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PREFACE

A program is described that calculates exact and optimal (uniformly most accurate unbiased) confidence
limits for linear functions of the normal mean and variance.  The program can therefore also be used to
calculate confidence limits for monotone transformations of such functions (e.g., lognormal means).  The
accuracy of the program has been thoroughly evaluated in terms of coverage probabilities for a wide range
of parameter values.
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1. INTRODUCTION

If a known transformation of a random variable X is normally distributed with mean

� and variance �2, then the mean, variance, and any other distributional property of X

can be expressed in terms of � and �2. For example, if X is lognormally distributed,

i.e., X � �(�; �2) or (equivalently) Y = log(X) � N(�; �2), then the expected value,

variance, median, and mode of X are, respectively, E(X) = exp(� + �2=2), var(X) =

exp(2� + �2)(exp(�2) � 1), med(X) = exp(�), and mode(X) = exp(� � �2). Exact

and optimal (uniformly most accurate unbiased) con�dence limit procedures have been

developed for linear functions of � and �2 (Land, 1971, 1973) and, therefore, because

con�dence limits for a parameter are invariant under smooth, monotone transformations of

that parameter, for the mean and mode of a lognormal distribution. In fact, the lognormal

distribution is the only one whose mean can be expressed as a function of a non-trivial

linear combination of � and �2 (Land, 1971), but other functions, including those arising in

connection with other normalizing transformations, can be approximated locally by linear

functions for which exact limits can be constructed that de�ne approximate limits for the

original parametric functions of interest (Land, 1974, 1988).

Tables have been published to facilitate the calculation of con�dence limits for arbi-

trary linear functions of � and �2 (Land, 1975), but their use is often tedious, requiring

repeated interpolation and calculation. An unpublished Fortran program to compute con-

�dence limits directly from sample estimates of � and �2 has been available from the

second author, and has been used by a number of investigators to analyze lognormal data

sets.

The present paper introduces a more e�cient computational algorithm, and docu-

ments the program for prospective users. An option has been added which makes it easy

for the user to generate tables of con�dence limits. Finally, the accuracy of the program has

been thoroughly evaluated in terms of coverage probabilities for a wide range of parameter

values.

2. BACKGROUND

Suppose we have statistically independent estimates y � N(�; �2=2) and s2 dis-

tributed as �2=� times chi-square with � degrees of freedom (s2 � (�2=�)�2�), where  and
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� are known. From Land (1971, 1988) the critical value t�(m) for testing, at level �, the

null hypothesis �+��2 = m against the one-sided alternative, �+��2 < m, for known �,

is found by solving for t�(m) the integral equation,

t�(m)Z
�1

fm(t) dt = �

1Z
�1

fm(t) dt

where

fm(t) = (� + t2)
�(�+1)=2

exp(wm t=(� + t2)
1=2

)

and

wm = �� 2(�s2=2 + (y �m)2)
1=2

The corresponding con�dence interval of level 1�� for �+��2 is the set of values m such

that T (m) = (y�m)=s � t�(m). The upper con�dence limit is the largest such value m,

and is found by solving the equation, T (m) = t�(m), for m. A one-sided lower con�dence

limit of level 1� � is the same as an upper limit of level �.

The two-sided case is somewhat more complicated. The null hypothesis �+ ��2 =m

is rejected in favor of the alternative �+��2 6= m if T (m) < t1;�(m) or T (m) > t2;�(m),

where the critical values t1 = t1;�(m) and t2 = t2;�(m) are de�ned by the two integral

equations

t2Z
t1

fm(t) dt = (1� �)

1Z
�1

fm(t) dt

(2:1)
t2Z
t1

tp
� + t2

fm(t) dt = (1� �)

1Z
�1

tp
� + t2

fm(t) dt

The level 1�� con�dence interval for �+��2, therefore, is the set of numbers m such

that t1;�(m) � T (m) � t2;�(m). The upper limit is found by solving for m the equation,

