COMPUTER SCIENCE
TECHNICAL REPORT SERIES

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND
20742

TR-655 April 1978
MCS-76~23763
THE RUN LENGTH MAP:

A REPRESENTATION OF COUNTOURS AND REGIONS FOR
EFFICIENT SEARCH & LOW LEVEL SEMANTIC ENCODING

Peter Lemkin
Image Processing Unit
Division of Cancer Biology and Diagnosis
National Cancer Institute
National Institute of Health
Bethesda, MD 20014

Computer Science Dept.
University of Maryland
College Park, MD 20742

ABSTRACT

The RLM (run length map) algorithm is a bound-
ary encloding algorithm which produces a represen-
tation of the boundary which may be used for deter-
mining insidedness and outsidedness of a boundary.
The algorithm was developed for use with a boundary
follower segmentation algorithm when filling holes.
It may be used for testing regions as well., It may
also be used in labeling boundaries according to
orientation-dependent local boundary semantics
taking the global boundary model into account.
Analyzing these label sequences produces the seman-
tic labeling run length distribution and (0,90)
rotational co-occurrence matrix. It is felt that
they may be used to indicate local shape features.

The support of the Division of Mathematical and
Computer Sciences, National Science Foundation for
the publication of this report is gratefully
acknowledged.

@
=
N

PA

1. INTRODUCTION

A Tegion boundary may be répresented as an ordered (by
row) set of run lengths called a run length map (RLM). This has
the advantage of efficient contour encoding and region
denotation. Furthermore, the algorithm presented here for
mapping a Dboundary into a run length map produces low level
semantics of the parts of the curve, The algorithm for
producing the run length map is linear with respect to the
length of the boundary. The algorithm for testing whether a
point in the plane is within a given region on line y of the
plane is of order less than Ry where Ry is the number of runs

on line y.

Minsky and Papert (1] proved that it is impossible to
determine whether a point in a plane is inside or outside of a
closed curve unless one analyzes the entire curve and is able
to either revisit various points on the curve or have infinite
memory to record information about the curve, Thus an
arbitrarly 1long curve would reguire either an arbitrarly large
memory or an arbitrarily large number of revisitings of points
on the curve, Revisiting the curve uses little memory but much
time, whereas a large amount of memory allows one to search the

representation gquickly.

Several schemes have been proposed for mapping the

PAGE 3

information_about the curve into essentially infinite memory
such that efficient search of the memory is possikle as well as
efficient generation of the representation from the original
curve, Freeman [21 reviews several of these wmethods,

emphasizirg chain coding schemes.

Davis [{3] discusses understanding the shape of an
object in terms of recognizing high curvature points on a
boundjary and then perfbrminq a hierarchical angle and side

analysis,

Burton [4] represents planar curves and regions as an
ordered tree of polygonal approximations organized for
efficient binary search. Rutovitz [5] discusses algorithms
for and representations of object boundaries by sets of run

lengths and some of the properties of such representations.

Rcunds [6] discusses an algorithm £for mapping
boundaries into representations for region extraction. She maﬁs
the types of the boundary points into an initially zeroed
image. Regions are then extracted by raster scanning the 1image
and recognizing insidedness based on type transitions. Whether
a pixel (x',y') is in a region or ndt requires computing all of
the points on line y' from ‘the left edge to x'. Thus the
average calculation cost of deterrmining the insidedness

property of a random point is of Order (average object

PAGE i
width/2) .

Agrawala [7] discusses several run length s hape
features obtained by a raster sweep through an image keeping a
two line memory of the image. This method 1is similar to the
met hod being proposed in its intent of acquiring shape
information from the run length coding of the boundary. The
mechanism is different, however, as the algorithm being
proposed here uses the ordered set of points along the boundary
rather than the points on the boundary detected during a
horizontal raster scan. Furthermore, the method proposed here
labels boundary points with a richer set of seﬁantic labels

which can then be used for further boundary parsing,.

Merrill [8] proposed a scheme for sorting an ordered
set of boundary points by line and ordering them within a line.
The algorithm uses the topological property that a line drawn
through a c¢losed object has an even number of boundary
crossings. Merrill chooses to represent this property of
the curve by ordered 1lists of the actual boundary points,
repeating points where necessary in order to validate the
requirement of an even number of points to denote a closed

ohject.

The algorithm proposed here is similar in many respects

to Merrillts, Both algorithms operate on a "tightly closed

PAGE 5

boundary" (ICB), which is continuous, closed, and éontains no
loops. Merrill discusses another restriction which has to do
with testing lines that are tangent to a horizontal part of the
curve., This latter restriction is handled differently in the

present algorithm.

A TCB consis;ing of a 1list of (x,y) coordinates is
partitioned into sets such that each set contains only points
which have the same y-coordinate., The associated X-coordinates
of each set are ordered in monotonically increasing order. The
ordered set is called a y-partition of the TCB. Merrill notes
that a region Kk of length b has a TCB, Pk, defined by (1)

through (95).

TCB = ({(x,¥)i in Rk for i=1 to b), 7 (N

Pk = (k¥Ymin, kYmaj, kY1ka2,...,kYnk}, (2)
where:

k¥min = ¥Yi { (Yi leg ¥j in TCB), (3)

kY¥Ymax = ¥i | (Yi geqg Y3 in TCEH), (4)

and .

PAGE 6

nk = kYmax-k¥min+1.. ' (5)

The Y-partition of Pk for Yi is given by (6).

k¥i = (rik, ikX1,ikX2,...,ikXrik) (6)

where rik is the number of Yi-coordinates in the TCB of Rk and
is always an even number., The ikXj are the points on the TCB
having Yi-cocordinates., Thus regions inside of the TCB are those
x such that an odd-even [ikXj,ikXj+1] exists such that equation

(7) holds.

ikXj leq x leg ikXj+1. (7

Horizontal boundary points are all entered into the data

structure, resulting in redundent information being saved.

What is rinimally required is to save the the first and
last ikXj points on such horizontal boundary segments., This is
equivalent to coding the boundary as Y-partitions of boundary
run lengths if the object were colored in and the run lengths
represented the colored in regions. While Merrill implicitly
represents the TCB as run lengths, the present algorithm

explicitly represents it as run lengths.

The Y-partitions may be generated with minimum

PAGE 7

difficulty using Merrill's algorithm taking his last
restriction into account, The Y-partitions generated may

then be easily converted to run lengths.

The present algorithm differs in two respects from the
TCB generation algorithm cf Merrill, The runs are ordered by
their occurrence (although this need not be so), and local
semantics are produced as a result of the mapping process. In
what follows, the algorithm will be refered to as the RLM (Run

Length Map) algorithm,

The co-ordinate system to be used in.the rest of the
paper is called the Logical Co-ordinate System (LCS) and is the
convention in the Buffer Memory Monitor System (BMON2) [9] and
the Real Time Picture Processor (RTPP) ([101, [11], [12D.
For an image of size NxN pixels, the (x,y) co-ordinates at the
upper left hand corner are (0,0) and those at the lower right
hand corner are (N-1,N;1). The RTPP supports two sizes of
images N=256, and N=1024, The former size is used for the
examples in this paper. Data for the examples in the paper are

taken from previous work by the author [13].

PAGE 8

2. LOW LEVEL SEHA&TICS OF RLM

Because RLM generation recognizes various local
boundary properties in processing the boundary, it is possible
to label runs and boundary points with the corresponding local
semantics used to generate or modify the runs. Later analysis
of these 1local semantic labels rmay be used to detect local

shape features.

The RIM generator algorithm uses six parallel finite
state machine recognizers which look at the boundary in
parallel (implementing a non-deterministic FSM recognizer
(NDR}) . The recognizers are mutually exclusive; only one of
them is activated at each peint on the boundary. Each NDR
actually contains a subset of NDRs. These are listed below in
~Table 1. The software implementation is of course sequential,
but a parallel hardware inplementation could e realized, These
six recogrizers are discussed in more detail later in this

paper.

The RLM search algorithm checks whether a point (x,y)
is inside of boundary Rk by searching the runs on line y for «x

inside of any run.

