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PREFACE

This report presents an approach to the analysis of
bone marrow smear images. Specifically, it presents a
segmentation strategy for fields from normally aspirated
Wrijht's stained bone marrow smear images of the type found in
¢linical laboratories. Problem domain knowledge 1is used in
selecting the segmentation strategy. The choice and sequence
of segmentation algorithms may be expressed as a decision tree.
Although the decision tree is potentially open-ended, an
analysis of an actual data base shows that most segmentation
problems were of particular types. The algorithms implemented

were restricted to a subset of the latter types.

The contents of the later Sections include: statement
and scope of the problem with discussion of image and
morphologic data bases (1 and 2); review of the 1literature on
cell image segmentation (3); proposed segmentation stragegy
{(4); detailed algorithms for RBC removal (5); large object
analysis (6); single <c¢ell articulation (7); small object
analysis (8); conclusions and recommendations {9). An Appendix
is included with a detailed description of the image d;ta base.
Other details covered in the author's dissertation
include: the semantic data base (B); image processing software
{C); specific details on selected algorithms which contribute
to the dissertation (D, E, F); and the procedural description
language developed for use with models of the type proposed in

the dissertation (G).
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1. PROBLEM STATEMENT AND SCOPE

i.1 The problem

This report presents a segmentation strategy for fiells
from normally aspirated Wright's stained bone marrow smear

images of the type found in the clinical laboratories. Problem

domain knowledge is used 1in selecting the segmentation
strategy. The choice and sequence of segmentation algoritams
may be expressed as a decision tree. Although the decision

tree is potentially open-ended, an analysis of an actual data
base shows that most segmentation problems were of pérticular
types. The algorithms implemented were restricted to a subset

of the latter types.

1. 1.1 Selection of the problem

Bone marrow smears are sufficiently complex in their
composition as to require structure-based segmentation rules.
Normal marrow contains over 70 morphologically distinct
elements recognizable as different classed by a trained
hematologist.'Cells present themselves in more complex ways in
marrow (which retains some of the properties of tissue) than in
peripheral blood. The latter consists primarily of isolated
cells and involves far fewer <cell types. Because of their
tissue-like presentation, normal marrow smears contain many
regions of clustered leukocytes that touch one another, which
complicates any segmentation process [BesM73].

1




The successful segmentation of complex marrovw scenes is
a necessary step if tissue analysis is to be automated. This is
because the types of analysis done in marrow are a subset of

those required for tissue analysis.

1. 1. 2 Long term goals

The complete analysis of marrow images is beyond the
scope of any single research project. The subproblem selected
here has been restricted to that of segmenting (by isolating,
labeling and measuring) a set of primitive objects found in

marrcow images.

The resulting segmentation can then be lpassed to a
higher level system incorporating more hematology-specific
knowledge in order to continue the segmentation and
classification process. For examplie, once touching ceils are
separated, measurements can be made on the individual cells

leading to their classification.

The primary data in a full marrow analysis system would
consist of not Jjust 1images, but problem domain knowledge as
well. Such knowlege would enable the model to adapt to global
changes in the slide or patient sample. Disease condition,
staining shifts, cell density on the slide, artifacf or dirt
level could be taken into account in such a model. Such a
modelling system might embed knowlege procedurally in such a
way that patterns in the data could trigger the evaluation of

global hypotheses about the model.




The segmentation methods suggested here were suggested
during discussion with biologists of cells in a field of view
(called a frame). Compartmentalization of objects is based on
the occurrence of membrane boundaries (both visible and

inferred).

During analysis, the model of the scene becomes more
informed and is used to iterate +toward an increasingly
knowledgeable model of the frame. Basic assumptions about the
number of cells in the frame; which cells are touching each
other; existence of platelets; existence of hemoglobin-formed
objects; etc, are used in filling in a basic model of the
frame. Once this initial model is defined, gquestions <can be
asked as to whether the touching cells should and can be split;
whether the hemoglobin formed objects are red blood cells

(RBCs) or are cells in the developmental sequence of the RBCs.

The segmentation method 1is extensible in that it
permits new knowledge about the bone marrow domain (normal and
abnormal) to be added by its incorporafion into the
segmentation algorithms and non-image domain model. Such
extensibility may make the model inconsistent. However, often
biologists' concepts of particular morphological models are
inconsistent, as evidenced by the variation in definition of

particular cell classes.

The initial model 1is concerned with a single marrow
slide field (represented by scans taken at multiple

wavelengths). It 1is concerned only with normal marrow cells.
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The restriction to normal marrow cells is not severe, because
the majority of abnormal marrov slides consist of abnormal
distributions of normal cells, or contain many cells which are

morphologically indistinguishable from normal.

The model is extensible to multiple fields (and
miltiple slides) and to abnormal cells. The extension to
multiple fields reguires the ability +to iénore information
about previous fields below a given level of abstraction. The
extension to abnormal cells requires additional information
about particular instances of such cells or about the changes
in cells which lead to abnormal cells. Much of this information
is conjectured to be quite non-contradictory to ’thét of the
normal c¢ell morphology, so that it may simply be added without
destroying the consistency of the model. Other information has
to do with numbers of cells and other types of population
statistics which can also be added to take the effects of

abnormal situations into account.

1.1.3 Restrictions on the problem domain - short term goals

A —— S Y A i T T A . bl i e ke Ayl M S AL - T L . M T " T W — " vy o= S o b o e

The segmentation algorithms developed here isolate,

label and measure some of the objects in the frame, including:

(a}) Red blood cells.
(b) Complete nucleated cells (including separating
touching cells).
{b.1) Nucleus identification.
{b.2) Cytoplasm identification.
(b-3) Nucleolus identification.
{c) Platelets.
{(d) Cells touching the frame (with the option of
ignoring them).
(e} Dirt and other artifacts.




(f) Ill-formed regions not belonging to any of {(a) to
(e} . ‘

The initial segmentation algorithm is insufficient to
account for all pixels in all fields. Further segmentation
algorithm enhancement will be required for use in a production
envirnment. The initial segmentation algorithm goals are:

{a) RBCs and normoblasts are accounted for.

(b) Nuclei are correctly accounted for {[cells may or

may not be segmented).

{c}) Cytoplasm is correctly accounted for in being

assigned to the correct nucleus.

(d) Platelets are accounted for.

(e) Prominent nucleoli are accounted for.

(£) All pixels in the field are designated as belonging

to artifacts, biological components, or background.

The result of frame segmentation is a set of connected
component (CC) 1images for various cell components (including
complete cells). Cellular objects and subobjects may be
extracted using the C€C images and features computed at that
stage. The CC images to be «created are: nuclei (CCnuc),

cytoplasm (CCcyt), nucleoli {CCnucleoli), and platelets

(CCplate).

1.1.4 Open-endedness of the problem

The open-endedness of the problem is due to the fact
that the number of classes of objects is open-ended (in types
of artifacts as well as in abnormal types of cells). In
addition, the number of situations in which cells present

themselves is open-ended.

The diminishing returns associated with infregquently



seen situations should determine what is implemented and what
is not. 'This is the approach taken here, whefe those
situations mosf commonliy occurring vere selected for
implementafion. A simple analysis of common types of situations
was performed on the image data base, as discussed in Section
1.3.2. Failures in the experimental results can be explained
most often as belonging to cases not treated in the current

implementation.




1.2 Bone marrow domain

The marrow problem domain is introduced here in
clinical terms. This discussion is intended to give the flavor
of some of the specimen preparation problems and some of the
reasons for the wide variation found in samples from the same

slide and between slides.

1.2.1 Clinical use of bone marrow smears

Normally, a marrow smear is requested in a clinical
context when other patient symptoms indicate that it is needed
for confirmation of a diagnosis or for following the progress
0of treatment. The smear is prepared by taking part of an
aspirated bone marrow sample and placing it in the center of a
microscope slide. Another.slide is placed on the top of this
and pulled away in a parallel direction, thus spreading out the
sample. The smeared out sample is then stained. Generally many
smears are prepared from the same aspirated sample. Some are
stained immediately and some are air dried and saved for later
staining with special stains, none of which are usually

absolutely required for slide diagnosis.

As viewed in white light with a 100X o0il immersion
objective {(about 1000X magnification), the typical marrow smear
frame contains- - 25 to 50 marrow-formed elements (biological
objects of the size of a cell or platelet). Most of these are
red blood cells, and a much smaller number are nucleated cells.

There is a higher concentration of cells toward the center of



the smear with more cells touching each other in that regibn.
The marrovw elements can include:
'(a) White blood cell clusters or isolated cells and
their precursors.
(b) RBCs and their precursors.
{(c) Abnormal cells.

{d) Artifacts of various types.
{e) Megakaryocytes and platelets.

1.2.2 Selection of fields for analysis

Generally, the clinical practice is to count and
classify 200 nucleated marrow cells taken from different
regions encountered on the slide. The first and last regions
are on the periphery and the others are near the.center of the
smear. The hematologist normally scans the slide by moving it
in a vertical raster pattern from the left to right side of the
slide with the longest dimension of the slide being horizontal.
The smear usually appears as an oval region in the center of
the sliﬁe with the longest dimension of the oval aligned with

the longest dimension of the slide.

The knowledge gained by looking at the first region is
used as a normalizing factor in looking at the central regions.
The last region, also being a peripheral region, acts as a

check on the assumptions made in examining the others.

Thus, c¢ells on the periphery of the slide tend to be
more isolated and can serve as examples of class-typical cells.
Similarly, cells in the center are subject to more clumping and

distortion. The gross analysis of the slide is included in the




hematologist®s report as comments on his overall impression of

the slide.

1. 2.3 Magnlflcatlon and frame size

Bone marrow examination under the optical microscope
with Wright's or Giemsa stain is normally performed at about
1000X magnification, obtained with a 100X oil immersion
objective lens with numerical apertures of 1.2 to 1.4 giving a
resolution of less than 0.5 micron. At this resolution, with
cell sizes of 10 to 20 microns, an image frame size of 256x256
pixels (approximately 0.2 micron/scan pixel) yields about a 50
micron square field - adeguate for viewing about’ 30 complete

cells.

1. 2. 4 Stalnlng as a selective contrast transform

In the context of marrow, a major reason for staining
is to increase the contrast of the material. Normally the
index of refraction of the background and cytoplasm is close to
that of the nucleus so that without some form of contrast
enhancement no structure can be seen. Little information can be
extracted from unstained microscopic images without wusing

methods such as phase or interference microscopy.

The Romanowsky stains (which include Wright's and
Giemsa stains)} consist of several constituent-specific staining
materials which stain the DNA, histone, and RNA complex. The

colors resulting from the staining are generally in the red and
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" blue/violet regions of the spectrum. A first approximation
segmentation may sometimes be made based on color separation
taking into account the changes in staining intensity and color

between slides.

Wright's/Giemsa stain is the one most commonly used in
hematological laboratories, and is the stain on which the
largest body of standard hematologic knowledge is based.

Other stains will not be discussed here.

Color filters (in the visible spectrum) are often used
in order to enhance the contrast of stains for specific cell

components. This will be discussed in more detail in Section 5.

1. 2.5 Abnormal cells and abnormal situations

An abnormal cell is a cell not usually found in a
healthy person, or alternatively, an undistorted cell which is
not classifiable as normal. An abnormal celil could be some
variant of an otherwise normal marrow cell, or a cell from
outside the marrow. The handling of abnormal cells in a.marrow
modelling system can be accomplished by an extension of the

model semantics to include their definition.

It 1is possible that a smear may be abnormal in the
absence of morphologically observable abnormal cells. For
example, a case of severe poéthemorrhagic anemia presents an
abnormal situation with an increased number of erythroblasts
[LEL]. They are morphologically normal cells, and the

relationship between dJdifferent stages of maturation has been
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shifted to the left (toward the precursor cells) in terms of

I
maturation features.

An abnormal situation on a bone marro¥ sSmear may
invelve the observation of too many or too few objects of
particular types in the smear. There are many correlations
between such abnormal situations and disease states. Abnormal

situations are much more comman than abnormal cells.

The number cf cells that must be found in a sample of a
given size in order for a situation to be called abnormal
depends on the type of situation suspected by the obsehver. It
should be noted that an observer has different mqtives in doing
ar analysis of the smear depending on whether the analysis is

from the point of view of the morphologist or the clinician.
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1.3 Image data base

‘”IP? image data base used for the initial design of
segmentation algorithﬁé for marrow consists of thirteen
multispectral scanned images. These images were selected to
present typical difficult situations involving clustered white

blood cells normally foumd in marrow.

1.3.1 Selection of fields

The frames in the data base are Wright's stained normal
bone marrow scans at white, 546 (green), 420 (blﬁe) and 520
(redy nm (+/~ 10 nm) wavelengths. They were scanned using a
Zeiss MAxiomat microscope at 800X magnification (100X oil
objective lens HNA 1.32, condenser lens ©¥NA 1.4, giving a
magnification of 0.159 nmicrons/pixel). The segmentation
algorithms discussed in the dissertation did not use the red
and vhite scans, but only the green and blue scans. selected to‘
be Each frame was analyzed by itself, taking no information
from the analysis of other frames into account. Figure 1.1
illustrates a 256x256 pixel square field taken from a larger
marrow field photographed from the TV display during data

acquisition.

The image data base, presented in Appendix A, shows the
white, greemn, blue and labeled green image for each frame, as

well as discussing peculiarities of each frame.

The frames in the data base were selected taking into
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Figure 1.1 Sample of frame taken from larger context of marrow
slide during data acgquisition. The darkened region is a 256x256
pixel frame at 800X in green light.

account features of the interest from both the cytologic and
image processing points of view. They are representative of the
types of fields normaliy found. They do not include all of the
types of cells and situations that can occur, but they do
reasonably represent many of the major problems often seen. The

selection criteria were as follows:

(a} Worst case and moderate case examples of cell
types were used so as not to bias the image
analysis algorithms in favor of "easy" cases.

(b) Cases vere selected involving intact but touching
cells of various types.

(c) Some smashed cells and isolated nuclei were
included to represent some of the artifacts
normally seen.

(d) Fields with varying degrees of rouleaux (RBC
overlap) indicating degree of cell population
density were selected.

(e} In many of the frames, cells were clustered and of
varying gray levels so that simple strategies
depending on isolated cells or on thresholding
could not be used to perform the segmentation.
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1. 3.2 Frequency of particular data base configurations

P ——————————— R e R e e i

In order to decide which aspects of the bone marrow
segmentation process should be of primary importance, an
informal analysis of the acquired data base was performed. The
results of this analysis were then used to help decide which
parts of the decision tree segmentation procedure to implement

first.

The analysis is summarized in Table 1.1 below where the
nine columns indicate the occurrence of a condition for the

frame given by the row number. The nine conditions are:

{a) Distortion due to touching cells. The shape of the
cytoplasm and possibly the nucleus is questionable
because of the forces of deformation.

{b) Cytoplasm forced between touchlng cells.

{c) A lightened region occurring between toucking
cells.

() & darkened region occurring between touching celis.

{e} lack of distinctive region between touching cells.

(f) Overlap occurring between RBCs (rouleaux pattern).

{g) Overlap of RBCs and leukocytes,

(h) Congregation of platelets near the edges of
leukocytes.