T (m) = t1;�(m), and the lower limit by solving T (m) = t2;�(m).
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From (2.1), it follows that, for �xed s2 and �, any level 1 � � con�dence limit for

� + ��2, for arbitrary y, s2,  , and � > 0, is equal to y + (� + 1)=(2�2)m�, where m�

is the corresponding con�dence limit for �+ (1=2)�2 given a simple, single-sample model

with sample mean y� = 0, � = (� + 1)1=2, and variance s�2 = 2�s2=(� + 1)1=2 (Land,

1973). Moreover, given y = 0, con�dence limits are symmetric with respect to changes

in sign of � , in the sense that a level 1 � � upper limit for � � ��2 is identical to the

corresponding level 1�� lower limit for �+��2, with a change of sign. Thus, it is su�cient

to develop computational procedures for the single-sample case with y = 0,  = (� + 1)1=2,

and � = 1=2. For that case and sampling model, T (m) = �(� + 1)1=2m=s, and

wm = �
�
� + 1

2

�
(�s2=(� + 1) +m2)

1=2
:

3. METHOD

For both the one-sided and two-sided limits, the basic method of approximation is the

secant method. The application to the one-sided case is straightforward. Here, we consider

only the case of a one-sided, lower con�dence limit of level 1�� since it is also a one-sided

upper limit of level �. A solution (there is only one) is found for G(T (m)) = 1� �, where

G(T (m)) =

T (m)R
�1

fm(t) dt

1R
�1

fm(t) dt

(3:1)

The two-sided case is more complex, and requires some additional notation. The

upper limit of level 1� � is that number m such that T (m) = t1;�(m); i.e., it is necessary

to �nd the unique pair of numbers m and t2 such that both G1(T (m); t2) = 1 � � and

G2(T (m); t2) = 1� �, where

G1(T (m); t2) =

t2R
T (m)

fm(t) dt

1R
�1

fm(t) dt

(3:2)

G2(T (m); t2) =

t2R
T (m)

t(� + t2)
�1=2

fm(t) dt

1R
�1

t(� + t2)�1=2 fm(t) dt
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Similarly, the lower limit is that number m such that T (m) = t2;�(m), and is obtained by

�nding the unique pair of numbers t1 and m such that both G1(t1; T (m)) = 1 � � and

G2(t1; T (m)) = 1� �. Note that the upper and lower limits are obtained separately.

For the one-sided limit, the secant method alone is used to �nd the zero of the function

G(T (m))��. For the upper two-sided limit, the secant method is applied to �nd the zero

of the function G2(T (m); t2)�(1��), subject to the constraint that G1(T (m); t2) = 1��;
for a given m and �, this t2, which depends on m and �, is found by numerically inverting

the integral de�ning G1. The lower two-sided limit is found in the same manner, after

switching the order of the arguments of G1 and G2.

For � = 2 all integrals are evaluated directly, while in other cases they are approxi-

mated using the adaptive quadrature method described in Burden and Faires (1989). With

this method, subintervals are determined so that the integral is approximated with the de-

sired accuracy using Simpson's rule on each subinterval. This method is generally faster

than simpler integration methods to achieve that same accuracy because the ultimate sub-

division that is used need not be uniformly spaced over the entire interval of integration;

the subintervals can be selected based on the desired accuracy and the variability of the

function to be integrated (for a more complete description, see Burden and Faires 1989).

Although the method is in general straightforward, several numerical considerations

warrant discussion.

Conversion to integral over (�1; 1)
By the change of variable x(t) = t=

p
� + t2, and for �1 < A < B < 1, simple

substitutions show that
BZ
A

fm(t) dt =

B0Z
A0

gm(x) dx

where A0 = x(A) = A=
p
� +A2, B0 = x(B), and

gm(x) = ���=2 (1� x2)
�=2�1

exp(wm x)

for �1 < x < 1. Also,
1Z

�1

fm(t) dt =
p
� ���=2

�wm
2

�
�(��1)=2

�
��
2

�
I(��1)=2(wm)
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where I�(u) is the modi�ed Bessel of the third kind.

