PRDL -- PROCEDURAL DESCRIPTION
LANGUAGE

NCI/IP Technical Report #15

October 10, 1977

Bruce Shapiro, Peter Lemkin and
Lewis Lipkin

NCI/IP-77/04

PRDL -- PROCEDURAL DESCRIPTION
LANGUAGE

NCI/IP Technical Report #15

October 10, 1977

Bruce Shapiro, Peter Lemkin and
Lewis Lipkin

Image Processing

Division of Cancer Biology and Diagnosis
National Cancer Institute

National Institutes of Heaith

Bethesda, Maryland 20014

"We here highly resolve . . .

NCI/IP-77/04

PRDL

PROCEDURAL DESCRIPTION LANGUAGE

NCI/IP Technical Report #15

B. Shapiro, P. Lemkin, L. Lipkin

Image Processing Unit
National Cancer Institute, DCBD
National Institutes of Health
Bethesda, Md. 20014

October 10, 1977

ABSTRACT

The Procedural Description Language is a high level
modelling language. It is designed for use in performing
interactive image description and analysis. The user
interactively designs models incorporating problem domain
knowledge on both the 1low level image processing and
successively higher levels of processing abstraction. PRDL
achieves modelling efficiency through the use distributed
special purpose processors.

1
2

3

10

TABLEOFCONTENTS

SECTION

Introduction e e & s s 2 e e s e e
Specification of PRDL e 2 & s s s . e e s .
2.1 An Expression language e+ e s s e e
2.2 Evaluation Mode of Qperation « e s e e
2.3 Iterative Control Structure
2.4 Function Definition and Composition . . .
2.4.1 Builtin procedures s s e s e e

2.4,.2 External processor function definitions

2.5 Matrix operators s+ e & e« & e & e »
2.6 String operators e e+ e« s e e s+ e
2.7 Relational Data Base .« .« « « « + o« .
2.8 Sets and Lists .+ .+ .« ¢ + 4 4 e e
Variable Classes T T R S S S s ST BR= T
3.1 FUNCTION ARGUMENT variables
3.2 LOCAL variables . . .+ .+ .+ ¢ =« +« + .
3.3 GLOBAL variables « e e s e e e e e
3.4 PATTERN PREFIX variables
3.5 QUOTED variables « e e+ & s = = s
3.6 MATRIX variables S T = R S SR O U s
3.7 BOOLEAN variables+ . . .+« . .
3.8 SET and LIST variables «+ & s a e« a2 a
3.9 STRING variables « e o e e = e e
3.10 RELATIORAL TRIPLE variables . 5 . . - .
3.11 Type of a variable+ . .
3.12 Deleting a variable from PRDL+
I/0 expressions e s e s e e e e . .
4,1 Teletype T/C v« .« & & o « + o o o =
4,2 Saving and Restoring a Data Base
4.3 Contrcl of the PDP10 by PRDL = s e e
4.4 Control of the RTPP by PRDL
Graphics Operators e« e« s 2 e+ s e e+ e a

EVAL and APPLY operators . « « « « o o o = o @

6.1

Possibility Lists . . .« « « + .« o« .

Pattern Directed Invocation« . .+« .« . A

Modelling Contexts s s s s e o & e & = =
Weighting Functions e« + 2 e+ e s+ & s e o
9.1 Weighting functions to implement levels of

abstraction e .

Generator procedures 5 o o o g o o o ¢ - .

L4 L]

* & 8 & & B2 & »

s & & & 4 = a @

- - L] L]

PAGE

35
36

38

42

47

48

50

11

12

13

14

15

16

17

18

19

RTPP functions e e = o ilte «

PRDL Processes e & e« o =
12.1 Process control operators
12,2 Process scheduling . . .
12.3 Safe region declarations .

. 4 %
& 9 &

Modelling using composition of procedures .
Top down and bottom up procedural definition

Special Grammatical Functions

Interactive command and function editors 5
The PRDL evaluator . . 5 5 o o .
17.1 PREDL control structure A A 5

Semantic condensation of plans - future work
References « e s e e e e

The irplementation of PRDL 5 o o o C
a.1 Possible graph node data structure

FRDL Grammar and Symbol Table e e e

Compiling and Building PRDL« .

51
54
54
56
57
58
59
60
63

65
66

68
70

74
75

79

84y

1. Introduction

o ———————————

The Procedural Description language is being designed
and implemented to allow biologists to function as biologists
(vithout <concern for detailed computer science considerations)
when dealing with images from a wide variety of sources. 1Its
flexibility is specifically directed toward permitting the
biomedical scientist to construct (what are in fact operational
definitions) new classes, concepts and procedures while
operating an image acquisition/analysis system on line. This is
without detailed concern for the underlying hardware and/or
software involved. In particular, the biologist does not have
to be concerned about where within the image processing network
a particular facility may reside. He may invoke procedures,
measurements, etc. at will and incorporate the results in the
implicit logical structure which is being built by the system
while he is defining and solving a particular problem. It is of
special importance to note that PRDL provides for the easy
incorporation of non-pictorial information about images and/or
classes of images, This information may indeed be
non-morphologic embodying biochemical and physiologic
information not inherent in the image, but expressed by the

biologist.

Alternatively, PRDL may be viewed as a high level
modelling language. It is designed for use in performing
interactive image description and analysis. The auser

interactively designs models incorporating problem domain

knowledge on both the 1low 1level image processing and
successively higher levels of processing abstraction. PRDL
achieves modelling efficiency through the wuse distributed

special purpose pProcCesSOLS.

PRDL contains a subset of procedural description
methods (available in PLANNER, CONNIVER, SAIL computer
programming languages) as well as features oriented toward
image processing and numerical analysis. It is being
irplemented in SAIL ([ReisJd76], [Feld72]) as an interpreter
system. It is conceptually similar to the NIH Modelling Lak
(MLAB [Kno73]) in the ability to interactively define, compose,
and evaluate functions in infix notation. However, it differs
in being an expression language rather than being a command
language as well as in the addition of new data and control
structures. The data structures include scalars, matrices,
sets, lists, relational data structures, patterns, weights,
pictures, boundaries, and strings. The control structures
include function evaluation, multiprocessing, distributed
cormputing, context mechanisms, pattern matching, weighted
function evaluation mechanisms, interprocessor function

evaluation, and line drawing graphics.

PRDL may eXecute functions in PRDL itself or on other
processors such as the BReal Time Picture Processor (RTPP)
functions ([lLem74], {Carm74], [lLem77a]) or other jobs running
on the PDP10. The front end command parser of PRDL is generated
from a BNF grammar specification using a parser generator

PARGEN ([ShapB7€¢], [ShapB77a]) while the semantic and

interpreter actions are also specified in the grammar (but

irplemented in hand coded procedures).

2. Specification of PRDL

Bl R e kT S ——

Several different approaches have been taken in the
area of procedural description systems. 1In the CELWLD [Lem72a]}
system, procedural description was implemented as simple
composition of LISP 1.6 functions [Quaé68], while Tenenbaum's
interactive image system (Ten74] uses composition of

INTERLISP/FORTRAN functions.

The LISP embedded interpretive languages PLANNER
[Hew72] and CONNIVER ([McD72] perform procedural description
using the composition of functions as well as pattern directed
invocation. PLANNER uses goal statements which are driven by a
data base consisting of assertions and pattern directed
consequent and antecedent theorems (procedures) using a
backtrack control structure. CONNIVER uses the manipulation of
possibility 1lists and tree structured context mechanisms to
allow user control over backtracking. These may be used to
irplement either a breadth-first or depth-first search. 1In
PLANNER on the other hand, backtracking is automatic using a
depth first search. In SAIL (a compiler) [Feld72], one has
facilities of associative search as well as the manipulation of
sets and 1lists. Contexts, daemons, and processes are also
availakle in SAIL. Most of the above mentioned systems are

interpreters with the exception of SAIL.

The PRDL language contains some of the above
constructions as well as others not in these languages. It

includes composition of algebraic functions, pattern directed

invocation, context mechanisms, associative search, set and
list manipulation, multi-process communication, possibility
list evaluation, generator functions, failure trace, weighting
functions to facilitate heuristic evaluation of functions (in a
tree type search), interprocessor procedure evaluation and line
graphics. The 1language will be presented here by example
and by formal (BNF) definition where appropriate. In the
following examples, functions and PRDL cperators are denoted in

upper case while arguments are denoted by lower case symbols.

2.1 An Expression Language

PRDL 1is an expression evaluation language like LISP
(vithout the top level printing of the evaluation) rather than
a comrand language like ALGOL. The top level user inpat is an
expression to be evaluated. The expression may appear to look
like a command (as with an assignment statement) but it will
always have a value. The BNF syntax for an expression is as

follows:

<expression>::= <compound expression> |
<assignment expression> |
<function designator> |
<conditional expression> |
<arithmetic expression> |
<Boolean expression> |
<matrix expression> |
<string expression> |
<list expression> |
<set expression> |
<pattern expression> |
<pattern-D-I expr> |
<pattern request expression> |
<context expression> |
<WHILE loop> |
<FOR loop> |
<TTY expression> |
PRINTF <function name> |
<function definition> |
<builtin function> |
<relational expression> |
<FOREACH loop> |
<I/0 expression>
<graphics expression>
<process expression>

Block structure is used as in ALGOL syntax with
BEGIN/END delimiters and semicolons ";" used to delimit
expressions.

<ccmpound expression>::= <compound head> END

<compound head>::= BEGIN <expression> |

<compound head> ; <expression>

Assignment of data to variables is denoted by the use
of the backarrow operator "_" as in SAIL rather than with a “="
as in FORTRAN ("=" is used to denote the BOOLEAN equal test) or
®:=" as in ALGOL.

<assignment expression>::= <leftside> _ <expression>

<leftside>::= identifier

Both IF-THEN and IF-THEN-ELSE statements are allowed in
PRDL. The value of the <conditional expression> is that of the

THEN expression if true (or 0 or false if not true) in the case

of the IF-THEN. In the case of the IF-THEN-ELSE it is either

the THEN or ELSE expressions.

<conditional expression>::= <IF expression> {
<IF expression> ELSE <expression>
<IF expression>::= <IF clause> <expression>

<IF clause>::= IF <Boolean expression> THEN

Boolean expressions are allowed over other data types
than reals (which have FALSE=0, TRUE=1) by the implicit
conversion of the non-real data type to real before evaluation.
This point will be clarified later in the paper.

<Boolean expression>::= <disjunctive expression> |
<Boolean expression> OR <disjunctive expression>
<disjunctive expression>::= <negative expression> |
<disjunctive expression> AND <negative expression>
<negative expression>::= NOT <algebraic relation> |
(<Boolean expression>) |
NOT { <Boolean expression> |
<algebraic relation>
<algebraic relation>::= <algebraic expression> > <ae> |
<algebraic expression> < <ae> |
<algebraic expression> = <ae> |
<algebraic expression> LEQ <ae> |
<algebraic expression> GEQ <ae> |
<algebraic expression> NEQ <aed> |
TRUE | FALSE

Note, in a <Boolean expression>, 1if there 1is a
conjunction of ANDs and one of them fails or a disjuction of
ORs which succeeds, control will pass to the statement after
the conjunction so that it is possible to determine why the
conjunction failed. The system variable ANDFATIL c¢ontains the

quoted name of the conjunction which failed, and ORSUCCEED for

the quoted name which succeeded.

The basic algebraic expression is defined for the set

of real numbers but carries over to matrices, strings and other
data types with special semantics to be discussed later.
<algebraic expression>::= <simple arithmetic expression>
<simple arithmetic expression>::= <term> |
<simple arithmetic expression> + <term> |
<simple arithmetic expression> - <term>
<term>::= <factor> |
<term> ¥ <factor> |
<term> / <factor> |
<factor>::= <primary> | <factor> =~ <factor>
<primary>::= identifier | number | (<expression>) |
<function designator> | + <primary> | - <primary>

2.2 Evaluation Mode of Operation

The user input to PRDL is an expression. As in LISP,
all expressions evaluate to a value. However, unlike LISP, this
value is not printed on the teletype and the value may be one
of a wide variety of data structure types (real, string,

matrix, set, list, procedure name etc.).

The value of an expression is printed on the users

teletype by invoking the TYPE or OUTSTR operators.

TYPE 1+2%
or

OUTSTR("SUM of 3+4=1g (3+4))$

will print "=3" and "SUM of 3+4=7" respectively. The $ denotes
the altmode or escape character used to terminate teletype
input.
2.3 Iterative Control Structure

The iterative control structure mimics that of ALGOL
(SAIL) and many other similar languages having the WHILE-DO and
FOR-DO structures.

<WHILE loop>::= <WHILE clause> <expression>

<WHILE clause>::= <Boolean expression > DO

<FOR loop>::= <FOR assignment> <FOR control> <FOR limit>

<expression>

<FOR assignment>::= FOR <assignment statement> STEP

<FOR control>::= <algebraic expression> UNTIL

<FOR limit>::= <algebraic expression> DO

There are no labels and GOTOs in PRDL. Thus, function
composition is encouraged as a means of expressivity. The

value returned by these structures is the value of the last

expression in the loop.

2.4 Punction Definition and Composition

Algebraic functions may be composed using the rules of
composition of functions. This includes the definition of
recursive functions. 2 function need not be specified in
advance in order to be used in a composition definition,

provided that when the composed function is used (evaluated) it

10

has been defined.