(i) Wetting artifacts compressing cells near a clear
region.
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Frame t a | b | ¢ | 4 1 e 1 £ | g t+ kR | 1

126-3 ] yes | no )] no} no | yes | yes | no | ne | no
1264 | ves | yes | no ] no{ no || no| noj} no | yes
126-5 | mo j no | no| not no | yes | no | yes | no
126-6 i no] no { yes | noj yes | no | no | yes | no
126-17 | yes | yes | yes | no | no | yesi no | yes | yes
126-8 ] ves | Yes ] yes | no | no | no | yes | no | no
126-9 ] Yes | no | yes | no | no | yes | no | yes | yes
127-10 | yes | no j yes § yes | no | no |y no | no | no
127-117 ] nro{ noJ] no)] no| no | yes | no | no { no
127-12 } no | no j yes | yes | no | yes §{ no | no | no
127-13 | yes | Tno | yes | no|{ no | yes | no | yes ] no
127-14 | yves | yes | yes | no | no | yes | no { no { no
127-15 | yes | yes | yes | yes | no | no { no } yes | no

Table 1.1 Partial list of characteristics of frames in the
image data base. .

Note was also taken of the occurrence of various other
conditions which can cause problems in distinguishing betveen

cytoplasm and nuclear objects.

Some objects such as naked nuclei have no cytoplasm
(126-5, 126-6, 127-14, 127-15). Cells such as normoblasts have
very little observable <cytoplasm (126-3, 126-7). This could

conceivably be a problem in defining cytoplasm boundaries.

Cells such as eosinophils and basophils are so heavily
granulated that the nucleus is obscured (126-5, 126-8). On the
other hand cells such as mature neutrophils have a nucleus
which 1is weasily distinguishable from its cytoplasm since the
latter is almost clear and of a much lower density than in
other leukocytes (126-3, 126-4, 126-5, 126-6, 126-8, 126-9,
126-10, 127-11).
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Nuclei at certain stages of maturation tend to be
displaced in the cell to an edge of the cytoplasm {126-3,
126-4, 126-5, 126-6, 126-7, 126-8, 126~9, 127-11, 127-12,

127-13, 127-14, 127-15). This condition makes labeling of

cytoplasm near the nucleus/cytoplasm intersection difficult.
-




2. APPROACH

The general approach used to segment marrow images 1is
discussed 1in this Section. This approach has been implemented
at a preliminary 1level; however, the discussion here
encompasses more sophisticated levels of the model (¢cf. Section
2.1). The more complex levels of analysis require the use of
explicit morphologic knowledge of marrow images. This type of
knowledge 1is introduced 1in Section 242, Finally, the
contribuiions of this work toward machine analysis of

biological cell image analysis are discussed in Section 2.3.

N —— . A S T, — T o .

The paradigm proposed here 1is to use the syntax and
semantics of the problem domain to aid in the segmentation of
images for which the model semantics hold. The discussion here
will cover a proposed 1long term approach (which was not

implemented) as well as a short term implementation.

2.1.1 Long term approach using the paradigm

Problem domain kxnowledge in both the visual = and
biological domains can be used to aid in the analysis of a
frame or set of frames from a slide. This can be extended to
include knowledge gained from looking at a <collection of
slides. One question immediately arises. How 1is such
knowledge to be {1) organized and (2) used? The solution
suggested here 1is to use +the framework of a procedural

17
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description system to embed the knowledge in such a way that
several goals can be achieved. Other formalisms, ksuch as
decision trees or production systems could also be used to
embed the structural knowledge. Segmentation of the image data
uses knowledge about how particular biological materials
present themselves, Information gained about the frame (or set
of frames, or set of slides in the extended cases) should be
used in analyzing the current frame. The model of the frame
becomes more informed about the <contents as the analysis
progresses and is able to use this information to help in the

segmentation.

Various procedural description systems'  have been
developed and have been reviewed in [LemP75]. A procedural
description system developed in part by the author, called PRDL

{ShapB77] was used in this research.

Knowledge of the problem domain is coded in such a
system as static facts or as theorems (coded as procedures).
Static facts may be defined as binary relations or associative
triples (using the PRDL notation of ATTRIBUTEXOBJECT=VALUE).
The following triples might describe some of the relations
among objects found in a frame.

HAS x NUCLEATED-CELL = NUCLEUS,

HAS x CELL = CYTOPLASHN,

INSIDE x CELL = NUCLEUS,

INSIDE NUCLEUS = NUCLECILUS,

X
INSIDE x CYTOPLASHM = VACUOLES,
INSIDE x CYTOPLASM = GRANULES.

Using additional relations, one can contruct a static
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model of the frame which resembles a fixed decision tree. Some

of these include

HAS x FRAME
HAS x FRAME

CELLS,
ARTIFACT,

B

IS x CELL = NUCLEATED-CELL,
I5 ¥ CELL = RED-BLOOD-CELL,
IS x CELL = NAKED-NUCLEUS.

Plexibility is gained in the ability to manipulate such
binary relations by using procedures (hence procedural
description). These procedures embody theorems concerning
relations between relations. A cell is defined by recognizing
its component parts in a structured way such that the model's
syntactic and semantic conditions are met, A, very simple
procedural model of a cell might be defined as

NUCLEATED-CELL (x) = IS-OBJECT (X) and

EXISTS~-CYTOPLASM (x) and
EXISTS-NUCLEUS (x) .
The composed procedures embody lower level semantiC knowledge
about cells at the morphologic imagg level (faking size, color,

shape, texture, etc, into account).

The paradigm first tries to find objects as isoclated
cells. It then checks to see if some of these are actually
touching cells. If this is the case, they are split, the model
semantics being checked at each step. The algorithm must

iterate, if necessary, in defining a more informed model.

For example, a procedure to test if a region is
cytoplasm might invoke different procedures depending on what

type of cell it is trying to model. Some cells have abundant
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cytoplasm while others have very thin rims of cytoplasm which
have a color and texture gradient going out from the .nucleus.
Different techniques are required .in these two cases; the
choice would be directed by what has been found so far in
evaluating the model. This ¢type of analytical decision is
required over and over again in analyzing the complex types of

situations found in segmenting marrow.

Also available in a procedural description system is
the ability to invoke procedures based on the occurrence of
Boolean expressions of patterns instantiated in the course of
performing an analysis. This is where the real power of such a
system resides. Special cases may be handled by defining
pattern invoked procedures for them. These procedures are never

evaluated unless the given situation occurs.

The driving procedure in the paradigm is to account for
all of the regions of the frame. This procedure would be called
ACCOUNTFOR in PRDL. Currently a collection of 0S8 batch jobs
implements parts of ACCOUNTFOR. ACCOUNTFOR controls the
segmentation process and interacts with the morphologic data

base, rationalizing what is found in terms of what is possible.

An alternative way of interrogating the system (via
PRDL when implemented) would be din using a WHATIS(x) or
FINDINSTANCE {y) procedure having previously run the
ACCOUNTFOR (frame) procedure. Thus, given an object x or a
desired cellular object 7y, the analyzed scene can be

interrogated in a different way. If a trace were kept of the
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analysis process then the reasons for the decisions could be
extracted. This would permit the modification of the model
manually to improve its performance when finding faulty

reasoning.

2.1.2 Short ternr implementation

The short term implementation does not use a procedural
description system. This was because of the lack of time to
integrate the components of such a system. As a result, the
application of marrow domain knowledge to the segmentation of
marrow images was performed using the lower level components of
such a system, with the integration of various algorithms done
manually. The 1image processing system Buffer Memory MONitor
System (BMON2) was used with segmentation procedures coded as

either special BMON2 functions or as batch Jjob sequences,

The image processing system hardware used consisted of
an Axiomat microcope; the Real Time Picture Processor (RTPP)
vidicon TV-image buffer memory; control desk hardware; and the
BMON2 image processing software running on a 32K PDPBe computer

(0S5/8 FORTRAN II).

The segmentation algorithms were developed 4in the
context of the BMON2 software system and are discussed
throughout the remainder of this report. As mentioned in
Section 1.1.3, those parts of the decision process most
frequently occurring in marrow were implemented 1in a first

approximation of the decision tree.
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2.1.3 Why the approach was chosen

In general, the more onevknows about a problem one is
trying to analyze, the more successful that analysis will be.
Thus, embedding problem domain knowledge in the segmentation
process was felt to increase the likelihood of success of the
segmentation process, especially when scenes were fairly
complex and consisted of a wide variety of object types and

situations.

Although an actual procedural description was not used,
procedural knowledge was incorporated in the work being
reported. This knowledge was embedded in fixed data structure
ralgorithms. Such algorithms assumed the semantics of the
operands on which they worked (for example, the RBC elimination
algorithm assumed the existance of green and blue marrovw image

scans) .

Procedural description methodology has existed for
several years (see the review in [LemP75] and in [ShapB77)),
but it has never been applied to analyzing bone marrow images.
4s discussed in Section 3, previous attempts at analyzing cell
images were primarily concerned with non-touching isolated
leukocytes often prepared using slide spinners (see [LemP751}).
Other approaches did not attempt +to reconcile a large
morphologic and meta-morphologic data base with the low-level

segmentation of irages.
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2.2 The morphologic data base

As was mentioned before, the biologist brings a large
body of morphologic knowledge to bear in analyzing a marrow
frame. This type of knowledge is discussed here to a limited
extent. In addition, the acquisition of the morphologic data

base is discused, and some examples are presented.

In general, morphologic knowledge may be thought of as
syntactic and semantic rules that a biologist brings to bear on

analyzing the marrow image. Such expert knowledge is available

both from cytologist experts and source Dbooks. The
cytologist informants were Drs. L. Lipkin, pathologist, and
N. Markovic, hematologist. The source books were selected

from the point of view of finding operational definitions for
the morphology 6f marrow cells and situations. The best source
used was the widely acclaimed work on blood by M. Bessis,
"Living Blood Cells and Their Ultrastructure" [BesM73]. Other
source books include [DavI74 ], [SilR70], [TalG57]. As is often

pointed out in the literature, these sources may conflict.

As will be seen in Sections 4 through 8, problem domain
semantics are useful in aiding‘the segmentation process. Some
of the semantic characteristics of marrov smears mentioned here
are used in the <c¢reation of the decision tree discussed in
Section 4. Other problem domain semantics have not been used at

this stage of development of the algorithm.

The following are some examples of morphologic data
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base concepts that were used in the construction of the current

segmentation algorithm,

(a)

{b)

(c)

(d}

(e)

(£)

RBCs are the darkest objects at 419 nm (blue)
illumination because of their hemoglobin content
and the staining characteristics of Romanowsky
stains.

Nuclei are the darkest biologic objects visible at
540 nm (green) illumination because of the staining
characteristics of DNA with Romanowsky stains.
Touching nuclei and cytoplasm may sometimes appear
to have a lightened texture reqgion between them due
to diffraction effects.

Most nucleated cells in a normally prepared bone
marrow smear do not overlap one another. RBCs which
do {(rouleaux) indicate too dense a preparation
with respect to cell population.

Topological completeness of nucleated cells implies
that the nucleus is completely enclosed by the
cytoplasm.

The normoblast nucleus, having been extruded from
the normoblast, is not surrounded by tytoplasm.

The following are some additional concepts which were

derived from the same sources but are not used in the

construction of the current segmentation algorithm.

(a)

{b)
(<)
(d)

(e}

(£)
(9)
(h}
(1)

Polymorphonuclear nuclear lobes may appear as tear
drop shaped objects with continuous curvature at
the sharp points of the lobes.

Nuclear texture coarseness increases with age in
the granulocytic series,

Nucleoli are most often found in the more immature
cells.

The Golgi region is indicated by a light texture
region in the cytoplasm next to the nuclear
concavity in all of the stab type cells except the
poly.

Stain crystals occuring on the slide are very dense
and have sharp corners, unlike most isolated
biological objects at this magnification.

Depending on the stage in the maturation process,
the nucleus is located off center of the cytoplasm.
Cells such as normoblasts have very little
observable cytoplasm.

Mature eosinophils and basophils are so heavily
granulated that the nucleus is obscured.

Cells such as mature polys have a nucleus easily
distinguishable from its cytoplasm since the latter




is almost clear.
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2.3 Contributions

Several contributions are discussed here which indicate
significant progress towards machine analysis of complex
histologic 1images. Such images cannot be pre-processed by
techniques such as slide spinning because of local distortions
and disruption of cell groups, or the use of special stains not

commonly used.

2.3.1 Problem domain knowledge driven segmentation

. ———————— T T W ——— e ———

A morphologic data base was compiled in order to have a
basis for wusing the semantics of the problem domain in the
segmentation process. The data base is oriented towards machine
analysis of marrow images. Only a part of this data base was
used in the present implementation, but the data base will be
used in further work on the segmentation and analysis of marrow

images.

The red blood cell (RBC) elimination algorithm
discussed in Section 5 using the green-blue positive difference
transform is useful in eliminating formed objects which contain
variable amounts of hemoglobin as in commonly found in marrow
smears. Simple binary mask differencing as used by [Youl75] and
the whitening transform [BacJ76] are inadequate for compiex
marrow images because of difficulties in mask generation and
RBC clustering problems (in the whitening transform) due to RBC

overlap.
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The cytoplasm mask generation algorithm discussed in
Section 7.2.1 uses information about the formed objecté as well
as multispectral images in forming a mask suitable for a wide
range of cytoplasm textures and densities. The algorithm
differs from that of [Youl75] and others in smoothing the
cytoplasm mask to handle fragmentation due to overlap of

background/cytoplasm and cytoplasm/nucleus density ranges.

The splitting algorithm for touching cell nuclei is
discussed in Section 6.
It uses a heuristic
boundary c¢rack finder on the nucleus and checks the texture in
the crack region to verify the fact that the nuclei are
touching. The algorithm was developed independently of that of
[Brend77 ]+ The major differences between the two algorithms are
in the pre~filtering, in the use of a heuristic function, and

in the use of texture region verification.

The cytoplasm isolation algorithm, which prepares the
cytoplasm-nuclei pre-propagation image for propagation of the
nuclei into the surrcunding cytoplasm, is discussed in Section
7.2.21t uses a heuristic £function to evaluate possible
lightened regions nearly perpendicular to normals between pairs
of nuclei to decide if and where to cut cytoplasm regions
touching two nuclei, The optimal angle at which to split the
region is computed as a still better estimate. This 1initial
approach to cytoplasm separation, although finding the optiml
points at which to isoclate the cytoplasm, approximates the

isoiation process using a straight line, whetreas tracking the
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edge to perform the split would be more desirable. The latter
approach was not taken at this time because of difficulties due
to the variability of the presentation of the cytoplasm

material.

The boundary trace transform (BTIT)
is useful for strengthening weak boundaries using BTT(T) .
BTT(T) could also be used for detecting the nuclear boundary in
heavily granulated cells such as basophils. It is useful for
finding large textured objects such as nucleoli inside cells

using BTT(F) .

2.3.2 Tools produced

Various tools were produced in the course of doing the
dissertation which were useful in both implementing the
algorithms and which also are contributions to the state of the

art in image processing systems in general.

BMON2 (Buffer memory MONitor system) is the buffer
memory image processing system used to implement the
segmentation algorithms described in the dissertation as well
as other algorithms and data acquisition software. The BMON2Z
system is described in [lemP77a). It was developed using PROCI0
as a model image processing system after the buffer memory

hardware was completed.

The RTPP (Real Time Picture Processor) hardware was

designed and constructed for use in processing large numbers of
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images using complex image processing functions. The hardware
was used to perform the image acquisition and processing for
the dissertation. The RTPP is discussed in and ([CarmG74],

[LemP74], {LemP76e], [LemP77b1]).

The PRDL (PRocedural Description Language) language was
designed (and partly implemented) for eventual use in high
_level modelling of cell images. PRDL is documented in
[ShapB77]}. PRDL was not wused in developing the actual

segmentation model.

