Course #412 Analyzing Microarray Data using the mAdb System

April 1-2, 2008 1:00 pm - 4:00pm madb-support@bimas.cit.nih.gov

- Intended for users of the mAdb system who are familiar with mAdb basics
- Focus on analysis of multiple array experiments

Esther Asaki, Yiwen He

Agenda

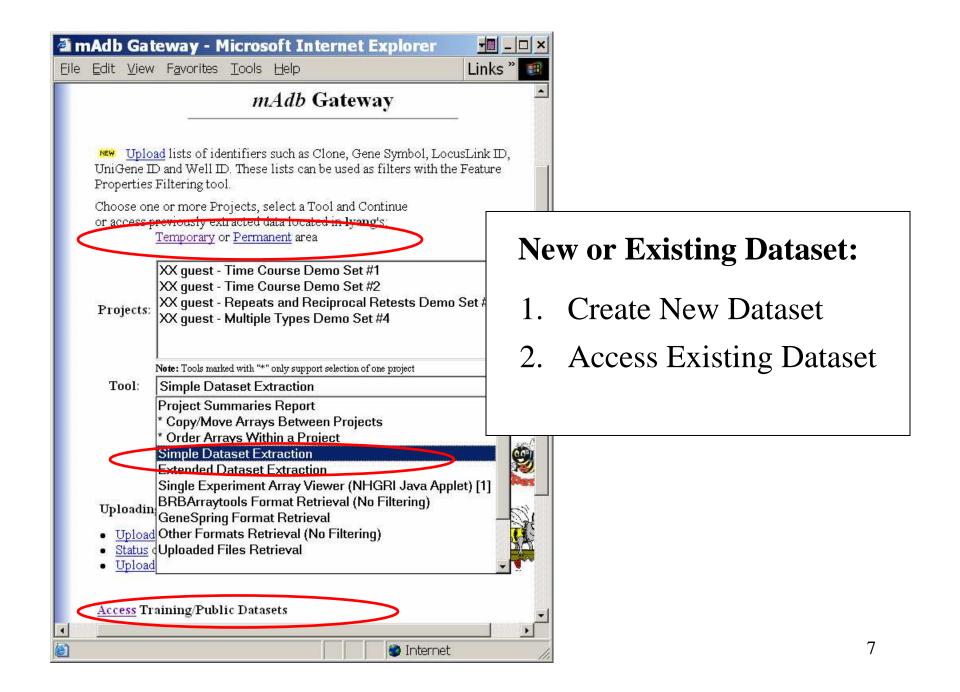
- 1. mAdb system overview
- 2. mAdb dataset overview
- 3. mAdb analysis tools for dataset
 - Class Discovery clustering, PCA, MDS
 - Class Comparison statistical analysis
 - t-test
 - ANOVA
 - Significance Analysis of Microarrays SAM
 - Class Prediction PAM

Various Hands-on exercises

1. mAdb system overview

mAdb Data Workflow

Upload Data	Quality Control	Prepare Dataset	Analysis/Model	Review Annotation
File Format • GenePix • MAS5 • GCOS 1.1 • ArraySuite	Project Summary • Summary Statistics • Array images • Graphical Report	Dataset Extraction • Normalization • Spot Filtering	Analysis Tools • Class Discovery • Class Comparison • Class Prediction	Annotation Tools • Feature Report • Gene Ontology • BioCarta Pathway • KEGG Pathway


2. mAdb dataset overview

What is a dataset?

- mAdb Dataset
 - Collection of data from multiple experiments
 - Genes as rows and experiments as columns

		sample1	sample2	sample3	sample4	sample5	
	1	0.46	0.30	0.80	1.51	0.90	
	2	-0.10	0.49	0.24	0.06	0.46	
Genes	3	0.15	0.74	0.04	0.10	0.20	
	4	-0.45	-1.03	-0.79	-0.56	-0.32	
	5	-0.06	1.06	1.35	1.09	-1.09	

Gene expression level = (normalized) Log(Red signal / Green signal)

A	0.008	1.	HDLM2_A	HL_HDLM2
Α	0.007	2.	JIM3_A	MM_JIM3
Α	0.007	3.	JJN3_A	MM_JJN3
Α	0.006	4.	L428_A	HL_L428
Α	0.009	5.	L540_A	HL_L540
Α	0.006	б.	Ly10_A	DLBCL_Ly10
Α	0.007	7.	Ly19_A	DLBCL_Ly19
Α	0.007	8.	Ly3_A	DLBCL_Ly3
Α	0.007	9.	Ly7_A	DLBCL_Ly7
Α	0.007	10.	U266_A	MM_U266
			_	

Edit Data for Dataset: Cell Lines representing 3 Lymphomas

10 Arrays and 22283 Expression Rows extracted. Data transformation method: Centered to Signal Median Spot Filter Options: Signals are floored at 100.0

Expand this Dataset. Access Datasets in your Temporary area.

Filtering/Grouping/Analysis Tools
Choose a Tool Additional Filtering Options and Proceed
Interactive Graphical Viewers@*
Choose a Viewer MDS: MultiDimensional Scaling <u>and</u> View
Dataset Retrieval & Display Options 📲
Retrieve Dataset formatted for Eisen Cluster
Redisplay Show Array Details at the top of the page

Dataset Display Page

- Dataset History
- Analysis Tools
- Retrieval and Display Options...