PAGE 9

Index Ccde Semantics

1 CGLHSP explicit split change HAIREP to left split
2 CGRHSP explicit split change HAIREP to right split
3 CPALFT complete left adjacent run

4 CEARHT corplete right adjacent run

5 CENIFT complete left non-adjacent run

6 CPNRHT complete right non-adjacent run

7 CHMPUNY complete unacry run

A LUP-PT duplicate point (in algorithm section [G.2])
9 EXAIFT extend left adjacent run

EXARHT extend right adjacent run
EXNLFT extend left non-adjacent run
EXNRHT extend right non-~addjacent run
HATREP new run hair end point

IMPLFT imrplied split left CCW split
IMPRHT implied split right CCW split
IMPLFH implied split left hair
IMPFHH implied split right hair
INCCPT explicit split included point
MEGLFT merge run left

MRGRHT merge run right

B =2 ek o3 wh ad L oy o e)
WO INN 5wk 2O

21 NEWRUN nevw run started

22 NULENT null point (in algorithm section [G.2])
23 SECW-1 explicit split CW left

24 SPCW-R explicit split CW right

25 SECCWL explicit split CCW left

26 SECCNR explicit split CCW right

o —— T R R SR T SR D D M T AR MR NN R A G AL NN W TR W D R SR G A D M D S SE MEm WS A S D D e ke e W D WP MM D MM W G M e

Table 1. The following alrphabetic list of codes are: generated
by a NDR upon accepting a boundary point.
2.1 SEMANTIC LABRELINGS FOR RUNS

Distinct boundary conditions are detected by each
recognizer and marked in the run, These semantic conditions are
a result cof using the twenty six FSM recognizers listed in
Table 1., The set of twenty six semantic labels is called Lsem
(vhere an element of Lsem is SEMpoint) and will be used later
in this paper. The seven types of arcs recognized are shown

in PFigures 1 through 7,

PAGE 10

2.1.,1 SINGLE POINT WIDTH CRACK DETECTION

Cracks in a boundary are defined as points which go
into the inside of the houndary and then come out at the same
point. Vertical cracks can be detected as shown 1in Figure

1 as follows. Left run cracks are detected by (8).

{(x=En) and SEMEn:Xn]={(CPALET or CPNLFT or EXALFT {8)
or EXNLFT).
teft run cracks are detected bv (9).

{x=X¥n) and SEM[En:Xn]=(CPARHT or CPNRHT or EXARHT {9)
or EXNBRHT).

A P D e A VI M W R e AR D aA T M M WS W W s A P S SR G el S A - . . —— -

Figure 1. Single point wide crack detection using the fact
that a point x occurs at the same end point in the last
finished run. a) Left run crack detector, b) right run crack
detector.
2.1.2 MULTIPLE LOBE DETECTION

Multiple lobes can be detected if they appear either
vertically upward or downward as in Figure 2. For a row ¥

intersecting several lcbes several runs are generated. The

semantic 1labels of the runs must be run completions the first

PAGE 11

time the run is defined. Thus, the number- of lobes
corresponds to the numwber of runs with these labels. Downward
lobes correspond to (CPNLFT or CPALFT) semantic labels with
equation (10) holding while upward lcbes correspond to (CPNRHT

or CPARHT) labels with (11).

CPNLFT or CPALFT) and o)
CPNLFT or CPALFT)

(SEMpoint{E1:X1]
(SEMpoint{ E2:X2]

(SEMpoint[E1:X1)
(SEMpoint{ E2:X2]

CPNRHT or CPARHMT) and (11)
CPNRHT or CPARHT)

([

The number of downward pointing lobes is the number of
runs labeled with CPXLFT. The number of upward pointing 1lotes

is the number of runs labeled with CPXRHT.

E Xf EiXIXe
A i

A

Sk e e S ww ———— e A i = — WP A w— Em e -

Figure 2. Multiple lobe detection using a count the the number
of non-adjacent run completions if there are n runs on a line
Y. 8) Downward lobe detection, b) upward lobe detection.

2,7.3 CONCAVE SURFACE DETECTION

Points on a concave surface of a concave produced by

upward or downward lobes can be detected as in Figure 3, The

PAGE 12

concave surface starts out as NEWRUNs but is determined to be a
concavity when the second surface is analyzed to be implicit
splits. Concave upward surfaces are detected with IMPLFT while

concave downward surfaces are detected with IMPRHT semantic

labels,

Figure 3. Concave surface detection by the implicit split
recognizer. Concavity is detected by the NDR 1Implicit-Split
at x. Note that the run surface opposite x can be inferred to
be concave.
2,71.4 CLOCKWISE SPIRAL DETECTION

Spirals are divided into two classes, clockwise (CS)
and counterclockwise (CCW). CW spirals are detected Dby the
existence of explicit CW split semantic labels as in Figure
4, Both left and right splits must be present and the level of
spiral at a row y is the number of SPCW-L/SPCW-R 1label pairs
found., It is also possible to determine whether the spiral
started from the top or Dbottom i€ SPCW-R or SPCW-L

{respectively) is seen first. The following six labels are

found for Figure 4.

PAGE 113

Point SEMpoint

- - ——

1 NEWRUN
2 CPNRHT
3 SPCH-~L
4 SPCW-R
5 MRGRHT
6 MRGLFT

2.7.5 COUNTERCLOCKWISE SPTRAL DETECTION

CC¥# spirals are detected by the exisfence of implicit
split semantic ‘1abels as in Figure 5., Both left and right
implicit splits must be present and the level of spiral at a
row Yy is the number of IMPLFT/IMPRHT label pairs found. It is
also possible to determine whether the spiral started from the
top or bottom if the IMPLFT or IMPRHT (respectively) is seen

tirst. The following six labels are found for Fiqure 5,

Point SEMpoint
1 NEWERUN
2 IMPLFT
3 IMPRHT
) CPNLFT
5 MPGRHT
& MRGLFT

)
0

e
7/
\ 4

Figure 4,

—— A R Y S A e e e v e R D D D W e S G A S M GBS wm e m P A CED R TR R NS S S e am e

Fiqurca 5. Counterclockwise spiral detection using pairs of CCW
split recognizers IMPLFT/RHT,
2.1.6 HORIZONTAL ADJACENT POINT DETECTION

When a run is completed, sometimes additional points
are added as in Figure 6. These points are called horizontal
adjacent points and are detected by the CPALFTlor CPARHT
semantic labels, After an adjacent point is recognized; it may
be extended further with successive applications of EXALFT or

EXARHT respectively.

PAGE 15

En Xn x X En Xn
*-—p———0—0 e L —alt—9
a b
c En X x X En’ Xn a3
o —O—@ 90— ——f—9

e e i D AR R M R N A M R R S e mw ot mm whmie WS sl me S B M AR ol e e kR N el ML ML o e R e

Figure 6. Hcrizontal adjacent point detection using adjacent
run completion and extension recognizers., a) CPARHT, b) CPALFT,
c) EXARHT, d) EXALFT,.
2.1.7 HAIEF ENLCPOINT DETECTION

Hairs are single pixel width boundary regions as in
Figure 7 Hairs occuring vertically or horizontally may be
recognized. Points on vertical hairs are labeled with the unary
run semantic label CMPUNY, while points on horizontﬁl runs are
iabeled with the included point (INCDPT) semantic label.
Horizontal hairs pointing to the right (left) have the endpoint
labeled with IMPRHH (IMPLFH), Vertical downward pointing hairs
are labeled with HAIREP while those pointing upward are labeled

CMPUNY during the cleanup pass of the RLM algorithm,

PAGE 16

- T A . il A i W WO PR W R W M WS s S W e WD W AUV W M WA W S R M R e R A e W M R A A AR S e e

Figqure 7. Hair endpoint detection using hair recognizers. a)
Unary hair. The endpoint is completed during the cleanup pass
and points on the hair are labeled CMPUNY. b) Right hair. The
endpoint is labeled IMPRHH and points on the hair are labeled
INCDPT. c) Left hair. The endpoint is labeled IMPLFH and
points on the hair are 1labeled INCDPT, d) Decwnward hair.
The endpoint 1is 1labeled HAIREP and points on the hair are
labeled CHMPUNY.
2.2 ASYMMFTRY OF RUOY¥N SEMANTICS

Because the run 1length coding of a boundary is
orientation dependent, it causes various «conditions to be
detected only in particular orientations. For example, a
concavity oriented vertically will be detected whereas it will

not be detected if it 1is oriented horizontally., No general

solution to +this problem exists (as will be seen). A partial

PAGE 17

solution to this problem is provided by the following theorem.

(x',7")

Definition: The tctal semantic labeling of a boundary,
st, is the ordered set of 2-tuples of semantic
labelings (S01i,590i) from Lsem, St is dJetermined by
taking the precedence labeling of the RLMs computed for
both the original boundary Rk and for Rk rotated 90
degrees. S0i is the semantic label of the original
boundary (at 0 degrees) while S90i is the labeling of
that point after it is rotated 90 degrees.

The 90 degree rotation in the LCS space from (x,y) to

is computed by the transformation in (12) and (13).