The PROC10 {PDP10 image processing system) waé
developed in order to perform image ©processing operations
before the RTPP was finished. PROC10 was not usea in the final
work because of the high cost of doing image processing on the
PDP10 as well as the fact that enough of the RTPP (image buffer

memories) vas completed to make the RTPP a viable alternative.




3. PRIOR WORK RELATED TO MARROW SMEAR IMAGE SEGMENTATION

A review of prior work related to the segmentation of
bone marrow cell images 1is presented in this section. A
technical report by this author, "A Literature Survey of the
Technological Basis for Automated Cytology", [LemP75], was
written covering selected areas of automatic cell analysis
systems up to the end of 1974, The areas covered in the report
include bhone marrow, peripheral blood (both leukocytes and red
cells), and cervical cells. Sample preparation is discussed
including how preparation _affects the ease of performing
measurements on the samples. Parts of the report relevant to
ceil image segmentation are referenced in this section.
Additional material written after 1974 on topics related to

marrow cell segmentation is also covered.

In [LemP74], the literature on both the image
processing and flow systems was reviewed, with emphasis on the
image processing approach. The survey reviewed both
statistical and non-statistical approaches with emphasis on the
latter. A wide range of picture operations and features were
ﬁiscussed, including shape, texture, color, and density
features, and various segmentation algorithms Were aiso
treated. Image processing systems and special hardwvare
processors were also reviewed. The application of problem
solving methods to scene analysis was discussed, with emphasis
on procedural description, although theorem-proving methods and

mixed structural-statistical methods were also considered.

30
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3.1 segmentation of cell images

The field of bioclogical image processing tends to group
image processing segmentation technigues into two areas as
determined by the complexity of the images. This complexity in
turn is determined both by the type of material being analyzed
and by the method of sample preparation. Samples prepared
using so-called slide-spinners or ultrasonic disaggregation
tend to scatter clumps of cells so that declustering of
touching cells is not normally necessary. Unfortunately, such
sample preparation methods often bias the sample by shifting
the heavier cells to different regions of the slide as well as

causing other artifacts.

Other specimen preparation techniques involve the use
of special stéins for which color segmentation techniques often
work quite well. Unfortunately, in using these stains one
cannot take advantage of the wiie body of literature on cells
described using Romanowsky stains. For many types of cells,

these are the only descriptions available.

In recognition of this difference in approach within
the field of automated cytology, in the proceedings of the past
several Engineering Foundation Conferences on Automated
Cytology, sessions were split into three main areas of
research: (1) specimen processing and cytochemistry, (2) image_
processing analysis, (3) flow systems analysis (( MayB74],

[MayB76], [MayB77]).




3.1.1 Segmentation

. ——— ——— ————

Work has been done

segmentation including

related areas include

chromosomes. Some of the
the segmentation of bone

of this section.

Techniques using
images, boundary tracing
discussed. Several of
[AusH77],
[POulR77]) were

Conference on

[Bacd77], [Brend?771,
presented

Automated Cytology
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in wvarious areas of <cell image
RBCs, ©WBCs, and bone marrow. Other
segmentation of cervical cells and

work which is particularly relevant to

marroWw will be reviewed in later parts

density analysis, multi-spectral color

and analysis, and region growing are

the discussed here ([ AggR77],

[ Muid77],

papers

{CahR77], [HolJd77],

at the Fifth Engineering Foundation

{January 1976, Pensacola

Beach, Fla.). Over 50 papers from this conference appear in the

July 1977 issue of

Cytochemistry [ MayB77].

3.1.1.1 Density analysis

the

Journal of Histochemistry and

algorithms

o ———— o —— i —— -

Density analysis

since the early work

images. Under optimal

of gray scale image data has been used
on cell image analysis to segment cell

slide preparation conditions this

approach is a very effective procedure. As has been pointed out

in Section 3.1, such

routine bone martow

conditions

gslides.

are not always present in

Some of the work using density

analysis for segmentation is reviewed here.
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Prewitt and Mendelsohn [Prewl66] discuss using analysis
of the density histogram to select thresholds for- slicing
manually selected images of single peripheral blood cell
leukocytes into background, cytoplasm and nuclear regions. They
sugges£ selecting the minima between region component peak

density values as the threshold values.

Tayloer et al. [TayJd75] discuss automatic nucleus
finding routines using density histogram analysis to £find
suboptimal thresholds for cervical cells. They point out that
the problem with analyzing the histograms for these cells is
that the histograms are extremely variable and complex and the
choice of threshold is not always obvious. They find the most
prominent minimum of the histogram using an adaptive algorithm
as follows:

{1] The histogram is first smoothed to remove most of
the local minima due to noise.

{2] The figure of merit for a local minimum is chosen
to be the lesser of the areas of the +two peaks on
either side of the dip above the value of the
histogram at the dip.

[3] If there is more than one dip within a search
range, then the smoothing process is repeated until
there is either only one dip left within the search
range or the ratio of the largest figure of merit to
the next largest is greater than a preselected value.

[4] The +threshold value selected is the value of the
minimum having the largest figure of merit.

They then propose analyzing three types of density

histograms: the normal image density histogram, its logarithm,

and density transition (adjacent pixels) histograms in the UP,

DIAG (diagonal), and DN (down) directions. The 1last three




34

histograms (UP, DIAG, DN) are further analyzed to shift the
threshold selected either up or down with varying succéss. Two
functions £ and g are then computed:

f {k)

g (k}

1og (DIAG (k) 1) -5% (UP (k) -DN (k) ) / (UP (k) +DN (k) +1),

log (DIAG (k) +1) +5% (UP (k) -DN (k) ) / (UP (k) +DN (k) +1),

The second term in f and g tends to shift the dip at the
nuclear threshold to a greater or lesser value. The minimum
finding algorithm specified previously is then used to find the

minimum threshold.

For all three types of histograms, the search range
limits for the algorithm are restricted to make the nucleus to
cell area ratio fall into empirically found 1limits as a
function of cell size. If no suitable minimum is found in this

region, then the search limits are expanded.

A11" these algorithms showed a bias towards areas
smaller than the visually determined values, which they point
out is correctable. Part of the problem is that it is difficult
to say where the cervical cell nucleus ends, especially in a

digitized image, when the image has low contrast.

They further note that the major causes of thresholding
problems can usually be traced to unusual input data which
confuse the algorithm or cannot be analyzed by thresholding at
all. They give severél examples, such as cytoplasm having
regions darker than parts of the nucleus which results in
overlapping histograms for the nucleus and cytoplasm regions;

or the presence of nucleoli or other small dark objects
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{(stained with Papanicolaou stain) inside the nucleus which can
be mistaken for the nucleus (this can be compounded by the
relatively 1light nucleus and the virtual absence of

identifiable cytoplasm).

3.71.1.2 Color analysis algorithms

Color has often been used in cell image analysis both
for classification ([ BacJd69], [IngM68], [YouI72], [Brend74],
[ CheGT74] and others) and for segmentation ([YouI75] and
others). The motivation for this is that stains are taken up
differently by different components of different cells. In
fact, the common Romanowsky stains are actually multicomponent
stains where different colors are taken up by different parts

and types of cells.

Color information, then, may be used for contrast

enhancement. It plays an important role in both segmentation
and 1identification schemes, Specifically, with Romanowsky
stains:

Cell cytoplasm and especially cell nuclei are enhanced
at 550-540 nm wavelength (green) of light.

Red blood cells are enhanced at the 419 nm wavelength

(the blue "Soret" band} because of the hemoglobin.

Young and Paskowitz [YouI75] discuss this and give a
table (reproduced below) for the three wavelengths (570, 530
and 420 nm (yellow Y (x,Y)}, green G(x,y), and blue B(X,¥))).
Some of the problems associated with using this technique are

that meaningful thresholds must have been established that are
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reproducible and distinct. With very granular cytoplasm
textures and overlapping RBCs in marrow, this latter

requirement is difficult to achieve.

Illumination Fucleus Cytoplasm RBC Background
570 nm dark gray gray light
530 nm dark dark dark light
42C nm light light dark light

They then derive some simple Boolean equations for
cytoplasm points C(x,y), nuclear points N(x,y), RBC points

E(x,yY), and background points B (x,Yy).

N = ¥
or YB?
C = GY'B"!
E =B
W=0NH+2LC
= GB!' + ¥
or GB?

Note that N, C and E should be disjoint since they represent

different sets of points in the image. i.e.

NC = Y[GY'B'] = 0
EC = B[GYB'] = 0
NE = YB'{B] = O

Although in pfinciple this technique vould seem to be
adejuate, it ¥will be seen in Section 5 that simple +thresholds
cannot be used reliably in marrow smears because of the
variation in frame inteﬁsity and the wider range of cell types

wvhich occur in marrow than in the peripheral blood.

Tycko et al., [TycD76] report on the automatic
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classification of peripheral blood leukocytes using a new
three-component cytochemical stain with relativelf narrow
absorption bands at 460 (fluorescein), 540 (pyronine y) and 640
(methyl green) nma The classification strategy makes use of
the properties of the stained leukocytes as follows:

f1) Detect the presence of a leukocyte by looking for a
dark object under red 1light.

{2] Examine the object under blue light. If it is dark,
it is either a basophil or an eosinophil; goto [3],
otherwise, goto [4 ].

{3] Examine the object under green light. If it is

dark, it is a basophil, otherwise it is an eosinophil.
{

f4] Examine the object under green light. If it has

small area and low contrast, it is a neutrophil. If

it has small area and regions of high contrast, it is

a small 1lymphocyte. If it has large area and low

contrast, it is a large lymphocyte, monocyte or other.

[5] In the last case of [4], use morphological features

(nuclear shape and texture from the red images,
cytoplasm shape and texture from the green images).

This strategy should separate the leukocytes into five classes.

The remainder of the paper concentrates on steps {1] to [4]

using features derived from the three colored image histograms.

Another technigque, developed by Bacus [ BacJ76], called
the "whitening transform", maps two colored images into a
“colored® image € and a "density" image D. This is done by
computing.the principal eigenvectors and eigenvalues for each
image to maximize separation. Bacus makes two assumptions:
first, that the principal eigenvector lies along a 45 degree
line in the original bivariate space, and second, that the
variances in either direction are relatively constant. He use

yellow (Y¥W) and blue (BL) 1images for the two colors. The



transform may be expressed as:

K1 (BL~YW) +K2,

g
i

o]
]

K3 (YW+BL) +K4.

Bacus reports good results in applying the transform to
segment leukocyte nucleus, leukocyte cytoplasm, red cells and
background from spinner prepared peripheral blood smears.
However, although the WT works fairly well for spinner prepared
perihperal blood smears (with cells being separated), similar
results would not be expected in marrow aspirate smears because
of clumping of RBCs, overlap of BRBCs and WBCs, and the
occurrence of other morphologic stages of cells in the RBC

series.

Mui and Bacus [Muid77] classified peripheral blood
neutrophils using multispectral images as eithef'being band or
segmented neutrophils. The data base consisted of 378
neutrophils including unambiguous bands and segs as well as
neutrophils with overlapping nuclear fragments. Each cell was
scanned to 50 square pixels corresponding to 16.5 square
microns in blue (Wratten #44) and yellow (Wratten #15). The
-RBCS and background were eliminated Dby using the whitening
transform (WT) with analysis of the WT clusters and using
spatial information from the image taking the number of
clusters into account. The remaining image cytoplasm boundaries
vere then shrunk by two pixels and then expanded by two pixels
to eliminate RBC pixels which were misclassified as cytoplasm.

This paper is discussed in more detail later in the subsection
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on region growvwing.

Aus‘ [AusH77] discusses the use of multispectral color
transforms in Pappenheim stained marrow smears. Using the fact
that Pappenheim stains the granules in a more pronounced wvay
than Wright's stain, scans are taken at 620, 580 and 420 nm.
Aus computes bi-variate density histograms of the {620,320) nm
scans and tri-variate histograms of the three colors. Using a
3-D coordinate rotation transformation and projection onto a 2D
sucface presents new clusters not visible in +the uni- or
bi-variate cases. Specifically, granulocyte cytoplasm was
separated using such a transformation. Aus suggests that using
additional spectral scans and trans%ormations for specific cell
types, additional components of other cells can be isolated.
The cost of this approach in doing the additional scans and
transformations might be prohibitive in general. A further
problem is in the difficultly of using the Pappenheim staining
procedure, which is not as simple as the Wright's procedure and

is not used as routinely.

Aggarwal and Bacus [AggR77 ] report using color filters
to match the spectral characteristics of Papanicolaou stained
cervical c¢ytology smears. Three filters at 569, 528 and 485 nm
were used. The images contain white blood cells as well as

epithelial cells (which are those to be detected).

First the nuclei are extracted using the 569 nm filter
(maximum nuclear contrast). Then nuclear features are computed

in an attempt +to eliminate the WBCs. The cytoplasm is then
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extracted using clusters in the 2D density plot of the
(528,569) nm distribution. The clusters are foun& using a
ceiling-lowering algorithm which grows clusters from the peak
points of the histogram based on 8-neighbor connectivity. If
a pixel is connected to more than one cluster, it is assigned
to the cluster with the nearest center of mass. If a pixel
cannot be assigned to an existing cluster, a new cluster is
started. The algorithm stops when all pixels have been
assigned to clusters. Several clusters for cytoplasm may result
possibly causing problems. Therefore, the cytoplasm clusters

were chosen manually.

Finally, the nuclei remaining are coalesced with the
surrounding cytoplasm using a radial line algorithm. A number
of radial 1lines are constructed from the center of each
nucleus. The transition point between the background and
cytoplasm is rmarked along each radial line. The marked pixels
corresponding to the cytoplasm/background boundary are then
joined by straight lines. Considering the complexity and
variation of the scenes, the success rate appeared to be fairly
good. Problems in nucleus and cytoplasm detection are accounted
éor by the wide variation found in the nucleus and cytoplasm

densities in this material.

3.1.1.3 Boundary analysis algorithms
Boundary analysis of «c¢ell nucleus and cytoplasm
boundaries has been used previously for features in peripheral

blood cell classification [Brend74 ] as well as in the analysis
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of chromosomes ([LedR66], {K1id717]).

Galius et al. [GalG74 ] propose an algorithm for
analyzing the curvature of a chain coded chromosome boundary in
order to find the vertices of the chromosome arms and the
centromeric constriction regions. The algorithm uses chain
codes smoothed over both 3 and 6 pixel windows (the latter
removing more detail but preserving the main structures). The
peaks are then analyzed as to being concavities or convexities
and a decision tree recognition procedure is applied to tﬁe
data to force the fitting of a chromosome model {consisting of
various subtypes) to the data. They analyzed 1820 unbanded and
920 banded chromosomes. The procedure had a total error rate of

4.9% on the unbanded and 8.2% on the banded chromosomes.

Mendelsohn et al. [MenM74 ] propose a topologic approach
similar to that of [GalG74]. Their algorithm computes the chain
code of the boundary and then looks for extrema in the chain
code difference. The centromere is verified by showing that
the region contains the shortest path across the chromosome.
Furt hermore, because the two chromatids must have equal DN2,
the densitometric measures of the two chromatids are used to

verify the centromere region selection.

Brenner et al. [Brend74] isolated BRBCs that touch
leukocytes in peripheral blood smears using a geometric
technique. The RBCs formed concavities with the leukocyte
edges. Their algorithm detected points of maximal concavity

along the boundary and replaced pairs of these points with
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straiqght line segments. They reported greater than 90% success

on those cells which required boundary correction.