Dataset Display

Redisplay Show Array Details at the top of the page									
Bac	kground Colo	or - None -	~	Contrast	1.585			•	Da
Lin	niting display t	to to 25 gene	es 🔽						
	Show Data	Values	🗹 U	se Names i	n Column	Heading			dy
	Apply log2 (transform	🗆 ប	se Descript	ion in Col	lumn Head	ling		-
	Show Gene	Symbols	🗌 S1	now Map I	nformatio	n		•	Int
	Show UniG	ene Cluster	🔲 Si	now BioCa	rta Pathw	ays			•
	Show KEG	G Pathways							int
	Show GO T	Tier 2 Componen	t 🔲 S1	now GO Ti	er 3 Com	ponent			
	Show GO I	Tier 2 Function	🗖 S1	now GO Ti	er 3 Func	tion			
	Show GO I	Tier 2 Process	🔲 Si	now GO Ti	er 3 Proc	ess			
	Show Gene	Description	🗌 SI	now GO Te	erms				NT.
	Show Avera	age(Log2 Ratio)	🗌 S1	10w Max(I	log2 Rati	o)-Min(Lo	g2 Ratio)	•	Ne
	Show Varia	nce							11
Save a Feature Proper	ty List (used v	with the Feature I	Properies	Filtering to	ool).			a d	ll ey
			-	-				σ	rall
Records 1 to	25 of 22283	total records disp	played.					g	IOU
A A	Α	A A	A	A	A	A	<u> </u>	+ +	+ +
HDLM2_A JIM3_A	JJN3_A L42	28_A L540_A	Ly10_A	Ly19_A	Ly3_A	Ly7_A	U266_A	Well ID	Featur ID
0.8986 1.1075	0.8887 1.5	5182 1.1664	1.3198	1.2333	0.6761	0.8685	0.9967	1118566	117_at
8.1537 6.7782	8.5125 6.8	8697 9.1886	7.6118	9.1357	7.4983	8.7316	5.8007	1118567	121_at

- Dataset display options dynamic
- Integrated gene information

Gene

HSPA6 PAX8

• Newly created dataset puts all experiments into a single group

mAdb Dataset Display

Group label	А	A	А	А	А	• •	• •	• •	• •
Sample name	BJAB_A_B	Daudi_A_B	Jurkat_A_B	Ly10_A_B	Ly3_A_B	Well ID	Feature ID	Gene	Description
Γ	-			7.7702		1118566	117_at	HSPA6	heat shock 70kDa protein 6 (HSP70B')
	9.7305	9.7985	9.7249	10.2981	10.1150	1118567	121_at	PAX8	paired box gene 8
		8.9715				1118568	177_at	PLD1	phospholipase D1, phophatidylcholine-sp
		8.8918	9.0752	10.2200		1118569	179_at	PMS2L9	postmeiotic segregation increased 2-like
	8.4250	7.0224	7.8511	7.4692	7.7886	1118570	320_at	PEX6	peroxisomal biogenesis factor 6
	6.9189	7.5645			7.7814	1118572	564_at	GNA11	guanine nucleotide binding protein (G pro
	9.3296	9.6202	9.4409	9.9652	10.0534	1118573	632_at	GSK3A	glycogen synthase kinase 3 alpha
				7.8629	7.3505	1118574	823_at	CX3CL1	chemokine (C-X3-C motif) ligand 1
	10.0053	9.6605	9.3872	9.9003	9.3181	1118575	1053_at	RFC2	replication factor C (activator 1) 2, 40kE
genes	8.1908	8.2187	7.3540	8.3650		1118576	1294_at	UBE1L	ubiquitin-activating enzyme E1-like
Series	6.5014			7.0629		1118577	1316_at	THRA	thyroid hormone receptor, alpha (erythro
		6.5251	6.4512			1118579	1431_at	CYP2E1	cytochrome P450, family 2, subfamily E
	9.6604	10.0402	8.6991	9.9747	9.4539	1118581	1487_at	ESRRA	estrogen-related receptor alpha
	8.3781	8.8981	8.1739	8.2322	9.3807	1118582	1729_at	TRADD	TNFRSF1A-associated via death domain
	7.9419	7.4741	7.9301			1118584	1861_at	BAD	BCL2-antagonist of cell death
	8.9372	9.8243	9.4774	9.7465	10.2738	1118585	243 <u>g</u> at	MAP4	microtubule-associated protein 4
	8.2002			9.9105	9.6255	1118586	266_s_at	CD24	CD24 antigen (small cell lung carcinoma
	5.0575	6.8163	5.9542		5.7388	1118587	31799_at		Sapiens clone 24627 mRNA sequence
	9.9564	9.8420	9.7677	10.1529	9.3419	1118588	31807_at	DDX49	DEAD (Asp-Glu-Ala-Asp) box polypepti
	9.9284	9.6363	9.3726	9.8858	10.1808	1118589	31826_at	KIAA0674	KIAA0674 protein
	9.4419	9.0507	9.4075	9.9434	9.0739	1118591	31837_at	BC002942	hypothetical protein BC002942
	10.4035	9.7502	9.2389	10.1029	10.5434	1118592	31845_at	ELF4	E74-like factor 4 (ets domain transcripti
L	9.0906	9.3452	9.3869	9.6770	9.3613	1118594	31861_at	IGHMBP2	immunoglobulin mu binding protein 2

Group Examples

- Technical/Biological replicates
- Knock-outs and wild types
- Cancer vs normal samples
- Time course points
- Dosage levels

Dataset Group Assignment

- Array Order Designation/Filtering
- Array Group Assignment/Filtering
- Filter/Group by Array Properties

Dataset group assignment tools

	Filtering/Grouping/Analysis Tools …)¢
Choose a Tool	Additional Filtering Options	and Proceed
	Additional Filtering Options Ad Hoc Query/Filtering Options Feature Property Filtering Options	
Choose a Vie	Array Order Designation/Filtering	and View
Retrieve Dataset for	Two or more Group Comparison PAM: Prediction Analysis for Microarrays Boolean Comparison with another Set Clustering: Hierarchical Clustering: Kmeans Clustering: SOM	¥
Redisplay V S Backgr	Correlation Summary Report Gene Ontology Summary Report Pathways Summary Report Save As a New Dataset	șt 1.585

Array Order Designation/Filtering

_		
A	rrays Included	
F	HDLM2_A HL_HDLM2	
L	_428_A HL_L428	
L	_540_A HL_L540	
🛨 🗍 J	JIM3_A MM_JIM3	
Change Array	JJN3_A MM_JJN3	
	J266_A MM_U266	
🕒 🕒 📙	_y10_A DLBCL_Ly10	
L	_y19_A DLBCL_Ly19	
L	y3_A DLBCL_Ly3	
L	y7_A DLBCL_Ly7	
	🔸 _{Re}	move or Add Back Arrays 🖿
Г		
A	rrays Excluded	
	Subset Label: Ordered D	ataset

- Order arrays in dataset
- Delete/Add back arrays in dataset
- Subsequent analysis will be ordered by groups first and then ordered within each group

• Does not group arrays

Array Group Assignment/Filtering

Ν	Note the 🐠 marks items which lead to additional help when clicked					
	Dataset Properties••					
	Subset Label: Cell Line Grouped					

Expand the number of possible Group Designations to 4 , 5 , 6 , 7 , 8 16 or 24 groups.