255 - x, (12)

yl

X!t ¥a ‘ {13)

Theorem: Given a total semantic labeling of a boundary
St, (a) concavities which are fully detected in a given
orientation angle eta are fully undetected in a 90
degree rotation of that angle; (b) the size of the
concavity detected is a function of +the original
boundary orientation and might possibly be zero in both
the eta and eta+90 degree orientations.

Procf: In Figure 8, the concavity in {a.1)} is fully
recognized while 1its 90 degree transformed equivalent
is totally unreccgnized. As was shown previously,
concavities are detected by the occurrence of either
IMPLFT or IMPRHT so that (a.1) is fully recognized.

The concavity in (b.1) and (b.2) is incompletely
recognized with different parts of the concavity being
recognized in the 99 degree transformed image.

However, cases exist such as {c) {pointed out by
Rosenfeld) where concavities exist in a particular
orientation which are not detected in that orientation
or in its 90 degree transform.

PAGE 18

T e e e o ol e s e = — ——— —— i o - " ——— "~ " —— = - —

Figure 8. Cases of concavities of "C" shaped object rotated
a.1) 0 degrees (no concavity), a.2) 90 degees (maximiral
concavity), b.1) ~45 dJdegrees (partial concavity), b.2) 45
degrees (partial concavity). ¢) Example of the case of ob ject
with four undetectable concavities which are unrecognized at
both 0 and 90 degree rotations.

PAGE 19

3. RLM GENERATION ALGORITHM

—— e —— . S o m m Em A W S W ver e e e

The RLM generation {G] and search [S] algorithms are
presented in an ALGOL-like notation, Given a TCB Rk consisting
of a list of ordered (x,y) pairs as in (1), and a maximum

naumber m of lines in the plane, the RLM generation algorithm is

as follows:

[G«1]) "Initialization™
"Clear 1last x seen on line y. The value has different

reanings depending on value:

Value Semantics

-1 nc run in grogress

¥ > -1 started new run

x € -1 finished run at x, coded as =-(x+1000) "
lastx[0:m]}:=-1;

"Zero number of runs completed and started"
nrunf O:mJ:=0;

"Zero 1list of n runs for line y. exdata[y,i] is a
record with the following fields:
[EBi:Xi] = run values,
{ Espliti:Xspliti] = split flags,
[Ediri:Xdiri] = direction flags,
[Elastxi:Xlastxi] = last x flags."
exdata{ 1:n,C:m]:=nil;

"Clear the previous point"
0ldx:=-1, oldy:=-1;

"Set minimum enclosing rectangle to a minimum"
kx1:=kyli=m+1;
kx2:=ky2:=-1;

[G.2] "Process PRk one {x,y) pair at a time. Note that DONE (s)
* labels TCB[i] with the semantic label s and skips to
the end of the '"process (x,y)i' block."
For i:=1 Step 1 Until b Do
Begin “process (x,y)i"
X:=NEXTX (TCB[i]) ;
Yy:=NEXTY (TCB{i]) ;

PAGF 29

"Test for and ignore duplicate points"
If (x=0ldx) and (y=oldy)
Then DONE ("DUP-PTY);

"Corpute minimum enclosing rectangle®
kx1: =Min (kx1,x);
kyl:=Min (ky1,v):
kx2:=Max(kx2,x);
ky2:=Max (ky2,y);s

“apply all of the non-deterministic recognizers
(NDRs) which will either vreturn failure or
evaluate a DONE (.} halting all of the NDRs."

[MERGE, IMPLICIT-SPLIT, EXPLICIT~SPLIT
EXTEND-RUN, COMPLETE-RON};

NEW-RUN;

"Point was not recognized by any acceptor!®
DONE(“"NULTNT") ;
End "process (x,y)i":

[G.3] "Conplete unfinished runs or split runs as unary runs"
For y:=ky1! step 1 until ky2 Do
Begin "test if finished line y"
If {(x:=lastx[y]) > 0
Then Begin "complete unfinished run as unary"

CCMPLETE-RUN;
lastx{y]:=-1;
End "complete unfinished run as unary";

End "test if finished line y";

3.7 RLM SEARCH ALGORITHM
Given a point (x,y), the guestion of whether it is

inside the boundary of Rk is answered by the search algorithm.

[S.1] "Get the number cf runs for line y."
n:=nruni{ y];

{s.2] "Search runs on line y for x in any run®;
For i:=1 step 1 until n Dc If (x in [Ei:Xily,1)
Then Return {True);

[5.3] "Search failed."
Return (False) ;

PAGE 21

The RLM may be used in various ways. As was pointed out
by Merrill measures such as perimeter and area may be easily
computed. Note that the RLM generation algorithm also computes
the minimur enclosing rectangle for Rk. In this scheme,

perimeter is computed by (14} and area by (15).

perimeter = 2(Sum nruns[y]) . ()
y:=kyl:ky2
area = Sum (Sum (Xi-Ei+Ny,1i ' (15)
y:=kyl:ky2 i:=0:nruns[y]

The RLM may be used to drive a process over only those

points on the plane inside of the curve as in (16).

For y:=ky1 Step 1 Until ky2 Do (16)
For i:=0 Step 1 Until nruns{y] Do
For x:=Ei,y Step 1 Until Xi,y Do
Begin
"process";
End;

Thus one observes that the process of accessing the RLM is at
worst of Order(Nmax) with Nmax being the maximum number of runs

in any row (i.e. the maxirum of nrun[y]). Furthermore, it will

later be shown that (Nmax leg Order (b)).

PAGE 22

4., FINITE STATF MACHINE STATE RECOGNIZERS

- - -

D W e —

211 of the FSMs are run in parallel for each (x,¥) pair

of a clockwise traversed boundary. If a PSM succeeds, this is

signaled by the DONE predicate which broadcasts this fact and

causes other FSMs in progress to abort. Fach FSM described in

the following text hag a figure associated with it showing the

specific cases recognized by the FSM.

The following notation is used in describing the KDRs.

[Ei:Xi)y,1

MARKRUN (y,n)

NEWRUN (x,v)

= ith run of line y with entrance x
coordinate Ti and exit x coordinate Xi.

= marks the associated semantic marker
with the specified run.

= If lastx[y)=-1 then create a new run
for the current line y with the value x
in lastx[y]). As n=nrun{y])], the new run
will have run number n+1, It is
implemented by running the NEW-RUN FSHM
but ignoring the DONE(.).

STORERUN e,x]y,k = store the run [e:x] in [EBk:Xk]y,k if

GETRUN[e, x]y,k

ECNE{NDR name)

SELITP {q)

it exists, otherwise create a nev run,

= look up the run [Ek:Xk]ly,k. If the
return exists then return true else
return false and the run values [2:1]
{an irpossible run),.

= label boundary point with the name of
the NDR which accepted it and set
oldx:=x, oldy:=y and skip to the FND
"trocess (X,y)" block.

= predicate which returns true or false
depending on whether g is marked split
or not. g is either Ei or Xi.

LASTYP (q)

DIR (q)

LAST (q)

LOOKAHEAD (q)

CW
CCH
up
DCWN
EIGHT

ILFFT

PAGE 23

= predicate which returns true or false
depending on whether g is the last x
changed in a run or not. g is either Ei
or Xi.

= function which returns "up" or "down"
depending on whether g is marked down
OrC Up. q is either Ei, ¥i or
lastx[y]. Note: DIR(x} is equivalent to
If last y < ¥
Then "down"
Else "up".

= functicn which returns previous value
of q, where q is x or y.

= value of next g value. g is either x
OT Y.

= locally c¢lockwise direction.

= locally counter-clockwise direction.
= last y > ¥.

= last y < Y¥.

= lastx[y] < X.

= lastx{y] > %.

PAGF 24

4.1 MERGE CASE NDR

The current point {x,y) is said to cause a.merge rtun if
there exists a previously marked split run [Ei:splitflag] or
[splitflag:Xi] and the following conditions ocCcur, The
conditions for this NDPF (and the others which follow} are given

in an ALGOL=-like notation.

Figure 9. Merge cases fcr splits produced by both implicit and
explicit splits, Right merge MRGRHT (Ei is a split) applies to
both a) CW (explicit split) and b) CCW (implicit split)
spirals, Left merge MRGLFT (Xi is a split) applies to both «c)
CW (implicit split) and d) CCW (explicit split) spiral.

PAGE 25

Figure 9 shows the two cases which can cause a ﬁetge
Note that the left and right splits are the same for both CCW
and CW produced splits. The n runs (nrunf{y}) on line y are
searched backwards as runs occurring later in the ran list are
more likely to be candidates for merger (as a result of recent

splits) than earlier runs.