Brenner et al. [BrenJ77] discuss a boundary tracing
cell segmentation algorithm used for the analysis of routine
bone marrow smears from acute lymphoblastic leukemia (ALL)
patients. The object of their study is to subclassify patients
with "classical" varieties of ALL on the basis of 1lymphoblast
cell morphology. Such a subclassification might be useful for

prognosis and therapy.

The images are 20 microns sguare (0.2 micron/pixel)
with 64 gray levels scanned at 600 nm {orange), 490
(blue-green), and 420 (RBC blue reference .image). The
preparations were #Wright's stained aspirated bone marrow
smears. The lymphoblast to be measured was put in the center
of the field with possibly touching cells adjacent to it.
Brenner notes
"In contrast to relatively “‘'clear' peripheral blood
smear images, those from routine bone mMarrow
preparations are often confusing in terms of
segmentation. Red cells and other white cells are
frequently touching the cell of interest and there are
often defects in the cell boundary itself which must be
recognized and dealt with."
He goes on,
"The most difficult situation in a bore marrow smear is
that which occurs when a desired cell is surrounded by
a cluster of touching [leukocyte] cells.™®
In dealing with touching leukocytes, Brenner assumes that the

cell of interest is "roughly centered” in the frame in order to

start off the segmentation algorithm. In any automatic system
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looking at several complete cells in frame at a time, such an

assumption is not always valid.

Brenner's segmentation algorithm (denoted [S] here for
the purpose of discussion) is best understood if it 1is
explained 1in three iterations {[called here [S.1], {S.2], [S5.3]

for clarity) with each iteration handling additional cases.

Algorithm [S5.1]

Basic isodensity contour following algorithm

[1] Compute the histogram of the image and find the
cytoplasm threshold Tcyt.

[2] Search outward from the center along a radial line
until a significantly large area below the cytoplasm
threshold Tcyt is found.

[3] At this "edge point", trace the boundary points
nearest in gray value to level Tcyt in the clockwise
direction.

[3.1] The {n+1)st point is found by searching
clockwise the 8 nearest neighbors of n
starting at (but ignoring) the Dbackward
direction and selecting the first point above
thresheld. This point becomes the new n.

{3.2] If point (n+1) is the sames as point (n),
then a small loop has occured. The procedure
then is to set point n below threshold Tcyt
and to start again at point (n-1). When
iterated, this step eliminates small 1loops
and thus reduces the boundary noise.

In general, the cytoplasm threshold may not be easily found if
several different cells types are in the field. For Brenner's
problem, the ma jority of the cells in the image vere

lymphoblasts so that the cytoplasm was homogeneous.

Unfortunately, the algorithm also +tracks vacuoles

(which make small indentations) and debris on the cell surface
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(which makes small protuberances). Protuberances are also
characteristic of “smashed" cells and are gquite common in

poorly prepared smears.

The following boundary repair algorithm [R] eliminates
these two types of surface artifacts. The main requirement for
this repair algorithm to work is that tae cell 1is relatively
round or elliptical.

Algorithm [ R]

Boundary repair for vacuoles and small projections

—— —— i —— - - - e e v —

[1] The boundary chain code is first smoothed and then
its curvature is analyzed.

{2] Vacuoles “appear as a region of sharp negative
curvature (concavity) between two sharp positive
[convex] regions - the breaks in the gently curved
cell boundary at the edges of the vacuole. These
breaks can be recognized and Jjoined to repair the
boundary. A similar procedure detects and repairs the
boundary at the projection which is detected on the
curvature plot as an inverted 'vacuole' pattern."”

In the case of touching WBCs, the boundary traces the
outside of the region, missing the region where the cells
touch. As WBCs can not be removed by spectral subtraction
another technique is used. Brenner analyzes the boundary

curvature to find notches, which are then used in pairs to

recognize touching cell regions.

Algorithm {S.1] is modified so that after the boundary
is initially tracked, the notches in the boundary are
identified by analysis of the chain code. The touching cell
notches are different from the cell-edge and vacuole-projection

curvature differences.
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Algorithm [S.2]

Touching cell splitting by notchk matching

{1] The cell edge notches are eliminated by proximity
to the frame edge. The vacuoles {projections) are
eliminated by recognizing by short runs of
{cCVv,CCVX,CCV) or (CVX,CCV,CVX) patterns.

[2] The remaining notches are paired if they point at
each other with some tolerance "Pointing directions
are established for each notch as the bisector of the
angle between the tangents of the boundary at the
indentations. These tangents are found by approaching
the indentation from the two possible directions.®

[3] Then the boundary is retraced with notch pairs
being joined by straight lines.

Finally, the case occurs where opposing notches are not
detected because a number of cells touch in such a way as to
form an untraced central region. A modification éf [{5.2] is to
back up the boundary trace to a notch (not a vacuole or
projection) and then trace ‘the central region to generate
additional notches to be used for touching cell separation.

Algorithm {S.3]

Touching cell splitting by notch expansion

{1] First a search is made of the boundary for a
significantly large region with no notches.

[2] Then, starting at the notch, a search is made in
the pointing direction (of the notch) for a
significantly large region below threshold Tcyt but
still within the original boundary.

{ 3] The region is then traced until the notch point is
found.

[4] The new boundary is then analyzed to see if the
notches added by the central region line up with the
original notch that was expanded. If one does, then
boundary repair is effected.

[5]1 The process is repeated on the new boundary which
incorporates the new notches. It terminates when all
notck pairs have been removed.
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I1f no enclosed light areas exist for an unpaired notch,
a more stringent test is performed to see if it might be a
misidentified vacuole., It still remains a notch after the test,
then it is ignored (as a variation of the shape of the obiject).
Brenner also notes,
"Complications arise when separate legitimate features
occur in close proximity. By a judicious choice of the
sequence used in feature identification it was possible
to circumvent most, if not all, of these problems. For
example, the *peninsula' of cell material between two
neraby vacuoles may look 1like a projection. If
projections are repaired first, +then on the next
boundary trace the two adjacent vacuoles will have been
reduced to one large one. The large vacuole is thereby
detected and repaired on the next pass."
In general, however, bone marrow analysis including a wide

range of cells cannot be so conveniently adjusted.

Brenner notes that other complications occur which
sometimes can be flagged and handled as special cases [no
details are presented] by the program while others are handled
by the operator. About 10% of the cases processed required
manual intervention; about 50% of those were for redefining
Tcyt, while the others were geometric problems. Finally,
Brenner notes:

"The general boundary trace and repair methodology

should be useful for isolating any {possibly touching)

approximately round or elliptical objects against a

uniform background. This supposes that the texture of

the objects [i.e. cytoplasm] is low enough to permitt

reasonably smooth boundaries to be found in the initial
isodensity contour trace.”

In the general marrow problem, some of these assumptions are

not true: cells are not always round or elliptical; the
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background is not always uniform; the texture of the cell
boundaries varies considerably between different cell ‘types;

and Tcyt is not uniform for different cell types.

Bowie and Young [BowJd77] discuss a technique for
finding the lobes of band and seg neutrophil nuclei shapes. The
technique analyzes a smoothed boundary chain code to find
points of strong negative curvature on the boundary
corresponding to Jjunctions of lobes with the body of the
nucleus. A matrix of interpoint distances is computed after the
peaks are found. Peaks with the smallest interpoint distance
are singled out. In addition, this distance must be less than
some threshold and the angles of the curves must point to each
other in some sense. After the set of crossover points |is
found, the objects are cut off the body of the nucleus. This
process is iterated until no new objects exist which are to be
cut off. If no nev objects to be cut exist on a cut body, then
that body is defined to be a lobe. Area and (P*P/A) are

computed for each of the lobes as a local shape measure.

The 1lobe sedmentation algorithm was applied +to a
previously reported data base of neutrophils with 64% agreement
between averaged observer counts and machine counts. They point
out that the disagreement correlated with disagreement among
the human observers. The problem was most often due to faulty
selection of the fixed nuclear threshold used in the original
boundary trace procedure...Such a fixed threshold cannot take
local variations of the boundary threshold into account. Such

variations might be due to optical shading as well as to the
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general increase of threshold near a clump of cells.

Lee [ LeeE77] discusses some shape measures for
leukocyte nuclear boundaries which might be useful in
describing band nuclear shape. He defines an "indented" feature
Ui based on the outside tangential angle T2 and inside
tangential angle T1 of a band form nucleus:

Ui = 1 - Ri*M¥AX(T1,T2)
or

Ui' = 1- Ri'*MIN (T1,T2)
or

Ui'* = 1-Ri''*T1%72

where Ri, Ri', and Ri'' are normalization constants set

to 171806, 1,180, 1/(180%%2) degrees
respectively in order to normalize the values
to {0:1].

Lee then defines two other functions of Ui for slightly

indented (Usi) and deeply indented (Udi) shapes.

1/2
Usi = 01,

2
udi = 0Ui.

Preston, Ingram and Norgren ([IngK69], [Presk?71],
[PresK72]) used the properties of the Golay transforms [GolM69 )
for extraction of cell features for leukocyte analysis. The
technique expands and shrinks regions according to properties

of their geometric shapes.

As wvwas mentioned previously, Mui and Bacus [ Muid77],

used shrinking followed by expansion (by two pixels in each
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case) in order to eliminate RBC pixels which were misclassified
as c¢ytoplasm. They also use a nuclear fragmentation élgorithm
as the basis for determining the neck reqion of a band or
segmented neutrophil by increasing the threshold with
successive segmentations to the point ;t which the nuclear
lobes split. They compute seven features to be used in a
combined logical/statistical classifier with the first feature
{(X1) being whether or not the number of unconnected nucieus

fragments is greater than 1.

The cell data base was split approximately in half into
training and test groups. Cells in the test group were divided
into two subgroups, consisting of those with and without
overlapping nuclei. The classifier operated as follows:

If (X1 > 1) {i.e. number of nucleus fragments > 1}

Then Class <-- "“segmented neutrophil®
Else Class <-- StatisticalClassifier[ X2:X7];

The classifier worked fairly well on group 1 but not so
well on group 2. However, group 2 céntains the more difficult
cases. They also noted that in a previous study (Bacus's
dissertation) some of the segs that were misclassified as bands
because of faulty scene segmentation were now correctly
classified (using the new shrinking nuclear fragmentation

features related to the analysis of the neck region).

Cahn et al. [CahR77] proposed an algorithm for
determining the optimal threshold for segmenting the touching
cytoplasm of cervical smear cells. The algorithm starts by

setting a rough threshold at which to contour trace all objects
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above threshold. The perimeters and boundaries are saved. 3
threshold is rejected if (a) any object is greater tﬁan some
threshold, or (b) the number of objects is greater than another
threshold, 6r {c) no regions are found. If {a) or (b) 1is true
increment the threshold and try again. If (c} is true, stop,
as the frame is void, otherwise, eliminate objects having less
than some small area. Finally, the largest reﬁaining object

is chosen and its perimeter saved.

The remaining object is tested to see whether it is
accepted. If it is not, then the threshold is incremented by 1
and the algorithm is tried again. It is accepted (a) if the
current perimeter value is within 20% of the value of the
previous threhold value, or (b) if the number of objects
(before sizing) is greater than that at the previous threshold
{using the previous value), or {(c) if the threshold 'pas been
increased past some upper'limit (in which case the segmentation

fails).

After the optimal threshold has been selected for the
largest cell, it must be segmented into nucleus and cytoplasm.
This is done using an isodensity clustering algorithm which
although assuming two clusters (nucleus'and cytoplasm) can be

expanded to three when the cytoplasm is folded on itself.

The correctness of the segmentation procedure was
checked both visually and by comparison with recognition rates
obtained by manually segmenting the images into 2-class and

13-class recognition problems. They point out that some of the
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problems with the algorithm result from the failure of the

contour tracing algorithm to isolate individual cells.

In another paper from the same study, Poulson et al.
[PoulR76] discusses segmenting cervical smears using both
manual and automatic methods (discussed in [CahR77] above).
The manual segmentation consisted‘ of selecting and saving
manually set thresholds for the image cytoplasm and nucleus
which were later compared with those produced by the algorithm.
They point out that for some cells which were unsegmentable by
threshold alone, parts of the cytoplasm are denser than parfs

of the nucleus.
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3.2 Statistics syntax and semantics

—— i ————— ——— T

The use of semantics in cell image analysis was
ptoposed in 1966 by Lipkin, Watt and Kirsch [LipL6é6]. This
paper proposed a sophisticated structural analysis of
microscope images based on embedding morphologic knowledge in
an analysis system which coded rules in the form of a BNF
grammar.a. The system was to have linguistic input and

interaction with a cytologist talking to the system in English.

Others have been more successful in less ambitious
applications of semantics to cell 1image processing. In
particular, chromosome boundaries were analyzed using B3NF
grammars to code the rules of formation of chromosome
boundaries ([LedR66], fPuK7u]). Shapiro ([ShapB78] has used
similar techniques using circle transform based features and a

BNF grammar to parse RNA micrograph boundaries.

3.2.1 Hybrid statistical-structural methods

The distinction between purely statistical and purely
.linguistic analysis is discussed in [KanlL72] and reviewed in
Section 2.6 of [LemP75]. Combined statistical-structural

methods are also discussed.

Several papers have been written suggesting the use of
hybrid syntactic/statistical methods in constructing
classifiers for biological cell images. Bartels et al.

[BartP76a] discuss some of the differences between statistical
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and syntactic classifiers. Statistical classifiers are highly
efficient compared to syntactic classifiers. A stétistical
classifier maps the unknown sample into a continuous pattern
space which 1is then divided into a fixed set of classes.
Syntactic or descriptive élassifiers work on an 'open' set of
pattern classes. They ascertain which features are present in a
given sample and recognize the sample on the basis of the set
of features. They map into a discrete pattern space which is
easily extendible to allow for additional pattern classes. This
easy extensibility 1is not necessarily true for statistical
classifiers. A mnew pattern will be assigned by such a
classifier to one of the given classes baéed on maximum
likelihood or minimum distance. In the syntactié classifier,
when a syntactic description is derived which does not fit any
existing class description, this condition may be flagged and
additional classe descriptions defined if necessary, or old

descriptions modified to include the new pattern.

Bartels et al. suggest that a hybridjsystem employing
both methods is probably the optimal solution in analyzing
complex histologic tissues. Such a system would employ a
descriptive classifier to establish the identity of a tissue
and and then use a statistical classifier to establish

normality against a statistical data base.

3. 2.2 Procedural description

e e b e b e e A i . L — -

As is evidenced by most of the literature in automated

cytology {see the [LemP75] and [Presk76 ] surveys), the primary
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concern in automating cell image processing has been in feature
extraction and the use of various types of disériminant
analysis for cell classification. However, since 1974 there has
been increased interest in mixed procedural-statistical
approaches as evidenced by [BacJd77], [TycD76], [Brend77], and

[ShapB74], [LipL76].

3.2.2.1 Low level semantic image analysis systems

Holmguist et al. [Hold77] point out that except for a
few systems such as TICAS ([WiedG70] and SCANNIT [ Brend76]
constructed for research purposes and oriented toward cell
classification by feature discriminant analysis, ' no specific
hardware (including on-line microscopy) and software are
readily avaiable. They mention that the PEEP-DECIDE-GRAPH
system {presented at the 1974 Fourth Automated Cytology
Conference) is a step in the direction of a complete software
system. It had the ability to to interactivelykprocess images
and various other types of data structures, but.had the problem
of running on a large PDP10 computer with no microscope

connected on-line.