Gr	Group Designation 🖤							
	Α	В	С	Submit Cancel				
	Α	в	С	Array Name & Description				
0	۰	۲	۰	HDLM2_AHL_HDLM2				
0	۰	۲	۰	JIM3_A MM_JIM3				
0	۰	۲	۰	JJN3_A MM_JJN3				
0	۰	۲	۰	L428_AHL_L428				
0	۰	۲	۰	L540_AHL_L540				
0	۰	۲	۰	Ly10_ADLBCL_Ly10				
0	۰	۲	۰	Ly19_ADLBCL_Ly19				
0	۰		۰	Ly3_ADLBCL_Ly3				
0	۰	•	۰	Ly7_ADLBCL_Ly7				
0	۰	۲	۰	U266_AMM_U266				

- One click per array for additional group
- Not convenient for large dataset
- Can not order within group

Filter/Group by Array Properties

mAdb Dataset Display

Α	0.008	1.	HDLM2_A	HL_HDLM2
Α	0.007	2.	JIM3_A	MM_JIM3
Α	0.007	3.	JJN3_A	MM_JJN3
Α	0.006	4.	L428_A	HL_L428
Α	0.009	5.	L540_A	HL_L540
Α	0.006	б.	Ly10_A	DLBCL_Ly10
Α	0.007	7.	Ly19_A	DLBCL_Ly19
Α	0.007	8.	Ly3_A	DLBCL_Ly3
Α	0.007	9.	Ly7_A	DLBCL_Ly7
Α	0.007	10.	U266 A	MM U266

Edit Data for Dataset: Cell Lines representing 3 Lymphomas

10 Arrays and 22283 Expression Rows extracted. Data transformation method: Centered to Signal Median Spot Filter Options: Signals are floored at 100.0

- Array properties include Name and Short Description
- Identify consistent pattern

Filter/Group by Array Properties

Group A	Short Description 💌	Begins with 🔹	HL					
Group B	Short Description 💌	Begins with 💽	ММ					
Group C	Short Description 💌	Begins with	DLBCL					
Group D	Array Name	Begins with Equals						
Group E	Array Name	Does Not Contain Does Not Begin with Does Not Equal						
	Expand the number of poss	tible Group Designations to	10, 15, 20 or 26 groups.					
	Subset Label: Filter/Group by Array Property							
Submit			Cancel					

- Convenient for large dataset
- Can not order arrays within group

Group Assignment

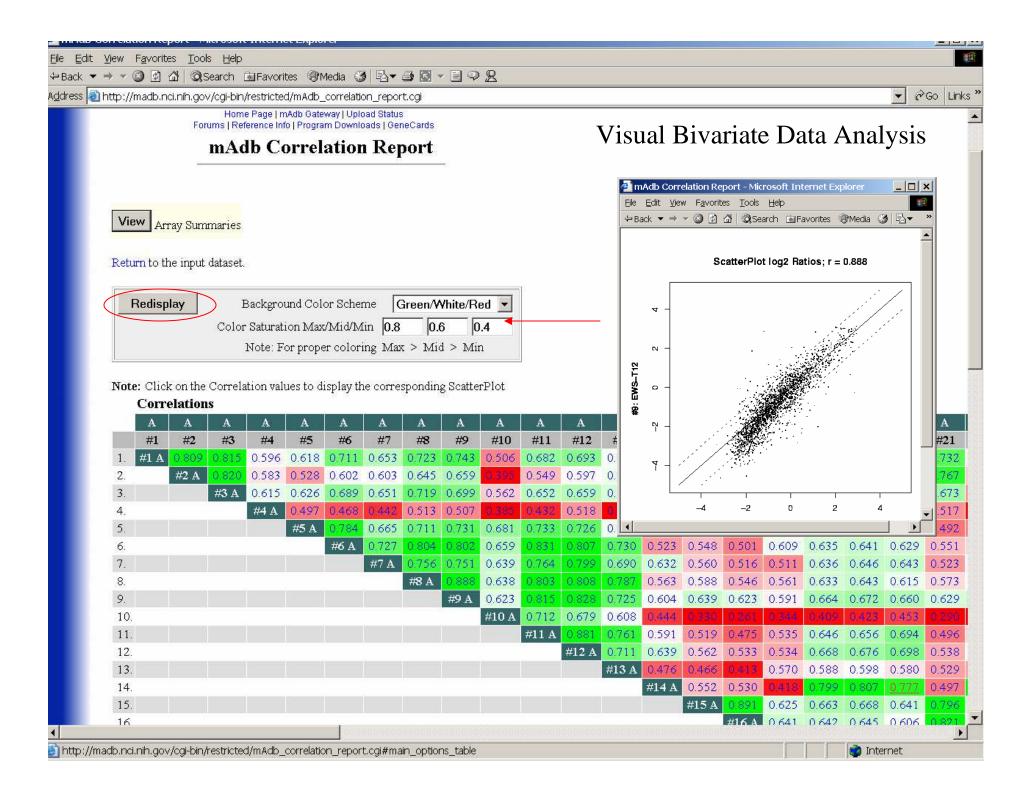
 A	А	А	в	в	в	С	С	С	-	••	••	••
HDLM2_A	L428_A	L540_A	ЛІМЗ_ А	JJN3_A	U266_A	Ly3_A	Ly7_A	Ly10_A	Lyi9_A	Well ID	Feature ID	Gene
0.8986	1.5182	1.1664	1.1075	0.8887	0.9967	0.6761	0.8685	1.3198	1.2333	1118566	117_at	HSPA6
8.1537	6.8697	9.1886	6.7782	8.5125	5.8007	7.4983	8.7316	7.6118	9.1357	1118567	121_at	PAX8
0.8042	2.2147	0.8831	0.6680	0.6954	1.4118	0.6761	0.6743	0.6046	0.7337	1118568	177_at	PLD1
4.1856	6.4728	9.8080	5.3601	6.0779	5.1954	7.1981	3.7505	7.2110	4.8481	1118569	179_at	PMS2L9
2.3557	1.6427	1.2628	2.5865	2.4068	2.0954	1.4949	2.1160	1.0713	2.5561	1118570	320_at	PEX6
1.1856	1.3852	0.9514	0.9599	0.9757	0.8588	1.2529	1.4626	1.3452	1.2318	1118571	336_at	TBXA2R
3.7746	1.6271	2.5043	1.1516	1.0508	0.6536	1.4875	1.9670	1.1227	1.1988	1118572	564_at	GNA11
4.5008	5.1783	5.5333	5.3079	7.4172	6.8863	7.1846	5.8658	6.0435	8.4519	1118573	632_at	GSK3A
4.1646	12.1329	0.8532	0.6680	0.6954	0.6536	1.1034	0.6743	1.4075	0.7337	1118574	823_at	CX3CL1
5.5663	4.3223	5.4480	1.6206	2.9270	4.4418	4.3158	3.3790	5.7775	3.3067	1118575	1053_at	RFC2
3.9173	2.4157	2.0461	1.3460	0.9437	1.1039	1.3083	2.0964	1.9933	1.9391	1118576	1294_at	UBE1L
0.7800	0.7918	0.8532	0.7715	0.6954	0.8327	0.6761	0.8483	0.8083	0.7630	1118577	1316_at	THRA
0.7800	0.6485	0.8532	0.6680	0.6954	0.6536	0.6761	0.6743	0.6046	0.7337	1118578	1320_at	PTPN21

