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Course #412
Analyzing Microarray Data using the mAdb System

April 1-2, 2008  1:00 pm - 4:00pm
madb-support@bimas.cit.nih.gov

Day 2

mAdb Analysis Tools

Esther Asaki, Yiwen He

Use web site: http://mAdb-training.cit.nih.gov
User Name on your card
Password on the board
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Agenda

1. mAdb system overview
2. mAdb dataset overview
3. mAdb analysis tools for dataset

– Class Discovery - clustering, PCA, MDS
– Class Comparison - statistical analysis

• t-test
• One-Way ANOVA
• Significance Analysis of Microarrays - SAM

– Class Prediction - PAM

Various Hands-on exercises
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• Why statistical analysis for gene expression data

• Hypothesis test and two types of errors

• mAdb statistical analysis tools for class comparison

– t-test

– One-way ANOVA

– SAM

Class Comparison
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• Why statistical analysis for gene expression data

• Hypothesis test and two types of errors

• mAdb statistical analysis tools for class comparison

– t-test

– One-way ANOVA

– SAM

Class Comparison
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Distribution for Expression Data
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Sources of Variation in 
Microarray Data

• Biological variation
– Random

• Stochastic mechanism of gene expression
• Sample heterogeneity
• Patient to patient variation

– Due to the biological process under study

• Technical variation
– Printed probes
– RNA sample extraction
– Labeling efficiency

• Spot size
• Sample distribution on the arrays

– Background signals
– Cross hybridization
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Problems with Fold Change

• Genes with high fold change may exhibit high variability among 
cell types due to natural biological variability for these genes

• Genes with small fold changes may be highly reproducible and 
should be biologically essential genes

• Some systematic sources of variation are intensity-dependent. 
Simple, static fold-change thresholds are too stringent at high 
intensities and not stringent enough at low intensities.
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Take Home Messages

• Replicates (both biological and technical) are needed 
to remove random error

• Need normalization to remove systematic variability

• Need robust statistical tests

• Need additional biological validations
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• Why statistical analysis for gene expression data

• Hypothesis test and two types of errors

• mAdb statistical analysis tools for class comparison

– t-test

– One-way ANOVA

– SAM

Class Comparison
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Hypothesis Test

Before treatment After treatment

d

Null hypothesis

Alternative hypotheses

µ1 µ2
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Spread (Variability) of Measurements

low
variability Differentially expressed gene

medium
variability Differentially expressed gene.

A low-reliable estimate

high
variability

Differentially expressed 
gene. Powerful and exact 
statistical tests must be used
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Correct decisionType II error

False negative

Type 1 error

False positive

Correct decision

Accept Ho Reject Ho

Ho is true

Ho is false

Type I error: Rejecting the null hypothesis while it’s true;

Type II error: Accepting the null hypothesis while it’s not true.

Two Types of Errors
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• Modifications of x0 have opposite effects on Type I and type II errors.
• Increasing the sample size (number of replicates) will reduce both errors.
• p-value: the probability (significance value) of observing Xp or bigger under H0.
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Q1=The probability of a type I error   
(false-positive)

Q2=The probability of a type II error 
(false-negative)

f1(x): expression in control population 
f2(x): expression in tested population
xo : the observed value of  x
x0 : the critical (rejection) value of x

Xp

Relation of Type I & Type II Errors
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• Why statistical analysis for gene expression data

• Hypothesis test and two types of errors

• mAdb statistical analysis tools for class comparison

– t-test

– One-way ANOVA

– SAM

Class Comparison
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Goal: To identify differentially expressed genes, i.e. 
a list of genes with expression levels statistically 
and (more important) biologically different in two 
or more sets of the representative transcriptomes.

• t-test (1 or 2 groups)
• One-Way ANOVA (> 2 groups)
• SAM (1, 2, and more groups)

Statistical Analysis
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Data for mAdb One-Group Test

• Design: Two conditions, tumor vs. normal (or 
treated vs. untreated), labeled with Cy3 and Cy5, 
respectively.