They present the system design for an integrated
microscope/scanner hardware-software system for data
acquisition, image analysis and data reduction. Some procedural
capability is available for defining procedures as sequences of
commands to execute, as well as save, results in variables.
The system presented in the paper is an improved version of the

SCANCANS system developed by the same group [{BengE76]. 1In
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concept and design, SCANCANS and the later system are similar

to BMON2 ([ LemP76e], {lemP77a]).

3024 2.2 High level semantic modelling systems

High level semantic modelling differs from low level
modelling in that more than just immediately accessible model
knovledge may be brought to bear on the analysis of a problem.
Various strategies to perform an analysis may be manipulated in
accordance with the model. The model may include visual and
non-visual information as well as deduction rules connecting
pieces of model knowledge and how they are to be applied in an
analysis situation. A high level model is an appropriate place
to incorporate statistical trends occurring in one or more
frames and allow them to modify structural algorithms used for

segmentation on a lower level.

An earlier investigation of procedural description of
biood cells [LemP72] simulated the image processing feature
extraction functions in constructing preliminary structural

models of white cells.

For the last several years our group has been designing
and constructing a procedural description language {PRDL
[ShapB77] running on a PDP10 computer) to bridge the gap
mentioned by Holmguist in hardware/software procedural modeling
of biological images. The idea is to distribute the
computations so that the time consuming image processing/data

acquisition operations would be done on hardware suited (and
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dedicated) to that purpose. The control and analysis
procedures would be distributed to the procedural deséription
system. Thus advantage could be taken of the resources
available on a large system (such as the large word size memory
and file system) without saturating its resources doing image
processing. The hardvware image acquisition/image processor is
called the Real Time Image Processor (RTPP) and is described in
detail in [LemP76b], [LemP77b],it was first mentioned in

{LemP74], [CarmG74].

Before the RTPP was at the current state of completion,
an image processing simulation system called PROC10 [Lemp76a ]
was built on the PDP10, written in SAIL. As PRDL can interact
with any type of processor for which it has a processor
handler, the actual image processing could take place on either
the PDP10, PROC10, EMON2/RTPP, or the final version of the RTPP

{(which could include a general picture processor, GPP).

3.2.3 Decision trees

Decision tree models have been used to incorporate cell
image knowledge in both the segmentation and classification of
cell images. As discussed in Section 3.1.1.2 Tycko et al,
{TycD76] used a decision tree in computing an initial 5-class
classification using special stains to aid the decision
process. As discussed in Section 3.1.1.3, Gallus et al.
(GalG74] applied a decision tree model to analyzing chromosome
boundaries in order to label vertices and centromeric

constrictions.
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Sychra et al. [SycH76] used a decision tree analysis to
describe the shape of nuclei and c¢ytoplasm boundaries as
morphologic features for cervical cell analysis. ©Nuclei are
categorized as being

a. Round/oval

b. Bean-shaped

c. Elongated

d. Irregular/none of the above.
while cytoplasm shapes are categorized as being

a. Round/oval

b. Convex/concave

¢c. Multiconcave/star

d. Elongated, spindle- or tadpole-shaped

e. Irreqular/none of the above.

They divided the shape analysis process into two levels
of descriptors. The first level descriptors are based on
Fourier and chain code analysis. The second level descriptors
work at a higher level to provide analysis of concavity,
elongation, nuclear eccentricity and slimness. Recognition of
features such as (a-d) and (a-e)} is also accomplished at the
second level. Bach of the second level shape features is set to
one of five degrees of certainty (no, possibly yes, probably
yes, yes, definitely ves)}. The second level features for the
nucleus include:

1. Roundish or oval shape

2. WNumber of large concavities

3. Siim (length/width ratio)

4. Smoothed contour

5. Concave:

6. Elongated or lobate

7. {(Spiral} hook

8. Bean shape
9. Unclassified (result of decision tree failure).

Bacus and Weens [Bacd77] constructed a decision tree
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classification scheme for red blood <cells from peripheral
blocd. The cells were first prepared with a slide séinner to
disperse clumps so that single objects were uasually single
cells. The unstained cells were scanned at 418 nm (the Soret
hemoglobin absorption peak) for maximum contrast. Then ten
features were computed from the isolated objects, includiing
area, perimeter squared /area, spicularity, elongation,
hemoglobin concentration, and central pallor analysis. (Red
cells have a light inner region which was segmented after the
cell as a whole was found. Chain codes for the entire cell and
the central region were computed and used with other measures

to compute the ten features.)

Using the ten features, a decision tree was designed to
classify the «cells into 14 classes using 12 thresholds on
the features, The decision tree classified cells by assigning
morphologic labels corresponding to particular features to
groups, subgroups and sub-subgroups of cells as the depth of
the tree increased. The tree consisted of a major subclassifier

followed by four minor subclassifiers.

Bacus reports on the results of applying this technique
to normal slides. The threshold parameters were determined
partly by parameters in the literature and partly by
experiment. Bacus then presents successful results of applying
this procedure to get cell counts for both normal and abnormal

red cell specimens.




4. SEGMENTATION STRATEGY

The overall segmentation hierarchy is described in a
decision tree formalism. A running example, using frame 126-6,
will be used for all of the algorithms. Other frames may also
be included in order to illustrate particular points for some

parts of the algorithm.

- The morphologic data base discussed in Section 2.2
of fers some hints as to how one might go about segmenting
marrow. Several conjectures as to segmentation strategies are

inferred from the marrow morphology.

(a) Marrow is generally visualized as a set of dark
formed objects on a lighter possibly non-uniform
background.

{(b) Formed objects are most often defined by membrane
boundaries which may or may not be easily
discernible but are known to exist.

{(c) The darkest objects are most easily detected.
Removing them simplifies the segmentation of what
remains by reducing the combinatorics of the scene.

(d) Context should be used in analyzing objects
wherever possible, especially in those cases with
poor boundary (membrane) definition (e.g. expand a
well defined nucleus region into a poorly defined
cytoplasm region; find sharp cusps indicating
touching nuclei regions so as to indicate where
they should be split).

Taking such a top-down context-dependent route leads to
a possible segmentation decision procedure. The most easily
detected objects are recognized and removed first. Then
information gained from detecting objects in various classes is

used in analyzing the more difficult objects of the nth class

at step n of the segmentation process.

59
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This section gives an overview of the segmentation
strategy. The details of the experimental implementatién of the
tree are given in Sections 5, 6, 7 and 8, which cover RBC
removal and extraction, large object segmentation, single cell

articulation, and small object segmentation, respectively.

4.1 Segmentation decision tree

The segmenting of an image may be thought of as the
successive recognition and elimination of objects from the
image (thus accounting for objects in the frame). The algorithm
attempts to find those objects which (a) meet the simplest
semantic criteria, and (b) are inner membrane objects (regions)
capable of being expanded outward to "claim" additional pixels

belonging to them.

4.1.1 General approach

T ————— A

Figure 4.1 shows the general segmentation decision
tree. This tree illustrates the general types of operations

necessary to segment a marrov image.

The frame is presented to the algorithm as a set of
multispectral images of the same marrow field. The first
objects in the scene which meet the top-down morphologic
criteria are the hemoglobin-containing red blood cells. These
are removed first. Then large dense objects are identified
which are probably individual or touching leukocyte nuclei. The

large objects are tested to see whether they are actually
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Figure 4.1 Block diagram of the general segmentation decision
tree.

groups of +touching nuclei. If they are, they are broken into
smaller nuclei,. The small cell analysis goes on to assign
cytoplasm to the nuclei. Similarly the small object analysis
segments platelets outside of cells, and nucleoli inside of
nuclei. These formed objects are identified and removed from

the image.

Additional analysis may be performed, if indicated,

causing the decision tree to be reentered (thus converting the
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tree to a cyclic graph).

As indicated 1in Section 1.1.3, the output of the
segnentation process is a set of connected component images CCi
representing various types of formed objects. In each of these
images, all pixels of a given object are labeled with the same

value k > 1.
Object {k,i) = {{x,y) | g(x,y) of CCi=k}.

The connected component images constructed by the analysis are

as follows:

CCnuc={CCx | ¥ is a nucleus}
CCcyt={CCx | x is the cytoplasm of a nucleus y in CCnuc}

CCnucleoli={CCx | x is a nucleolus of a nucleus y
in CCnuc}

CCcell={CCxy { (x in CCnuc) and (y in CCcyt) and
(CCx belongs to CCy)}

CCplate={CCx | x is a platelet}

CChg={CCx | (x is RBC) or {({x in CCcell) and
(x contains hemoglobin))}

CCframe={CCx { (x touching frame) and
(x < min size for nuacleus)}

CCbkgrd={CCx | (x not in CCcell) and
(x not in CCplate) and (x not in CChg)}

CCartifact={CCx } (x is artifact) and
(If x in CCi Then remove x from CCi)}.

The last rule is different from the others in that it has the
side effect of removing components from other CC sets if after
they were mislabeled as non-artifacts, they are discovered to

be artifacts and are relabeled as artifacts.
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The decision procedure for a set CCi of objects of type
i may be thought of as executing a fixed sequence of actions.
Assume that the scene has been pre-processed up to the point
just before CCi 1is to be segmented. At this stage, the
following conditions should hold:

(a) Only objects in CCi will be segmented by
segmentation procedure Sni.

(b} The consistency of objects in CCi may be checked
using the global marrow model at step n of the
segmentation process., This jmplies that the model
has embedded global knowleddge which would permitt
such consistency checking.

(c) The morphologic model may suggest mechanisms for
backing up the segmentation in order to re-evaluate

inconsistent objects in CCi (converting the tree to
a cyclic graph).

The basic CCi segmentation procedure can viewed as a
three-step process as shown in the block diagram in Figure 4.2.

No backtracking is performed in the present implementation.

4.1.2 Implementation

Figures 4.3 and 4.4 show the details of representative
pieces of the decision tree which were implemented. These
pieces were chosen based on an analysis of the data base to
determine the most commonly occurring events (cf. Section

1.3.2).

Images are generally denoted by a two character prefix
followed by a lower case semantic label {e.g. CCnuc, where
fauc' denotes the image having to do with the nucleus). The

prefixes used in the following sections are given in Table 4.1,
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Segment frame
at step n, Fn,|
to detect [
objects of

type i ==> CCi}

Consistency
check of CCi FAIL:
with model j——> backup segmentation
of Fn using information
from failure.
SUCCEED:

\

| Remove CCi
from Fn==>Fn+1

Figure 4.2 Block representation of the three-step primitive
segmentation procedure for step n in analyzing a frame F
producing image CCi.

Image prefix Function
GN green (546 nm)
BL blue (420 nm)
GB green-blue positive difference
cc connected component image
NS mask image
CN pre-isolation image
CP pre-propagation image

— e o ———————— —— —— 3 —— —— — o . - ——

Table 4.1 Image prefixes used in the following sections.

The initial frame consists of the green (GN) and blue
(BL) unnormalized images. The RBCs are extracted by
thresholding the unnormalized blue image, creating a MSrbc.

This mask will contain nucleated erythrocytic c¢ell nuclei as
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welil which have to be articulated later.

The green-blue positive difference image (GB) is
computed after normalizing the GB and BL images. Using GB, the
large nuclei are extracted in the form of a connected component
image CCnucf{. Analyzing these nuclei results in splitting
touching nuclei to compute a connected component image CCnuc.
This is used to remove the nuclei from image GB creating image

GB'.

Nuclei or parts of other dark objects less than 10
microns in area that touch the edge of the image are extracted,
creating a connected component image CCedge, and are removed

from the GB' image to obtain image GB''.

Similarly, the platelets are extracted <¢reating a
connected component image CCplatelet, and are removed from the

GB*' image, creating the GB''' image.

Image GB'*'* and the complement of the object mask
MSformed are used to obtain a potential cytoplasm mask image.
With the aid of the original dgreen image (to greater
differentiate between cytoplasm and background, the cytoplasm
image mask MScyto is computed. This is then used along with the
CCnuc 1image to construct the pre-isolation connected component
image CNcell. The MSformed mask is the union of the masks
defined by CCnuc, CCedge, and CCplatelet. Thus the region
corresponding to the cytoplasm and the background, excluding

the RBCs, is (GB&{(not MSformed)).
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Cytoplasm regions are associated with particular nuclei
using the isolation algorithm to create the pre-prépaqation
image CPcell. This is used in propagating the nuclei to their
associated cytoplasm, creating the cell connected component
inage CcCcell. At this point, connected components for

individual cells exist.

Using the MSrbc mask comphted previously, the algorithm
checks to see if any nuclei have hemoglobin, which may indicate

that they are nucleated cells from the erythrocytic cell line.

' Using the CCnuc image, the algorithm checks to see
whether nucleoli exist in any of the cells, thus creating the

connected component image CCncleoli.
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Initial multispectral frame GB, BL

WV

Cont inue
nucleated €«—{RBC extraction and removal - MSrbc
erythrocyte
analysis { GB
{Figure 4.4) \\
Large object analysis-split nucleit—> CCnucl

GBsplit
N/

Single cell articulation {—> CCnuc
GBsplit!

Bdge object removal —> CCedge
GBsplit!!

Platelet removal —> CCplatelet

- MSformed

\\ GBsplit*"?

Cytoplasm mask generation ——> MScyto

Clcell
N\

Cytoplasm isolation between nuclei

CPcell

\

Cytoplasm propagation from nuclei [~—> CCcell
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Figure 4.3 Block diagram decision tree of the implemented
segmentation strategy.
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Continued
(from Figure 4.3)

Wait for images
CCcell, GBsplit

Msrbc, BL
Nucleated

erythrocyte {—=—=>» MSrbc!
check (RBCs only)

CCnuc maYked as nucleated RBCs
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Figure 4.4 Continuation (from Figure 4.3) of implemented
decision tree showing nucleated erythrocyte procedure.
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b.2 Notation used in algorithms and examples

Before discussing the details of the various stages of
the segmentation algorithm, some notational definitions are
given. These include the coordinate system and the gray scale
conventions., The algorithms are presented in an ALGOL-like
language which makes certain assumptions about the composition

of picture functions.

4.2.1 Logical coordinate system and grayscale conventions

The image pixel coordinate system used is that of the
RIPP. This is called the Logical Coordinate System or LCS
The LCS has {0,0) as the upper left hand corner and (1023,1023)
as the lower right hand corner. The maximum size of an indivual
image used here is 256x256 pixels. This corresponds to a

single image buffer memory in the RTPP.

An image is defined here to have eight bits (C to 255)
of gray-scale information associated with each pixel position
(cocrresponding to the image buffer memory datum). The value of
a black pixel is defined to be 255 while that ot a white pixel
is 0.

4.2.2 Use of ALGOL~-like notation in algorithms
An ALGOL-like notation is used in the algorithms given

in the following sections and appendices. It is felt that such

notation facilitates the communication of the algorithms
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Wwithout encumbering the description with unnecessary details.

The comments, which may extend beyond one line, are set
off between quote (") pairs. Assignment is made using the ®_n
symbol, or the "<==" if a matrix (or image) is being assigned a
matrix or single value. Assighment embedding is allowed, with
the embedding operation having higher precgdence of evaluation
than the usual arithmetic operators. For example, the following

are embedded statements:

i_j+ (k_3%*86) ;
If (a_NEXT!ELEMENT {alpha}) < q

Then ...
Else ...

Both the "Begin/End" notation with lists of expressions
separated with ";"'s and expressions separated by ","'s are
used to denote sequences of statements to be evaluated, The
latter notation is used when the statements may be evaluated in

parallel or when evaluation order is not important.