- Group assignment information is carried into relevant analysis
- Dataset is independent from microarray platforms

Examples for using groups

- Additional Filtering per Group
- Correlation summary report
- Average arrays within groups
- Calculate statistics within groups

Filter by Group Properties


Missing Value Filters@
Genes: Require values in >= 80 % of Arrays 💌
Arrays: Require values in >= 30 % of Genes 🔽 per Group
Gene Filters.
Ratio >= ▼ 2 in >= 80 % of Arrays ▼ ▼ Apply Symmetrically
Ratio >=2in >=50% of ArraysORRatio <=0.5in >=50% of Arrays \checkmark
Average Ratio >= 0 Apply Symmetrically
Max (Ratio) / Min (Ratio) >= 1.2
Variance (Gene Vector) percentile $>= 90$ %

• Ensures each group has sufficient number of non-missing values

Correlation Summary Report

Correlations													
Α	Α	Α	В	В	В	С	С	С	С				
#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	Grp		Array Name	Array Description
#1 A	0.890	0.914	0.844	0.873	0.852	0.853	0.838	0.856	0.836	Α	🔜 🔼 1.	HDLM2_A	HL_HDLM2
	#2 A	0.882	0.852	0.860	0.847	0.856	0.824	0.869	0.845	Α	💹 🔼 2.	L428_A	HL_L428
		#3 A	0.860	0.880	0.855	0.858	0.850	0.859	0.843	A	🔜 🚺 - 3.	L540_A	HL_L540
			#4 B	0.896	0.895	0.852	0.826	0.850	0.846	В	🚨 🚺 4.	JIM3_A	MM_JIM3
				#5 B	0.885	0.868	0.853	0.859	0.867	В	🔜 🔼 - 5.	JJN3_A	MM_JJN3
					#6 B	0.857	0.832	0.852	0.848	В	🗾 🚺 б.	U266_A	MM_U266
						#7 C	0.871	0.924	0.882	С	🔜 🔼 -7.	Ly10_A	DLBCL_Ly10
							#8 C	0.873	0.918	С	💹 🚺 8.	Ly19_A	DLBCL_Ly19
								#9 C	0.883	С	🗾 🚺 - 9.	Ly3_A	DLBCL_Ly3
									#10 C	С	📕 🚺 10.	Ly7_A	DLBCL_Ly7

- Pair wise correlation between 2 samples in dataset
- Individual scatter plot available
- Group pattern for quality control

Average Arrays within Groups

I	Filtering/Grouping/Analysis Tools	@#		
Choose a Tool Ave	rage Arrays within Groups	•	and	Proceed
T	nteractive Graphical Viewers••			
1	meraenve Graphicar viewers "			

• Averages calculated using log ratios regardless of linear or log display options chosen

Calculate statistics within Groups

	Filtering/Grouping/Analysis Tools@
Choose a Tool Grou	p Statistics (mean, median, stddev) 💌 and Proceed
	Interactive Graphical Viewers
Choose a Viewer	MDS: MultiDimensional Scaling 💉 and View

• All values calculated using log ratios regardless of linear or log display options chosen

Dataset I Small Round Blue Cell Tumors (SRBCTs)

- Khan et al. *Nature Medicine* 2001
- 4 tumor classifications
- 63 training samples, 25 testing samples, 2308 genes
- Neural network approach

Hands-on Session 1

- Lab 1- Lab 4
- Read the questions before starting, then answer them in the lab.
- Use web site: <u>http://madb-training.cit.nih.gov</u>
- Avoid maximizing web browser to full screen.
- Total time: 20 minutes

3. mAdb dataset analysis tools

- Class Discovery: clustering, PCA, MDS
- Class Comparison: statistical analysis
- Class Prediction: PAM

Analysis Overview

Class Discovery	• Clustering – Hierarchical, K-means, SOMs
- Unsupervised	Principal components Analysis (PCA)
	Multidimensional Scaling (MDS)
Class Comparison	• paired t-tests
- Supervised	• t-test pooled (equal) variance
	• t-test separate (unequal) variance
	Significance Analysis of Microarrays (SAM)
	• One way ANOVA
	• Wilcoxon Rank-Sum (Mann Whitney U)
	 Wilcoxon Matched-pairs Signed Rank
	• Kruskal-Wallis
Class Prediction	Prediction Analysis for Microarrays (PAM)
- Supervised	

Class Discovery Example

- Discover cancer subtypes by gene expression profiles
- Identify genes which have different expression patterns in different groups
- Tools: Cluster Analysis, PCA and MDS

Class Comparisons Example

- Find genes that are differentially expressed among cancer groups
- Find genes up/down regulated by drug treatment
- Tools:
 - Group comparison
 - Statistics Results filtering

Class Prediction Example

- Identify an expression profile which correlates with survival in certain cancers
- Identify an expression profile which can be used to diagnose different types of lymphomas
- Tools: Prediction Analysis for Microarrays (PAM)