• Data: Ratio, one group
• Null hypothesis: mean is equal to 1
• Results: A list of genes with ratio significantly 

different from 1. i.e. Different expression level in 
the two conditions.

• Note: due to dye bias, it’s better to do a dye swap.
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Data for mAdb Two-Group Test

• Affymetrix

– Normal in group 1 and tumor in group2.

– Paired test if normal and tumor are from the same 
patient.

• Two-color with common reference

– Normal as common reference with Cy3, two types of 
tumor (group 1 and group 2) both with Cy5.

– Pooled as common reference, normal and tumor (group 
1 and group 2) both with Cy5. Paired if normal and 
tumor are from the same patient.
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Two-group t-Test

The t-test assesses whether the means
of two groups are statistically different

The null hypothesis: 

0: 21 =− µµoH

d

µ1 µ2
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=
difference between group means

t-Test (Cont’d)

variability of groups

XT - XC

SE(XT - XC)
=

_ _

_ _

TreatmentControl

t-statistic
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Calculating p-Value (t-Test)

• The p-value is the probability to reject the null hypothesis 
(                                ) when it is true (e.g. p=0.0001)

• Calculated based on t and the sample sizes n1 and n2.

0: 21 =− µµoH

Large distance d, 
low variability,

large sample sizes,
then small p,

i.e. more significant.

d
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mAdb One-Group Test

1 group statistic analysis automatically selected for a single group dataset

Parametric (normal distribution)
Non-Parametric (distribution free)
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mAdb Two-Group Test

2 group statistic analysis automatically selected for a 2 group dataset

Parametric (normal distribution)

Non-Parametric (distribution free)
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log2(A) - log2(B)

Two-Group t-Test Results
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Statistic Results Filtering

statistical significance,
i.e. p-value

log2(A) - log2(B)
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Gene n

…

Gene 2

Gene 1

…………

µ n.k…µ n.2µ n.1

µ 2.k…µ 2.2µ 2.1

µ 1.k…µ 1.2µ 1.1

Group k…Group 2Group 1

n: Number of genes/probes
k: number of groups, k > 2

Multiple Group Comparison
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Data for mAdb Multiple-Group Test

• Time course/Dose response

• Normal vs. multiple types of tumor

• For two-color arrays, must have common 
reference.

– More than two types of tumor/treatments, with 
normal/untreated as common reference

– Normal, tumor type I, tumor type II, etc. with 
some common reference.
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Analysis of Variances 
(ANOVA)

To compare several population means:

vs.

;:1 jiH µµ ≠ for some kji ≤≠≤1

koH µµµ === ...: 21 (k > 2)
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mAdb Multiple-Group Test

Multiple group analysis automatically selected for a > 2 group dataset

Parametric, F statistic-based
Non-Parametric, rank-based
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ANOVA Results and Filtering

Maximum Difference between Group Means

Group Pair for Max Mean Difference
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Hands-on Session 4

• Lab 9

• Total time: 10 minutes
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Multiple Comparison

• Statistical problems with large-scale experiments

– Many null hypotheses are tested simultaneously in 
microarray, one for each probe.

– Although p-value cut off (α) of 0.01 is significant in a 
conventional single-variable test, a microarray experiment 
for 20,000 gene probes would identify 20,000 x 0.01 = 
200 genes just by chance!
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• False Discovery Rate (FDR)

Not 
Rejected

Rejected Total

H0 True

H1 True

Total

Probability of false-positive discovery (False Discovery Rate):

m: # hypothesis/genes
R0: # false positive
R: # significant hypothesis

Rm 00
−

Rm 11
−

Rm−

m0

m

m1

R

R1

R0

)Pr()0|( 0 RR
R

EFDR R ×>=

Multiple Comparison Correction
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Significance Analysis of Microarrays 
(SAM)

• http://www-stat.stanford.edu/~tibs/SAM/index.html

• Goal is to select a fairly large number of differentially 
expressed genes (R), accepting some falsely significant genes 
(R0), as long as the FDR is low. i.e. R0 is relatively small 
compared to R.