User defined procedures may be defined. This is done by
a procedure defining operation. This operation creates a
new function which is a lambda expression for the expression
denoting the procedure. The lambda expression is stored
as a tree consisting of a linked list of symbols composing the
procedure. Thus the procedure is evaluated interpretatively.
Composition of these symbolic procedure strings is performed by
interpretive tree traversal as in MLAB and FORMAL [Mes70] (an
algebraic string manipulation languages). For example, if we

had:

FCT A(x) = x+ (x*x):

FCT B(x) 2¥p(X) ;
then B(x) would evaluate to

(2*x) + (2*x*x).

4 function 1is defined according to the following BNF

specification.

<function definition>::= <funct. prefix> <remainder f-def>
<funct. prefix>::= FCT <processor declar.> <data declar.>

<pattern declar.>

<remainder f-def>::= <function name> <f-args> = <f-body>

<processor declar.>::= PDP10 | RTPP | GPP | GPPASHM |
null

<data declar.>::= SCALAR | MATRIX | WEIGHT | STRING | SET

LIST | PATTERN | CONTEXT | PICTURE | BOUNDARY |
null

<pattern declar.>::= <pattern prefix> | null

<function name>::= identifier

<{f-args>::= (<arg list>) | null

<arg list>::= <act-ident> | <arglist> , <act-ident>

<act-ident.>::= <data declar.> identifier

<f-body>::= <expression>

The RTPE, GPP and GPPASHM processors are part of the RTPP.

For example a procedure is defined as follows using the

FCT (function declaration) :
FCT C(x,y)=B{(x,A(y)).
defines function C to be the composition of functions A and B.

A function may be run on one of several processors
(i.e. code is specifically written for a particular processor)
by opticnally specifying the processor name declaration in the
function definition. An optional data declaration may be
specified as part of the function arguments. The default is is
determined by generic data typing i.e., use the type of the

argument being passed. For example,
FCT PDP10 PICTURE GRADIENT(X)= eewe..

As was mentioned before, an expression may be a
<function designator> or function name. There are two types of
functions: builtins (already defined in the dinitial PRDL
system) and user defined functions. The user defined functions
may be any expression allowed by PRDL (as is seen from the
above BNF definition).

<function designator>::= <builtin> |

<weight prefix> <function name> <actual arguments> |
<builtin>::= <builtin identifier> <actual arguments>
<builtin identifier>::= identifier
<actual arguments>::= (<actual parameter list>) |

null
<actual parameter list>::= <expression> |

<actual parameter list> , <expression>

12

2.4.1 Builtin procedures

PRDL contains the usual set of algebraic Boolean
operators of an algorithmic 1language which is available in
algebraic languages. These are +, -, *, /, 110G, EXP, the
radian trigonometric functions (SIN, <CO0S, TAN, ATAN, ASIN,
AC0S), the degree trigonometric functions (SIND, <COSD, TAND,
ATAND, ASIND, B2ACOSD), SQRT, TRUNC ({(truncate a real to its

integer part).

New BUILTIN's may be added easily by specifing the
appropriate class number with the BUILTIN name in the symbol
table file and adding the code for the BUILTIN as part of the
general interpretive casg statement. No change in the grammar

is necessary.

2.4.2 External processor function definitions

The external processors are to be thought of as slave
processors to PRDL. Generally, PRDL will communicate with them
through separate control and data I/0 channels. In the case of
the PDP10, the control channel is a pseudo teletype while the
data channel is disk files. The RTPP has two separate teletype
channels (8eTTY: and 8eHSP:) the former being the control and

the latter the data channels.

FCT GPP F(x)=<...>

defines a GPP MAINSAIL function causing it to be compiled on

the PDP10 wusing MAINSAIL ([Wil75] compiler. The assembly

language output 1is then transmitted to the RTPP where it is
then assembled with GPPASM {Lem76b]. When it is referenced, it

will be evaluated on the RTPP.
FCT RTPP G(x) =<...>

defines a RTPP function as a 1list of string interactions
between PRDL and the RTPP. #hen evaluted, it sends the string

interactions to the PDP8e control teletype on the RTPP.
FCT GPPASHM H(x)=<...>

defines a GPP assembly language (GPPASM [lem76b]) program which
is transmitted to the RTPP and assembled there on the PDPS8e
part of the RTPP. When referenced, it will be evaluated on the

RTIPP.

2.5 Matrix operators

Matrix operators include arithmetic as well as matrix
transformation operators. Many of the matrix operators were
derived from those used in MLAB [Kno73] and for that reason
detailed discussion of them is left to that document. Some
of the matrix operators are specified in infix notation while

others are specified as built-in functions.

13

14

<matrix expression>::= <simple matrix expression>
<{sme>::=<simple matrix expression>::= <m-term> | <term>|
<sme> + <m-term> | <sme> + <term> |
<smer> - <m-term> | <sme> - <term>

<m-term>::= <m-term> & <m-factor> | <m-term> &' <m-factor>

<m-term> * <m-factor> | <term> * <m-factor>
<m-term> / <factor> i

<m-factor>
<m-factor>::= <m-primary> | <m-factor> = <factor1>
<m-primary>::= <m-identifier> | (<matrix expression>) |

<function designator> | + <m-primary> |
- <m-primary> { <m-primary> '
<m-identifier>::= identifier

The ' operator denotes the transpose of the matrix.

Thus for any element A{i,j]), 3[(i,3]'=A[J.i].

The * operator computes +the cross product of two
matrices when both operands are matrices and scales the matrix

otherwvise.

The & operator denotes the row concatination of two
matrices. Thus for C=AEB, where 2 and B are defined as:

lati...aln |

laml.,..amn |

and
{b11...b1p |

{bm1...bmg |

then,
latt...aln |
jam1...amn |
Cz - & &
Ib11...b1n |

[bm1...bmn |

.double space
where A or B are expanded so that each is the maximum of the
number of columns n of the two.

The &' operator is similar to & except that it is the
column concatination of +the two matrices where A or B is

expanded so that each is the maximum of the number of columns m
of the two. For example, for B and B above:

latl...aln k11...b1p |
s |am1:::amn bmi1...bmp |
Various built-in functions include:
ROW(A,n) - Return the row vector n of the matrix A.
COL(A,n) - Return the column vector n of the matrix a.

INVERSE(A) - Return the inverse matrix of A.

IDENTITY (A) - Return the identity matrix of size &
(maximum dimension of 3).

ABSMATRIX (A) - Return the absolute value matrix |2}
computed by taking the absolute value of every
element Aii.

EIGENVECTOR {(A) - Return the Eigenvector of matrix 2.

ARRAYSET(A,v) - Set all elements of matrix A to the
specified value v and return A.

DOT(A,B) - Return the dot product of matrices A, B.
SOLVE(A,B) - Return the column vector X which is the
solution to the matrix equation AX=B where B is

a column vector and & is a matrix. If A is
singular, then set X to the null vector.

2.6 String operators

—— o ——— -

Strings are available in PRDL and may be used in string

manipulation as well as in specifying pattern names.

15

16

<{string expression>::= <substring> | " text " |
<string expression> & <string expression> |
<number/str conv.> | <string/str conv.> |
<substring>::= <string expression> { <start index> TO
<finish index>] |
SUBSTR (<string> , <start index> ,
<finish index>)
<number/str conv.>::= <number CV> (
<arithmetic expression>)
<string/str conv.>::= <string CV> (<string expression>
<number CV>::= CVS | CV0S | CVF
<string CV>::= LOP | COP | SYMBOLSCAN | INTSCAN |
REALSCAN
<start index>::= <algebraic expression>
<finish index>::= <algebraic expression>

The semantics of the string operators are as follows:
& - return the concatination of two strings (si16s2).
SUBSTR(str,i,j) - returns string str[i to j].

LOP(s) = return the first character of the string s and
set s to s{2 to INF].

COP(s) - return the first character of the string s.
SYMBOLSCRAN (s) - returns the next alphameric symbol or
null if +there is none as well as LOPing the
symbol from the front of s.
INTSCAN (s) - returns an integer valued number
found by scanning through a string leaving
s as the string after the characters up to
the end have been LOPed off.
CVS(r) - converts truncated real to string.
CV0S(r) - converts truncated real to octal string.
CVF(r) - converts real to decimal string in exponent
notation.
Several functions of strings return real values. These

may be used to analyze strings or substrings.

EQU(str1,str2) - Boolean returns TRUE if equal else
FALSE.

LENGTH (s} - returns real valued length of the string.
CVD(s) - converts string digits to real number.

CVO(s) - converts string octal digits to real number.

17

REALSCAN(s) - returns the real valued number found by
scanning through a string leaving s as the
string after the characters up to the end of
the number have been LOPed off.

2.7 Relational Data Base

. ————— . —————— oy ————

PRDL allows the creation, deletion and searching of

associative triples which can be used to c¢reate a relational

data base as in SAIL. An association is a 3-tuple:

Attribute(Object)=Value or (a&,0,V).

Each of the three (A, O or V) may be any PRDL identifier.

<relational expression>::= <relational operator>
(<relational args> } |
<attribute> XOR <object> EQV <value>
<relational operator>::= MAKETRIPLE | ERASETRIPLE |
ISTRIPLE
<relational args>::= <attribute> , <object> , <value>
<attributed::= identifier
<object>::= identifier
<value>::= identifier

A0V triples are created with the

operator

returns

MAKETRIPLE(a,0,V)

a X0R o EQU v;

which makes an association of any symbols in PRDL and

the name of the triple which may be saved in a triple

variable or put into a list or set. A0Vs are deleted with

DELETETRIPLE(a,0,v),

and tested with the Boolean operator

ISTRIPLE(a,C,V)

18

The A variable may be tested to see whether it

contains the name of a triple by

ISTRPVAR(V)

which returns TRUE if it does exist otherwise it returns FALSE.
The first, second and third components of a triple may be

accessed by:

FIRST(v), or SECOND(v) or, THIRD (v).

The triple pointed to by a triple variable may be deleted by:

DELTRPVAR (v) ;

The relational data base is searched with the FOREACH
statement which finds all instances of the specified triple
search Boolean and executes an expression on each successful
instance,

<FOREACH 1loop>::= FOREACH <search variables> SUCHTHAT
<element list> DO <expression>
<search variables>::= <vari1> , <var2> | <var1>
<varl1>::= identifier
var2>::= identifier
<element list>::= <AOV Boolean expr.> AND <AOV expr.> |
<AQV Boolean expr.> OR <AQV expr.>| <AOV expr.>|
<boolean expression> | <generator procedure call>
<AQV expression>::= <ATT> XOR <OBJ> EQV <vari1> |
<ATT> XOR <vart> EQV <VAL> |
<vari1> XOR <0OBJ> EQV <VAL> |
<ATT> XOR <varl1> EQV <var2> |
<var1> XOR <0BJ> EQV <var2> |
<varl1> XOR <var2> EQV <VAL> |
<var1> XOR <var2> EQV <var3>

Note: The 1last rule should be used with caution since it

permits an exhaustive search of the relational data base.

For example,

FOREACH x SUCHTHAT INSIDE XOR x EQV CYTOPLASM DO
PUT x INTO POSSIBLENUCLEUS;

2.8 Sets and lists

———— —— - ——————

Set and list variables may be defined in PRDL by setting
a variable to a set or list. Various operators may then work on
the set or list. Note that any PRDL identifier may be inserted
as an e€lement of a set or list.

<set expression>::= <set operation> |
SET { <actual arguments> } |
{ <actual arguments> } | <set identifier>
<list expression>::= <list operation> |
LIST [<actual arguments>] |
[<actual arquments>] | <list identifier>
<set operation>::= <set-list operation> |
PUT <set expression> INTO <set identifier> |
UNION (<set expression> , <set expression>) |
INTERSECT (<set expression> , <set expression>) |
SETDIFF (<set expression> , <set expression>)}
<list operaticn.::= <set-list operation> |
PUT <list expression> INTO <list identifier>
BEFORE <list expression> |
PUT <list expression> INTO <list identifier>
AFTER <list expression> |
PUT <list expression> INTO <list identifier>
AFTER <algebraic expression> |
PUT <list expression> INTO <list identifier>
BEFORE <algebraic expression> |
SUBLIST (<list expression> , <algebraic expression> ,
<algebraic expression>) |
<list expression> [<start index> to
<finish index>] |
<list expression> & <list expression>|
SPLICE (<list expression>, <list identifier>)
<set-list operation>::= LOP (<set-list arg>) |
COP (<set-list arg>) |
GETELEMENT (<set-list arg>, <algekraic expr.>)|
REMOVE <set-list arg> FROM <set-1list arg> |
REMOVE <algebraic expr.> FROM <set-list arg>|
EEMOVE ALL <set-list arg> FROM <set-list arg> |
LENGTH (<set-list arg>)
<set-list arg>::= <set identifier> | <list identifier> |
({ <set expression>) | (<list expression>)
<set identifier>::= identifier
<list identifier>::= identifier

LIST [al,a2,...,an)} - Create and return a list. The word
LIST may be omitted if [...]

19

20

are used.
LISTIFY(v) - Convert a set v to a list and return it.

SET {a1,a2,...,an} - Create and return a set. The word
SET may be omited if (...}
are used.

SETIFY(v) - Convert a list v to a set and return it
‘ eliminating duplicate elements.

LOP{x) - Remove the first element of the set or list x
and return this element.

COP(x) - Return a copy the first element of the set or

SUBLIST(x,i,j) - Return a 1list consisting of the
elements i to j of list x.