Sets are denoted by "(" and "}" pairs, lists by " (" and

"y" pairs, and subscripts by "[*® and " ]" pairs.

Sometimes an English-like description of the operation

to be performed is used instead of detailed code. For example,
Ij<==Segment Ii at threshold t;

In such cases, either the algorithm described has been
discussed elsewhere in the dissertation or the details are

obvious.
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4. 2.3 Composition of picture operations

Picture operations include both point and neighborhood
operations. The notation used does not explicitly mention the
order of application of the domain of the function to each
pixel or neighborhcod of the argument image. In most cases
this 1is evident and is not explicitly stated. An example of an

implicit computation is:
Ij<==AVG8 {Ii);
Ij<==SLICE(Ii,t1,t2) ;

Where the first function computes the 8-neighbor average of Ii
and the second function computes the threshold slice function
(= g if (t1<g<t2), else =0). The implied (x,y) tessellation is
over [0:255x0:255] and is explicitly stated as:

For y_0 Step 1 Until 255 Do

For x_0 Step 1 Until 255 Do (operation at (x,y)):

The composition of . these operations uses the

assumptions of algebraic composition {using " a similar

notation). For example:
I1§<==AVG8 (SLICE (Ii, t1,t2));

computes the slice function first and then the B8-neighbor

average.




5. RBC REMOVAL AND ANALYSIS

The marrow segmentation strategy, as discussed in
Section 4, concentrates on eliminating the most easily
segmented formed objects first. This section discusses the
removal of the RBCs from the frame since they constitute a
large number of the formed elements and have a simple means of
being eliminated. ° Then discrimination between RBCs and

nucleated erythrocytes is discussed.

51 Eliminating REBCs

An algorithm is presented for eliminating formed
elenents with hemoglobin content {mature reticuloytes) from
bone marrow Wright's stained smears imaged through an optical
microscope. The algorithm subtracts a normalized blue image
from a normalized green image using a grayscale positive

difference function resulting in a grayscale image.

Methods exist for eliminating red blood cells (RBCs)
from peripheral blood images ([ Youi?5], [BacJd75] and others).
These methods use the fact that hemoglobin has a maximum light
absorption at 419 nm wvavelength. Thus finding the RBCs
necessitates finding the discriminant threshold of a blue scan
corresponding to the RBC pixels. Using the valley between two
peaks as the optimal threshold for separating the components

corresponding to the two peaks was suggested in [PrewJé6}.
Unfortunately, noise due to optics, digitization, and
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illumination and sensor shading non-uniformities tends to cause
problems with this type of threshold selection. In addition,.in
complex images such as clusters of cells as seen in  bone
marrow, other effects tend to make the use of a single
threshold difficult. This will be discussed in more detail
later. Thus applying thresholding of the blue scan to produce a
binary image results in a noisy RBC mask with shading error as
well as salt and pepper noise. 1In addition, image content
atfects selection of the threshoild, making optimal +threshold

selection difficuilt.

Six frames {numbered 3,4,5,6,7,8) were selected
illustrating complex clusters of leukocytes and reticulocytes
in various stages and configurations. The green (GN) and blue

(BL) scans are shown in Figure 5.1.

5.1.1 Problems with thresholding the biue image

As just mentioned, the blue image is not always easily
- segmentable into RBCs and other objects by thresholding,
because the RBC threshold for complex scenes is so variable.
Figure 5.2 illustrates several thresholds for three different
blue images at approximately the RBC threshold Trbc (110) and
at two values above it (120, 130). These values were obtained
by lLooking at the blue image histograms shown in Figure 5.3.
The blue histograms show additional peaks for some normoblasts
in Figure 5.3b while the normoblast peak in Figure 5.33 is not

apparent.




Figure 5.1 Six original green
4—-green,

3-green, b) 3-blue, c)
5-blue, ¢) 6-green,
8~green, 1) B-blue.

h)

6-blue,

and blue
d)

i)

4-blue, e)
1-green,

scanned images. a)

5-green, f)

g}
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The two normoblast nuclei (which contain some
hemoglobin} in Figure 5.2 a-d are not as dense as the RBCs, yet
they will effect a shift in the RBC threshold. If the threshold
is raised slightly to remove them, the RBCs start to fragment.
In Figure 5.2 e-h, those RBCs overlying one another or squeezed
in between other cells as well as the smashed RBC in the center
left of the image are denser than isolated RBCs in other parts
of the images. In Figure 5.2 i-1, there is aiso the case of a
RBC overlying a white cell, the RBC's density being in between
that of the isolated RBCs and those RBCs sgqueezed or overlying

one another.

Thus, there is no unigue threshold for eliminating all
of the RBC content from the image due to local variation in EBC
dersity depending on how it presents itself in conjunction with

other objects in the image.

Another technique, developed by Bacus [{BacJd76], called
the "whitening transform", maps two colored images into a
"colored" image C and a "density" image D. This is done by
computing the principal eigenvectors and eigenvalues for each
image to maximize separation. Bacus makes two assumptions:
that the principal eigenvector lies along a 45 degree line in
the original bivariate space, and that the variances in either
direction are relatively constant. For the blue and green

images used in our experiments, this transform is given by
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Figure 5.2 Three blue images sliced at about the RBC threshold,
Trbc, and above {110, 120, and 130). a}) 3-BL, b) 3-BL sliced
110, c) 3~BL sliced 120, d) 3-BL sliced 130, e) 5-BL, £} 5-BL
sliced 110, g) 5-BL sliced 120, k) 5-BL sliced 130, i) 8-BL, ])
8-BL sliced 110, k) 8-BL sliced 120, 1) 8-BL sliced 130.
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scanned images

a)
6-BL, i) 7-GN, Jj) 7-BL, k) 8-GN, 1) B-BL.

(vith grid marks every 10 gray levels).




78

}
il

K (BL"GN) r;

h=
il

K (GN+BL).

Figure 5.4 shows the whitening transform for frames 6,
7 and 8. Note that it did not work very well for frame 6 but
did seem to work (to some extent) for frames 7 and 8. The lack
of discrimination seems to be due to overlapping RBC's which
smear out the blue contributions in a coﬁtinum (depending on
the extent of overlap). This overlap problem is especially
commnon with marrow smears but does not occur as frequently with

the spinner-produced smears of peripheral blood used by Bacus.

 Because of the problem of overlap, a non-linear
technique was developed in gorder to eliminate as much as
possible of the different RBC populations (normal RBCs,

rouleaux, RBCs overlapping WBCS).

5.1,2 Image normalization

In order to eliminate local density effects, the two
images are normalized by their density extrema. The extrema are
‘computed during histogram computation for the +two images.
Figure 5.3 shows the histograms for the green and blue images.
The normalized blue and green image transforms are defined by

gmin = MIN(g(x,¥) | 9(xX,y) in GN).

gmax = MAX(g{(x,vy) | g9(x,y) in GN}.
bmin = MIN(g(x,y) | 9(x,¥y) in BL}.
bmax = MAX(g(x,¥y) | g(X,¥) in BL).




79

-1

T T T S D i S T N LS G W A S S W I L A R N . e —— o —— ok il i VO e s ok

Figure 5.4 Comparisons of joint gray scale distributions of
(GN.vs.BL) and (C.vs.D). The x-axis (left=0) of the joint
distribution is GN (C) while the y-axis (top=0) is BL(D).a)
6-G¥, b) 6-BL, ¢} 6-GN.vs.BL, 4) 6-C.vs.D, e} 7-GN, f) 7-BL, g}
7-GN.vs.BL, h) 7-C.vs.D, 1) 8~GN¥, j) 8-BL, k) 8-GN.vs.BL, 1)
8-C.vs.D,
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Then, the normalized images GN' and BL' are computed = using

linear interpolation to fill an 8-bit dynamic range: '

(gmax - gmin) (GN {x,y) - gmin).’

- ————— - -

GN'(X,7)

1

{bmax - bmin) (BL{x,¥} - bmin).

o — ————— -

255

BL' (x,Y)

Figure 5.5 shows the GN' and BLY normalized images
which have better contrast than the original 1images shown in
Figure 5.1 because of the contrast stretching effect of the

normaiization.

5.1.3 Positive difference transform

The positive difference ~transform is an asymmetric
arithmetic operation which forces negétive gray values to zero.
This has the effect of losing some of the information. Figure
5.6 illustrates the positive differences of GB3=(GN'-BL') and
BG=(BL'~GN') computed using the equations below. As can be
seen, the second difference (BG) is not very useful for white
cell extraction, whereas the first difference (GE) contains the
desired subtraction of hemoglobin-formed objects. The BG
difference seems to contain hémoglobin—formed objects as well
as background.

POSDIFF {x,y) = If x-y < 0

Then 0
Else x-y.
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Figure 5.5 Six normalized green and blue images. a) 3-GN', b)
3-BL', c) 4-GN', d) 4-BL', €} 5-GN', f} 5-BL', g) 6-GN', h)
6-BL', i) 7-GN', j) 7-BL', k) 8-GN', 1} 8~-BIL'.
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Figure 5. 6 Positive differences. a) 3-GB, b) 3-BG, c) 4~GB,
4-BG, g} 6-GB, h) 6-BG,

e) 5-GB, f) 5-BG,

d)
i) 7-6B, j} 7-BG, k)

82
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GB PQSDIFF {GN' ,BL'}.

it

BG POSDIFF (BL',GN') -

5.17. 4 Results of RBC extraction

Figure 5,7 'shows the histograms and the smoothed
histograms of the GB images. The GB = histograms may be
interpreted as follows: 0 to Tcyto is the range for ©plasma
proteins and background, Tcyto to Tnuc 1is the range for
cytoplasm and parts of platelets, and Tnuc to Tmax is the range

for nuclei.

If (as it turns out) Tcyte and Tnuc are faitly
constant, then no histogram analysis of the GB histograms is
necessary. This is helpful since these histograms are noisy
because of normalization. Lboking at the GB histograms one
notes that Tnuc centers around 60 fairly independently of the
content of the image and that Tcyto centers around 10 also
fairly independently of .the image content. Because the
cytoplasm intersects the background density distribution, Tcyto
is dropped to 5 to keep down fragmentation. Figure 5.8 shows
the six images sliced at [Tnuc:255] with very good extfaction
of the nuclei. The failures in Figure 5.8f were caused by the
morphology of the basket cell which was heavily vacuclated and

nad overlapping RBCs, and the heavy granulation of the mature

eosinophil. Both had problems with the defintion of the nuclear
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Figure 5.7 Histograms of positive differences (with grid marks
every 10 gray levels). a) 3-H(GB), b) 3-SMOOTH(GB), ¢) 4-H(GB),
d) 4-SMOOTH({GB), e) 5-H(GB), f£) 5-SMOOTH(GB), g} 6=H(GB), h)
6-SMOOTH(GB), i) 7-H(GB), J) 7-SMOOTH(GB), k) 8-H(GB), 1)
8~SMOOTH {(GB) .
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border.

In summary, a non-linear gray scale transform for
multispectral bone marrow images can be used to successfully
eliminate formed .eleﬁents containing hemoglobin. This
transform also has the property that nuclear and background
thresholds are fairly constant and independent of image
content. This algorithm is <thus a useful pre-processing

step in segmenting images of bone marrow smears.

Figure 5.8 Six GB 1images sliced at [60:255]. a) 126-3, b)
126-4, c¢) 126~5, d4d) 126-6, e) 126-7, f) 126-8. '
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5.2 Erythrocyte extraction

Erythrocytes, because of their hemoglobin content and
its characteristic absorption at #19 nm, are segmentable as a
group using a threshold discriminant on the blue scan. This
threshold is at the valley of the blue density histogram. This
discriminant divides the frame into two regions:; (leukocytes,
platelets, background) and (RBCs, nucleated erythrocytesj}.
Figure 5.9 shows the blue histograms of the thirteen frames 1in
the data base with +the RBC threshold valley obvious in only
some of the cases, As Bacus points out'[BacJ76], scarcity of
RBCs in the image (as in the megakaryocyte in 127-13) might

cause problems in finding the valley.

As was noted in the Section 5.1, there are sometimes
extra valleys in the histogram due to overlap of EBCs. with
RBCs (called rouleaux) or with leukocytes, as well as to the
occurrence of smashed RBCs which tend to have a lower
hemoglobin content. The former (latter) causes additional

valleys at the higher (lower) denstity histogram than would be

- due to RBCs occurring alone.

Figure 5.10 shows the blue 1images sliced at Trbcs

determined for each of the blue image histograms.
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Figure 5.9 Density histograms of the smoothed blue images (with
grid marks every 10 gray levels). a) 126-3, b) 126-4, c)
126-5, 4) 126-6, e) 126-7, f) 126-8, g} 126-9, h)}) 126-10, i)
127-11, j} 1127-12 k) 127-13, 1) 127-14, m) 127-15.
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Figure 5.10 The 13 blue images sliced at [Trbc:255]. a)
3-Trbc=110, b) 4-Trbc=110, <) 5-Trbec=110, 4) &6~Trbc=108, =e)
7-Trbec=110, £) 8-Trbe=110, g) 9-Trbec=110, h) 10-Trbc=105, i)
11-Trbc=110, j) 12-Trbc=110, k) 13-Trbe=125, 1) 14~-Trbc=114, m)
15-Trbc=110.
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5.3 Nucleated erythrocyte extraction

RBC precursor cells (the most common of -which are
normoblasts) are nucleated ceils whiéh appear late enough in
the red cell line to contain éoﬁé ﬁemoglobin. In blue 1light
(419 nm), the hemoglobin in such cells appears less dense than
in RBCs but denser than in leukocytes. It often appears as a

coarse texture rather than a continuous dense region.

Using the RBC hemoglobin threshold and CCnuc (nucleus
connected component image), the following algorithm determines
which cells i are possibly nucleated RBCs in CChg.

(1] Extract hemoglobin containing formed'object.“

Msrbc<==If (BL Slice [Trbc:2551)

Then 255

Else 0Q;
" 2] Test nuclei for hemoglobin content™®
For all i in CCnuc Do

If Area (CCnuc (i) & MSrbc) » epsilon
Then CCnuc (i) is a nucleated EBC;

Figure 5. 11 shows {BLSGQéucL) and (BL&CCnucétMSrbe) for
frames 126-6 and 126-7 (tHE: latter frame contains several
normoblasts while the former does not). Table 5.1 shows the
nuclear area and the hemog;osin area (abové threéhold Trbe) for
each nucleus for cells iﬁ theéé images. For epsilon set to 10
square microns, the normoblasts in frame 126-7 are detected
correctly while the nuclei in frames 126-6 are correctly

ignored.

Having identified the nucleated RBCs, a modified RBC
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mask may be created which has the marked nuclei

removed., This
is computed over (x,y) as

MSrbc! <== If ((MSrbc & CCnuc{i) > 0)

and (i is nu¢leated RBC)
Then 0

Else MSrbc;

e s oy A S T V- A SO W W W P S T S S S T S Y Y N P U U W U O L T S e S o A Y. AU ol A P U A P~ -

Figure 5.11 Blue image pixels defined by
BL&CCnucENSThC. a) 126-6 (CCnuc&BL), b) 126-6

Bi&CCnuc and
c) 126~7 (CCnucSBL),.d) 126—~7 (CCnucE&NSrbc).