Similarly

BZ
A

t(� + t2)
�1=2

fm(t) dt =

B0Z
A0

x gm(x) dx

and

1Z
�1

t(� + t2)
�1=2

fm(t) dt = �
p
� ���=2

�wm
2

�
�(��1)=2

�
��
2

�
I(�+1)=2(wm)

These formulas are used for the integrals in the functions G, G1 and G2. When

possible, the Bessel function is evaluated using the algorithm written by Cody and Stolz

(Cody and Stolz, 1989).

With the exception of the cases when the Bessel function routine is used, the integrals

are evaluated using the adaptive quadrature method described above.

Bessel Function Considerations

For numerical reasons, the product e�uI�(u) is evaluated instead of I�(u) alone. Nev-

ertheless, numerical problems still arise and the integral must be evaluated directly in these

cases.

The �rst such case occurs for large values (>> 1000) of the argument u = wm, even

when the product e�uI�(u) is of moderate size. In the program, the integral is evaluated

directly when the argument is larger than 800; a di�erent cuto� value can be selected by

modifying the associated control �le (\Conf95.opt").

A second case occurs when the argument u is too small relative to the order, (��1)=2.
This is because I�(u) vanishes (quite quickly) as the ratio u=� goes to zero. For this

reason, if the ratio of the argument and the order is less than 0:26 (again, not necessarily

an optimal value but su�cient) then the Bessel function is not used and the integral is

evaluated directly.

Normalization of Integrand

In general, gm(x) can vary widely for di�erent values of �, s and �. To ameliorate

this, gm(x) is normalized by its maximum value on the interval [�1; 1], which occurs at
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the point

xmax =
�=2� 1�

p
(�=2� 1)2 + w2

m

wm
:

For extreme values of s (large and small) and large �, exponential overow prevents

the evaluation of the gm(x) to perform the normalization itself. This is circumvented by

scaling fm(t) by the exponential of w(s)(�+1), where w(s) is the linear function that maps

0:1 to �1 and 7 to 0. The same normalization process is used successfully for x gm(x) when

calculating the two-tailed limits.

Inversion of Integral

After the scale change from t to x, and de�ning X(m) = T (m)=
p
� + T (m)2, �nding

x1 = t1=
p
� + t21 for �xed m is equivalent to �nding x1 such that the integral from X(m)

to x1 of gm(x) is equal to some constant, C. Inversion of the integral is performed by

calling the adaptive quadrature integration procedure as if to approximate the integral

over the entire interval [X(m); 1]. The order of the calculation is such that the current

subinterval over which the integral is being approximated is always the left-most interval

not yet considered. In this way, the integral is built up from the left. The procedure is

stopped when the current value of the integral is su�ciently close to the desired value,

at which time the current upper limit of the right-most subinterval approximated is the

desired value x1. If the approximation exceeds the desired value by more than the desired

accuracy, then a �ner subdivision is used. Determination of x2 = t2=
p
� + t22 is similar,

except that the integrals over the right-most subintervals are approximated �rst.

Limits of Integration

The functions integrated over the region [�1; 1] have a single maximum, and generally

vanish rapidly as the distance between x and the maximum increases, especially for large s

and �. Depending on the particular interval of integration, this fact can cause the adaptive

quadrature routine to terminate prematurely and return a value of 0. The di�culty occurs

because the routine terminates when the di�erence between the approximate integral (using

a 3-point Simpson's rule) over an interval [a; b], and the sum of the approximate integrals

over [a; (a+b)=2] and [(a+b)=2; b], is su�ciently small. If the points a and b lie too far from

the maximum, then the approximation to all integrals may be so small that the termination
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condition is met. If the interval does not contain the maximum, then this is not a problem

in practice. However, additional steps are taken to avert this from happening when the

interval does contain the maximum.