PUT x INTO y - Insert x into set y and return y.

PUT x INTO y BEFORE z - Insert x into list y before
element 2z in 1list y. Note
that currently if z evaluates
to a list consisting of more than
one element, the first element
is used. List y is returned.

PUT x INTO y AFTER z - Insert x into 1list y after
element z in 1list y. Note
that currently if z evaluates
to a list consisting of more than
one element, the first element
is used. List y is returnead.

SPLICE(Xx,y) ~ splice the contents of the list x onto
the end of the list y. Return y.
REMOVE x FROM y - Remove the first occurance of x from
set or list y and return y.

REMOVE n FROM y - Eemove the n'th element from the
set or list and return y.

REMOVE ALL x FROM y - remove all occurrances of x from
list y and return v.
GETELEMENT (y,i) - return the i'th element from the list

Y-

UNION(a,b) - Perform set union and return
the result.

INTSECTION{a,b) - Perform set intersection and
return the result.

SETDIFF (a,b) - Perform the set difference a-b and
return the result.

IENGTH(v) - Return the number of elements in a list or
set v.

Sets and list may be searched in a manner similar to
relational triples with the FOREACH statement which finds all
instances of elements satifying a search boolean which may be
sets, lists or relational triples and executes an expression on
each successful instance. Thus, the syntax for the <element
list> which was defined in section 2.8 may now be expanded to

include sets and lists,
<element list>::=<{set-list arg> IN <set-list arg>
For example,

FOREACH x SUCHTHAT INSIDE XOR x EQV CYTOPLASM AND
x IN LOBATEDSHAPE DO PUT x in POLYNUCLEUS

21

22

3. Variable Classes

- ———————— o —— %

Variables are used in ten different ways to pass
argument and function name bindings. (Note: in +this document

" " denotes the backarrow character.)

3.1 FUNCTION ARGUMENT variables

Ll R et L b T ————

Function arguments may be passed through the procedure
argument 1list as lambda variables (see [Ber6#4]), where there

may be a null arg list. For example,

FCT F (x)=2%x;

Function arguments <f-args> may also have specific data type
declarations associated with them +to force checking on

arguments before evaluation. For example,

FCT AREA(PICTIURE x)=...

3.2 LOCAL variables

L . —————— "~ ———

local variables may be defined to be 1local within a
procedure definition. In the following example, variable b is

local to the function.

FCT F(x) = LOCAL b_2; C_1; «..

Note that variable ¢ defaults to GLOBAL.

3.3 GLOEBAL variables
GLOBAL variables are defined to be global within a
context level (to be defined). Variables global to a context
are global (unless redefined) to a context created from the
parent context.
a_1;

FCT F(x)=a*x;

3.4 PATTERN PREFIX variables

The pattern directed invocation (PDI) of a procedure
may cause one Oor more arguments associated with the pattern to
be used as arguments in evaluating the procedure. The ? in
front of a variable indicates that the variable will be
supplied with an actual argument when the invocation mechanism
is activated. For example, in the following procedure
definition, the pattern “CAT" is associated with the pattern

prefix variable 7x.

FCT %"CAT",?2x% F(?X)= ...

On invocation of procedure F by pattern "cat", the value of 7?x

is supplied by the pattern invocation process.

Pattern prefix *? variable bindings permits pattern

directed invocation dynamic function names. For example:

cee 2X(Ped,q) -

23

24

3.5 QUOTED variables

Quoted variables are variables that should not be
evaluated (@ prefix) when encountered in normal function
evaluation. A quoted variable may hold the name of another
identifier, arqument, or function which may be passed between

variables until evaluated using the EVAL constructions.

X_oa;
y_X - pass the name of the variable a
b_F(EVAL(y)) ; - computes F(a).

or, another example
X_aF;

Y_Xx;
APPLY (EVAL (v),a) ; - computes F(a).

3.6 MATRIX variables

Matrix variables may be addressed as subscripted arrays
up to 3 dimensicns using square brackets. The indices are
truncated to an integer value. Both positive, 0 and negative

subscripts are allowed. The array A might be addressed as:
d_a[b,c];

If the matrix is being defined for the first time, then a
matrix will be defined with size corresponding to the indices
specified. If it is addressed later with larger indices,

then the matrix is enlarged. For example,
ql4,57_3.416;

will create a matrix q of dimension 4 by 5.

3.7 BOOLEAN variables
Variables may take on the values TRUE (1) or FALSE (0)
in which case they are Boolean variables and may be used in IF

or WHILE constructions.

3.8 SET and LIST variables

Set and list variables are the names of sets or lists
and are defined as such when they are used as sets or lists.
Any variable or constant may be put into a set or 1list. The
set-brackets "{" and "}" are used to explicitly denote sets,
while square krackets are used to explicitly denote lists. The

SET and LIST declarations overide the use {...} Or [+s.].

a_SET (1, varit, list3, set5, function10, ...}
or

a_{1, vari, list3, 5, functionl10, ...};

b_LIST [dog, cat, fish, cat];
or

b_f dog, cat, fish, cat];

3.9 STRING variables

Strings are denoted by the use of double quotes (") and
may be stored in variables and concatinated (using the &
operator), and accessed (using the substring operator

<string>{i TO j)]. as follows:

25

26

s1_"this is a string";

s2_" and another string";

53_s16s2; (the concatination of s1 and s2)
sb_s1{i TO INF]&s2(3 TO 51];

3.10 RELATIONAL TRIPLE variables

Relational triples made with the MAKETRIPLE
construction may be put into triple variables and thus
manipulated by being put into sets or lists, etc. For example,

v1_MAKETRIPLE ("pattern",%"enzyme","reaction");

IF ISTRPVAR(v1)

THEN IF FIRST{(vl1)="pattern"
THEN TRUE ELSE FALSE;

3.11 Type of a variable

It is desirable at times to be able to determine the
type of a variable. This is done by the TYPEIT(x) faunction
which returns a number corresponding to the type of a variable.
Variables are typed according to how they are used. For
exarple,

X_"abc" is a string type and
X_MAKETRIPLE(a,b,c) is a relational triple type.

3.12 Deleting a variable from PRDL

It may be required to delete specific variable
identifiers (eg. where an array is no longer needed). This is
accomplished via the DELETE operator.

DELETE(v) - Delete variable v and its value. Care must

ke taken if the variable v occured in any
association, set or list it must not be deleted.

There
PDF10 file, a
discussed.

<1/0

<proc

4.1 Teletype

The
terminal. PRD
any of three

<TTY

<TTY
<TTY

<{expr

The semantics

TTYLI

TITYSY

TTYCH

REALI

TYPE

QUTST

4. I/0 expressions

are three types of I/0 in PRDL: user teletype,

nd external processor I/0. Each of these will now be

expression>::= <TTY expression’> |
<file I/0 expression> |
<processor I1/0>

essor I/0>::= <PDP10 I/0 expression>
<RTPP I/0 expression>

1/0
user interacts with PRDL via the teletype keyboard
1 is able to accept input from the teletype using
modes.
expression>::= <TTY input> | <TTY output>)
input>::= TTYLINE | TTYSYMBOL | TTYCHAR | REALIN
output>::= TYPE <expr. listd> |
QUTSTR (<expression>)
. list>::= <expr. list> , <expression> |
<expression>

of these operators is as follows:

NE - returns a string terminated by users
carriage return.

MBOL - returns a symbol from user TTY
terminated by a non-alphameric character.

AR - return the next character typed.

N -~ returns a real number terminated by a
non-numeric character.
<expr. list> - types the value of the expr. list

on separate lines as “VALUE=...". If an
expression is an identifier, it will type the
name of the identifier instead of VALUE.

R{(<expression>») - types the string equivalent of
the <expression> but does not output extra
carriage returns.

27

28

4.2 Saving and Restoring a Data Base
It is pessible to setup, save and restore the PRDL data
base either totally or selectively. The data files are in the
form of ASCIT text files such that the data is in the form of
assignment or FCT <expressions>.
<file I/0 expression>::= EXECUTE <file> | EX <file>
SAVEFILE <I/0 modifier> IN <file>
GETFILE <I/0 modifier> FROM <file>
<I/0 modifier>::= <I/0 modifier> , <I/0 modifier> |
ALL | <context expression> | <arg list>
<file>::= <device> <filename> <project-programmer>
<device>::= DSK | DSKB | DSKB | DSKC | SYS | null
<filename>= identifier . identifier | identifier
<project-programmer>::= [number , number }
Thus the data base may be dumped for later restoration by doing

SAVEFILE ALL IN data.pdl;

where data.pdl is the PDP10 file used. On entering PRDL at a

later date, the data base may be restored completely by doing

EXECUTE (or EX) data.pdl;
or

GETFIL1E ALL FROM data.pdl;

4.3 Control of the PDP10 by PRDL

e - ——————————————— - —— —— —

PRDL may control programs that reside external to the
PRDI core image. This permits the addition of separately
constructed programs to become part of the PRDL environment.
Thus, for example a separately built statistical package may
become part of PRDL by the use of the following commands.

Essentially, another job is activated which may receive or

transmit data or control via a pseudo-teletype channel. The
following is the set of pseudo-teletype commands available.

<EDP10 I/0 expression>::= OUTPTY (<string expression>)
INPTY (<channel number>)} | GETPTY |
RELEASEPTY (<channel number>) |
PTYREADY (<channel number>)

OQUTETY- Qutput the given string over a pseud-
teletype channel.

INPTY- Receive data from a pseudo-teletype channel.

GETPTY~- Get a pseudo-teletype channel.

RELEASEPTY~ Release a pseudo-teletype channel.
FTYREADY- Returns TRUE if it is alright to do an

output over a pseudo-teletype channel and
FALSE if input should be done.

4.4 Control of the RTFP by PRIL

The RTPP talks to the PRDL system through two high
speed channels (via the PDP11,20 LINK [ShapB77c}). One is the
PDP8e system teletype (8eTTY¥Y:) through which all commands to
GPPASM/GPPLDR {Lem76b] and BMON2 [Lem77b] are issued as well as
commands to 0S/8 [DEC74] to run various other programs. The
other PDP8e channel is called the high speed line (8eHSP:) and
can be used to send and receive programs from the PDP10, and
send arguments to the RTPP from the PDP10 and send +the PDP10
property lists computed by the RTPP. RTPP compiled programs

will reside on the PDP8e disk and would be activated by PRDL.

Strings may be sent or received on either of these two

channels using the following syntax.

29

30

<RTPP I/0 expression>::= <RTPP control I/0> |
<RTPP data I/0>

<RTPP control I/0>::= OQUTBeTTY (<string expression>) |
IN8eTTY

<RTPP data I/0>::= 0OUT8BeHSP { <string expression>) |
IN8eHSP

The following example implements a sequence to move the
microscope stage of the RTPP (x,y) microns, and then acquire a
list of isclated component features with areas » 10 microns and
perimeters > 25 microns.

FCT WAITFOR(ichar) =
WHILE (ichar NEQ c_IN8eTTY) Do Continue ;

FCT RTPP MSTAGE(x,y,propertyliststring) = <
OUT8eTTY ("CONTROL/C"); " get 058 monitor™
WAITFOR (“.");

"Now run BMOK2 to acquire an image, get its
components property list and send the list
back to PRDL."

OUT8eTTY (".K EMON2"); "Run BMON2"
WAITFOR ("*") ;

OUTBeTTY ("INIT/8"); "Initialize Buffer memory
monitor to 100X
objective lens"

WAITFOR ("*") ;

"Move the stage to relative position (x,y)"

QUT8eTTY ("MOVSTATE, SX,"ECVS (Abs (Int (X)) &
(If (x<0) Then ",/M"));

*WAITFOR (VWxU') ;

OUT8eTTY ("MOVSTATE, SY, "6CVS (Abs (Int (y)) &
(If (y<0) Then *,/M"));

*WAITFOR (" *") ;

"position the buffer memories at the optical
center of the microscope."

QUTB8eTTY ("ALL384Y) ;

WATITFOR ("") ;

OUT8eTTY ("GET,BM3%"); "acquire video data in
central BM"
WAITFOR ("%") ;

"Smooth the image beafore measuring segments

by subtracting the Laplacian from the average
of the image."

OUT8eTTY ("EPM2_LAPLACIAN,BM3"Y) ;

WAITFOR ("*%) ;

QUT8eTTY ("BM1_AVGS8,BN3M) ;
WAITFOR ("*") ;

O0UT8eTTY ("EMO_BM1,SUB,BNM2");
WAITFOR ("*4) ;

"Assuming the model of +the material to be
segmented has two peaks, find the minimum
between the +two peaks for later used in
thresholding the images"

OUT8eTTY ("HISTOGRAM, BMO™) ;

WAITFOR ("%W)

OUT8eTTY ("SMOOTHHISTOGRAM") ;
WAITFOR ("*") ;

"Now threshold the 1image at the histogram
minimum which is saved in Q-register variable
QRC.M

OUT8eTTY ("BMO_SLICE,QRC,255");

WAITFOR (" %) ;

"Segment the sliced image with area sizing
of 10 microns and perimeter sizing of 25
microns. The /M switch specifies more input
specifications and /H £fills holes in the
objects."
OUT8eTTY ("BM1_SEGBND, BHO"E

" JHOLEFILLYE

"/INITFREESTORE"E

" /MORESIZING") ;
WAITPOR ("x"%) ;
CUTB8eTTY ("10,0%) ; "area sizing"
WATTFOR (%) 3
OUT8eTTY ("25/1%") ; "perimeter sizing"
WATTPFOR (M%"%) 3
OUT8eTTY (null) ; "terminate the sizing list"®
WAITFOR ("*") ;

"Acquire the property list string of segmented
data."
propertyliststring_Null;
While True Do

Begin "get data string®

1_length(stmp_IN8eTTY) ;

For i_1 Step 1 Until 1 Do

If stmp[i For 1J=4*v
Then Done;

propertyliststring_propertyliststringéstmp;

End "get data string";
WAITFOR {"*n) ;

OUT8eTTY ("EXTIT™) ;
WAITFOR(".") ;

31

32

WAITFOR(".") ;
>

At each step, we vwant to wait for a confirmation from the PDP8e
that the command has been processed. The WAITFOR(character)

function serves this purpose.