If not{(nrunfy] > 0) and {(LAST(y) neg Yy))
Then Return; "Don't try to merge.,"

For i:=nrun{y] Step -1 Until 1 Do
If not (x in [Ei:Xily.1)
Then Begin "test merges"

4.1.1 RIGHT MERGE: MRGRHT

If (GETRUN Bi:Xily,i and SPLITP(Xi))
and DIR(Ei)="up" and (LOOKAHEAD(Y) leq y)
ani (LAST(y) < y) and {(x geq Ei) .
Then Begin "right merge"
If (x-1=Ei) and (LOOKAHEAD(Y) leq y)
Then STORERUN([Ei:x+splitflag+lastxflagly,i)
Rlse STORERUN([Ei:x¢lastxflagly,i):
MARKRUN (y,i):="outside right merge";
lastx(y]:=-1; :
DONE ("MRGRHT") ;
End "right merge"®
Blse

4,1.2 LEFT MERGF: MRGLFT

If SPLITP(Ei)) and DIR (Xi)="decwn" and (LOOKAHEAD(y) geq Y)
and (LAST(y) > y) and (x leqg Xi)
Then Begin “left merge®
1f (x+1=Xi) and (LOOKAHEAD(Y) geq y)
Then STORERUN([x+lastxflag+splitflag:Xily,i)
Else STCRERUN ([x+lastxflag:Xily,i};
MARKRUN (y,i):="outside left merge";
lastxfy]i=-1;
.DONE ("MRGLFT") 3
Fnd "left merge";
End "test merges";

PAGE 26

4,2 IMPLICIT-SPLIT CASE NDIR

The current point (x,y) is said to cause an implicit
split when the following conditions are true, Figure 1€
iliustrates the left and right implicit splits, An implicit
split marks the lastx[y] point as an implicit split if a run
from lastx y] to x is not valid, The implicit split handles the
case where the first point of a liné y will later form a merge.
The cases in Figures 10.a and 10.¢ are those where the lastx{y]
was labeled NFWRUN, while Pigures 10.b and 10.4 show the cases
where a short line segment caused by lastx[y] was labeled a

run.

PAGE 27

lastx =El

A A A e Uk R T R M N R ke S S WP M R G W W e W W G AR Ay S i

Figure 10. Implicit split cases, a)' and b) Implicit 1left CCW
split IMPIFT, c) and d} Implicit right CCW split IMPRHT.

PAGE 28

If {(n:=rrunfy]) = 0} cr ({(lx:=lastx[y]}) = -1)
Then Return "Don't test implicit splits."
Else Begin "test for implicit split" '
If (1x < -1)
Then 1x:=-(1x+1000) ;
If (1x = x)
Then Return; "ignore unary run®

4,2.7 IMPLICIT LEFT CCW SPLIT: IMPLFT

If (1lx < x) and DIR(x)="up" and DIR (1x)="down"
Then ndrname: ="IMPLFT, GOTO [found-imp-split]
Else

4,2.2 THMPITICIT RIGHT CCW SPLIT: IMPRHT

If {1x > x) and DIR(x)="down" and DIR(1lx)="up"
Then ndrname:="IMPRHT", Goto [found-imp-split]
Else Feturn;

[found-imp-=plit]:
Begin "found-imp-split"®
svlastx:=lastx{y];
Eir=Xi:=1lx;
If {n = 1)
Then If {(lastx[y] > -1
Then Goto [save-run] "save unary run"
Else Begin "get and test first run"
GETRUN[E1:X1 }y,1;
If DIR(E1) = DIR (X1)
Then Goto { save-run]
Else Goto [new-run];
End "get and test first run";
If (n> 1N
Then Begin "loock for split of opposite dir."
GETRUN En-t:Xn-1}y,n-1;

If (SPLITP(En-1) and (ndcname="IMPRHT")) or

(SPLITP (Xn~1) and {ndrname="IMPLFT"))
Then If (lastxy] < -1)
Then GETRUN[En:Xnly,n,
Goto [save~run]
Else BEn:=Xn:=lastx{y],
Goto [save-run];
If lastx[y] < -1

Then Begin "finish 'NEWRUN' as a SPLIT™
Comment: a split run must be created
since the implied split now being
created would generate two or more

NEWRUNs otherwise:
n:=nrunf vj;
En:=In:=1x;

Goto [save-run];
End "finish 'NEWRUN' as a SPLIT";

PAGE 29

Goto [new-run];

End "look for split of opposite dir.":
Erd "found-imp-split®

[save-run]:
Begin Ysave-run"®
n:=nrunf yJ;
If (ndrrame="IMPLFTM)
Then Begin "set left run"®
DIR (Ei) :="down"; DIR{lx):="up";
STORERUN ([Ei+splitflag:1x+lastxflag]ly,n;
MARKRUN {y,n) :="implicit left run";
End "set left run®;
If (ndrpname="IMPRHT")
Then Begin "set right run®
DIR(Ei} :="up"; DIR(1lx) :="down";
STORFRUN([lx+lastxflag:Xi+splitflagly,n;
MARKRUN (y,n) :="implicit right run'";
End "set right run%;
End "save-run";

4.2.3 IMPLICIT LEFT AND RIGHT HAIRS: IMPLFH IMPRHH

[new run]:
Begin "new run"®
lastx[y]):=-1;
"Fnter it as a new run, It may reappear as HAIREDP!I™
N EWRUN (x) 3
If lastx[y] = -1
Then Begin "implied hair"
lastx[y):=svlastx;
If ndrname = W“INPLFT"
Then DOKE ("IMPLFH"Y)
Flse DONE (IMPRHH");
Znd "implied hair";

"Not a hair, rTeturn the previous decision.®
LONE (ndrhame) ;

Fnd "new run";

End “"test for implicit split";

PAGE 30

4,3 BXPLICIT~-SPLIT CASF NDR

The current point (x,y) is said to cause an explicit
split of a ruﬁ [En:Xnly,n when the following conditions are
true. Figure 11 shows the four cases. The explicit split takes
place when x is 1inside an existing run andé enters the run
region in such a way that the existing run is required to be
broken into a smaller sub-run and an extremum point., The old
extremum point is marked as "split" so that it may be merged

into another run later on,

_ /

o

——————— i ————— T —— S P D = WD D MR R R G e ke wR e -

Figure 11. Explicit split cases, a) Explicit left CW split
SPCW-L, b) explicit right CW split SPCW-R, c¢) explicit right
CCW split SPCCWR, d) explicit CCW split SPCCWL.

PAGE 31

There are cases where the current point might " be an
explicit split. Lookahead at the next point is required to
resolve this, Figure 12 shows the resolution of the ambiguous

explicit split cases.

b j%’ ‘ .El__‘ﬁ_%>1{:__4:m
/ OR ? nextx
AN
a Aé%é .EL**‘§ """ .%|b
B "
Y
¢ onextx

Figure 12. Resolution of the ambiguous states of the explicit
split cases, a) Ambiguous state at x in explicit split. b) Two
possible cases cf (a) which are included points (INCDPT) and
are ignored. c) Another case of (a) which is a split. The other
three ambiguous cases (orientations) are resolved similarly.

If (n:=nzurnf{y]) = ©
Then Return; "Dcn't test for explicit splits.®

For i:=1 Step 1 Until n Do
TIf (SETRUN[Fi:Xily,i) and (x in fRi:¥ily,i) and (Ei leg Xi)
Then Begin "Explicit split test"

4,3.1 TEST FOR INCLUDED PCINT

PAGE 32

If ((LAST(y) = y = LOOKAHEAD (y)} or (Ei = Xi))
Then Goto {included-peint])
Else If not (SPLITP(Xi) or SPLITP(Ei))
Then

1

4,3.2 EXELICIT CW LEFT SPLIT: SPCW-1

If (LAST(y) geg y > LOCKAHEAD(Y))

and LASTXP {Xi) and DIR(Xi) = "down"

Then Begin “CW left split®
STORERUN ([Ei+lastxflag:Ei¢splitflaqg]y,i);
MARKRUN (y,1i) :="outside left split CW spiral";
DIR (x):="up"; lastx[yJ:=-1; NEWRUN (x,¥);
STORERUN([x+lastxflag:Xily,n+1) 3
MARKRUN (y,n+1) :="inside left split CW¥ spiral";
DORE ("SPCW-1") ;
Fnd "CW left split"

Else

4,3.3 FYPLICIT CW RIGHT SELIT: SPCW-K

Tf (LAST (y) leq y < LOOKAHEAD(y})

ard LASTXP {Fi) and DIR(Ei) = "up"