For the one-sided limits, the evaluation of integrals in the de�nition of G (3.1) is

equivalent to evaluating
bR

�1

F (x) dx

1R
�1

F (x) dx

where F (x) = gm(x) and b 2 [�1; 1]. The denominator is evaluated either using the Bessel

function routine or by the adaptive quadrature routine, as discussed above. If the adaptive

quadrature routine is used, then to avoid premature (and inaccurate) termination of the

routine, the integral is evaluated as

1Z
�1

F (x) dx =

(xmax�1)=2Z
�1

F (x) dx+

xmaxZ
(xmax�1)=2

F (x) dx+

(xmax+1)=2Z
xmax

F (x) dx+

1Z
(xmax+1)=2

F (x) dx

and the adaptive quadrature routine is called on each subinterval. This successfully pre-

vents premature termination of the adaptive quadrature routine for the cases of interest.

If b < xmax then the adaptive quadrature routine is applied directly to the numerator.

However, if b > xmax then the ratio of integrals is evaluated as

1�

1R
b

F (x) dx

1R
�1

F (x) dx

This is done to avoid redundant calculations in the numerator and denominator.

For the two-sided limits, evaluation of G1(a; b) and G2(a; b) (equation 3.2) involves

approximating expressions of the form

b0R
a0

F (x) dx

1R
�1

F (x) dx

7



where F (x) = gm(x) or x gm(x) and a0 = a=
p
� + a2, b0 = b=

p
� + b2. For j�� 0:5j > 0:25,

it is expected that it will generally be the case that a0 < xmax < b0. To avoid redundant

calculations as discussed above, the ratio of integrals is evaluated as

1�

a0R
�1

F (x) dx+
1R
b0
F (x) dx

1R
�1

F (x) dx

The adaptive quadrature routine is applied directly to the integrals in the numerator, while

the denominator is evaluated as

1Z
�1

F (x) dx =

xmaxZ
a0

F (x) dx+

b0Z
xmax

F (x) dx+

a0Z
�1

F (x) dx+

1Z
b0

F (x) dx

This approach is successful for all cases of interest, even if j�� 0:5j � 0:25.

Initial Guesses for the Secant Method for One-Sided Limits

Two initial guesses are required for the secant method.

For the one-sided limits, the initial guesses are selected so that in general the sequence

of approximations generated by the secant method is always on one side of the root. By

satisfying this property, the sequence of approximations does not oscillate about the root,

which can result in divergence of the secant method, nor are additional (time-consuming)

measures required to address intermediate situations that may lead to possible divergence.

Figure 1 illustrates the general behavior of the function G(T (m)), which is a decreasing

function ofm. In the graph, G(T (m)) = 0:95 gives the lower one-sided level 0:95 con�dence

limit and G(T (m)) = 0:05 gives the upper one-sided limit 0:95 con�dence limit. The two

initial guesses are chosen towards the middle of the graph, and then the secant method

generates approximations that gradually move out to the root. This is done using an

approximate con�dence interval method suggested by David Cox (Land, 1972), which uses

the fact that y+s2=2 is asymptotically normal with mean �+�2=2 and standard deviation

�(�; �) =
p
�2=(� + 1) + �4=(2(� + 2)). Thus, an approximate upper con�dence limit of

level � for �+�2=2, when y = 0, is s2=2+�(�)�(s; �). Usable initial guesses, closer to the

middle of the graph than the solution, are of the form s2=2+C �(�)�(s; �). We found that
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pairs of initial guesses corresponding to C = 0 and C = 0:15 worked well for the tested

range of values �, �, and s, providing enough separation between the guesses to ensure

convergence. The percentiles �(�) are calculated with accuracy 10�4 using Algorithm 66

available from STATLIB at Carnegie Mellon University, which computes the cumulative

distribution of the standard normal distribution, and a simple root �nding procedure.

