fill in a new Delta value →

#### **Prediction Model for SRBCT**



# PAM summary

- It generates models (classifiers) from microarray data with phenotype information
- It does automatic gene selection for each models.
- Misclassification errors are calculated with the data for model selection.
- Require adequate numbers of samples in each group

### **Hands-on Session 6**

- Lab 11, Lab 12 (optional)
- Total time: 15 minutes

#### References

#### Clustering

- Eisen, et al, Cluster analysis and display of genome-wide expression patterns. *PNAS* 1998, 95:14863-14868.
- Tavazoie, et al, Systematic determination of genetic network architecture. *Nat Genet* 1999, 22:281-285.
- Sherlock, Analysis of large-scale gene expression data. *Brief Bioinform* 2001, 2(4):350-62.

#### PCA

- Yeung & Ruzzo, Principal component analysis for clustering gene expression data. *Bioinformatics* 2001, 17(9): 763-74.

#### Statistical Analysis

 Cui & Churchill, Statistical tests for differential expression in cDNA microarray experiments. Genome Biology 2003, 4:210

#### SAM

- Tusher, Tibshirani and Chu, Significance analysis of microarrays applied to the ionizing radiation response. *PNAS* 2001, 98: 5116-5121

#### PAM

 Tibshirani, et al, Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 2002, 99:6567-6572

# Other Microarray Resources

- Statistical Analysis of Microarray Data & BRB Array Tools (NCI Biometrics Research Branch) class #410. Offered bimonthly; 4/8-9/08
- Partek, R, GeneSpring classes training.cit.nih.gov
- Introduction to Principal Component Analysis and Distance Geometry class #407
- Clustering: How Do They Make Those Dendrograms and Heat Maps class #406
- Microarray Interest Group
  - 1st Wed. seminar, 3rd Thu. journal club
  - To sign up: http://list.nih.gov/archives/microarray-user-l.html
- Class slides available on "Reference" page

#### mAdb Development and Support Team

- John Powell, Chief, BIMAS, CIT
- Lynn Young, Ph.D.

- Esther Asaki\*
- Yiwen He, Ph.D.\*
- Kathleen Meyer\*
- Wenming Xiao, Ph.D.\*

\*SRA International contractor









# http://madb.nci.nih.gov http://madb.niaid.nih.gov

For assistance, remember:

madb\_support@bimas.cit.nih.gov