(CCnuc&NSTbe),




EFrame # CC# 1 Area {CChug)
126-6 3 63.8
126-6 4 160. 4
126-6 5 54.3
126-6 6 26.2
126=6 8 47.2
126-6 9 39.5
126-6 10 32.8
126-6 " 26,1
126-7 2 59,3
126~7 3 112.5
126+7 4 55.3
146-7 5 €2.0
126-7 6 17.3
126-7 7 18.2
126=-7 8 30.8
126-7 9 47.1
126-7 10 18.9

- e P A T e WS e g S Al S e g T W S A e W} S - o

Area {CCnuc (i} &MSrkbc))
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0.02
0.00
.10
0.00
0.75
0.00
0.15
0.02
2.37
0.15

0.22
6.22
31.18
45.16
13.66
144 40
12.93
43.39
18.90

——— . v ——— A
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Table 5.1 Hemoglobkin content of nuclei. This is measured by the
area of the blue image (for each nucleus CCnuc(i)) above Trbc.
In order to contrast the nuclei, the areas of the nuclei are
given as well., All areas are given in square microns.




6. LARGE OBJECT ANALYSIS

Given the GB image, with RBCs removed, the next step 1in
the segmentation of the frame‘is to find the nuclear centers of
the leukocytes. As these are the darkest large objects in the
frane, their segmentation would be trivial except for the fact
that leukocytes often clump together in marrow smears. Large
dark objects are tested to see whether they are actually'clumps
of smaller objects and should be broken up into smaller
ob jects. In most cases, the touching dark objects are cell

nuclei.

6.1 Touching nuclei: splitting algorithm

The algorithm for splitting touching nuclei starts by
pertorming a boundary-follower segmentation of the GB image.
This is done using threshold Tnuc and an area threshold of
{10:2000] square microns. This generates the connected

component image CCnucO and a boundary data file, BD.

Frames 126—-6 and 126-7 contain touching nuclei which
should be split while frames 126-9, 126-10 contain multilobed
poly nuclei which could be mistaken for touching nuclei. The

splitting algorithm is demonstrated on both types of objects.

Figure 6.1 shows the trace of the boundary follower
segmentation of the nuclei and the connected components CCnuc{

for 4images 126-6, 7, 9, and 10. Frames 126-6 and 126-7 have

92
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Figure 6.1 ©Traces and CCnuc0 images produced by the boundary
follower segmenter. The CCnuc0 images are scaled by 15 so that
they are visible. The threshold was set to Tnuc (60) with area
sizing { 10:2000] square microns. a) trace 126-6, b) CCnucO
126-6, <¢) trace 126-7, d) CCnucO0 126-7, e) trace 126-9, f)
CCnucl 126-9, g) trace 126-10, h) CCnucO0 126-10.

touching nuclei counted as single nuclei. Frames 126~9 .and

126-10 do not have any touching nuclei.

The boundary segmentation algorithm, in addition to
followipg the boundary, £ills in pixeis ihside of thé object
which are below the segmentation threshold. This‘ is ‘done by
using a run length map (RLM) representation of.the‘boundary and
then testing pixels_to determine whether they are inside the
object or not. The RLM algorithm ié discussed in more detail in

[ LemP78al.
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6 1.1 Testing boundaries for conjugate cracks

After the initial segmentation pass is completed, the
boundary data file, BD, is analyzéd by tesfing for conjugate
cracks. These cracks are regions which might be created by
touching nucleij. The algorithm recognizes the occurrence of
conjugate corner pairs. It then creates a list of potentiai
split points of touching nuclei. Figure 6.2 1illustrates
finding the potential corners which are marked (as 3x3 black
rectangles) on the boundary traces to frames 126-6, 126-7,
126-9, and 126-10, These potential corners will then be matched
later in the algorithm. Three potential corners were correctly
detected in Figure 6.2a and two pdirs of potential’corners in

Figure 6.2b.

6.1.2 Evaluation of texture in potential split region

The texture in the potential split regions 1s evaluated
in the GB image (at the locations of the pixels in CCnuc0) for
the cracks specified in the split list. For c¢racks meeting
the split criteria, Zeros are painted in a copy of GB in the
lightened texture régibns of the cracks, thus completing the
split procedure. The new image is denoted by GBsplit. Figure‘
6.3 illustrates the results of applying the texture and zero
painting procedures to frames 126-6, 126-7, 126-9, and 126-10.
One split in frame 126-6 and two splits in frame 126-7 were

perfofmed correctly.
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6.1.3 Resegmention of GBsplit

Rl T ] ——

After breaking up nuclear clusters using the splitting
algorithm, the GBsplit image is in turn resegmented using the
boundary follower segmenter at the same parameters of threshold
and area as before to get the new connected component image
CCnuc. Figure 6.4 shows the correctly resegmented images for

frames 126-6 and 126-7 which required splitting,

:

e e e o . . T . —— N —— Tl . ke i A — VA il — T i —— -

Figure 6.2. Nuclei boundary conjucate crack finding results.
The boundary traces for the frames tested are marked with the
corners found. The splitting parameters are: range of
DAVC=(1:8], wvindow width=7, cornerity threshold=10, split
threshold=10. a) marked trace 126-6, b) marked trace 126-7, c)
marked trace 126-9, d) marked trace 126-10.
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Figure 6.3 Nuclei split after testing the texture of the
potential split regions. The texture heuristic threshold=16. a)
GBsplit 126-6, b) GBsplit 126-7, c) GBsplit 126-9, d) GBsplit
126-10.

Figure 6.4 Resegmented traces and CCnuc images after splitting
of touching nuclei. The CCnuc are scaled by 15 so that they are
visible. a) trace 126-6, b) CCnuc 126-6, c¢) trace 126-7, 4)
¢Cnuc 126-7.
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6.2 Segmentation of very large objects

The segmentation of very large objects such as
megakaryccytes or macrophages cannot be bhandled with the
current segmentation structure since they exceed the frame size
and contain nmultiple nuclei. Some of the nuclei n a
macrophage belong to ingested cells as may be seen in frame
127-13 in Figure A.11 in Appendix A. An extended model might
contain algorithms to operate over several adjacent frames (as
suggested by [SobI76] for tracing neurons across frame

boundaries), but this will not be attempted here.




7. SINGLE CELL ARTICULATION

The GBsplit irage (which was possibly split using the
algorithm discussed in Section 6.1) is now segmented at the

single cell level.

7.1 Nucleus articulation

The nuclei are segmented from the GBsplit image using a
nuclear threshold Tnuec. It was found that a value of Tnuc=50
Jave a reasonable approximation to the valley of the GBsplit
density histogram. The area ~threshold was set to exclude
objects less than 10 square microns in size. Fragmented nuclei
{(such as basophils which are confused because of the
granulation) may be excluded using the simple shape feature
(perimeter**2/area) for values greater than B80. The nuclei
excluded because of fragmentation may be segmented using
alternate algorithms {such as the boundary trace transform,

BIT (T}, to be discussed).

Figure 7.1 shows the boundary trace and CCnuc images
for frames which have both touching (frames 126-6, 126-7) and
'non~touching (frames 126-3, 126-4) nuclei. Table 7.1 lists some
of the features computed during the segmentatioﬁ of the nuclei

of trame 126-6.

98
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Figure 7.1 The boundary trace and CCnuc images for frames a)
126-6, b) 126~7 which contain touching nuclei. Frames c) 126-3,
d) 126-4 which do not contain touching nuclei.

7.1.1 Use of the BTT for nuclear boundary enhancement

The BTT (T) may be.used to enhance nuclear boundaries.
Rhen very'iarge values of (perimeter**2/area) are found for an
object, it is an indication that that object is fragmenting at
the current segmentation threshold. The BIT(T) algorithm
attempts'to find the opiimal border of an object at vafioas
thresholds so that +the composite boundary can be segmented.
Figure 7.2 shows BTT(T) and BTT(F)} for the thirteen frames.
Some of +the frames have nuclei with boundary fragmentation
(Figures 7.2b,c,f,j.,kel,m) while the other frames have
boundaries which are very strong (Figures

Ta2a,c,8,€,£,9,hei,1). In addition holes appear both inside and
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CC# Area Perim P*P/A  BndPts  Filled-A  Dens/U  Edges

—— - — i - - - ———— L —— —— i i - . ———— -

2 48.2 30.2 18.9 173 0.2 4024 2
3 63.2 Su4.8 47.1 291 2.5 3700 0
4 160.4 56.6 19.9 301 1.0 4019 0
5 54.3 38. 4 27.1 207 0.1 4269 0
6 26.2 22.4 19.1 126 0.7 4244 1
7 40.1 28.0 19.4 153 0.1 5255 0
8! 87.1 73.8 62.4 404 0.5 4169 1
8 47.2 50.2 53.4 272 0.5 4101 0
9 39.5 25.4 16.3 147 .0 4221 1
10 32.8 26.9 21.9 149 0.0 4678 0
11 20.1 24,0 28.7 141 0.8 3608 2
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Table 7.1 Features computed for nuclei during nucleus
articulation segmentation pass for frame 126~6. Features are
given in microns where applicable. The Edges feature is the
number of edges of the object which touch the frame. The
Bndbts feature is the length of the boundary in pixels. Area
sizing is [10:2000] sguare microns, density threshold=6C. CC's
8 and 9 were previously CC# 8 which is listed in the table as
av.

outside of the boundaries as they fragment as a function of

threshold.

The boundary in the case of the eosinophil in 126-8 has
filled regions surrounding the real nuclear edge which might be
used by the global model as evidence of fragmentation caused by
cytoplasm granulation. Note that the polys in 126-8 are
correctly detected. An eosinophilic metamyelocyte in 126-5
also fragments for similar reasons. In such <cells, two
poundaries occur with granules appearing between the two
boundaries. This thus leads to a procedure for testing the

occurrence of such heavily gfanulated cells.
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Figure 7.2 BTT(T) for the thirteen frames. a) 126~3, b) 126-4,
c) 126-5, 4) 126-6, e) 126-7, f) 126-8, q)
127-11,

126-9, h) 126-10, i)
J) 127-12 k) 127-313, 1) 127-14, m) 1127-15.
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The histogram of BTT{T) can be used to indicate the

degree of fragmentation of the boundary using the following

algorithm:

"{ 1] Compute the BTT {T) masked by the standard CCnuc."
BT60 = CCnuc(Tnuc=60) & BTT{(T);

"[ 2] Test each nucleus of frame®
For each i in CCnuc Do
Begin
Compute HIST(CCnuc (i)&BT6EO) ;
If very large values
Then strong boundary
- {i.e. edge is ok)
Else edge is fragmented
due to cytoplasm

granulation.
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Figure 7.3 GBsplit? image computed by subtracting the nuclei
from the GBsplit image. Frames a) 126-3, b) 126-4, c) 126-6,
a) 126-7.
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7.1.2 Removal of nuclei from the frame after segmentation
After the nuclei are extracted, they are subtracted
from GBsplit, producing the GBsplit'! image shown in Figure 7.3
with the nuclei correctly removed except for the case of the
eosinophil in the lower right hand corner. Having removed the

nuclei, the other regions can now be analyzed.
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7.2 Cytoplasm articulation
After the nuclei are removed, the edge nuclei are
removed (cf. Section 7.5) and then the platelets are removed
{cf. Section 8.1), resulting in image GBsplit'*''. The three
formed object connected component images are CCnuc, CCedge, and
CCplatelet, The cytoplasm is then extracted by generating the
cytopiasm mask MScyto. MScyto isoclates the cytoplasm of the
frame from background, platelets and nuclei. The following
algorithm computes MScyto.
“[ 1] Compute the mask of the formed objects."
For all (x,y} Do
If (CCnuc or CCedge or CCplatelet)
Then MSformed (x,y)_255
Else MSformed {x,y)_0;

"[2] Smooth GBsplit."
CYml <== AVGSB (GBsplit);

" 3] Extract approximate cytoplasm regions."
C¥m2 == If (CYm1 Sliced [Tcyto-5:Tnuc-1]) neg &
Then Normalized (GN (x,¥))
Else 0;

"[ 4] Smooth the extracted cytoplasm region."
CY¥m3 <== AVGB(CYIm2};

"[ 5] Remove the cytoplasm found in formed object
regions."
CY¥mf <== CY¥m3 -~ MSformed;
"[ 6] Rescale CYm4 to the [0:255] range of MScyto"
MScyto <== If CY¥md neq O

Then 255
Zlse 0;

Figure 7.4 shows the cytoplasm mask generation steps
for frames 126-6, and 126-7. The MScyto image in Figure 7.4f is

a reasonable approximation of the cytoplasm in frame 126-6 with
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Figure 7.4

Stages in development of the cytoplasm mask for
frames 126-6 and 126-7. a) MSformed-6, b} C¥Imi-6, c¢) C¥im2-6, 4d)

CIm3-6, e) C¥Imy§-6, £) MScyto-6 g} (MScyto-6EGN), h) MSformed-7,
i) C¥m1-7, j) Cim2-7, k) C¥m3-7, 1) <CY¥m4-7, m} MScyto-7 n)
{MScyto-7&£GN-T7)
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some pixels missed in the Golgi region of the stab and some
background pixels at the lower right cell cluster incorrectly
labeled as cytoplasm. The MScyto image in Figqgure 7.41 was

approximately correct.

If the cytoplasm regions for each cell are disjoint,
then by propagating the nuclear connected component values
{CCnuc) into adjacent cytoplasm, it is possible to label cells
with the correct nuclear component number. In the cases where

this is not true, additional steps need to be taken.

7.2.1 Cytoplasm isolation algorithm

The MScyto 1image (ranging 0 or 255) is rescaled to (9
or 1) to construct the connected component image CCcyto (with
one component value 1). CCcyto is ORed with CCnuc to create
the pre-isolation image CNcell. This image is shown 1in Figure
7.5 for frames 126-3, 126-4, 126-6, and 126-7. The cytoplasm
will later acquire nuclear CC values in order +to 1label the
regions (nucleus+cytoplasm) as cellular CCs. As can be seen
from all the CNcell images in Figure 7.5, the cytoplasm touches
muitiple nuclei. Therefore, some means of distributing the

cytoplasm to the appropriate nuclei is regquired.

The c&toplasm isolation algorithm finds (if possible)
the cytoplasm-cytoplasm edges along the lines between the
centers of all nuclei in CCnuc. Given the original estimate of
the edge as being perpendicular to the line between the

centers, the algorithm +tries to optimize this between +,/- 22
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Figure 7.5 CCcyto ORed with CCnuc to create the pre-isolation
images CNcell. The images are scaled by 15 so they are visible.
a) 126-3, b) 126-4, c¢) 126-6, d}) 126-7.

degrees of the perpendicular. (The angle correction was
restricted to prevent it from getting lost on another llocal
minimum.} It then £finds the (suboptimal) direction of the
intersection and paints a zero line through the touching region

to isolate the cytoplasm regions.

Pigure 7.6a shows the connectivity graph for all nuclei
centers for frame 126~6. Figure 7.6b superimposes this on CCnuc
(scaled by 15 so as to be visible). Figure 7.6c shows the
reduced connectivity graph (thin lines) with painted regions
(ﬁhick lines) used to effect 1isolation. Notice the drastic
reduction of nucleus-nucleus pairs required to be tested in the

second half of the algorithm. Figure 7.6d shows the result of
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the isolation algorithm, the pre-propagation image, CPcell.
Note that the cytoplasm regions are labeled with 1's, the
background with O0's, and nuclei with values greater than 1.
Several of the cytoplasm-cytoplasm edges vere correctly
isolated. The failure of the large myelocyte/polychromatic
normoblast is due to the lact of an adequate 1light region in
the cytoplasm interface. Alternative isolation algorithms might
be used in such cases. Figure 7.7 shows the reduced
connectivity graphs with painted regions for frames 126-3,

1264 and 126-7 where the algorithm met with variable success.