Other Modi�cations of Secant Method

For the one-sided limits, the secant method as described above is used to approximate

the root. However, for the two-sided limits additional steps are necessary.

First, guesses for the two-tailed limits of level � are estimated based on the assumption

that the one-sided limits of level 1�(1��)=2 should be \close," although some �ne-tuning

is necessary. For the lower two-tailed limit, the �rst guess is the one-sided lower con�dence

limit (calculated using the algorithm described here) of level (1� �)=2. The second guess

is the �rst guess divided by 1:1. For the upper two-tailed limit, it was found that the upper

one-sided limit of level 1�(1��)=2 led to numerical problems, and so the �rst guess is set at

the slightly larger value corresponding to level 1� (1��)=1:1, and the second guess is 1:05

times the �rst. The initial guesses are then modi�ed as necessary to ensure than the root

lies between the two guesses. Then, at each step the approximation generated by the secant

method is checked to see if it lies between the two previous approximations. If it does not,

then the midpoint of the two previous approximations is used as the next approximation.

Finally, the approximations are retained so that the root always lies between them. These

extra steps increase the execution time, but avoid numerical instabilities that are associated

with use of the secant method alone.

In the course of performing veri�cation of the algorithms (section 4), it was necessary

to use values of s well below 0:1, which is the lower bound of previously published values.

In these cases, calculation of the upper two-sided limits requires �nding the zero of a

function that has a large derivative at the root. The approximations generated by the

secant method, while still in the interval containing the root, converge quite slowly, and

usually the maximum number of iterations set by the user is exceeded. For this reason,

when the maximum number of iterations is exceeded when calculating the two-sided limits,

the bisection method alone is used until the di�erence between approximations is below a
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value set by the user.

4. RESULTS AND APPLICATIONS

Algorithm Veri�cation

Although the results of the program have been checked with published tables (Land

1971) as well as the earlier program, an additional independent method was also used to

verify the accuracy of the predicted values. This method, described below, is considered

to be a more reliable means of assessing the accuracy of the program.

If a sample is to be drawn from a normal distribution with mean and variance � and

�2, respectively, then the set of all possible values y, s2 is equivalent to the set of all values

yp = �+
�
�=
p
n
�
�(p);

s2q = �2 �2n�1(q)=(n� 1)

for p; q 2 [0; 1], where �(p) is the pth percentile of the standard normal distribution and

�2n�1(q) is the qth percentile of the chi-squared distribution with n � 1 degrees of free-

dom. Let C(p; q;�; �; �) denote the upper con�dence limit calculated using the algorithm

described here of level � on � + 1
2�

2 using the sample estimates yp and sq. For a given

level of con�dence �, the set of pairs (p; q) for which the calculated upper con�dence limit

is below the true value �+ 1
2�

2, i.e., for which

C(p; q;�; �; �) � �+
1

2
�2;

should be a region with area 1��. Similarly, if CL(p; q;�; �; �) and CU (p; q;�; �; �) denote

the lower and upper two-sided con�dence limits for �+ 1
2�

2, then the set of pairs (p; q) for

which

CU (p; q;�; �; �) � � +
1

2
�2

and

CL(p; q;�; �; �) � � +
1

2
�2

should have area 1 � �. Since C(p; q;�; �; �), CL(p; q;�; �; �), and CU (p; q;�; �; �) are

nondecreasing functions of p (i.e., the con�dence limits are nondecreasing functions of the
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sample mean y), the boundaries of the \failure" regions can be determined, and the areas

thereby estimated.