5. Graphics Operators

————— v ————————_— -

Line drawing graphics functions are available as

builtin procedures. These basic set of graphics functions mimic

the basic set of g¢graphics procedures in the PDP10 Omnigraph

system [CCB76].

Pictures in OMNI are denoted by picture numbers which

are the set of positive integers greater than 0. The graphics
display may be one of several different types: DEC-340,

DEC-GTU40, Tektronics 4012, 4010, #8014, etc.

<graphics expression>::= <Omni builtin> <actual arguments>

<Omni builtin>::= DAPPEND | DCLOSE | DCROSS | DGET |
DDONE | DDONE1 | DDRAW | DINI | DINT | DKILL |
DMOVE | DOPEN | DPLOT | DPOST { DREL | DTEXT |
DISCALE { DUNPOST | FASTA | FASTD | SLOWA |

SLOWD | DWIND
The Semantics of these functions is given as follows.

DAPPEND (Komni number>) - append DDRAWs etc to specified

picture.

DCLOSE(<omni number>») - <close DOPENed or DAPPENDed
picture.

DCROSS (op,Xxyarray.inchar) - when the crosshair is

enabled on the Tektronix TK4012 class of
terminals and a character is typed, return the
value of the x,y crosshair in the array xyarray
and the character typed in inchar.

DGET - get DINI specified display

DDONE - erase the screen and execute set of commands
for storage display.

DDONET1 - do not erase the screen and execute set of
commands for storage display.

DDRAW (x,y) - draw at DINT specified density to x,y.

DINI(<display number>,<I/0 channel>,<display buff>,<buff sized)
- initialize OMNIGRAPH.

33

34
DINT(<intensity>) - set the drawing intensity (function of
display characteristics).
DKILL (omni number> - delete omni picture.
DMOVE (x,y) - move the cursor (without drawing) to x,y.
DOPEN (<omni number>) - open a new omni picture.
DPOST (Komni number>) - post the omni picture.

DPLOT (<display buffer>,<file>) - PLOT the omni picture
composed in the display buffer.

DREL - release the display previously gotten with DGET.
DTEXT (<string expression>) - display text at current cursor.
DTSCALE (Ktext size>) - set the text size (see [CCB76}).

DUNPOST {(<omni number>) - unpost but do not delete the specified
omni picture,

FASTA - turn on the Tektronix 4012 "fast ASCII" text
mode where text does not get stored on the
screen.

FASTD - turn on the Tektronix 4012 Yfast vector" line

drawing mode where line drawings do not get
stored on the screen.

SLOWA - turn off the fast text mode if on.
SLOWD - turn off the fast line drawing mode if on.

DWIND - specifies the viewing window.

The following example briefly illustrates how these
commands -may be wused with composition of functions to draw a
SIN wave of varying sampling distances.

*DINT (4,0,0,0) 3

*DWIND (0, TWOPI,-1,1)$

*DGET$

*FCT DRAWSIN(x)=BEGIN DMOVE(0,0); FOR i_0 STEP x
UNTIL TWOPI DO DDRAW(i,SIN(i)) END$

*DOPEN (1) $

*DRAWSIN(.1) §

*DPOST (1) $

*DDONE$

6. EVAL and APPLY operators

It is possible +to indirectly specify the names of
identifiers to be used as variables (arguments) or procedure
names. The names of the indirect identifiers may be assigned
with the quote (@) operation., These variables may then be
manipulated by the following operators.

<builtin>::= EVAL (<expression>) |

APPLY (<f-expr> , <a-expr> , <ordering> } |
PROG (<p-list> , <a-expr> , <ordering> }
<f-expr>::= <list expression>

<a-expr>::= <list expression>

<p-exprr>::= (<p-expr> , <f-expr>) | <f-expr>

<ordering>::= WAW|WPM

In its most general form the PROG and APPLY function
(see below), may contain a list of procedures and a list of
lists of arguments. This essentially permits a convolution of
the procedures with the arguments. A gquestion arises as to the
order in which the convolution is accomplished. Under some
circumstances it may be desirable to let the procedure list
vary most quickly while in others it may be more desirable to
let the argument list vary the quickest. The user can specify
the ordering in the +third argument of the function. "A"
indicates that the arguwents are to be scanned most rapidly
while "P" jndicates that the procedures are to be scanned most
rapidly. If either the procedure 1list or the argument list

contains one element then the third argument is ignored.

EVAL(X) - Return the value of the evaluation of quoted
variable x.

APPLY{(F,x,) - Apply function F to a 1list of arguments
arguments contained in list x
and return F(x) .

35

36

PROG(plist,arglist,) - apply the 1list of functions
plist to the list of arguments
in arglist and do not stop until
the plist is empty. i.e. whereas
possibilities 1list evaluation
[see below](using the APPLY)
stops on evaluating a FALSE.
Returns FALSE when done.

CONTINUE - may be placed in either the argument or
procedure 1list and has the
effect of stopping the current

level of convolution and
evaluating the next element
at the top level of
convolution.

NOMORE - is a procedure which may be SPLICED into the

argument or procedure list. It
has the effect of halting the
APPLY or PROG and returning
FALSE.
The following are some examples of how EVAL, APPLY, and PROG may
be used:

q_aF;
EVAL{(q) ;

would evaluate to PF.

APELY (F,37};
and

APPLY(EVAL{q) .37) ;:
would bhoth evaluate F(37).

q_{aF,aG, aH} ;
PROG (g, 37)

would evaluate F(37), G(37), and H(37) and would return H(37).

It should be noted that the list operator SPLICE may be
used at any time +to dynamically expand the lengths of the

procedure or argument lists.

6.1 Possibility Lists

There are times when the ability to evaluate

sequentially a list of procedures on a specified list of
arguments or to evaluate a procedure on a list of lists of
arguments is useful when a boolean TRUE or FALSE is returned.
This corresponds to a success or failure of a method in trying
to solve a subproblem. These types of operations are called
possibility 1list operations since each element either in the
procedure list or argument list may be considered to be a new
possibility to be tried in the attainment of a solution to a
problem. The concept of a possibility 1list is taken from
CONNIVER. If a procedure requires fewer arguments than is given
to it, then it takes the required number. If there are two few
arguments, then the function can not be evaluated and returns
either FALSE or an error message.

The procedures in the 1list are tried one at a time
until either a procedure returns TRUE or the list is empty (in
which <case it returns FALSE). Similarly, argument lists may be
applied to a single procedure until TRUE or FALSE is returned.
Therefore, the evaluation of a possibilities 1list dis the
evaluation of a disjunction of procedures or the same procedure
with different arguments. The user c¢an determine what
procedure and/or arguments suceeded by looking at the system
variable "LASTPOSSIBILITY". The interesting aspect of these
possibilities lists is that they may be used dynamically,
whereas normally procedures and arguments once created are
static.

The following example illustrates the interpretation of
a possibility list.

plist_{F1,F2,...,Fn};
arglist_{al,a2,...,am];
WHILE arglist NEQ null DO
IF APPLY (plist,arglist,)
THEN PUT lastpossibility INTO thingstodo;

The possibilities list may also specify procedures and

arguments in different contexts as
a_[al,<alpha>a2,<betar>a3,...,anj.

Parentheses may in general be used to delimit the range of a

context specification. For example,

a_[al1,<alpha>(a2,a3),s..,an].

37

38

7. Pattern Directed Invocation

i P o v i o m A o e S S e i

As 1is mentioned in [ShapB74], there are times when
implicit relationships should exist between data types. One
could have data driven invocation rather than have explicit
calls to procedures. This can be especially useful when
unexpected events occur, e.d. by-products are produced. In
CELMOD this can be useful for invoking high level routines from
low level procedures. To accomplish this a pattern may be
specified as a prefix (hetween +two "%"s) to a functional

definition.

A pattern is an expression which evaluates to a string
or Boolean expression of strings which has the internally

created associative triple:

"PATTEEN" XOR <pattern Boolean> EQV <list of procedures>,.

This triple is created whenever a function is defined
that specifies a pattern. Procedures associated with the
pattern may be selectively activated by the procedure
ASSERT (pattern, args). The pattern Boolean and an optional
pattern variable 1list (? variable 1instantiation 1list) are
embedded in a pair of "%"'s. The optional pattern variable list
allows arguments to be passed to procedures that are being
activated by the pattern invocation. The syntax for the pattern

prefix is:

<pattern prefix>::= % <pattern Boolean> ,
<pattern ?v-list> %
<{pattern Boolean>::= <disj. pattern Boolean> |{
<pattern Boolean> OR <disdj. pattern Boolean>
<disj. pattern Boolean>::= <neg. pattern Boolean> |

<disj. pattern Boolean> AND <neg. pattern Boolean>

<neg. pattern Boolean>::= NOT <string expression> |
{ <pattern Boolean>)} |
NOT (<pattern Boolean> } |
<string expression>

<pattern ?v-list>::= <pattern ?v-list> , <?-ident> |
<?-ident>

<?ident>::= ? identifier

A pattern Boolean might be:

%(("lobated" AND "nucleated") OR ("nucleated" AND
"granulocytic"))}% - implies polymorph.

Negative expressions are very useful, as for example
®"NUCLEUS" AND "CELL"% - implies white cells.

%¥NOT "NUCLEUS"™ AND "CELL"% - implies non-nucleated cells.

where the above are pattern directed invocation prefixes used

in procedure definitions.
A pattern prefix variable list might be:
{(?x,7y,%2).

Arguments to be supplied by the invocation mechanism (see
ASSERT below) are denoted by the use of the "?x" construction

discussed'above.
FCT %<pattern Boolean>,?x,?2y% F(?x,?y) = <f-body(?x,7Y)>;

Those procedure names are then associated with a
pattern and are entered 1into a system pattern list so that
whenever the pattern is ASSERTed, an internal APPLY routine may
(if, for example, their value 1is TRUE) evaluate the set of

procedures which have that pattern. Argument 1lists are

39

40

instantiated with pattern data through the ASSERT construction.

A pattern may be a pattern name or a Boolean expression

of pattern names. The ASSERT procedure causes the pattern

mentioned to be made TRUE while DEASSERTed patterns are

FALSE.

<pattern-D-I expr>::= <pattern request expr> |
ASSERT (<pattern Boolean>, <pattern ?v-list>) |
DEASSERT (<pattern Beolean>) |
ERASE (<pattern Boolean>)

The pattern invocation functions are:

assumed

ASSERT (pattern, ?args) - which makes the specified

pattern TRUE and associates the

arguments with it. If a pattern

Boolean is logically true,

then

the associated procedures are

evaluated on the associated

arguments (see PROG) .

DEASSERT(pattern) = set a pattern to FALSE so

ERASE (pattern)

that the pattern may no longer

hold +true in later

Boolean

patterns. This will not back up

previous pattern

directed

invocations, but will prevent

future ones. It is also

useful

in algorithms for proving the

negation of patterns.

- Remove pattern from data base.

The ASSERT and conjuctive boolean pattern may be

ililustrated by the following example:

%"LOBATED" AND "NUCLEATED"Y™, ?x% POLY (?Xx)

Here, if a bottom-up shape procedure finds a lobated
nucleus, and labels it as such, a proof of a poly will be
attempted on the argument instantiated by the one of the calls
to ASSERT when all pattern prefixes that make the pattern

Boolean true are ASSERTed. This may be accomplished by

ASSERT (YLOBATED", blob9);
and

ASSERT ("NUCLEATED", blob9);

In addition, primitive pattern directed invocation may
be invoked if specific patterns or relational triples are added
or deleted from the data base. This is effected with the
following commands:

<pattern request expression>::= <IF-PDI>

<pattern expression> THEN <expression>
<IF-PDI>::= IFADDED | IFERASED

For example,

IFADDED <pattern expression> THEN <expression>>;

IFERASED <pattern expression> THEN <expression>>;

Note that these forms are really special cases of the general

pattern function definition.

41

42

8. Modelling Contexts

A —— - ——

The addition, deletion or replacement of a rule or of
data may be viewed as a change in the axioms for which a model
holds. Generally, this is viewed as an iteration toward a more
informed model. In PRDL, this is performed by 1labelling all
functions (rules) and data as to a particular "context" to
which they are said to belong. If the contexts are represented
by nodes, then manipulating contexts corresponds to inserting,
deleting or replacing nodes or group of nodes 1in the graph
world model. The ability to segment this graph structure is
imperative. Without a context graph segmenting mechanism the
graph structure becomes too cumbersome for a wuser. Thus,
concepts must be placed into their appropriate context bhlocks,
isolated to some degree from other blocks. This accomplishes
two needs of the user. First it reduces the amount of
interaction among elements of the data base. Second it makes it

easier for the user to grasp the contents of the world model.