• For one or two groups, SAM computes a t-like statistic d(i) for 
each probe i (i=1,2…n), measuring the relative difference 
between the group means.

• For more groups, SAM computes a F-like statistic.
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The “relative difference”d(i) in gene expression for two 
groups I and U of repeated samples is:
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: average expression level for gene i in group I,

: average expression level for gene i in group U,

s(i) : standard deviation of repeated measurements,

so : the fudge factor that reduces the “relative differences” of the 

genes with a small s(i), such as low expressed genes (noise) and 

genes with similar expression levels.
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SAM for 2 groups
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a1 b1

a2 b2

a3

a4

b3

b4

Group I Group U
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Group UGroup I
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Group UGroup I

Permutation & the Expected d Values

Permutation 1: d1(1) ≤… ≤ d1(n)
………………………….

Permutation p: dp(1) ≤… ≤ dp(n)
………………………….

Permutation k: dk(1) ≤… ≤ dk(n)

n: the number of hybridized signals (gene probes)
k: the number of permutations

Expected relative difference 
for gene i (i=1,2,…n)
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“significantly 
induced” genes

“significantly 
reduced” genes

SAM Plot for Delta = 2
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SAM Plot Multiple Groups
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Calculating FDR

• Order the observed d statistics for all n genes so that
do(1) ≤…≤ do(i)… ≤ do(n).

• Plot the observed do vs. expected de

• Select a cutoff value delta

• Significant genes (R): | do - de | ≥ delta

• False genes from a permutation (R0p) : | dp - de | ≥ delta

• Estimate false discovery (R0): median of R0p

• Estimate FDR: R0 / R
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Data for SAM in mAdb

• You can run SAM on data with 1, 2, or more 
groups

• Experimental design requirements are the same as 
those for t-test or ANOVA

• Note: SAM assumes that most of the genes in your 
dataset are NOT changed. So it is recommended 
that you run SAM on a larger dataset, instead of a 
small set with mostly significant genes.
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Data for Subset: bl and nb
from Dataset: Small, Round Blue Cell Tumors 
(SRBCTs), Nature Medicine Vol 7, Num 6, 601-673 
(2001)

Filter/Group by Array Property 
63 arrays and 2308 genes in the input dataset 
20 arrays and 2308 genes in the output dataset. 
8 arrays assigned to Group A 
12 arrays assigned to Group B 
Filter/Group by Array Property: 
Group A: Array/Set Name Contains 'bl' 
Group B: Array/Set Name Contains 'nb' 

mAdb SAM Data
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mAdb SAM
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mAdb SAM
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Delta vs. FDR
Delta vs. Sig. genes

SAM plot for
a default Delta

SAM plot for
a particular Delta

SAM result subset

mAdb SAM Results I
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Significance value

(lowest FDR)
SAM d statistics

(normalized distance)
Average(B)/Average(A)

(for 2-group only)

mAdb SAM Results II
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mAdb SAM Results III

Significance value
(lowest FDR)

SAM d statistics
(normalized distance)

Group pair with max 
difference
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Hands-on Session 5

• Lab 10

• Total time: 10 minutes
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Agenda

1. mAdb system overview

2. mAdb dataset overview

3. mAdb analysis tools for dataset

– Class Discovery - clustering, PCA, MDS

– Class Comparison - statistical analysis

• t-test

• One-Way ANOVA

• Significance Analysis of Microarrays - SAM

– Class Prediction - PAM
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Class Prediction
Supervised Model for Two or More Classes

• Prediction Analysis for Microarrays (PAM)

• http://www-stat.stanford.edu/~tibs/PAM

• Provides a list of significant genes whose 
expression characterizes each class 

• Estimates prediction error via cross-validation

• Imputes missing values in dataset
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Data Table

Choose Features

Cross-validation
Test errors

Evaluation of 
Classifier

Discriminant function

Training set
Test set

Final subset
of variables

Best model and 
subset of parameters

Design of the PAM algorithm
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For each gene i, a centroid (mean) is calculated for each class k.