For a given q, let p(q), pL(q), and pU (q) denote the \critical" values of p such that

C(p(q); q;�; �; �) = �+
1

2
�2;

CL(pL(q); q;�; �; �) = �+
1

2
�2;

and

CU (p(q); q;�; �; �) = �+
1

2
�2;

respectively. Then we should have

Z 1

0

p(q) dq = 1� �

Z 1

0

pL(q) dq +

�
1�

Z 1

0

pU (q) dq

�
= 1� �

This approach avoids the problem of sampling variation that accompanies Monte Carlo

methods of validation. Further, since the con�dence limits are additive in the sample mean

y, one can show (see Appendix for details) that

p(q) = ��1

 �
�+ 1

2�
2 � C(0:5; q;�; �; �)

�
�=
p
n

!
(4:1)

where ��1 is the inverse of the standard normal distribution function. A similar relation-

ship holds between pL(q) and CL(p; q;�; �; �) and between pU (q) and CU (p; q;�; �; �) in

the two-sided case.

The algorithm was checked in this fashion with � = 0 for the one-sided limits over

the following range: � = 2; 3; 5; 10; 100; 1000, � = 0:1; 1; 10 and � = 0:001, 0:005, 0:01,0:1,

0:9, 0:95, 0:99, 0:995, 0:999, with the integrals approximated with tolerance 10�6, and the

con�dence limits themselves approximated with tolerance 10�8. Similarly, the two-sided

limits were checked for � = 2; 3; 5; 10; 100; 1000, � = 0:1; 1; 10 and � = 0:9, 0:95, 0:99,

0:995, and 0:999. In all cases, the absolute errors between the integrals and 1 � � were

at most 10�6. It should be noted that with this method there are many cases where the

sample s is much less than 0:1 or greater than 10 (the previous limits of published values),

11



depending on the value of q and �. In particular, for a given �, s, and the tolerance " used

here of 10�6, s ranges over the interval
�
�
p
u"(�)=�; �

p
u1�"(�)=�

�
. For � = 2, range

of values for s is (0:0001; 37:6), while for � = 1000 it is the interval (0:09; 11:1). In all

cases, the chi-squared distribution was calculated using routines from the CDFLIB library

of Fortran routines (Brown and Lovato, 1993).

Although execution times vary depending on the relative error desired and particular

values of �, s and �, some sample output and timings (in seconds) required for the method

to converge with tolerance 10�8 are provided in Table 1 (these calculations were performed

on a personal computer with a Pentium 75MH processor). The two-tailed limits take about

10 times longer to compute than the one-tailed limits. This is because two one-tailed limits

are computed as initial guesses for the secant method, and because an integral must be

inverted during each iteration.

Examples

The program provides exact and optimal (uniformly most accurate unbiased) con�-

dence limits for linear functions of the normal mean � and variance �2 and, therefore,

of monotone transformations of such functions such as the lognormal mean and other

lognormal moments about zero, EXk = exp(k� + k2�2=2), and the lognormal mode,

MX = exp(� � �2). Suppose that we have a simple random sample of size 20 on a nor-

mally distributed random variable, which is the logarithm of the variable of interest, X.

Suppose that the sample mean and standard deviation in the logarithmic scale are y = 2:0,

and s = 0:5. The exact and optimal 95% upper con�dence limit for EX = exp(�+ �2=2)

is the exponential of the value obtained from the program with input values y, s, � = 0:5

(the default value), � = 19, and 2 = 20 (the default value given � = 19). That is, the

95% upper con�dence limit for EX is exp(2:334) = 10:53. The corresponding limit for

MX = exp(� � �2) is exp(1:950) = 7:03.

Other, intrinsically nonlinear, parametric functions of interest include the lognormal

central moments,

m2 = exp(2�+ �2)
�
exp(�2)� 1

�
m3 = exp(3�+ 1:5�2)

�
exp(�2)� 1

�2�
exp(�2) + 2

�
;

12



etc., and the means of variates that can be transformed to normality other than by the

logarithmic transformation; e.g., by the square root, cube root, arcsine(square root), and

hyperbolic arcsine (square root) transformations; i.e.,

E(Y 2) = �2 + �2;

E(Y 3) = �3 + 3��2;

E(sin2 Y ) =
1

2

�
1� cos(2�)exp(�2�2)

�
;

E(sinh2 Y ) =
1

2

�
cosh(2�)exp(�2) � 1

�
;

respectively, where Y is normally distributed with mean � and variance �2.