The context mechanism permits a segmentation of the
data bkase into 1logical components called contexts as in
[McD72]. The contexts may contain static and procedural data
peculiar tc¢ a particular part or way of looking at the model.
By partioning the data in this fashion, interaction among the
data base elements and consequently search time are reduced.
Also, from a conceptual point of view a user is able to keep

track of the data base by compartmentalizing his ideas.

+

The context mechanism is organized in a tree structure.

The root of the tree contains the initial information while its
offspring contain newer information. Thus, if one is looking
at a particular node of the tree, the model contents of that
node are visible, plus the model contents of all nodes in the
branch leading from the node to the root except for those items
in the ancestor nodes which are different from the items in the

descendent nodes.

Thus, one may define‘ the current context as a the
result of a merging of the context blocks from the one
currently being examined to the root context block. Conflicting
information contained in a descendent overrides the information
in an ancestor. By permitting the tree to branch out one may
have several contexts active at one time, but only one is

currently visible, namely the branch which is pointed to.

The merging operation may be further described in the
fellowing way:

let C{i) be the i'th node in the branch of a tree.

let C(i-1) be the immediate ancestor of the i'th node.

let R(i) be the set of all objects in C(i-1) that were
redefined in C(i-1).

Let 3(i} be the set of all new objects added to C(i-1).

lLet D(i) be the set of all objects deleted from C(i-1).

Then a merge betvween two levels is defined recursively:

C(0)
C (i)

[initial data base]
A(i) UNION [C(i=1) - R{(i) - D(i)]

i

This mechanism goes under the assumption that relations
with the same name have been updated as well as excluding older
functions which are not found in the new context. When a merge
occurs a temporary context is produced which contains the

updated information. The context then gets merged with its

43

44

ancestral context and continues until the root of the tree is
reached. Copies of all the properties of the relations
should be made as the merging proceeds. These temporary
contexts should not necessarily be destroyed, because of the
work expended to create them. They can become roots of other

context trees.

The +tree formalism eliminates some of the overhead to
the user in keeping track of his data base, e.g., his most

recent assertions and denials.

A model context contains user defined procedures,
static constants, variables, patterns and associative triple
relations. These are said to hold in the context they are
defined in and in other contexts inside of their range Thus a
procedure (or data object) name may actually correspond to two

different procedures {(or data objects) in different contexts.

On creating a nevw context, with the CREATE operator,
functicns (or data cbjects) not redefined are carried over from
the last context visited. Functions (or data objects) which are
redefined are used in the new context and may be fixed in it
with the REMEMBER operator. A context has a name and may
thus be referenced.
<context expression>::= CREATE <context identifier> |
REMEMBER <list expression> IN <context identifier> |
RESTORE <context identifier> |
FORGET <list expression> IN <context identifier> |
MERGE <list expression> INTO <context identifier> |
LASTCONTEXT | CURRENTCONTEXT

<context identifier>::= identifier

The semantics is given as followus:

CREATE ¢ - create a new context called ¢ from the

current context. Eeturn name of
the new context.

REMEMBER {al,a2,...,am} IN ¢ - creates a new context c,
if it does not already. exist,
and "preserve" al through am in
it.

LASTCONTEXT - restore the 1last context accessed,
erasing those procedures, etc.
which were not REMEMBERED in the
current context.

RESTORE ¢ - gdgo to an old context ¢ from the current
context. Functions defined in
the current context are deleted
unless they are "fixed" by doing
a REMEMBER operation.

FORGET {at,a2,...,am} FROM c - removes &al1,a2,+..,am
from context c.

MERGE fa,...,Y} INTO z - merges (and deletes) contexts
a through y into context z.

CURRENTCONTEXT - Return the name of the current
context as a quoted (@) variable.
A context may also be used in the partial evaluation of
a function or data object where the definition of the
subexpression 1is gotten from the specified context, but the
current context 1is returned to for the remainder of the
evaluation. A pattern context 1is specified in Hgw, nyu

brackets preceding the function or data object. For example,

<alpha>A (x,y) - context alpha applies to whole function,

or

A (<beta>x,y) - context beta applies only to x,

or

B(x,<gamma>h (y)) - context gamma applies only to A(y).

Context names themselves may be used as context

variables in a recursive manner. For example, let normal be an

45

46

existing context name then

c1_anormal;
or
REMEMBER c¢1 IN alpha;
RESTORE alpha;
<EVAL(c1)>Q - the context of Q is specified by variable
cl.

This permits dynamic model domains by allowing the shifting of

the contexts under which the models hold.

9. Weighting Functions

. —— v ————— " - ——

PRDL syntax also allows the specification of dynamic
weighting functions for use in determining the order in which
procedures in a Boolean expression should be evaluated - or if
they should be evaluated at all, The weights are evaluated
before the associated functions. Then the functions are
evaluated according to the results of the weighting function
evaluations. If a weighting function is FALSE (0) then the
associated function 1is not evaluated. If two weighting
functions W1 and W2 evaluate to w1 and w2 with w2>w1, then the
function associated with W2 will be evaluated before that
associated with W1. The weighting function expression is either

disjunction or conjunction of functions.

<weight prefix>::= ! <expression> !

This can be illustrated as follows. Let F(y), G(y)., and
H(y) be weighting functions (FCT with the FCT construction) ;

then the phrase

YP(y) ! SHAPE(X) OR !G(y)!AREA(X) OR !H(y) !TEXTURE(X)

might evaluate SHAPE, AREA or TEXTURE first depending on which
has a higher weight. Weighting functions are useful only when
the associated procedure tc be evaluated is much more costly to
compute than the weighting function. In the above example,
the weighting functions (F,G,H) are computed first and then the

function associated with the highest weight is selected.

47

48

For example, this might be the case in the above
exarple if the object y being looked at had a simple predicate
test for correct AREA, a more complex predicate for SHAPE, and
a most complex predicate for TEXTURE. As the weighting
functions are really a function of the top level object being
descrited, the weights are usually heuristically adjusted to

the globhal description rather than being local property values.

Weighting functions may also evaluate to Boolean
values. If a weighting function returns TRUE it will always
cause its associated function to be evaluated. If the weight

returns PFALSE, its associated function is never evaluated.

Conjunctions of weighted procedures are also allowed,
in which case the weighting function determines only which

function to try first since all functions must be satisfied.

In a sense, the use of vweighting functions is an
efficient mechanism for the coding of multiple models using the
same basic model viewed 1in different global (weighting

function) contexts.

9.1 Weighting functions to implement levels of abstraction
Sacerdoti [Sac74] uses a concept similar to dynamic
weighting functions he <calls "planning in an abstraction
space". The prcocblem is expressed as a goal. with "criticality
values" associated with the various parts of the goal. Thus on
solving the problem, one starts by attempting to prove those

parts with only the highest <criticality values, ignoring

temporarily the components with lower criticality values. The
probler is then solved recursively at successively lower
hierarchies of abstraction taking into account those components

with successively lower values of criticality.

The use of weighting functions in goal evaluation
corresponds to the evaluation in an abstraction search space.
For example: Given the criticality function C and subgoals

AREA, SHAPE, and TEXTURE,

where: C(y,n) = if y>n then TRUE else FALSE;

then,

1C(y,2) !SHAPE(x) AND I1C(y,1) 'AREA(x)}) AND !1C(y.,3) !TEXTURE (x);

Depending on the <criticality value y of the level of
abstraction, the conjunction would in order of highest
criticality consider

1. texture

2. texture, shape
3. texture, shape, area.

49

50

10. Generator procedures

A ———————————— -

As in CONNIVER and ‘SAIL, in PRDL one has the ability to
search the data base using generator procedures where one
maintains the state of the generator in between calls to it.
For example, the generator could supply (one per call) a set of
procedure or variable names. Such operators as CONNIVER's
AU-REVIOR/ADIEU, or SUCCEED/FRIL with matching procedures in
SAIL allow the generator procedure to be reactivated where it
last left off. This is useful when doing a FOREACH search
where a generator function may be used as in the <element
list>. The function c¢an be restablished for entry at the
beginning by either executing ADIEU within the body of the
generator function or by specifing the function reset external

to the generator by ADIEU <function name>,

PRDL implements generator procedures explicitly by
using a construction similar to CONNIVER. For example,

FCT GEN1 =

FOREACH x SUCHTHAT (NUCLEUS XOR x EQV LARGE) DO
BEGIN
<SOME PROCESS PRODUCIKG AR VALUE OR FALSE>;

AU-REVOIR;

Comment -—----=-—---cemscea————-
returns here when FOREACH next
requested. Control returns just
after this point, but within the
range of the DO. The function
can be reset when ADIEU is executed.

L4
Control is put here after an AU-REVOIR;
END;

11. RTPP functions

————— et T ol A i i B o

The ability +to define and invoke RTPP [Lem77a]
functions is required for image processing to be useful in such
a interactive computing environment. These RTPP functions
are written in MAINSAIL [Wil75]. The output of the MAINSAIL
compiler (on the PDP10) is sent to +the RTPP where the RTPP
assembler GPPASM {Lem76b] assembles a load module for the RTPP.
See ([Lem77a], [(Lem76b]) for the definition of RTPP operators
and assembly language. RTPP functions will either affect the
RTPP system state of the RTPP/microscope system or request a
function be computed by the RTPP. The resultant value (be it a
scalar or list) is then returned to PBDL to be used as with any

other FRDL procedure,

The following is an example of a GPP function. When
evaluated, it returns a numeric value for +the area of the
specified object.

FCT GPP AREA (BMi,BMij)=
Begin "Compute area"

< "-.nu-..c-..---c.----.-....-..lll.-ouaﬂioooo...-

BEGIN "area"
"Compute area of BMi under mask BMj"
INTEGER iowordi,ioword2,x,y,area;

"[1] Reset the area counter"
area_0;
" setup line buffer channel information"
ioword1_(256 words,256 lines,horiz,8-bit,read,I1,BMi) ;
ioword2_(256 words,256 lines,horiz,8-bit,read,I2,BM]);

"f 2] Get the lines for the image and its mask"
For y_0 Step 1 Until 255 Do
Begin "Process line"

STARTCODE "get lines"
BMIO iowordl,y,LINE

51

52

used to

BMIO ioword2,y,LINE
END "get lines";

"[2.1] Position the line buffers' dynamic address
vectors at left edge of the screen"
XRST_($I1 Lor 3$I2 Lor $X);

"[2.2] Compute masked area for central neighborhood"
For x_0 step 1 Until 255 Do
Begin "Process pixel"
If (10 Land I20)
Then area_area+1;
End "Process pixel";

End "Process line";

"[3] Send data back to PDP8e via 8e¢/GPP channel
and forward it to PREDL®
00T (BeHSP:, ("area="gECVS(area) §CRLF) ;

"Signal Mainsail runtime that the function is done"
HALT Done;

ERD “area";
" "

L A A R R I R I T T R I O R

"PRDL now reads.in ASCII data from the high speed
channel.™

Intscan {(8eHSP) ;

End “Compute areal;

return a real number"

The AREA procedure, once defined, could then be

compose other PRDL functions as:

FCT NUCLEARAREA (BHi)=
AREA (BMi, NUCLEARBLOB (BMi)) ;

where the RTPP function NUCLEARBLOB(BMi} computes a mask and

stores it in BMJj and returns the name of BMj. That is,

FCT NUCLEARBLOB (BMi) =
IF (BMj_FINDNUCBLOB (BMi))
AND NUCAREA (BM5))
THEN RETURN BMj ELSE RETURN NIL;

Given a number of such RTPP functions and the ability

to easily add new ones, one can compose more complex modelling

functions such as:

FCT MONOCYTE (x)=
NUCLEUS (X) <(b1 GE NARER(X) LT a1l)
AND (b2 GE NSHAPE (x) LT a2)

AND (bn GE NTXTUR5(x) LT an)>
AND CYTOPLASM (X)<(d1 GE CAREA (X) LT c1)
AND (42 GE CSHAPE (x) LT c2)

AND (dn GE CTXTURS5(x) LT cn)>

53

34

12. PRDL Processes

—————— A ————— v ——

A PRDL process is a user defined function that may
‘appear' to run in parallel with other ERDL functions. Since in
reality these functions will be able to run only on a single
CPU, actual parallelism is not possible. & schedular within
PRDL will produce the parallel effect. The syntax for

processes was derived from that of SAIL.
A process can be in any one of four possible states:
1. RONNING - the process has control over the CPU.

2. READY - the process is waiting for a chance to get
control of the CPU. The process would run currently if another

Process was not in control of the CPU.

3. SUSPENDED - The process has been halted and is
vaiting for an external signal from another process to begin

execution.

L. TERMINATED - the process has been removed from

existence. It can no longer run.

12.1 Process control operators

Several primitives are required to manipulate
processes. These are defined in the following BNF syntax and

discussed below.

<{process expression>:;:= SPROUT (<process name> ,
<process function> , <options>) |
TERMINATE (<process name>) |
SUSPEND (<process name> } |
RESUME (<process name> , <return name> ,
<options>) |
JOIN (<set of process names>)

1. SPROUT (<process name>,<process function>,<options>}) -
<{prccess name> is assigned to <process function>. This process
name is the name of the created process (and associated
arguments in <process function>). Options include:

a. Time quantum to be run based on clock.

b. Priority 1level.

c. Switch indicating whether or not newly created
processes should be suspended.

d. A switch indicating whether or not the process
in which the SPROUT occurred should be
suspended.

e. A switch indicating whether or not to continue
to run the process in which the SPROUT occurred.