Then Begin "CW right split"
STORERUN ([Xi+splitflag:Xi+tlastxflagly,i);
MARKRDN (y,i) :="outside right split CW spiral";
DIR{x) :="down"; lastx[y]:=-1; NEWRUN(Ei,n+1);
STORFERUN({ Ei:x+lastxflag]ly,n+1) ;
MARKRUN (y,n+1) :="inside right split CW spiral";
DONE ("SPCW-R") ;
End "C¥ right split®

Else

4.3.4 BEYPLICIT CCW LEFT SELIT: SPCCHR

If (LAST{y) leg y < LOOKAHEAD(y))
and LASTYP (Xi) and DIEK(Xi) = "up"
Then Begin "CCW left split™
STORERUN ([Ei+splitflag:Ei+lastxflaqg Jy,1i);

. MARKRUN (y,i):="cutside left split CCW spiral";
DIR(x):="down"; lastx[y]li=-1; NEWRUN(X,Y):
STORERUN ({ x+lastxflag:Xily,n+1);

MARKRUN (y,n+1) :="inside left split CCW spiral™;
DONE ("SPCCWR"}
End "CCW left split™

Flse

4,3.5 EXPLICIT CCW RIGHT SPLIT: SPCCWL

If (LAST (y) geq y > LOOKAHEAD(y})
and LASTXP(Fi) and DIR(Fi) = "down"
Then Begin "right split"
STORERUN ([Xi+lastxflag:Xi+splitflag]ly,1i);

PAGE 33

MARKRUN(y,i) :="outside right split CCW spiral";
DIR{x):=%"up"; lastx[y]:=-1; NEWRUN(Ei,n+1) ;
STORERUN{([Ei:x+lastxflagly,n+1);
MARKRUN (y,n+1):="inside right split CCW spiral™;
DONE ("SPCCHL™) ;
End "right split"®

Else

4.3.6 DO INCLUDED ADJACENT POINT: CGRHSP CGILHSP TINCDPT

{included-pcint]:
Begin "included adjacent point*
If (Ei = Xi)
Then Begin "Change 'HAIREP' to split"
lastx[y]:=x;
DIR(lastx{y]):=DIR(x);
If DIR{x)="up"
Then Begin "change right"
STORERUN([x+splitflag:x+lastxflaqgly,i)
DCNE ("CGRHSP");
End "change right"
Else Begin "change left" :
STORERUN([x+lastxflag:x+splitflaq Jy,1i)
DONE ("CGLHSP");
End "change left";
End "Change 'HAIREP' to split"®
Flse DCNE ("INCDPT™) ;
Erd "included adjacent point";.
Fnd "Explicit split test®;

-y

PAGE 34

4.4 WXTEND-RUN CASE NDR

The current point (x,y) is said to cause a run
extension Iof the last ran [Eh:Xn]y,n of line y when the
following conditions hold. Figure 13 shows the non-adjacent
point run extension cases and Figure 14 shows the adjacent

point run extension cases.

x%xn |

e e e Al A TR A R e S R G e e e EF T N S R A D W e R M W A A e AN S S M WS e G S S e

Figure 13. Non-adjacent run extension cases. a) and b) Left
non-ad jacent run extensions EXNLFT. C) and d) BRight
non-adjacent run extensions EXNRHT.

PAGE 35

A e AN S R M WA M WP W TR M R N R W W R MR e N WD S W TR e e e D W g D e e e S

Figure 14, Adjacent run extension cases, a) Adjacent right run
extension EXARHT. b) Adjacent left run extension EXALFT.

GETRUN[En:X¥Xn ly, n;
1If ((n:=nrun{ yP=0) or (En > XIn)
Then Return; "Decnt't test run extensions®

4,4,17 LEFT ADJACENT RUN EXTENSION: EXALFT

If (En-1=x%x)

Then Begin "left adjacent run extension"
TIR(x):=DIR(En); STORERUN ([x+lastxflag:Xn jy,n);
lastx[y == (x+1000) ;

MARKRUN (y,n) :="1left adjacent run extension";
DCNE (MEXALFT") :

Erd "left adjacent run extension"

Else

L,4,2 RIGHT ACJACFNT RUN FEXTENSION: EXARHT

If (Xn+1=x)
Then Begin "right adjacent run extension®
DIR (x) :=DIR(Xn); STORERUN {{ En:x+lastxflag]y,n);
lastxf{ y]:=-(x+1000) ;
MARKRUN (y,n):="right adjacent run extension®;
DONE("EXARHTY)} ;
End "right adjacent run extension"
Flse If not (SPLITP(En) or SPLITP{Xn})
Then ‘

4,4,3 LEFT NON-ADJACENT RUN EXTENSION: EANLFT

If (LAST(y) > y) and (lastx[y] < -1) and (x < En)
Then Begin "left non-adjacent run extension"
DIR(x) :=DIR({En); STORERHUN ([x+lastxflag:Xn]Jy,n);
lastx[y J:=-(x+1000) ;

PAGE 36

MARKRUN (y,n) :="1left ncn-adjacent run extension";
DCNE("EXNLET") 3

Erd "left non-adjacent run extension"

Flse

4.4,4 RIGHT NON-ADJACENT RUN EXTENSION: EXNRHT

If (LAST (y) < yv) and (lastx{y] < -1) and (x > ¥n}
Then Begin "right non-adjacent run extensiocn
DIK (x) :=DIR (Xn); STORERUN ([En:x+lastxflag]y,n};
lastx[y):=-(x+1000);
MARKRUN (y,n) :="right non-adjacent run extension";
DONE {"EXNRHT") ;
End "right non=-adijacent run extension";

PAGE 37

4,5 RUN CCMPLETION NDR

The current point (Xx,y) is said to cause a rTun
completion for 1line y when the following conditions are true.
There are three tjpes: adjacent run, unary run, and
non-adjacent run corpletions. The algorithm tests to see where
a run can be legally constructed from lastx[y] and x. Figure
15 shows the three major types of run completions with 15a-b
being adjacent runs, 15c the unary rtun case, and 15d-e the

non-adjacent run completion cases.

If (n:=nrun{y] = 0) or (lastx[y] < 0))
Then Return; "Do not test run completion."

"Save old last x direction®
01d1xdir:=DIR (lastx[y]);

4.5.1 RIGHT NON-AJD, OR ADJ. RUN COMPLETION: CPARHT CPNRHT

If {lastx[y] < x)
Then T£ (LAST(y) < ¥) '
Then Begin "right non-adj run complet ion"
DIR(x):="down"; DIR (Lastx[y]) :="up";
STORERUN ([lastx[y]): x+lastxflag]ly,n);
lastx[y]:=-(x+1000); DIR(lastx{y]):="down";
DONE ("CP NRHT™) ;
End Yright ncn-adj run completion®
Rlse If (LAST(y) = Y)
Then Begin "right adj run completion"
DIR(x) :=LIR(lastx[y]);
STORERUN([lastx[y]l:x+lastxflagly,n) ;
lastx[y J:=- (x+1000);
DIR (lastx{ y]):=oldlxdir;
DONE ("CPNRHT") ;
End "right adi run completion"
Else '

4,5,2 UNARY RUN COMPLETION: CMPUNY

If (lastx[y] = x)
Than Begin "unary completion®
En:=Xn:=x;
If LOOKAHEAD(y) < ¥

PAGE 38

Then DIR (En) :="up", DIR(Xn) :="down"
Else DIR (En):="down", DIR (Xn) :="up";
STORERUN ([En: Xn]y,n) ;
lastx[y]:=-(x+1000) ; CIR(lastx[y]):=0ldlxdir;
DCNE ("CHMPO NY") 3
End "unary completion®;
Else

lastx[y] X /

Iosfx[y]

_

- b
OR
X X = lastx[y]
C

D ———— A T i e - S wyy G W S S W W e e kS R W D e

Figure 15. Run completion cases. a) Adjacent right run
completion CPARHT, b) adjacent left run completion CPALFT, c)
unary run completion CMPUNY, d) non-adjacent right run
completion CPNRHT, e) non-ad jacent left run completion CPNLFT.