3. mAdb dataset analysis tools

- Class Discovery: clustering, PCA, MDS
- Class Comparison: statistical analysis
- Class Prediction: PAM

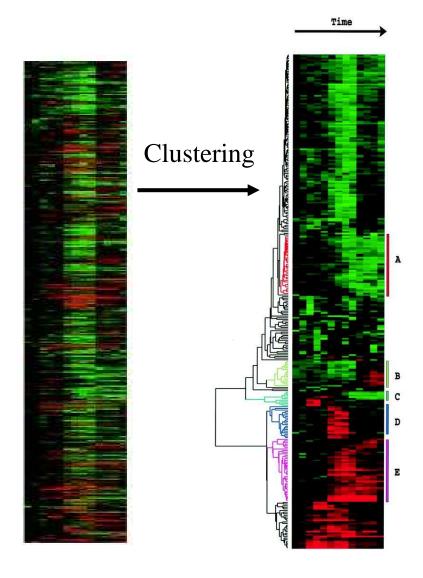
Class Discovery

- Dataset with large amount of data
- Dataset not organized
- Visualization with Clustering, PCA, MDS

Cluster Analysis

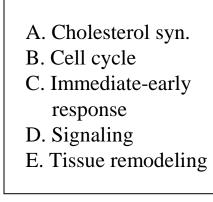
- Organize large microarray dataset into meaningful structures
- Visualize and extract expression patterns

What to Cluster?

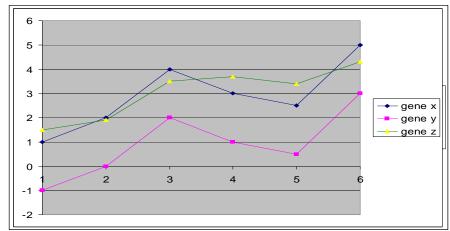

Genes - identify groups of genes that have correlated expression profiles

Samples - put samples into groups with similar overall gene expression profiles

Clustering Methods

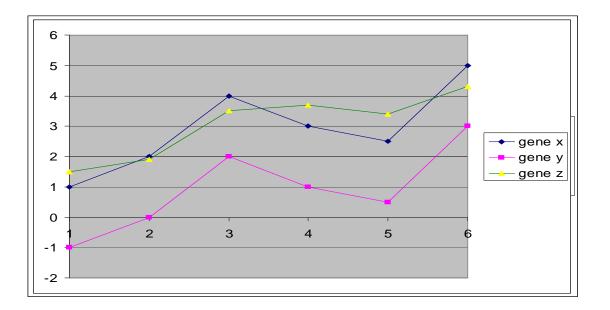

- Hierarchical clustering
- Partitional clustering
 - K-means
 - Self-Organizing Maps (SOM)

Cluster Example on Genes

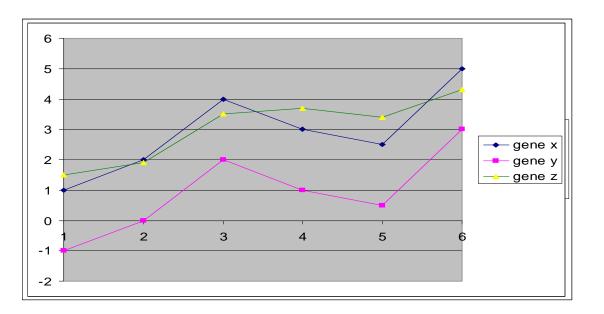

Much easier to look at large blocks of similarly expressed genes

Dendogram helps show how 'closely related' expression patterns are

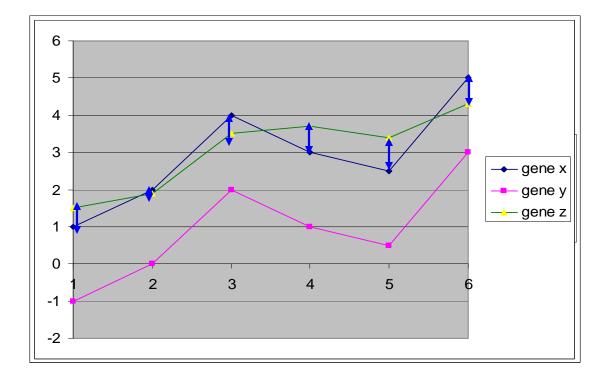
2 Steps


- Pick a distance method
 - Correlation
 - Euclidian

- Pick the linkage method
 - Average linkage
 - Complete linkage
 - Single linkage