The default option 1is that the process in which the
SPROUT statement occurred will revert to ready status and the

newly sprouted process will become a running process.
2. TERMINATE (<process name>) - terminate process.

3. SUSPEND (Kprocess name>) - set the state of the
indicated process to suspended. If the process suspended is
currently running then suspend it and the schedular will find
another process to run. A message will be sent to the user
indicating an error if the process suspended has already been

terminated.

4, RESUME (<process name>,<return name>,<options>} -

provides a means for one process to restore a suspended process

56

to ready/running status while at the same time communicating a
<return name> variable to the awakened process. The process
doing the resuming may specify what its own state should be by
the use of <options>. Note that RESUME returns a value. This
value is the <return name> of the process doing the resuming.
Thus, the only way a suspended process will receive a message
upon resumption is if it was suspended with the RESUME
primitive. The options are:

a. Current process will not be suspended but made ready.

b. Current process will be terminated.

C. Current process will not be suspended but will be
made running. The newly resumed process will be
made ready.

d. Newly resumed process will be made ready instead of
running and if (c) is not true, then rescheduling
OCCurs.

The default is that the current process is suspended and the

newly resumed process will be made running.

5. JOIN(<set expression of process names>) - the
current process is suspended until all of the processes of a
set are terminated. One must be careful not to cause infinite

loops.

12.2 Process scheduling

Whenever the currently running process performs some
action that causes its status to change (to ready, suspended,
or ‘terminated) without specifying which process to run next,
the schedular will be ASSERTed. It chooses a process from the
poocl of Ready processes using a round-robin ordered priority

list. The one chosen becomes a running process. If there is

nothing to run then an error message is printed. Normally, the

teletype listen loop is the initial process.

12.3 Safe region declarations

It may be desirable to have certain sections of
function code have safe regions where operations such as
SUSPEND, TERMINATE or schedule {quantum timeout) would not be
operative until the safe regions are passed. This
corresponds to turning off interrupts during critical
operations of a system. The operators are SAFE and UNSAFE with

UNSAFE being the default.

58

13. Modelling using composition of procedures

i — = W A e - ————— . A ————

Modelling may be performed using composition. For
example, theorems about groups of cells may be created
using previous definitions of parts of cells:

FCT CELLTYPE (X)=

IF(NOT NUCLEUS (x))
THEN ASSERT (nonnucleated,x)
ELSE ASSERT (nucleated,x) ;
or it could return
THEN FALSE ELSE TRUE;

CELLTYPE(x) could evaluate either to a pattern directed
invocation or tc TRUE/FALSE depending on the definition. One
might want to ASSERT the pattern "nucleated" or "nonnucleated"

so that procedures 1looking for these patterns might be

ASSERTed.

Some functions are for effect while others are (as in
the above examples) for cowmputation. For example, to post an
OMNI picture DFOST is evaluated. To control‘the RTPP microscope
stage, one might want to move the x stage direction by +5 stage
steps. Then the DDTG function
MOVESTAGE (+5,5X,'RELative'} would be evaluated. This would
call on the RTPP to move the stage by executing a command in

DDTG.

14. Top down and bottom up procedural definition

e e M e e W W M W Y M N MR T T S T - —— -

The system has tvwo modes of defining procedures. The
norral way of defining procedures in an interactive system is
bottom up. That is procedures which are used in the composition
of new procedures must be defined in the system before the new

procedures are evaluated.

By declaring TOP-DOWK-MODE, one waves this type of
protection with the advantage that +top down description may
proceed. In bottom up mode reentered by typing BOTTOM-UP-MODE
if one tries to compose a procedure from one not defined, an

error message will be returned.

Top down mode will let you define the procedure,
flagging any undefined procedures as such in the symbol table.

The message

WPROCEDURE --- UNDEFINED!®

may be turned off by typing NO-TOP-DOWN-MESSAGES.

Note that neither bottom up nor top down will evaluate
an undefined ©procedure. Top down mode will, however, on
detecting an undefined procedure in the pushdown stack, save
the stack, request a definition from the user, then restore the
stack with control continuing from the procedure (or variable)
just defined. This form of operation faciliates incremental

model tuilding.

59

60

15. Special Grammatical Functions

- ———————— - o = i iy e — - ———

Since PRDL's syntactic front end is constructed from a
parser generator ([ShapB76], [ShapB77a]), special subgrammars
may be included which function on totally different syntactic
elements than the PRDL language. In particular, a subgrammar
may be defined which describes the shape of an object. Thus,
when a string describing the shape of RNA strands, leukocytes
or red blood cells for example, is scanned the parse will note
special features and via the semantic mechanisms of PRDL
indicate where these features lie on the contour. Since the
grammar describes the object, it becomes possible to alter the
description or note other features by altering the grammatical

rules.

The following 1is a subgrammar that detects feature
vertices and vertex bases on RNA contours. The numbers
preceding the rules indicate semantic actions that should be
taken when a reduction occurs, e.gqg. mark the current segment as
a vertex point. The numbers that appear after a rule specify
token numbers. The grammar shown here produces a 1list of
critical points indicating in what segments the vertices or
vertex bases appear. It should be noted that the primitive
elements for the descriptive string were derived from the
circle transform descriptor [ShapB77h].

523<EXPRESSION>~-~> <RNAD>S

<RNA>--><SEGMENT>$

<SEGMENT>--><VERTEX>§

<SEGMENT>--> <SIDE>$

<SEGMENT>--> <SIDE> <VERTEX>S$
55$<SIDE>--> <VERTEX> <SIDE>$

<SEGMENT>--> XCORNERS$S
<SEGMENT>--> <SIDE> <SEGMENT>$
<SEGMENT>--> <SEGMENT> <SIDE>}
<SEGMENT>--> <SEGMENT> <VERTEX>$
<SEGMENT>~~-> <VERTEX> <SEGMENT>$
55$<SIDE>--> <VERTEX> <BREAK>$
<VERTEX>--><VERTEXI> <A>$
558<SIDE>--><VERTEX> %
558<SIDE>=-~-> <VERTEX> <C>$
558<SIDE>--> <VBASE>$

<A>--><1A> SHORTS$6

<BREAK>--> SHORTS$6
S0$<VERTEX>--> <BREAK> <A>S$
55$<SIDE>--> <BREAK> <C>$
<LXCORNER>--> XCORNER <BREAK>35
50 $<VERTEX>--> <LXCORNER> XCORNERS$5
55$<SIDE>--> <LXCORNER> <BREAK>$
558<SIDE>--> XCORNER <VERTEX>$5
558<SIDE>--> <LXCORNER> <C>§%
558<SIDE>--> <SIDE> <BREAK>$
55$<SIDE>~-> XCORNER $5
558<SIDE>--> <SIDE> <C>%
558<SIDE>--> <SIDE> §
S50$<VERTEX>--><A>%

55$<SIDE>--> %

55%<SIDE>--> <C>%
S54$<VBASE>--><D>$

<VBASE>~~> <VBASE> <D>§

<D>=--> <D> SHORTS$6

518<a>--> XSHARPCURVES3
51$<A>--> XSHARPCORNERS4
51$-~> STRAIGHTS$7
518--> XMODCURVES$17
51$--> VMODCURVE$1ES
51$--> VMODSHARPKNEES$19
51$--> XSHARPKNEE$14
518$<C>-~-> VCORNER$13
518<C>--> SMOOTH$11
51$<D>~-> VSHARPCOCRNERS$12
51$<D>--> VMODSHARPCURVE$ 18
51$<D>--> VSHARPCURVE$16

2 file containing a

object

is a parse of the shape and in the current

string

namber of features that
value of the string.
*EX (*RNA4.DES"} $

=7

shape description of an

may be executed via the EX command of PRDL. The result

implementation the

were found in an RNA contour is the

61

62

Higher 1level PRDL functions may be wused with this
technique. For example, objects or parts of objects may be
placed in sets denoting various shape catagories. These may be
further manipulated by PRDL functions, Pattern directed
invocation may also be ermployed when a specific shape feature

is detected.

16. Interactive command and function editors

e — —— i —— i b

The normal ({non-edit) top level teletype input is
norrally terminated with an escape character. 3 1low level
editing capability is built into the +top 1level teletype
interface for command entry.

“A - advance line pointer and print out the edit 1line.
“B - backup the line pointer and print out the edit
line.
"D - delete the current edit line if it exists.
- print this message.
- print the front part of the buffer up to but not
including the current line.
- delete the entire edit buffer.
- print the current line.
- print the entire edit buffer.
bout - delete the previous character (works across
crlfs).
backspace - same as rubout.
escape - terminate input and cause PRDL to evaluate it.

= =R

r

As commands are entered into the PRDL system, parsed,
and executed, one has occasion to redo the last command or
previously entered function. Therefore, the last command
entered will be saved in the string variable LASTCMD. To edit
and reexecute 1it, a simple string editor may be used to edit,
save and execute different strings. The editor is entered by

evaluating
EDIT <function name> or <string variable>.

If no string name 1is given, then LASTCMD is assumed. This
allows functions to be edited and new functions to be created

from cld without constant retyping.

The editing commands for the EDIT operator given below

63

64

in table 1 are similar to a subset of those in the TECO editor
and the ALTER function in +the PDP10 SO0S text editor (both
editors are used on the PDP10). In the following table $
denotes the escape character.

Table 1. EDIT commands

——— A A e i e S e e ——————

B Move the pointer to the beginning of the string.
ncC Space forward(+n) /backward(-n) characters, default 1.
nD Delete next(+n)/last (-n) characters.
E<file>$ Read in the string contained in the specified file.
F<text>$ Find the next occurance of <text>.
I<text>$ Insert text up to the escape character.
J Break line and stick rest at front of next line.
nlL Move the pointer n lines forward, (-n backward),
0 current line.
nP Print n lines forward (n>0) or n lines backward,
(n<0). If n=0 then print the current line.
C guit the EDIT and return to PRDIL.

nR<t1>$<t2>% Replace next n forward occurances of text t1
with text t2.

nS<char> Skip forward(+n) /backward (-n) occurances of <ch>,
default 1.
nT<n1>$<n2>$ Transfer n lines starting at line n1 to after
line n2.
nw Skip forward n words (or backward -n words),
default 1.

I<name>$ Exit the EDIT, saving the string in the
function or string being used or optionally
specified.

Z Goto end of string.

Ctrl,/u Frase current line being input in I<text>$ mode.

5 The value of the current line.

The PRDL command EXECUTE may be used to evaluate a

command string previously edited with EDIT.

17. The PRDL evaluator

——— i e il e o ——— = —— -

As can be seen, the PEDL evaluator differs somewhat in
form and in functicen from previously existing high level
languages such as LISP, PLANNER, MLAB etc. These
differences, although not wajor, prevent the use (without major
modification) of one of these existing languages for a real
time multiprocessor interactive system. The special features

of PRDL are listed below:

(a) Procedure definition is in infix form which does

exist in MLAB but not in LISP or the PLANNER like languages.

{b) Pattern matching techniques are used with argument
and procedure variables to implement pattern directed
invocation of procedures and data. This does not exist in KLAB

or explicitly in LISP, but does exist in PLANNER and CONNIVER.

(c) Contexts, which may themselves be functions which
return a context name, serve as filters in model building.
CONNIVER has explicit mechanisms for performing this while the

other languages do not.

(1) The definition and evaluation of procedures on
special purpcse processors means that PRDL must maintain a
multiprocessor envirnment. Such an envirnment must ensure
that the connection between these processors and PRDL is a

minimum burden on the user.

(e) Interactive graphics functions (at a lower

65

66

irplementation 1level than in MLAB) permits the user complete
flexibility in designing graphical structures. The other

languages 40 not have built-in interactive graphics.

(f) Because the language has a very flexible front end
i.e. parser, special forms may be defined and incorporated in

the language. For example, a shape grammar.

17.1 PRDL control structure

In discussing the PRDL control structure it is assumed
that the special purpose processors are slave processors of the
PDP10.

The PRDL control structure is a graph. Each node within
the control structure graph can be one of several possible data
types. They are:

a. Object label (name of an entity)

b. Static fact such as value(s) or procedure body.

C. Pointer to a special purpose processor program.

d. Pointer to context blocks (which subgraphs are active).

e. Pointer to other nodes in the graph (as lists etc.).

The graph is both implicit and explicit. An explicit
relation is defined to be a set of nodes where the arcs joining
the nodes are specified directly in the graph structure itself.
An dimplicit relation is defined to be a set of nodes which
exist because o¢f pattern directed invocation, associative
search, or function computation. Thus, explicitly defined
functions determine explicit relations within the graph,

whereas relations which are determined by the data and through

associative search form the implicit relations.

The ability to have implicit relations allows the
defining of relational models which are not complete in the
sense of 1st order predicate calculus. During interactive
problem definition one tries to make these relations complete
by adding new relations and assertions to the data base. The
ability to implicitly define relations allows a user to concern
himself minimally with the effects that the addition of a new
concept into a world model will have. 0f course, such
inattention to completeness may cause problems regarding the
validity of the model due to the introduction of

inconsistancies.

The graph structure of the modelling process forces the
user into thinking in a structured programming framework
{Dij71] because the syntax of formal function composition
definition rust be followed. The formalism of +the graph
structure imposes a formalism on the definition facilities of
the system, thereby reducing the tendency one might have to

produce a set of inconsistant ad-hoc programs.

67

68

18. Semantic condensation of plans - future work

R S o ————— e ey i Sk G o .