PAGE 39

4.5.3 LEFT NON-AJC. OR ADJ. RUN COMPILETION: CPALFT CPNLFT

If (lastx{y] < 1)
Then If (LAST(y) > ¥)
Then Begin "left non-adj run completlon"
DIR(xX) :="up"; DIR(lastx[y]) :="down";
STORERUN ([x+lastxflag:lastx{y]ly.,n) ;
lastx{ y]:=-(x+1000); DIR(lastx{y]):="up";
DONE (YCPALFT") ;
End "left nor-ady run completion®
Else If (LAST(y) = ¥)
Then Begin "left adj run completion"
DIR (x):=DIR (lastx[y D
STORERUN ([x+lastxflag:lastx{y]ly,n);
lastx[y]:=- (x+1000) ;
DIR{lastx[y]) :=oldlxdir;
DCNE ("CPNLFT");
End "left adj run completion®;

PAGE 40
4,6 NEW-RUN CASE NDR

The current peint (x,y) is said to cause a new
run n+1 for line y which currently has n runs when the
following cenditions are true. The new run is simply a marking
of the start of a potential run. It sets lastx{y] so that it
may be tested on the next point by other NDRs. Figure 16a
shows the new run case. The hair endpoint case shown in Figure
16b is found by redoqnizing that the point backups on the next

point,

Figure 16. New run cases, a) Normal new run NEWRON, b) new run
which is a hair end pcint HAIREP determined by the condition
(lasty = loockahead{y] neq y). :

If (Lastx[y] = -1)
Then Begin "new run"®
lastx{y}:=x; (n:=nrun[yl:=nrun{y]+1):
DIR(lastx[y] :=DIEK(x) :

4.6.1 HAIR END FOINT: HAIREP

"Check for hair point"®
If (LAST(y) = LOOKAHEAD(y) neq y)
Then Begin "hair point™
DIR (lastx[y]):=(If LOOKAHEAD(y) < ¥
' ‘ Then Mup
Else "down");
STORERUN ([lastx[y]):lastx{y]ly,n} 3

PAGE i1

DONE ("HATREP"™) ;
End "hair point"
4,6.2 NFW RUN: NEWRUN
Flse DONE("NEWRUN") ;
Fnd "new run'®;

PAGE 42

5. CHARACTERISTICS OF THE ALGORITHH

Various characteristics of the RLM algorithm are

discussed including its completeness and the complexity of the

RLM generation and search algorithms.

5.1 COMPLETENESS OF THE RIM ALGORITHM

T.2 Theorem: For each point in Rk, there exists a semantic
label from Lsem such that the corresponding NDR
accepted it.

Proof: The proof is not presented here, It can be
-shown by listing all cases of boundary transitions and
then showing that each case is handled by a NDR,

5.2 COMPLFXITY MEASURE OF RLM GENFRATION

A complexity measure may be computed to determine the
worst case computation for generating a RLM from a TCB RK of
length k. The result is comparable to other methods in
computational effort required to represent the TCB in a easily

searched structure.

T.3 Theorem: The computation of the BLM ¢f a TCB Rk of
length b is Order (b).

Procf: The RLM at each step is computed with a finite
state transition function, At worst the function must
look up a previous run on a given line vy, If the runs
are stored in an infinite array "exdataln,y]" then this
is a single step. If it must search a linked list (as
is the case in the current implementation) then the
computation is Order (b*E[r]) where E[r] is the expected
number of runs/line, If, for a given y, [Ei:Xi]y,1i is
searched using a binary search, then the number of
computations becomes Order {(b*log(Er]})).

PAGE 43

5.3 COMPLEXITY MEASURE OF SEARCHING THE RLM

A complexity measure may be ccmputed to determine worst
case computations for searching a RLM to determine whether a

point (x,¥) is inside the TCR represented by the RLM.

x

a \2 . b

1/3 b teeth | Ht _sL_

® 4 3
Hb I
¢ K——2/3b—> d
Figure 17, Extreme cases of run complexity. a) Vertical line

of b points with b runs, b) simple convex object of length Db
points and (b-2)/2 runs, <¢) a horizontal comb of boundary
length b with vertical teeth of length 1 having (2/3}b points
on the line and (1/3)L teeth and {1/3)b runs, 4} rectangular
boundary with minor width of 3 and major length (b-2)/2 having
3 runs for any length b,

T. b4 Theorem: Given TCB Rk of length b points, the number
of runs N regquired to represent Rk is bounded by [3 1leg
N 'leg b]. For a simple convex object, it is bounded by
[3 leg N leg ({bs2)+1)]. The worst case object with
respect to the maximum number of runs/line is a comb of
length (2/3)b and (1/3)b teeth which has (1/3)b unary

PAGE 44

runs. Thus the expected number of runs E[r] legq (1/3)bh.

Proof: There are two cases (a) Rk is an unclosed

‘vertical arc and (b) Rk is a closed arc. These cases

are illustrated in Pigure 17.

(a) All runs are of length 1 since the entrance and
exit points for any run are the same x point for a line
y on Rk, Therefcore for {Rk{=h, there are b runs as in
Figure 17a,

{b) For a closed convex arc, there are at least ¢two
points on Rk which have runs of length 1: the top and
bottom point. Thus there are (b-2)/2 runs of length
greater than 1 together with the two end point runs, or
a total of ((bs/2)+1) runs as in Figure 17b,

The closed object with the maximum number of
runs/boundary length is a comb with comb body thickness
1, tooth length 1 and tooth spacing 2 with the teeth
positioned vertically (shown in Pigure 17. c¢). Thus
as we travel around the comb there are (1/3)b teeth
ccrresponding to (1/3)b runs plus the run (extension)
of the base,

The case where n points (n>2) map into a run cccurs on
horizontal runs (see Merrill's last restriction). Let
there be two horizontal runs: the number of points in
the top, Ht, and the bottom, Hb, Thus there are
((b-Ht-HDb) /2) +2 runs, Since Ht=HDb, this is
((b=-2%Ht) /2) +2.

The object with the 1least number of runs is a 3-line

rectangle as in Pigure 17d. The three runs are:
Ht, 1, Hb. Thus convex objects are bounded by [3 leq W
leq ((b/2)+1}] runs. . Arbitrary closed objects are

bounded by [3 leq N leq bl.

Theorem: Given a TCB of 1length b, +the RLM uses
storage leq 3b.

Proof: PFrom Theorm T.2, the maximum number of runs
required to represent the TCB Rk is b, Let each run
require one unit of storage to store [Ei:Xil]y,i. Each
line reguires a run counter "nrun{y]" and the value of
the last x seen "lastx[y]". '

Theorem: Testing whether a point (X,y) is inside a TCB
region requires Order{E{r}/2) leg order (b/6)
operations.

Proof: A point (x,y) has equal probability of appearing
in one run as in another. Thus E[search length]=F[r])/2.

PAGE 45

Since the maximum number of runs for a boundary of
length b is b/3, we have Order (Er)/2 leg Order (b/6).
In practice, Efr] is very small (about 1 to 4).

PAGE U6

6. EYAMPLES USING THE RLM

The following two examples illustrate the RLYM
algorithm. The first shows the ability to keep track of the
level inside of a spiral as well as the ability to
differentiate between clockwise (CW) and counterclockwise {CCHW)
spirals. The second example illustrates the analysis of the
statistics of the semantic 1labeling produced by the 32LM

generation process.

6.1 SPIRALS

The spiral is a fairly complicated casé from the point
of view of determining connectedness. The number of runs
required to represent it grows very rapidly., Tt has two
distinct forms: clockwise (CW) and counterclockwise (CCW).
These two forms make use of most of the NDRs of the algorithm.,
Figure 18 shows an example of a line of semantic labels through
a CW spiral., Figure 19 shows an example of a line of semantic
labels through a CCW spiral. Figure 20 shows an example of a
line of semantic labels through a hand drawn double spiral

boundary spiral.

PAGE 47

SEMpoint
NEWRIN
CPNRHT

SPCH-L

SPCW~-R
5 1 30 Sli====== 4D 2D SPCW-L
] 1u 3U---6D =—=m== 4n 2D MRGRHT
7 10 3y~~-6D su-f----un TJU---2D MRGLFT

8 1U---8D 3U---BD 50~-=~== 4D 70---2D MRGRHT

A D D AR R N D W S L Ak e e R G SR A AR MR WP AT R N ek e o TR WD SR W D ED N R SR S S Sk A W G A A W RN WD S NS D me e e e e

Figure 18, Exarple of clcckwise spiral SEMpoint labeling for
line y which intersects all edges of the spiral. The runs for
line y are given at each step by showing runs with Te--n
joining the runs, Fach step is followed by a U ({(points up) or a
D (points down).

PAGE 48

SEMpoint
"NEWRON
2 1D 20 IMPRHT
3 1D 3D 20 IMPLFT
4 1D 3D 4u 20 IMPERHT
5 1D 3D 40---~50 20 CPNRHT
6 1D 60---3D 4u---51 20 MRGLFT
7 1D 6U~-<3D - 4y---50 2U==-7D MRGRHT
8 80---1D 6U---3D 4y---5U 20---7D MRGLFT
Figure 19. Example of counterclockwise spiral SEMpoint

labeling for line y which intersects all edges of the spiral.
The runs for line y are given at cach step by showing runs with
"---" joining the runs. Each step is followed by a U (points
up) or a D {pcints down).