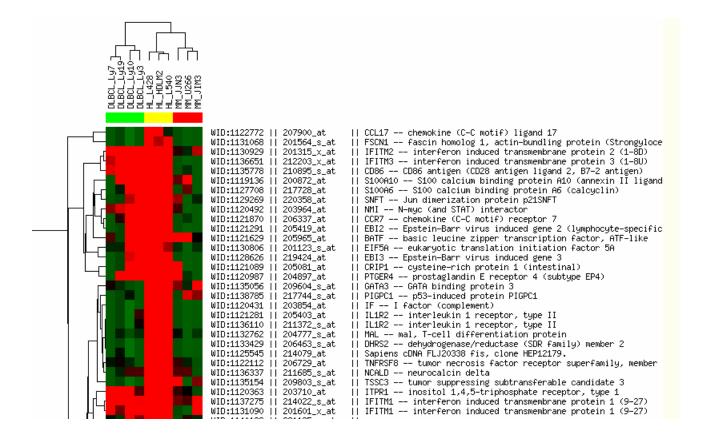

Correlation

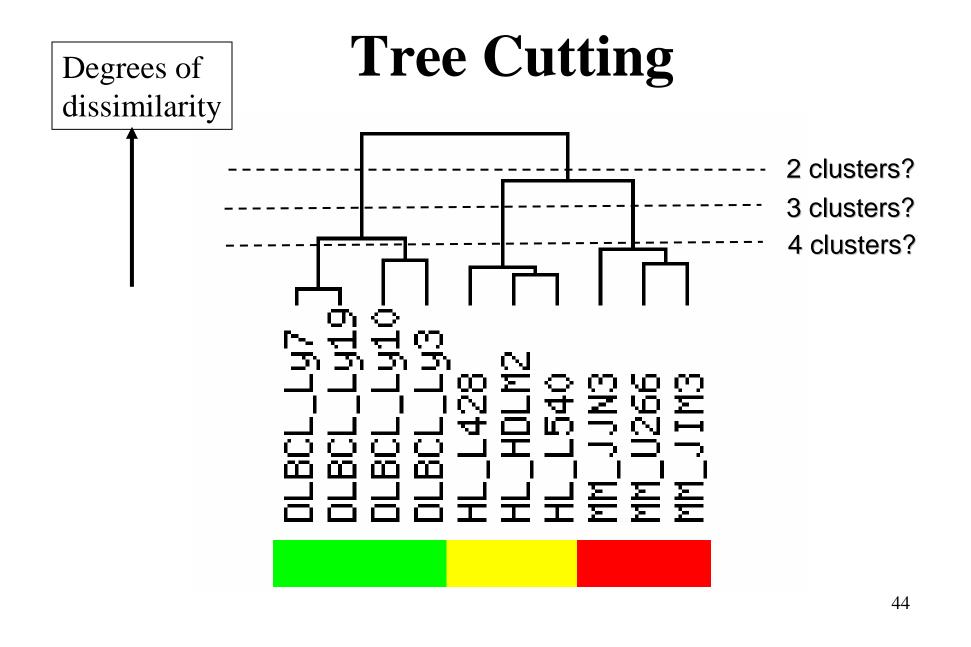
- Compares shape of expression curves (-1 to 1)
- Can detect inverse relationships (absolute correlation)



Two Flavors of correlation

- Correlation (centered-classical Pearson)
- Correlation (un-centered)
 - assume the mean of the data is 0, penalize if not
 - Measures both similarity of shape and the offset from 0

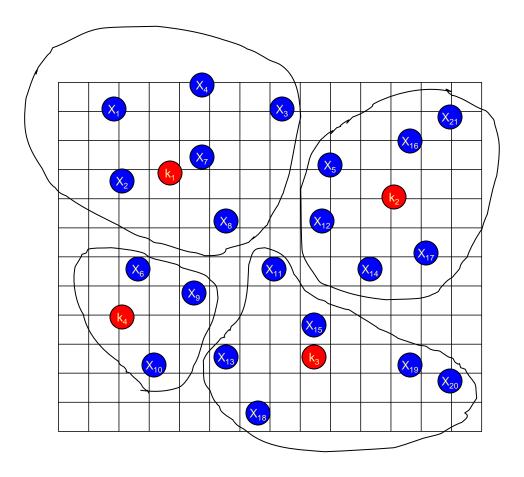

Euclidean Distance

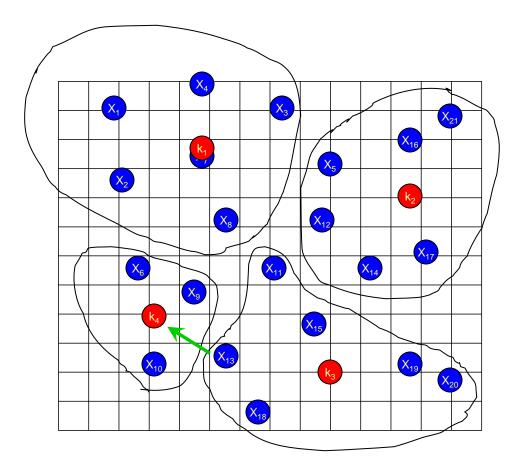


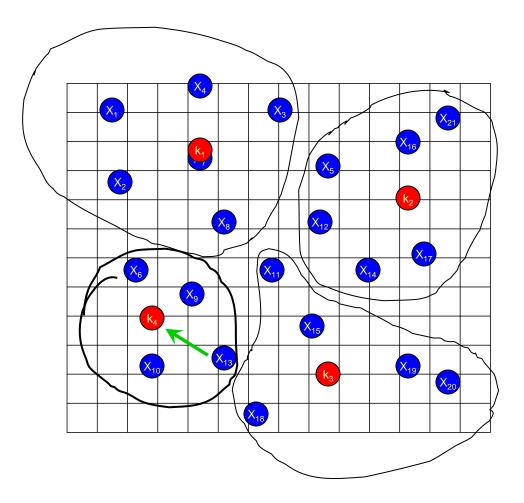
Similarity/Distance Metric Summary

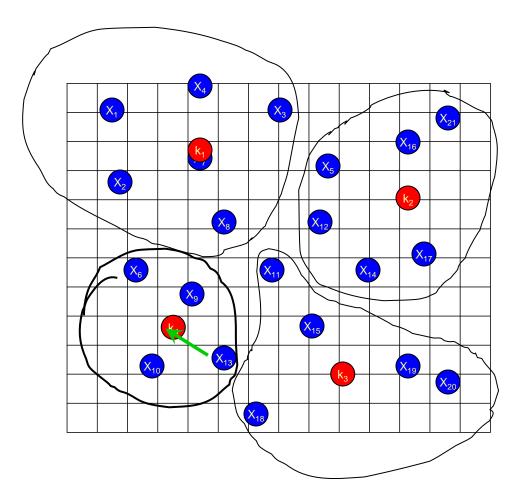
Hie	rarchical Clustering Options 🛛 🐠	
	Similarity/Distance Metric	
Genes:	Correlation (uncentered)	
Arrays:	Not Clustered	
Linkage Method:	Not Clustered Correlation (centered - classical Pearson) Correlation (uncentered) Euclidean distance	- shape - Shape and offset distance
	Absolute Correlation (centered) Absolute Correlation (uncentered)	