Standardized centroid distance:
Class average of the gene expression value minus the overall average 
of the gene expression value, divided by a standard deviation-like 
normalization factor (NF) for that gene.

dik (centroid distance) = (class k avg – overall avg) / NF

Creates a normalized average gene expression profile for each class.

Calculating the Discriminant Function
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Reducing the Feature Set
Nearest shrunken centroid: 
To "shrink" each of the class centroids toward the overall 
centroid for all classes by a threshold we call ∆. 

Soft threshold: 
To move the centroid towards zero by ∆, setting it to zero when 
it hits zero.

After shrinking the centroids, the new sample is classified by the 
usual nearest centroid rule, but using the shrunken class 
centroids.
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Shrinking the Centroid
Threshold ∆ = 2.0:

a centroid of 3.2 would be shrunk to 1.2;
a centroid of -3.4 would be shrunk to -1.4; 
and a centroid of 1.2 would be shrunk to 0.

Gene 1

Gene 2

Gene 3

Original centroid Shrunken centroid

3.2

-3.4

1.2

1.2

-1.4

0



53
Group A Group B

Reduce Gene Number



54

• 63 Arrays representing 4 groups 

– BL (Burkitt Lymphoma, n1=8) 

– EWS (Ewing, n2=23)

– NB (neuroblastoma, n3=12)

– RMS (rhabdomyosarcoma, n4=20)

• There are  2308 features (distinct gene probes) 

• No missing values in array data sets

• Each group has an aggregate expression profile

• An unknown can be compared to each tumor class 
profile to predict which class it most likely belong

Sample
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Class Centroids

Compare model with new tumor tissues to make diagnosis
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• Comparison between the gene expression profile of 
a new unknown sample and each of these class 
centroids. 

• Classification is made to the nearest shrunken 
centroid, in squared distance.

Classifying an Unknown Sample
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•The samples are divided up at random into K 
roughly equally sized parts.

10 Group A

5 Group B

5 Group C

1 2 3 4 5

10 Group A

5 Group B

5 Group C

10 Group A

5 Group B

5 Group C

10 Group A

5 Group B

5 Group C

10 Group A

5 Group B

5 Group C

Entire Data Set

50 Group A

25 Group B

25 Group C

K = 5

K-fold Cross Validation
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K-fold Cross Validation
For each part in turn, the classifier is built on the other 

K-1 parts then tested on the remaining part. 

TESTTRAIN TRAIN TRAIN TRAIN

1 2 3 4 5
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K-fold Cross Validation 

TRAIN TRAIN TRAIN TRAIN

1 4 5

TRAIN TRAIN TRAIN TRAIN

1 2 3 5

2

etc….

TEST

3

TEST

4
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Estimating Misclassification Error

• PAM estimates the predicted error rate based on 
misclassification error, which is calculated by 
averaging the errors from each of the cross 
validations.

• The model with lowest Misclassification Error is 
preferred.
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PAM Results

Link leads to the dataset 
with PAM model

Create new model by fill 
in a new Delta value

Misclassification error
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Prediction Model for SRBCT



63

PAM summary

• It generates models (classifiers) from microarray 
data with phenotype information

• It does automatic gene selection for each models. 

• Misclassification errors are calculated with the data 
for model selection.

• Require adequate numbers of samples in each group
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Hands-on Session 6

• Lab 11, Lab 12 (optional)

• Total time: 15 minutes
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Other Microarray Resources

• Statistical Analysis of Microarray Data & BRB Array Tools (NCI 
Biometrics Research Branch) class #410. Offered bimonthly; 4/8-9/08 

• Partek, R, GeneSpring classes – training.cit.nih.gov
• Introduction to Principal Component Analysis and Distance Geometry 

class #407
• Clustering: How  Do They Make Those Dendrograms and Heat Maps –

class #406
• Microarray Interest Group 

– 1st Wed. seminar, 3rd Thu. journal club
– To sign up: http://list.nih.gov/archives/microarray-user-l.html

• Class slides available on “Reference” page
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For assistance, remember: 

madb_support@bimas.cit.nih.gov

http://madb.nci.nih.gov
http://madb.niaid.nih.gov