PAGE 49

line :13 :

c

Figqure 20, Example of RLM generation by computer of a) hand
drawn doyble spiral boundary, (b) the inside of the boundary
filled using the generated RLN, c) the SEMpoint 1labeling for
line y=123,

PAGE 50

6.2 CO-OCCURRENCE OF LABELING SEMANTICS AS A SHAPE DESCRIPTION
The total semantic labeling ([Sti} for a boundary may be
described bty a semantic label co-occurrence wmatrix consisting
of a 26x26 point array (given the possible 26 semantic labels).
Analysis of the co-occurrence matrix may be used to compute
several global shape features, For example, the ©percentage
of implicit splits, IMP~-~, indicates the degree of concavity
of the surface. The percentage of explicit splits, SPCCW- or
SPCW--, indicates the amount of counterclockwise or clockwise
spiral on the surface. The percentage of hairs indicates the

noisiness of the boundary.

Two bone marrov image nuclear boundaries were obtained
with the BHON2 system (from a Wright's stained marrow smear at
800X). These are shown in Pigure 21, The top nucleus is from a
mature neutrophil while the bottom is from a large lymphocyte.
The SEMpoint co-occurrence matrices for the two boundaries are

summarized in Table 2a and 2b.

The neutrophil boundary has many more implicit splits
and spirals than the large lymphocyte, corresponding to a more

convoluted boundary.

6.3 RUN LENGTH DISTRIBUTIONS OF SEMpoint LABEL SEQUENCES

Instead of analyzing the point co-occurrence of

PAGE 51

semantic labels, the run lengtﬁ distributions of labels or
label groups along the boundary might be analyzed to get
information as to the size of specific features. Table 3 (3a
for the neutrophil and 3b for the lymphocyte) shows the
distributions for the two objécts for the 0 dJdegree SEMpoint
labeling. HNote that the first boundary has several implied
splits of a reasonable size. These are the concavities on the
boundary. That is, the concavities are explicitly labeled!
Notice also a few smaller spiral edges on the f£first boundary
which correspond to a few local spiral regions. Both boundaries
have few hair 1labels which means that +they are probably

thresholded at about the correct threshold.

L g o L T T) g e p———

Pigqure 21. Nuiclei of neutrophil cell (top) and large
lymphocyte cell (bottom): a) gray value images, b) traces of
the segmented boundaries, ¢) 3:1 zoom of the neutrophil, d4) 3:1
zoom of the large lymphocyte. -

54

PAGE

Semantic label (0 degree only) run length distributions

10 15 20 25

1 5

NDRlength

CCLe TGO C OO oCOCc o oo
COoOCODOOoOLOCC OO OCcOoOCoCocoCOor
CoOO U OOoOOQOLOCC oo CoOoOo Qoo
CCOROCOCOLCEROCGl CVOCLCORPOCT
C OO OO OO OO RO OO TOOOC
COC OB CRoCONO0OCODCCeoOCoR s
CCOCCOCO00PCEO0COED0OOOOCOOR
o000 ODOCODUOOOCCOC OGO
C OO COLOcOCoooCoORUITeaC
OO OO0 COCOR0O0o0oORoOO0
OO oo OO rOoC OO
COCOoOoOQOOC oo COOPRCoOoO OO0
OO0 OO0 C O C oD OCOCOCO
OO OCEOOOO0 OO OOC OO OCOCO
CCODOOOOOROOoOLOOC OOl
O OoODCODOCOCIITOOCPLOOOCOoROCO
COOCCOOOoOCOOO OO renO0CcO00O
O O™ OO OO TG OoCORQ
OO COCooODOOoOOOCoORooOoRCROCS
OPC OO0 rOoOOPOLLROLOOO0DOoCO
OO CrHoDOTO00COOULOOOTCODDC
om0 TGO 0O rcCNOOOOOC
COCUTrCoOOoORoROC OO rOoOCCOeDO
CoCDOOOOrOCrOoCoOOOOrOoTOCCOOO
OO MO ONCO O r rOC T r OO0
OGO MoaO O o et Me 2 NOOONTO0 D

- -

VY ey U P ey R ey ey e L e e T e I e T T Py
[T I I I I e A i R S AT B -l e o B = R R R]
NNpEIDMD RO ARTRE TSR AAR T DDE D | S X
e =g B I - B R RTINS - BT
et e e 2 AR A0S 0OU
UMM AL ED MMM agE S EZ MDD Do
DDLU ULDULLAOAREMRETDEHMHMEMKMKESSZZUNN=ESWNWM
St e L) et e el i e b et |1 e R) e o bt L et b et ot b e L)
FNM I NSO TN OO DR M NN

- T e e NN

PO P ———————R PP A g 0 SR D N et Rl el

Table 3a.
labeling of the neutrophil boundary.

SEMpoint

the

for

Run length distribution matrices

55

PAGE

Semantic label

NDRlength

(C degree only) run length distributions

15 20 25

10

5

1

COCOCCLCLOoooOCuCe oLl o
COCCT o oCCOooU ool oc oo o OO Cc oo
CLO0OCOoCCooLCoOlCOoOCcCoc PO C OO COO
VOoOCOoOGOoOCoOCDOOLOUOOOCOoOROCOoOLDQ
OOV OOLO™OCOO DO
COoOOOCOO0COCOOOODO0 OO OO0D
- -1 o o - - o o =
oS TN OCO0D0NOOROCLOOO
OO C OO DO O L COO RO OOC OC
OO0 OCLLOODCOOOOoCRLOOOOC
O COCLOONDOCOCO00O 000000 COODO0
COOOOC OO0 L OO OO0
COoO o OO OO0 RO oC o
COCOLDOCLOODOUCOOOLOOoOOLC OO0
COoOocoLILOOODoOCOoOOIVDOOLCCooOC o
CCOUROICPDOOLOCDDCODOTCoLROC
COCOTTOOOUOOOUCOOCOOoOOROCOCDO
COQOURCoOORLOoODODOOOoUODOLDOODROS
OO oOCOCCLOoODOoOCOoeDOoOTrooCQOoO
COoOQOrOoCOROCLOOOLOSCLOTCORLC®
DCOCOCOOOLrOGCGo oL OO0 DC
OO0 COOOCoOOOLODODOCOLCLODG OO
COo00OCOCLoDODOoOOoCROIOOCOoCOC oW
COO0CODLCOoOrCoDOoOOCCOoODONOSICOO
COCoONOOOIOTrOCO OO rOooOo O

OO N Mer D+ rrO o OO0 N0 O

-—

Qe BB P ERHE M DO ME HEHREE] O
WulmoapOE AR ERDMRBREDE SRR
EN gD P Eacs A8 Sk x®L OO0
HE e e a2 30U DU
UL AALAUED MMM ESEXZOERDO MDA M
DLV LOLOVUAMERAEHKMKEHHHE2EEZZ W Z U W
St e b e et o b et e L el M 0) el e i b 7 R i Lt b b b e by
NN N OO NMN TN T O N M oW

T e o o NN NN NN

vy o e e il e v U P WP U M W A VNP TR A TN AED B R D SRR S gue e e e e S D) e A R e S N e A S S e v AN M i e i e -

SEMpoint

the

for

Run length distribution matrices

labeling of the lymphocyte boundary.