Hierarchical Clustering Example

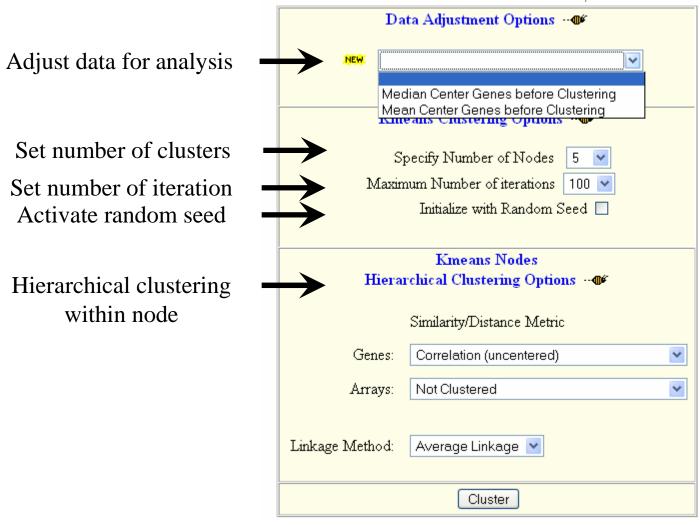

Hierarchical Clustering Summary

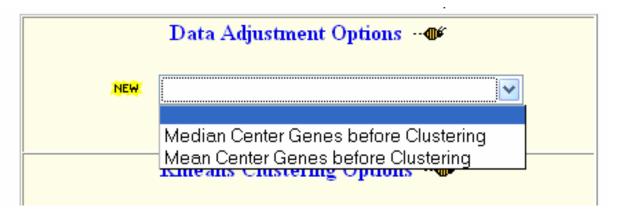

- Detection of patterns for both genes and samples
- Good visualization with tree graphs
- Dataset size limitations
- No partition in results, require tree cutting


Partitional clustering : K-means


- Partition data into K clusters, with number K supplied by user.
- Produce cluster membership as results.

- Divide observations into K clusters.
- Use cluster averages (means) to represent clusters
- Maximize the inter-cluster distance Minimize intra-cluster distance.



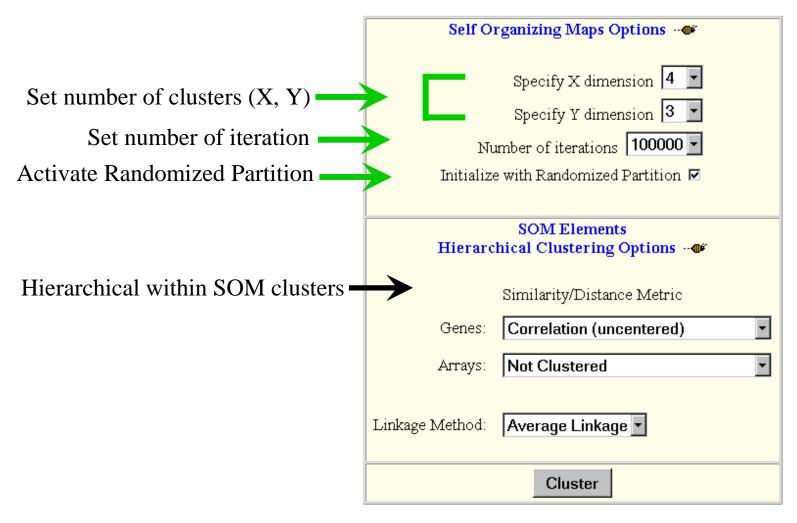


mAdb K-means Options

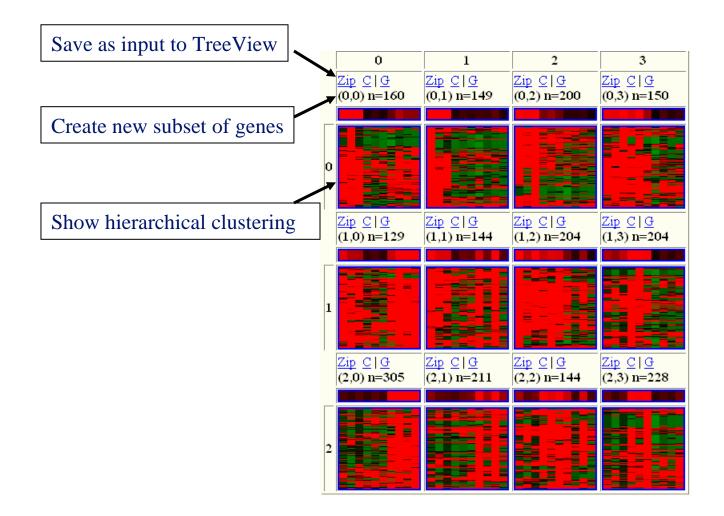
Data Adjustment Options

- Adjusts data rows so median/mean will be zero
- Used only for analysis not saved in dataset
- Center genes to compare relative values among genes
- Not appropriate if clustering arrays
- Not appropriate if using Euclidean distance/similarity metric

K-means Clustering Example

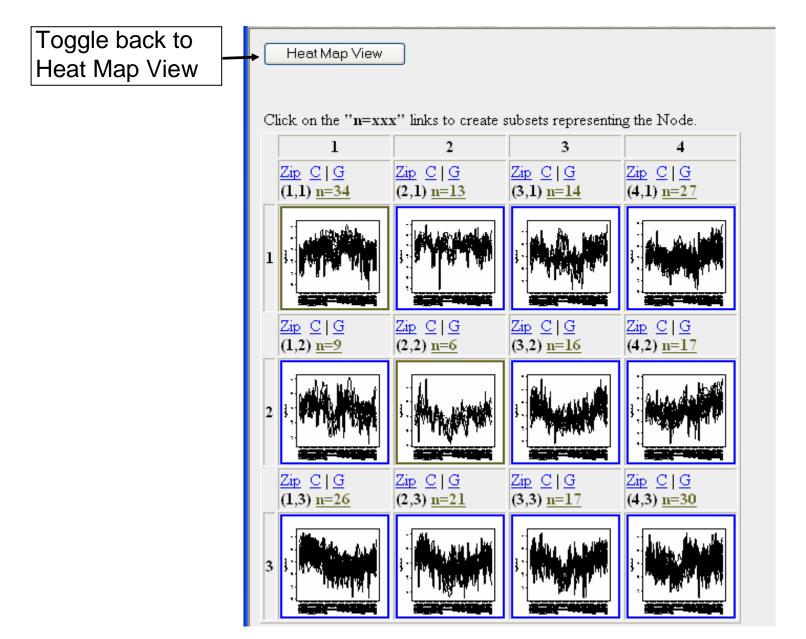

Summary

- Fast algorithm
- Partitions features into smaller, manageable groups
- mAdb allows hierarchical clustering within each K-mean cluster
- Must supply reasonable number of K
- No relationship among partitions


Self-Organizing Maps (SOM)