Exact solutions for most intrinsically nonlinear functions of � and �2 are not known,

but the functions can be approximated locally by linear functions, yielding approximate

con�dence limits. For example, given estimates y for � and s2 for �2, the function �2+�2

can be approximated locally by the linear truncation of its Taylor series expansion about

the point � = y, �2 = s2: y2 + s2 + 2y(� � y) + (�2 � s2) = �y2 + 2y(� + ��2), where

� = 1=(2y). Suppose once more that y = 2:0 and � = 0:5 represent the sample mean

and standard deviation of a normal random sample of size 20. Then � = 19 and 2 = 20,

and � = 0:25. Using the program, two-sided con�dence limits at level 0:95 for � + :25�2

are 1:835 and 2:312, which correspond to 3:340 and 5:248, respectively, for the quantity

�y2 + 2y(� + ��2). Thus, 3:340 and 5:248 are approximate 95% limits for �2 + �2. A

re�nement of the method, discussed in Land (1988), involves a second iteration in which

the function is expanded about the maximum likelihood estimates of � and �2 constrained

to the approximate con�dence limit in the �rst iteration (e.g., the maximum likelihood

point on the curve �2 + �2 = 5:248).

The linearization method was evaluated by Monte Carlo simulation (Land 1974) for

four of the mean value functions given above; that is, for E(Y 2) = 10 for �2 between 0:25

and 0:40, E(Y 3) = 10 and E(sin2 Y ) = 10 for �2 between 0:01 and 0:20, and E(sinh2 Y ) =

10 for �2 between 0:01 and 1:0 (Land 1974). For these parametric values and � between

10 and 1000, coverage probabilities were estimated at between 0:892 and 0:909 for the

one-sided lower limits and between 0:892 and 0:913 for upper limits at nominal con�dence

level 0:90.
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5. SUMMARY

The program described here provides exact and optimal (uniformly most accurate

unbiased) con�dence limits for linear functions of the normal mean � and variance �2.

The program (including source code) is available without charge from the authors.

APPENDIX

In this short appendix a proof is provided for the identity shown in equation (4.1).

Only the one-sided interval case is discussed, but the same proof holds for the lower and

upper limits in the two-sided case. In Section 2 it is noted that, if y is the sample mean,

any level 1� � con�dence limit for �+ �s2 is equal to y + f where f does not depend on

y (Land, 1973). Let C denote the con�dence limit using the sample mean y1. Then the

calculated con�dence limit using the sample mean y2 will obviously be equal to C+y2�y1.

If we write yi = �+ �(pi)�=
p
n, where �(pi) is the pith normal quantile, then, using the

notation de�ned above, we have that

C(p2; q;�; �; �) = C(p1; q;�; �; �) + y2 � y1

= C(p1; q;�; �; �) + �=
p
n (�(p2)� �(p1))

In particular, letting p1 = 0:5 (in which case �(p1) = 0),

C(p2; q;�; �; �) = C(0:5; q;�; �; �) + �(p2)�=
p
n

This identity holds for arbitrary p2. By de�nition, the \critical" p(q) satis�es

C(p(q); q;�; �; �) = �+
1

2
�2

Using this identity in the previous equation shows that

�+
1

2
�2 = C(0:5; q;�; �; �) + �(p(q))�=

p
n

and solving for p(q) yields the identity in equation (4.1).
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Figure 1. Calculation of lower, one-sided 0.95 confidence limit and 
lower, one-sided 0.05 limit (which is also the upper one-sided limit 

of level 0.95).
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