Table 3b,

54

PAGE

Semantic label (0 degree only) run length distributions

10 15 20 25

1 5

NDRlength

CCcL T ooCooO@ococCco oo
CoCO0CLOCCe ROl RcoCoooCoC
coocCeooooLcOCc oo ooofCCT
0O COC LT Gl COOCVLVCORTCCO
C O CoOOCOECCOoC OO0 OOOOC
OO0 COTCO0CONO0OCOOCOOOCOOO
OO oo RO OO0 RCOoO®
CCOoOUOODOoODOCCoOOQOOLOOOLOoOLT O
G CC DO OC DL OO OCCOOLOOCCC
e Rt e i o e - - L =R =LA =R - - X - -]
GO0 OCCOoOOoOOLOODODOo OO roCOoolQ
CO OO RO C R OoOOCOORC oo OO0
OO0 OO OO o CCcoCCOCLACOLDCoCO
OO0 OoOOOORCOODDOOCOoOOLoCOOO
CCO OO0 oCOCDOO0OLORoORooOCC
COCOOOCODORRPOITRPOOPOCOOCOOORO
COO0OCCOC0O0OO00C00OCRPrcoROSO00
COoOO0CO™TOOoOoOLOoODOL OO OLTrGOCODO
OO 00D OCODOCOCORODcooOC
OO CCOo0OOTrOoOROPDODDCOoOCRDoOODRCO
DO Croo0OTroRoC oD COoLcoOoDC
OCOOTOOOrODoCOOr O rocCNOOOG OGO
OO rCoRORODIRCCOOrOoDoOC OO
OO OO0 rocTroOoUOOrOTOCCOOO
COC MO OONOCCOOr rCarrCo000O0O
OO rCOMOoODOYr NNMeECITNOTONTOOD

- -)

I r e P P R PR P e e P g e T T P e T T T e T ey
U HE RN R HRAE DD HEA -
ninpIoDmTo AR RN ELR SRR T RIBEDE Y S E X
[=Bl o R R RO T TR B R Y < o S s R o - R R T < o A TR < Q=TS
Pl e e <y A et AR DD E A DOS OO0
GGPPPPHUVAXKKRHHMHNRREUPPUPP
ODLVLLUVLLLEGRERMEHHKHNEMHEE DSBS N & NN
rd M)) e R el L8 Lt e o g b e bl 1 i e b) e el b e g e G
N TN~ OO TN 3OO D e M DD

T T e et T e e NN NN NN

——— et b W WA W s el mhr A R A AP AP W A e A A W W N R e e s Wl R IR e R G M e MR M W A D R W W R W

SEMpoint

the

for

Run length distribution matrices

labeling of the neutrophil boundary.

Table 3a.

55

PAGE

Semantic label (¢ degree only) run length distributions

.15 20 25

10

5

1

NDRlength

COLOOLLUoolud.c Lo o
CCOC o oCCoOoC OOl Co oo oOOoOc o
COOOCOCUoOUCoOOlOCeCoCOCOO
o0 OoOGOLOOOLCOOoCEOROoOGCODoCcOoOC
OO0 CCOOLOOLOOOOOLOOoOrOCOoC DO
CCO0DOoCO0OCOCOODRODCOONOQOODO
el o e e o e e o o - e - T
OGO oOOO0DOOOLOoORVOOROODOR
OO CO0CC o0 OoOODVO0oC DG
COOOPVLOOCOLOOOCOOOODCOoOOOOOOQ
DO CCOCOODCO0D0O0RODO0OO0CoOOOO0
OO OO CLOOoOOCCOOCOn
COCcOoOP0O0C0OC0DOORCCOROOOOC o
COCODOOCOOCODOCCCOOOOOODCOODOCO
COCOLOOOPLROOCOOODPCoOLPCoCOCO
ORCOoOVOCOCODOoOOLULODOCODO™ O OO OC
COCOTOoOCOOOOOCLoOOCOOoOODOOCOCDO
CO0ORCOOUODODOOOVOOOROODDO0
D000 COCCOODOCOCLOOTOoOoDCO
COoOCODTrOCOUDOoOCOoOOoOLlCOCOIOOOOC O
OCOOoOUODOOOrOGROLO OO0 OC
VOO QCOoO0ORCLOLOCLLC OO0 LOC
CoO00RCOOUoOQCOOOROIDIOOCOODCOCOC
OO0 COOLUCOrCO0O0CCODONOCOROO
OO NOOC IO r OO0 "CODODroOoDOOO0

CPALFT]
6 [CPARHT]
7 [CMPONY]
8 [DUP-BT]
9 [EXALFT)
10 [BXARHT]
11 { EXNLPT] 1
12 [EXNRHT]
13 [HAIREP]
14 [IMPLFT]
15 { IMPRHT]
16 [IMPLFH]
17 [IMPRHH]
18 [INCDP1]
19 [MRGLPFT]
20 [MRGRHT]
21 [NEWRUN)
22 [NULPNT)
23 [SPCW~L]
24 [SPCH~R)
22 [NULPNT]
25 [SPCCWL]
26 [SPCCWE]

O A W S G A O Y O D S W W A S W WS O A D D D e D N W D D A M R W S G A WS R TR WS O W R O

SEMpoint

the

for

Run length distribution matrices

labeling of the lymphocyte boundary.

Table 3b.

PAGE 56

Figure 22. Boundaries of semantic labels. The SEMpoint at each
point are used to darken those boundary points meeting a
specific label at 0 degree rotation, a) all boundary points, b)
NEWRUN, c) IMPLFT, d4) TIMPRHT, e) all boundary points, f)
MRGLFT, g) CPNLFT, h) CPNRHT,

PAGE 57

7. DATA STRUCTURES - LINKED LISTS

A linked~list representation is used for the runs. This
was done for several reasons. The most important is that it is
possible for the number of runs on a line y to be very large.
If the runs were stored as arrays (ENT[n,y], XIT[n,y]) then the
maximum storage required to handle the largest expected run

would be gquite large.

Each 1line y 1is stored as a separate circular doubly
linked list pointed to by exptrf{y]). A run in the list 1is a

single node consisting of five fields (for run (y,i)):

backward pointer for run i to run {(i-1) mod n,

forward pointer for run i to run (i+1) mod n,

last local semantic label on run i,

Ei (entrance x value for run),

Xi (exit x value for run i).

The second reason for using linked list is that the
boundaries themselves are stored as linked lists which
facilitates editing them as well as performing other operations

-as discussed in [14]°

PAGE 58

8, DISCUSSICN

The RLM generation algorithm, in addition to producing
an efficient boundary representation for searching regions,
also provides local shape information in the form of run and
boundary point semantic labels, Further experiments are in
progress to investigate object shape information using these

labelings,

ACKNOWLEDGEMENTS

The author would like to thank Lewis Lipkin for his
enthusiastic support and discussions on the RLM algorithm. In
addition thanks are due to George Carman of Corvallis Oregon,
and Mort Schultz, Bruce Shapiro (as well as Lewis Lipkin) of
the Image Processing Unit for their contributions in the design
and construction of the RTPP system on which this algorithm was
developed. Much thanks are also due to Jo Abbott for the
illustrations., Parts of this paper were taken from work done

in the Ph.D, dissertation of the author [13].

REFERFNCES

e -

1. Minsky M, Papert S: Perceptrons: An Introduction to

Computational Geometry., MIT Fress, Cambridge, Mass, 1969.

PAGE 59

2. Freeman HE: Computer Processing of Line Drawing Iméges. Comp

Surveys, Vol 6, March 1974, 57:97.

3. Davis L S: Understanding Shape: Angles and Sides. IEFE

Trans Corp, Vol C-26, 1977, 236:242,

4. Burton W: Representation of Many-Sided ©Polygons and
Polygonal lines for Rapid Processing. CACHM Vol 20, 1977,
166:176.

S Rirtovitz D Data Structures for Operations on Digital

Images. In "Pictorial Pattern Recognition®, G. C. Cheng etal.

(eds), Therpson Book Co, Wash DC, 1968, 115:117.

6, Rounds E: Figure Constructicn from its Contours. USCIPT

Report 720, Sept, 1976, E5:62,

7. Agrawala A K, Kulkarni A V: A Sequential Approach to the
Fxtraction of Shape Features., Comp Graph Image Proc, Vol 6,

1977, 53631557,

8. Merrill R D:Bepresentation of Continuous Regions for

Efficient Computer Search. CACM, Vol 16, 1973, 69:82.

9. lemkin F:Buffer Memory Monitor System for Interactive Image

Processing. NCTI/IP Technical Regport #21b, NTIS PB278789

PAGE 60
(listings PB278790), April, 1978.

10. Lemkin P, Carman G, Lipkin L, Shapiro B, Schultz M, Kaiser
P:A Real Time Picture Processor for Use in Biological Cell
Tdentification - I System Design. J Hist Cyto, Vol 22, 1974,

725:73 1.

11, Carman G, Lemkin P, Lipkin L, Shapiro B, Schultz M, Kaiser
P:A Real Time Picture Processor for Use in Biological Cell
Identification - II Hardware Irplementation. J Hist Cyto, Vol

22, 1974, 732:740.

12. temkin P, Carman G, Lipkin L, Shapiro B, Schultz M:Peal
Time Picture Processor - ©Description and specification.

NCI/IP Technical Report #7a, NTIS PB269600/AS, June, 1977,

13. Lemkin P Bone Marrow Smear Image Analysis. PheD.

Disseratation, Univ. Md, College Park, Md., 1978.

14, Zahn C T: Data Structures for Pattern Recognition
Algorithms: A Case S5tudy. Proc Conf Comp Graph, Pat Rec, and

Data Struct, Beverly Hills, Ca, May, 1975, 191:195.