Eventually, as more experience 1is gained with the
definitions, a subgraph may be combined into what might be
called a “fat" node. This process 1is called "semantic
condensation" whereby subgraphs are condensed into algorithmic
plans. Program synthesis through procedures written in PEKDL
using the transformation of implicit relations to explicit
relations wmight be used to perform the condensation and create
single special processing procedurs. Such procedures previously
would have been invoked through much interaction with PRDL.
This subgraph embodies those procedures which were previously
invoked separately, The creation of such a "fat" node implies
that the user has sufficient confidence in the procedures
contained in that node that the "fat" node might be invoked
instead of the subgraph. This may be considered to be a form of

plan saving. Thus implicit recommendations are made explicit.

A plan may be defined to be a sequence of procedure
names which are given to the special purpose processor. This
sequence may contain iteration mechanisms and recursive
mechanisms to be evaluated by the special purpose processor.
Thus, a plan is effectively a high level command program to the
special purpose processor which is synthesized at run time by
PRDL based upon the internal and external influences. Parts of
a plan sit in the control structure nodes waiting to be

synthesized with the proper instantiations.

Control of the special purpose processors is really

69

determined by the paths that the PRDL chooses through
interpretively traversing the graph structure. As each node is
encountered either a program will be activated on the special

purpose processors or local processing will take place.

70

19. References

Ber64. Berkeley E, Bobrow D:The Programming Language LISP: Its

Operation and Applications. M.I.T. Press, Cambridge, Mass.,
1964,
Carm74. Carman G, Lemkin P, Lipkin L, Shapiro B, Schultz M,

Kaiser P:A real time picture processor for use in biological
cell identification - II hardware implementation. J. Hist.

Cyto. Vol 22, 1974, 732:740.

CCB76. Computer Center Branch:DECsystem-10 Omnigraph Display

Manual. NIH, Bethesda, Md., 20014, April 1976.

DEC74, Digital Equipment Corp.:0S/8 handbook. DEC, Maynard,

Dij71. Dijkstra E:Hierarchical ordering of sequential

-

processes. Acta Informatica 1, 1971, 115:138.

Feld72. Feldman J, Low J, Swineart D, Taylor R:Recent

developments in SAIL. SAI memo June 5, 1972.

Hew72. Hewitt C:Description and theoretical analysis (using
schemata) of PLANNER:2 language for proving theorems and

manipulating models of a robot. Thesis, MIT, AI-TR-258, 1972.

Kno73. Knott, G, Reese, D:MLAB - An on-line modeling

laboratory. NIH, DCRT, Dec., 1973.

lem72a. Lemkin P:A Simplified Biological Cell World Model for

Question-Answering using Functional Description. Univ. Maryland

Scholary paper 75, May 16, 197Z.

Lem72b. Lemkin P F:An extended LISP 1.6 system with the ability
to page procedures using a working set model.Unpublished report

for Univ. Md. course CMSC 838k, Dec. 1972.

Lem74, lemkin P, Carman G, Lipkin L, Shapiro B, Schultz
M, Kaiser P:A real time picture processor for use in biological
cell identification - I systemrs design. J. Hist. Cyto. Vol 22,

1974, 725:731.

Lem76a. Lemkin P:Functional specifications for the RTPP
monitor and debugger - DDTG running on the PDP8e/RIPF.

NCI/IP-76/02, Technical Report #2, NTIS PB250726, Feb, 1976.

Lem76b. Lemkin P, Shapirc B, Lipkin L, Schultz M, Carman
G:A PDPBe Assembler for the General Picture Processor. NCI/IP

Technical Report #16, Dec. 1976.

Lem77a. Lemkin P, Carman G, Lipkin 1L, Shapiro B, Schultz
M:The Real Time Picture Processor- Description and
Specification. NCI/IP-T76,03, Technical Report %7, NTIS

PB252268/AS, March 1976. (Revised TR-7a, June, 1977).

Lem77b. Lemkin P:Buffer Memory Monitor System for Interactive
Image Frocessing. NCI/IP Technical Report #21, Dec. 1976.

(Revised TR-21a, June, 1977).

McD72. McDermott, D, Sussman, G:Conniver Reference Manual",

MIT Al memo 259, May, 1972.

MesT70. Mesztenyi C:FORMAL - a formula manipulation language.

71

72

Univ. Md. report TR70-133, Sept. 1970.

Qua68, Quam L:Standford LISP 1.6 manual. S5.34.1 28.2 Dec.

31, 1968.

Reisd76. PReiser J: SAIL User Manual. Stanford Artifical

Intelligence Laboratory memo AIN-289, August 1976.

Sac74. Sacerdoti E D:Planing in a hierarchy of abstraction

spaces. Artificial Intelligence. Vol 5, 1974, 115:135.

ShapB73. Shapiro B:A Survey of Problem Solving Languages

and Systems. Univ. Md. report TR-235, March, 1973.

ShapB74. Shapiro, B, Lemkin, P, Lipkin, L:Application of
artificial intelligence techniques to cell identification. J.

Hist. Cyto Vol 22, 1974,741:750.

ShapB76. Shapiro B:A SLR(1) parser generator. NCI/IP-76/01,

Technical Report #9, NTIS ED249127/AS, Feb 1976.

ShapB77a. Shapiro B: language processor generation with BNF
inputs: methods and implementation. Comp. Prog. in Biomed. Vol

7, 1977,85:98.

ShapB77b. Shapiro B. and Lipkin L: The circle transform: an
articulable shape descriptor. Comp. in Biomed. Res. 1In

Press. 1977.

ShapB77c. Shapiro B:The PDP11/20 Message switcher. NCI/IP

Technical Report #¥17, In prep.

Ten74. Tenenbaum J M, Garvey T D, Weyl S, Wolf H:An

Interactive Facility for Scene Analysis Research.

Research Institute Tech note 87, Jan. 1974.

Wil75. Wilcox C:MAINSAIL - MAchine INdepent

meeting, Languages in Review Session, 1975.

SAIL.

Stanford

DECUS

73

74

APPENDIX A

The implementation of PRDL

Ll e e e e S o -

Although much of the PRDL language appears +to be
similar in syntax to MLAB and uses stack evaluation facilities
sirilar to that of MLAB, the actual irmplementation is very
different from that of MLAB. PRDL uses a SLR(1) parser program
generator ([Shap76]. The parser generator takes a BNF grammar
specification PRDL.GRHM and generates a SAIL source code parser

PRDL.SAI (the main procedure of PRDL).

Additional procedures are used to support the parser.
SEM.SAT is the set of semantic routines required by the parser
which defines hcw the polish stack is to bLe built. Calls to
this module occur when semantic numbers are attached to the
grammatical rules in the grammar file. ACCEPT.SAI contains the
user teletype interface and editor, and the symbol token
lexical scanner and symbol table. PROCES.SAI is the recursive
interpreter for operations on the parser produced stack. Unlike
MLAB, ERDL waits until the <complete input string has been
parsed into a polish stack before interpretation of the stack
has begun. This not only permits more efficient interpretation,
but prevents partial evaluation when the input contains errors.
This reduces the number of side-effects that can occur. The
PROCES interpreter deals with the arithmetic, function
evaluation, context, pattern directed invocation, relational
search operations, as well as multiprocessing and alternate

processor execution.

The existing MLAB evaluator accesses data structures
pointed to by a hash coded symbol table. Auxillary tables use
the symbol table index to point to a data structure type and
datum by symbol table index. The MLAB function space is a set
of nodes connected as a forest of tree structures. The new
data structures in PRDL are similar to that of MLAB but every
identifier and procedure is an item which may enter into a

relational triple thus yielding much greater flexibility.

SAIL [ReisJ76] allows only 4096 items which are used in
creating the elements of associations, sets, lists and matrix
data. For reasonably sized models, this should be enough since
not every identifier would have a corresponding item or be used

in a triple, set, list or matrix.

The pattern matching is most effective if the context
item <...> is stored on each symbol item in a special context
field (similar to PROPS) with the last context used and its
pointer being readily available from the symbol table. Thus it
would be easy to filter contexts vhile interpreting.
Pattern directed invocation is implemented through the use of

lists of function names associated with the patterns.

A.1 Possible gragh node data structure

The following 5-tuple data structure is used for PRDL
entries in the global symbol table. This structure contains the
pointer +to the current value (whether real, string, set, etc.)

in the current context as well as a pointer to the context

75

76

pointer array used for accessing other structures in other

contexts with the same symbol name.

i Context name of last access {

(a) Symbol node ~-------rrrr-cmrrrrr e e

The context array is a n column by 2 row array.

C1 Pee 2 WoTmOaSsAamoammmeEsmmeememm——— . 8 Cn
‘o | Type for context Ci | ...
SoC { Idx pointer for Ci | ...

The Idx pointer is the same for two contexts in which
the value of the data structure is the same. Note that the 1Idx
pointer points to the actual data structure (via either a LEAP
item or function tree) in all cases except real identifiers and

constants. The latter use the Id; value as the actual value.

Pointers to such symbol table nodes are then used in

the constuction of tree structure PRDL functions.

Data type 1is either (constant, real, 1list, set,
bracketed triple, string, function, builtin, function, pattern
or context). Contexts point to the data or procedure locations
by a pointer to static or procedural data (tree structures);
the print name item allows the easy access of a datum by print

name or item number (eg. for use in lists, FOREACH triple

search etc.).

Contexts may contain pointers to older contexts which
include procedural or static data, or may contain new or
redefined data themselves. Allowing contexts to contain
pointers permits the dynamic updating of recommendations and
static data. A global symbol table will be used which will
act as a directory for all nared procedures, statjc data areas,
and context blocks. Contexts may be set up in a fashion similar
to CONNIVER [McD72] (i.e., tree-like) so that all contexts do
nct have to be specified. Contexts will be opened implicitly
based wuwpon an access point specified in a tree. That is, all

ancestors in the tree are visible but descendents are not,.

When a data type is defined, the context block in which
it is to be incorporated is specified by the current context. 12
possible bookeeping mechanism for contexts which allows the
extension of the c¢urrent MLAB symbol table system would
associate a dynamic 1-D array with each symbol. The size of the
array is that of the highest numbered context in which that
symbol appeared before the context was shifted to one in which
it did not appear. If it is the current context, then the size
of the array corresponds to the current context number (ordinal
numbers). The entry in the array corresponds to the pointer to
be used by the symbcl table entries at +the current context.
Thus if a new context was created and a procedure F was to be
carried to the new context, its array must be lengthend by 1
and the contents of the previous pointer carried forward. When

intermediate contexts are deleted, the corresponding array

77

78

entries must be marked (with 0) to note this fact. Thus to
access any object in any context, a lookup is made to the array

to see if an entry exists and then to use it.

We are also considering the necessity for swapping
contexts to the PDP10 disk. An algorithm was written by Lemkin
for the swapping of procedures as determined by a working set
model of procedure activity for LISP functions [Lem72b]. If the
size of a multicontext model is extremely large, then such a

mechanism might have to be consideregd.

APPENDIX B

PRDL Grammar and Symbol Table

R e G M W M e

The following depicts the PRDL grammar in its current
forr of inplementation. The number preceding a grammatical rule
indicates a semantic action and the number (s) following a rule
is the token number of the terminal symbol(s) appearing in that
rule. These token numbers are used to both identify a given
symbcl and to indicate which interpretive block to enter in the
recursive interpreter.

<EXPRESSION>--><COMPOUNDSTATEMENT>$

<EXPRESSION>--> <ASSIGNMENT>$

<EXPRESSION>--> <FUNC!DESIGNATOR>$

<EXPRESSION>=--> <CONDITIONAL>$

<EXPRESSTON>~-> <AE>$

<EXPRESSION>--> <WHILELOOP>$

<FXPRESSION>=--> <FORSTATE>$

<EXPRESSION>--> <BOOLEXP>$

7$<EXPRESSION>--> TYPE <EXPRESSION>$8
41$<EXPRESSION>~-> PRINTF <FUNC!NAME>$34
<EXPRESSION>--> <FUNCTION!DEF>$

<EXPRESSION>--> <BUILTIN>S

44$<COMPOURDSTATEMENT>~~-> <COMPOUNDHEAD> END$41
43$<COMPOUNDHEAD>--> BEGIN <EXPRESSION>$42
§5$<COMPOUNDHEAD>~~> <COMPQUNDHEAD> ; <EXPRESSION>$U3
33$<BUILTIN>--> <ONEARGNAME> <LPAREN> <ONEARG>) $10
33$<BUILTIN>--> <TWOARGNAME> <LPAREN> <TWOARG>) $10
33$<BUILTIN>--> <THREEARGNAME> <LPAREN> <THREEARG>) $10
33$<BUILTIN>-~> <FOURARGNAME> <LPAREN> <FOURARG>) $10
393%<ONEARG>--> <EXPRESSION>$

5$<BUILTIN>--> ZERONAME$35

42$<ONEARGNAME>--> ONENAME$36

398<TWOARG>--> <ONEARG> <COMMA> <EXPRESSION>$
42$<TWOARGNAME>--> THONAME$37

39$<THREEARG>~~> <TWOARG> <COMMA> <EXPRESSION>S$
42$<THREEARGNAME>--> THREENAME$38

39%8<FOURARG>--> <THREEARG> <COMMA> <EXPRESSION>$
42$<FOURARGNAME>--> FOURNAME$39

37$<FUNCTION!DEF>--> <FUNC!WORD> <REMAIN!FDEF>$
37$<REMAIN!FDEF>--> <FUNCI!NAME> <FUNC!ARG> = <FUNC!BODY>$19
31$<FUNCIWORD>--> FCT$31