- Partitions data into 2 dimensional grid of nodes
- Clusters on the grid have topological relationships
- 2 numbers for the dimension of grid supplied by user

mAdb SOM options


SOM Clustering Example

Line Plot View

SOM Summary

- Neighboring partitions similar to each other
- Partitions features into smaller groups
- mAdb allows hierarchical clustering within each SOM cluster

• Results may depend on initial partitions

Summary of mAdb Clustering Tools

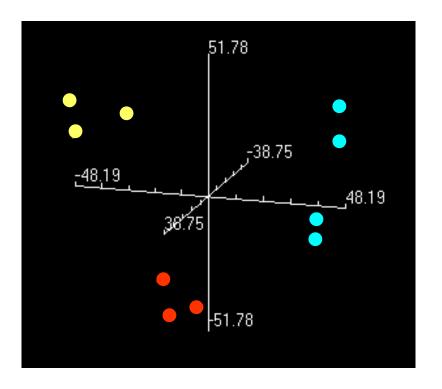
	Hierarchical	K-means	SOM
Relationship visualization	Tree Structure	partition Membership	Partition 2-D topology
Data Size	Small	Large	Large
Performance	Slow	Fast	Middle
Cluster Type	Gene/Array	Gene	Gene

Cluster Analysis

- Normalization is important
- Reduce data points by variance
- Use K-mean or SOM to partition dataset
- Use biological information to interpret results

Hands-on Session 2

- Lab 5 lab 6 (Lab 7 optional)
- Total time: 15 minutes


Principal Component Analysis

- How different samples are from each other
- Project high-dimensional data into lower dimensions, which captures most of the variance
- Display data in 2D or 3D plot to reveal the data pattern

Principal Component Analysis

- Hypothesis there exist unobservable or *"hidden"* variables (complex traits) which have given rise to the *correlation* among the observed objects (genes or microarrays or patients)
- The Principal Components (PC) Model is a straightforward model that seeks to achieve this objective

PCA 3D plot

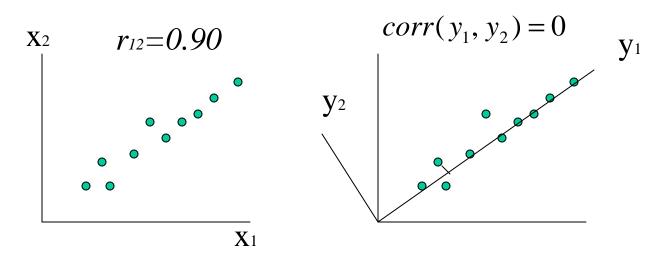
- Axes represent the first 3 components
- The first 3 components should explain most of the variance
- Formation of clusters
- Relationship of clusters.

Basic Idea of PCA is a Data Reduction Method Based on Analysis of Correlation Pattern(s) That Can Exist Among the Observed Random Variables (i.e. Expression values of Genes).

Array	1	2	•••	m
Gene 1	a_{11}	a_{12}	• • •	a_{1m}
Gene 2	a_{21}	a_{22}	•••	a_{2m}
Gene	М	М	М	М
Gene n	a_{n1}	a_{n2}	•••	a_{nm}

Raw Data

n is the number of genes (gene probes); m is the number of arrays (experiments)

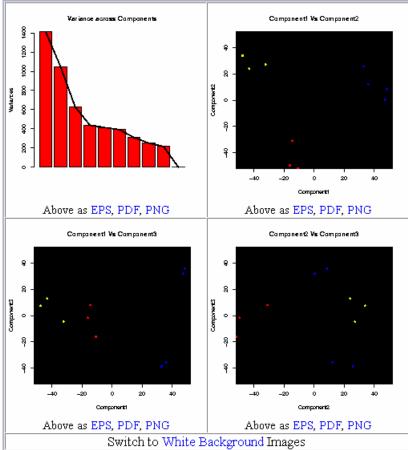

A Structure of Correlation Matrix is the Major Object for PCA

Correlation	Gene 1	Gene 2		Gene n
Matrix				
Gene 1	1	r_{12}		r_{1n}
Gene 2	r_{21}	1		r_{2n}
Gene	М	М	М	М
Gene n	r_{n1}	r_{n2}		1

A correlation matrix is a symmetric matrix of correlation coefficients $(-1 \le r_{ij} \le 1 \text{ and } r_{ij} = r_{ji}; i, j = 1, 2, ..., n; r_{ii} = 1)$

The Results of PCA are a small set of the orthogonal (independent) Variables Grouping of the Variables

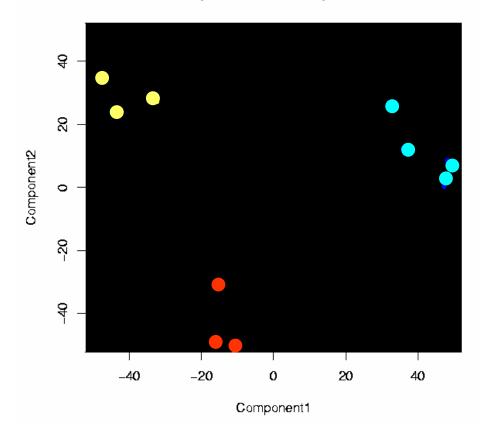
From a purely mathematical viewpoint the purpose of PCA is to transform **n** correlated random variables to an orthogonal set which reproduces the original variance/covariance structure.



(The First) Principal Component y_1 can "explain" the major fraction (~90%) of a dispersion of variables x_1 and x_2 for all of the 10 observed objects.

Sample:Small Round Blue Cell Tumors

- 63 Arrays representing 4 groups
 - BL (Burkitt Lymphoma, n1=8)
 - -EWS (Ewing, n2=23)
 - NB (neuroblastoma, n3=12)
 - RMS (rhabdomyosarcoma, n4=20)
- There are 2308 features (distinct gene probes)


PCA Detailed Plot

- "Scree" plot
- 2-D plots

PCA 2-D plots

Component1 Vs Component2

• First 2 components separate 3 groups well

MDS overview (Multidimensional Scaling)

- An alternative for PCA
- Non-linear projection methodology
- Tolerates missing values

Summary of PCA and MDS

- Dimension reduction tools
- Graphic representation to help explain patterns
- Quality control for experimental variance

Hands-on Session 3

- Lab 8
- Total time: 15 minutes
- Next class tomorrow at 1:00 pm