328<FUNCINAME>--> FIDS$0

BOS<FUNCIARG>--> <LPAKEN> <ARGLIST>) $10
343<FUNC!ARG>--> EPSILONS$

358$<ARGLIST>--> ID$1

79

35$<ARGLIST>--> <ARGLIST> <COMMA> 1ID$ 1

36 $<LPAREN>--> ($9

<FUNC!BODY>--> <EXPRESSION>$
<FUNC!DESIGNATOR>--> <BUILTIN>$
<FUNC!DESIGNATOR>~-> <FUNCINAME> <ACT!ARG>$
33$<ACT!ARG>--> <LPAREN> <ACT!PARAMILIST>)$ 10
<ACT!ARG>--> EPSILONS

39$<ACT!PARAM!ILIST>--> <EXPRESSION>S$
39$<ACT!PARAM!LIST>--> <ACT!PARAMILIST> <COMMA> <EXPRESSION>$
30$<EXPRESSION>--> PSTACKSW$33
21$<WHILELOOP>--> <WHILECLRUSE> <EXPRESSION>S
20$<WHILECLAUSE>--> WHILE <BOOLEXP> DO$24,25
29$<FORSTATE>--> <FORASSIGN> <FORCONTROL> <FORLIMIT> <EXPRESSION>$
26 $<PORASSIGN>--> FOR <ASSIGNMENT> STEP$28,29
27$<FORCONTROL>--> <AE> UNTIL$30
28$<PORLIMIT>--> <AE> DO$25

8$<CONDITIONAL>--> <IFSTATE> ELSE <EXPRESSION>$13
9$<IFSTATE>-~-> <IPCLAUSE> <EXPRESSION>S
10$<IFCLAUSE>--> IF <BOOLEXP> THEN$14,15
6$<ASSIGNMENT>--> <LEFTSIDE> _ <EXPRESSION>$ 11
<EOOLEXP>-~> <DISJUNCEXP>$

19$<BOOLEXP>--> <BOOLEXP> OR <DISJUNCEXP>$23
<DISJUNCEXP>--> <NEGEXP>$

183$<DISJUNCEXP>--> <DISJUNCEXP> AND <NEGEXP>$22
17$<NEGEXP>--> NOT <ALGREL>$21

<NEGEXP>--> (<BOOLEXP>)$9, 10

17$<NEGEXP>--> NOT (<BOOLEXP>) $21,9,10
<NEGEXP>--> <ALGREL>$

11$<ALGREL>--> <AE> > <AE1>S$ 12

12$<ALGREL>--> <BE> < <AE1>$ 16

13$<ALGREL>~-> <AE> LEQ <AE1>$17

14$<ALGREL>--> <BE> GEQ <AE1>$18

15$<ALGREL>--> <AE> = <AE1>$19

16 $<ALGREL>--> <AE> NEQ <AE1>$20

22$<ALGREL>--> TRUE$26

23$<ALGREL>--> FALSE$27

47$<ARRAY>--> <ARRAY!NAME> <LBRACKET> <ACT!PARAMILIST> J$44
<ARRAY>--> LEFTARRAY$U7 ‘

46$<LBRACKET>--> [$45

42$<ARRAY!NAME>-->ARID$46

<AE1>--> <SRE>$

<AE>--><SAE>$

<SAE>--><TERM>$

0$<SAE>--><SAE> + <TERM>$6

1$<SAE>--><SAE> - <TERM>$7

<TERM>--> <FACTOR>$

<TERM>--> <FACTOR1>$

3$<TERM>--><TERM> * <FACTOR> $4
4$<TERM>--><TERM> / <FACTOR>$5
49$<TERM>-~><TERM> & <FACTOR>$U9
<FACTOR>--><PRIMARY>$

<FACTOR1>--><PRIMARY>$

2$<FACTORD>--><FACTOR> ~ <FACTOR1>$ 3
5$<PRIMARY>-->ID$ 1

5$<PRIMARY>--> STRCONST$H0

S$<PRIMARY>--> STRID$UB

5%$<LEFTSIDE>-->ID§ 1

5$%<LEFTSIDE>-->STRIDS$uU8

48$<LEFTSIDE>~-> <ARRAY>%

S$<PRIMARY>-->INTS$ 2

<PRIMARY>-~>(<EXPRESSION>) $ 9,10

<PRIMARY>--> <ARRAY>S

<FRIMARY>--> <FUNC!DESIGNATOR>S

258<PRIMARY>--> + <PRIMARY>$6

24$<PRIMARY>--> ~ <PRIMARY>$7

38$<COMMAD~-~> ,3$32

The following depicts the symbol table file that is

used to initialize the symbol table of PRDL in its present
form. The numbers in the right most field indicate the token
numbers of the terminal symbols. In some cases it will be
noted that the +token field is broken into two parts (comma
separates the partsj). This indicates a builtin function. The
number on the 1left indicates a class e.q. one argument

builtins and the number to the right dindicates a function

number within that class.

ID$ 1
INTS 2
“$ 3

*$ 4

/% 5

+% 6

-$ 7

TYPES 8

(% 9

)% 10

_§ 11

>$ 12

IFS 14
THENS 15
ELSES$ 13
<% 16

LEQS$ 17
GEQS 18
=$ 19

NEQ$ 20
NOT$ 21
ANDS 22
OR$ 23
WHILES 24
Dos 25

TRUES 26

81

82

FALSES$ 27
$UPLUS#$6
#UMINUSH#$7

FORS$ 28
STEP$ 29
UNTILS 30
FCT$ 31

,$ 32

PSTACKSWS 33
ERINTF$34

DRELS$ 35,0
DGET$ 35,-1
DCLOSES® 35,-2
DDONE$ 35,-3
CDONE1$ 35,-4
PASTA$ 35,-5
SLOWA$ 35,-6
FASTD$ 35,-7

SLOWD$ 35,-8

REALINS 35,-9

TTYLINE$ 35,-10
TTYSYMBOLS 35,-11
TTYCHARS 35,-12

SINS 36,0
coss$ 36,-1
TANS 36,-2
SQRT$ 36,-3
LOGS 36,-4
EXP$ 36,-5
DPOSTS 36,-6
DUNPOST$36,-7
DOPENS$ 36,-8
SINDS 36,-9
COSD$. 36,-10
TANDS$ 36,-11
DAPPEND$36,-12
DKILLS$ 36,-13
DIEXTS 36,-14
EXECUTE$36,~15
EXS$ 36,15
ASINS 36,-16
ACOS$ 36,-17
ATANS 36,-18
OUTSTR$ 36,-19
SIGNS 36,~20
ABSS 36,~-21
ASINDS 36,-22
ACOSDS$ 36,-23
ATANDS 36,-24
TRUNCS 36,-25
cvss$ 36,-26
cvoss$ 36,-27
CVF$ 36,-28
TYPEITS 36,-29
CvD$ 36,-30
cvos 36,-31

LENGTHS
LOP$
COP$

36,-32

36,-33

36,-34

REALSCANS$ 36,-35
SYMBOLSCANS$ 36,-36
DTSCALE$ 36,-37
LISTIFY$ 36,-38
SETIFY$ 36,-39
DELETE$ 36,-40
EVALS$ 36,-41
FIRSTS 36,-42
SECONDS$ 36,-u43
THIRD$ 36,-44
ISTRPVARS 36,-45
DELTRPVARS 36,-u46

DMOVES 37,0
DDRAWS 37,-1
DCURSOR$37,-2
DLOTS$ 37,-3
EQUS 37,0
UNIONS 37,-5

INTERSECTIONS 37,-6
SETDIFF$ 37,-7

APPLYS

37'—8

DELOTS 37,-9
DCROSS$ 37,-10

SUBSTRS$

38,0

MAKETRIPLE$ 38,-1
DELETETRIPLE$ 38,-2
ISTRIPLE$ 38,-3
SUBLIST$ 38,-4

DINIS$
DWINDS
DVECTS

STRCONSTS

ENDS
BEGINS
:$ 43
1% 44
[$ u5
ARIDS
LARIDS$
STRIDS
6% 49

SETCONS$ 50

LISTCONS
SETID$
LISTIDS

39,0
39,-1
39,-2
40

41

42

46
47
48

51
52
53

TRIPLECONS 54
TRIPLEID$ 55
ZGARBAGE$ 56

83

84

APPENDIX C

Compiling and Building PRDL

PRDL is compiled with SAIL and loaded
the use of BAIL as a runtime debugger.

.R SAIL
*PRDINV.REL/27b_PRDINV. SAI

«R SATL
*FREEST.REL/27h_FREEST.SAI

-R SATL
*FUNPAK.REL/27b_FUNPRK.SAI

«R SAIL
*PROCES.REL/27b_PROCES.SAI

.R SATIL
*ACCEPT.REL/27b_ACCEPT. SAI

«.R SATL
*SEM.REL/27b_SEM.SAI

«.R SAIL
*CVT.REL/27b_CVT.SAI

«.R SAIL
*BOUND.REL/27b_BOUND.SAI

«R SAIL
*GETABL.REL/27b_GETABL. SAI

-PARGEN
*PRDL.SAI
*PRDL.GRHM
*<{EXFRESSION>

.R SATIL
*PRDL.REL/27b_PRDL.SAT

«LOAD SYS:SAILOW/REL,DSK:PRDL/REL
«SAVE PRDL

as

follows

When PRDL is started, it will request the symbol

with PRDL.SYM being the default.

including

table

name

INDEX

<?-ident> 39

<a-expr> 35

<act-ident> 10

<actual arguments> 11
<actual parameter list> 11
<ae> 8

<algebraic expression> 8
<algebraic relation> 7
<AOV expr.»> 18

<arg list> 10

<assignment expression> 6
<attrikbute> 17

<Boolean expression> 7
<builtin identifier> 11
<builtin> 11, 35
<compound expression> 6
<compound head> 6
<conditional expression> 7
<context expression> 44
<context identifier> 44
<data declar.> 10
<device> 28

<disj. pattern Boolean> 39
<disjunctive expression> 7
<element list> 18

<expr. list> 27
<expression> 6

<f-args> 10

<f-body> 10

<f-expr> 35

<factor> 8

<file I/0 expression> 28
<file> 28

<finish index> 16

<FOR assignment> 9

<FOR control> 9

<FOR limit> 9

<POR loop> 9

<FOREACH loop> 18

<funct. prefix> 10
<function definition> 10
<function designator> 11
<function name> 10
<graphics expression> 33
<I/0 expression> 27

<I/0 modifier> 28

<IF clause> 7

<IF expression> 7
<IF-PDI> 41

85

86

<leftside> 6

<list expression> 19
<list identifier> 19
<list operation> 19
<m-factor> 14
<m-identifier> 14
<m-primary> 14

<m-term> 14

<matrix expression> 14
<neg. pattern Boolean> 39
<negative expression> 7
<number/str conv.»> 16
<object> 17

<Omni builtin> 33
<p-expr> 35

<pattern ?v-list> 39
<pattern Boolean> 39
<pattern declar.> 10
<pattern prefix> 39
<pattern request expression>
<PDP10 I/0 expression> 29
<primary> 8

<process expression> 55
<processor declar.> 10
<{processor I/GC> 27
{project-programmer> 28
<relational args> 17
<relational expression> 17
<relational operator> 17
<remainder f-def> 10
<RTEP contrecl I/0> 30
<RTEPP data I/0> 30

<RTPP I/0O expression> 30
<search variables> 18
<set expression> 19

<set identifier> 19

<set opearation> 19
<set-list arg> 19
<set-list operation> 19
<sirple arithmetic expression>
<simple matrix expression> 14
<sme> 18

<start index> 16

<string expression> 16
<string/str conv.> 16
<substring> 16

<terms 8

<TTY expression> 27

<TTY input> 27

<TTY output> 27

<value> 17

<weight prefix> 47

<WHILE clause> 9

<WHILE loop> 9

41

An Expression Language 5

BOOLEAN variables 25
Builtin procedures 12

Compiling and Building PRDL 84
Control of the EDP10 by PRDL 28

Deleting a variable from PRDL 26

EVAL and APPLY operators 35
Evaluation Mode of Operation 8
External processor function definitions

FUNCTION ARGUMENT variables 22
Function Definition and Composition 9

Generator procedures 50
GLOBAL variables 23
Graphics Operators 33

1/0 expressions 27

Interactive command and function editors
Introduction 1

Iterative Control Structure 9

LOCAL variables 22

Matrix operators 13

MATRIX variables 24

Modelling Contexts 42

Modelling using composition of procedures

OUTSTR 9

Pattern Directed Invocation 38
PATTERN PREFIX variables 23

pattern-D-I expr> 40

12

63

58

87

88

PDI - pattern directed invocation 38
Possibility Lists 36

Possible graph node data structure 75
PRDL Grammar and Symbel Table 79

QUOTED variables 24

Relational Data Base 17
RELATIONAL TRIFLE variables 26
RTPP functions 51

Saving and Restoring a Data Base 28
SET and LIST variables 25

Sets and Lists 19

Special Grammatical Functions 60
Specification of PRDL &

String operators 15

STRING variables 25

Teletype I/0 27

The implementation of PRDL 74

Top down and bottom up procedural definition
TYPE 9

Type of a variable 26

Variable Classes 22

Weighting Functions 47

59