Figure 7 6 Connectivity graphs for cytoplasm isolation for
frame 126-6. a) Complete nuclear center connectivity graph, b)
superposition of (a) with CNcell scaled by 15 so visible, ¢)
reduced connectivity graph (thin lines) with painted regions
{thick lines), d) CPcell.

After CPcell is computed, the nuclei are propagated
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into the cytoplasm regions using either of two methods. The

first method assumes that all cytoplasm regions vere

—— A —— — . — —— ——— s i it T ————— ——— . e St o . —

Figure 7.7 Reduced connectivity graph (thin lines) with painted
regions {(thick lines) used to effect the isolation for frames
with CNcell images painted with zeros a) 126-3, b) 126-4, c)
126—7.

successfully isolated (which is not always +the case). The
algorithm works by iteratively moving in a clockwise
contracting spiral clockwise to the midpoint of the image, and
then in an expanding counterclockwise spiral back to the
outside edge, propagating g(x,y)=1 values into 8-neighbor
adjacent values of g that are greater than 1 as the image is

traversed.

The second method propagates one pixel/pass taking
considerably longer to compute the final image CCcell which
results when there are no propagations in a pass. (The first

propagation algorithm operates until it too has a null pass;
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however, it  usually converges after one or two passes.) The

first method was used in the present study.

Figure 7.8 shows the results of propagating CPcell in
order to compute CCcell. As can been seen in 7.8, the
propagation mislabeled some pixels because the cytoplasm
isolation was dincomplete. This was especially true for frame
126-3 (7.8a) where the cytoplasm boundary was indistinct and
the isolation algorithm split the cell in the middle. The same
type of failure is observed in frame 126-6 {7.8c) where there
vas not enough texture edge to isolate the touching cell

region. Other cases in 7.8a-d were propagated correctly because

- -~

Figure 7.8 CCcell computed by propagating CPcell using the
spiral propagation algorithm for frames a) 126-3, b) 126-4, <)
126~-6, d) 126-7.
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of adequate cytoplasm isolation.

Figures 7.9, 7.10, 7.11 and 7.12 show individual cells

extracted from the respective green images for frames 123-3,

I

Figure 7.9 Extracted cells from contrast stretched green image
using CCcell for frame 126-3. a) CC#2, b) CC#3, c) CC#4, d)
CC#5.

123-4, 123-6, and 123-7., The results are what would be
expected given the CCcell image in Figure 7.8. Many of +the
cells were isolated fairly well (Figures 7.9b,d; 7.10a,c,e;
7.11a,b,d,e,9,k,1i,73; 7.12a,b,c,d,e,g9,h,1i).. Others had
difficulties caused by poor nuclear definition, or by
cytoplasm—~cytoplasm isolation (Figures 7.9a/c; 7. 1c/f,
7.119/5) « Figures 7.10b,d are the two lobes of a poly which
had teardrop nuclear fragments. These were segmented as
separate cells. The platelets and background in frame 126-7

caused problems with the cytoplasm mask generation in several

of the cells in Figure 7.12.
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Figure 7.10 Extracted cells from contrast stretched green image
using CCcell for frame 126-4. a) CC#2, b) CC#3, <) CC#i4, Q)
CC#5, e) CC#6, f) CC#7.
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Figure 7.11 Extracted cells from contrast stretched green image
using CCcell for frame 126-6. a) CC¥2, b) CC#3, c) CC#4, 4)
CC#5, e) CC#6, f£) CC#7, g) CC#8, h) CC#9, i) CC#10, j) CC#11.
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Figure 7.12 Extracted cells from contrast stretched green image
using CCcell for frame 126~7. a) CC#2, b) CC#3, c) CC#uy, Q) .
CC#5, e) CC#6, f) CC#7, g) CC#8, h) CC#3, i) CC#10.
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7.3 Nucleolus articulation

After CCnuc is computed, it is possible to articulate
nucleoli. Nucleoli are detected using either a threshold
slicing algorithm or a BTIT(F) operation to detect large
ilightened texture regions inside the nucleus. Nucleoli in
franes 126-3, 4, 5, and 127-12 are analyzed using the slicing
algorithm here. The same frames were also analyzed using the
BTI(T).. The two algorithms appeared to do equally well 1in

detecting nucleoli.

The threshold slicing algorithm for segmenting nucleoli
uses a second segmentation of the nucleus  to 1look for
light round regions only inside of the nucleus. It is given as

" 1] Get nucleus region i gray scale image."
GBnuc <== GBsplit & CCnuc(i):

"[ 2] Threshold the light nuclear regions.™
GBnuc' <== GBnuc Sliced at [Tnuc+10:255];

"[ 3] Get potential nucleolus regions in CCnuc {i)."
GBnuclecll <== GBnuc' - GBnuc;

"(4] Segment with sizing set for nucleoli."

CCnucleoli <== Segment (6Bnucleoli, Thr=60,
area > 0.75 sq. microns,
(10< (P*P/A)<21)) ;

Figure 7.13 shows nucleoli segmented using the slicing
secondary segmentation algorithm for frames 126-3, 126-4, 126-5
and 126-12. The algorithm detected nucleoli in Figure 7.13a
although it was fooled by strong chromatin texture in Figure

7e13ma The nucleolus in the early stab was not detected but

this might be because it was not well defined in the image.
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Figure 7.13 Nucleoli segmented using the threshold slicing
secondary segmentation algorithm. The boundary trace is.
produced when GBnucleoli is segmented with T=60, area > 0.75
sguare microns, and [ 10<Pz2A<21]. a) boundary trace-3, b)

GBsplit-3, <¢) GBnucleoli-3, d) GBnuc'-3, e) boundary trace-4,

f) GBsplit-4, g) ‘'GBnucleoli-4, h) GBnuc'-4, i) boundary

trace-5, j}» GBsplit-5, k) GBnucleoli-5, 1) GBnuc'-5, m)

boundary trace-12, n) GBsplit-12, o) GBnucleoli-12, p)

GBnuc*-12.




117

The BTT (F) algorithm may be used to enhance nucleoli so
that they may be segmented.
Figure 7.14 shows the BTT(F) for the thirteen frames. Note the
enhancement of the nucleoli in the frames which have them.
Notice the dark regions where the nucleoli occur. Using either
algorithm should result in potential nucleoli. Additional work

needs to be done in refining the procedure.
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Figure 7.14 BTT(F) for the thirteen frames. a) 126-3, b) 126-4,
¢} 126-5, 4) 126-6, e) 126-7, £f) 126-8, g) 126-9, h) 126-10, i)
127-11, 4) 127-12 k) 127-13, 1) 127-14, m) 127-15.
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7.4 Golgi reglon articulation

The Golgi region is seen in myelocytes up to the stab
stage of mafuration. It appears as a lightened region adjacent
to where tﬂe nycleus indents. No operational algorithm is given
here to articulate the Golgi region, but indications of

positive results from several experiments are discussed.

Although +the experiment has not been periformed, it
seems reasonable to use the BTT (F) on the cytoplasm region of

the cell to detect lightened regions.

The Golgi region in the stab in frame 126-6 caused
problems with the isolation algorithm in Figure 7.6c. The Golgi
region was misidentified as the lightened touching cytoplasm
région. Another possible method might be to sweep a line filter
around the center of the cell (oniy in the concavity, if it can
be adequately detected) and look at the variance of cytoplasm

dQHSitY-

4 third possible method might be to look at the
clumping of pixels for thresholds less than Tcyt inside of the

cytoplasm region.
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7.5 Small nuclear fragments touching the frame

The segmentation of large nuclear fragments which touch
the frame is performed after CCnuc is computed and was used to
remove the nuclei from the frame. Nuclear fragments less than
iD microns in area can be extracted by segmenting GBsplit' at
the nuclear threshold Tnuc using the conditions of area less
than 10 microns and ' one or more frame edges touching the
object. Figure 7.15'shows several edge fragments. Fiqure 7.15a
contains two small dark artifacts while 7.15b contains a

nacleus fragment successfully extracted.
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Figure 7.15 Small edge fragments extracted by segmenting

GBsplit' with threshold Tnuc, area sizing less than 10 square
microns, and restricting all objects to touching at least one-
edge. a) CCedge-6 consisting of fragqments from nuclei which

were touching edge but were greater than 10 microns., b)

CCedge-7 consisting of nucleus split by frame.
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7.6 Plasma protein background articulation

N s . A fpp g e e b . U . - - W G —

Plasma protein is background material which tends to
accumulate near cells. The plasma and background image is
computed using the following algorithm.

MSplasma <== If (CNcell > 1} and (0 < GBsplit < Tcyt)
Then 255
Else 0;

Figure 7.16 shows the plasma background of Frames 126-6
and 126-7 scaled to black. Note the increased density of the
background in the lower part of Figure 7.16a which caused

problems in the MScyto definition.
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Figure 7.16 Plasma background defined by MSplasma. a) 126-6, b)
126"7.




8. SMALL OBJECT ANALYSIS

Small objects are defined to be objects other than
cells or nuclei which are not touching the frame. These include

platelets, cell fragments and artifacts.

8.1 Platelet articulation

Platelets are segmented from the GB image using the
boundary follower with sizes between 0.25 and 9.9 square
microns at threshold Tnuc. The resqlting connected component
image, CCplateletCl, is then expanded by two pixels to get a
better estimate of the platelets, called CCplatelet. Figure 8.1
shows platelets correctly extracted from some of the frames
that have large numbers of platelets (frames 126~5, 126-6, and
126~7). Figures 8.17a, 8.1e and 8.1i show GBsplit''. Figures
8.1b, 8.1f and 8.1 show GBsplit''' with the platelets removed,
Figures 8.1c, 8.19, and 8.1k show CCplatelet0, and Figures
8.1d, 8.1h, and 8.1]1 show CCplatelet. Figures 8.1c, 8.1f, and
8. 11 show GBsplit''' computed by subtracting CCplatelet from
GBsplit'' (i.e. GBsplit - CCnuc - C(Cedge). The platelet
detection worked fairly well except for a few dark granules in

frane 126-5 which were misidentified as platelets.

Not all of the platelets are segmented well. This 1is
because they vary in their density. As will be seén in
{LenP78b], platelets are normally 2 to 4 microns in diameter.
The reason for using the rather high area size threshold is
that the platelets are sticky and tend to clump together. This
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Figure 8.1 Platelets segmented from frames with many platelets.
a) 126~-5 GBsplit'', b) 126-5 GBsplit''', c) 126-5 CCplatelet0,
d) 126-5 CCplatelet, e) 126-6 GBsplit?'*, £f) 126-6 GBsplit'*',
g) 126-6 CCplatelet0, h) 126~-6 CCplatelet, i) 126-7 GBsplit'',
j) 126-7 GBsplit?*?, k) 126-7 CCplatelet0, 1) 126~7 CCplatelet.
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means that one or more platelets are being segmented as one

object.

FPigure 8.2 shows some cytoplasm vacuoles misidentified
as platelets in frames without any platelets. BAdditional tests
may be able to prevent this if valid cytoplasm boundaries can
be found. The latter is sometimes difficult and the problem
is compounded by the fact that platelets tend to cling to white

cell bqundaries.
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Figure 8.2 Objects misidentified as platelets. a) 126-3

GBsplit'', b) GBsplit''', c) CCplatelet0 and d) CCplatelet for
dark region wvhere cytoplasm comes together from several cells.
e} 126-4 GBsplit't, f) GBsplit''?!, g) CCplateletl and h)
CCplatelet caused by granules in cytoplasm, dirt and
fragmentation of the eosinophilic late metamyelocyte in the
lover left corner. :
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B.2 Articulation of artifacts

Artifacts are defined here to be different from plasma
protein which was left over from the segmentation discussed in
Section 7.6. Artifacts are detected by high density, small
area, high p**2/a, square corners and sides, etc. Figure 8.3
shows some examples of artifacts. Figure 8.3a is the GB image
of a distorted late metamyelocyte in frame 126—-9. Figure 8.3b
is the GB image of a distorted 1large 1lymphocyte in frame

127-14.
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Figure 8.3 Examples of artifacts. a) GB image of distorted late.
‘metamyelocyte in 126-9, b) boundary trace of 126-9, ¢) GB image
of distorted large lymphocyte in 127-14, d) boundary trace of
127-14.
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8.3 Articulation of cell fragments

Cell fragments are formed objects (or what appear to he
formed objects) which once belonged to cells. They appear in
the smear as a result of both normal and abnormal events. Two
common cell fragments are smashed cells and naked nuclei.
The former is produced during slide greparation while the
latter 1is the result of normal erythrocyte céll line

maturation.

Figure 8.4a shows smashed red cells in frame 126-4.
The variation in hemoglobin density would normally cause
problems if a binary image of the blue scan were used at the
Trbc value. However, the green-blue positife difference
algorithm, because of the non-linearity of the operator, still
removes the smashed RBCs from the GB image. Figures B8.4b-c
shows extruded "naked" nuclei ‘(which have no cytoplasm) in
frames 126-~5, 12b-6. The segmentation algorithm still
segnents these formed objects. Later when the cell as a whole
is analyzed (not done here) the lack of cytoplasm will be
noted. A possible problem would arise if the naked nuclei
were adjacent to other cells with cytoplasm in which case some
of their cytoplasm might be mistakenly counted as belonging to

the naked nucleus.
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Figure 8.4 Examples of articulation of cell fragments. a)
smashed red cells in contrast stretched blue image of frame
126-4 (see Figure 5.10k for results of slicing at Trbc). b)
Extruded "naked nuclei" which have no adjacent cytoplasm in
contrast-stretched green scans for frames 126-5, and ¢) 126-6.




9. CONCLUSIONS AND RECOMMENDATICNS

This report has described a system for performing
segmentation of marrow images taking problem domain knowledge
into account, Several difficult frames typical of marrow smears
were segmented to test some of the segmentation algorithms. The
algorithms worked well in most cases, but had problems in
others. The problems can be explained in terms of required
extensions to the algorithms. A morphologic data base
presents additional problem domain semantics which could be

incorporated into the'segmentation model.

9.1 Contributions

The major contributions are listed in Section 2.3 and
are divided into two groups, problem domain’ knowledge driven
segmentation and image processing tools. The former includes:
compilation of a morphologic data base for bone marrow; RBC
elimination algorithm using the positive difference transform;
cytoplasm mask generation algorithm; touchiné-nuclei splitting
algorithm; cytoplasm isocolation algorithm; run 1length map
algorithm; and boundary trace transform algorithm. The tools
include: the Buffer Memory MONitor system (BMON2); the Real
Iime Picture Processor (RTPP) hardware; the PRocedural
Description Language (PRDL); and the PDP#O image processing

system (PROC10).
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9.2 Possible future extensions of the work

T T —— . i T i — T ——————— ] D . M T " Y — -

The desirable extensions to this work are primarily in
two areas, extensions to the segmentation algorithm and
implementation of a high level language connection between the

segmentation and the model.

9.2.1 Extensions to segmentation algorithms

e e S S S ———— o A, B ST M " Y M A S

Some of the following extensions to the segmentation
algorithms would correct several of the problems seen with the

current algorithms.

{2) Extend the use of texture in the cytoplasm and
nuclear splitting algorithms.

(b) Use one of several optional splitting algorithms
for cytoplasm isolation based on success of (and
indications from) the isolation method used. Where
possible, use touching cytoplasm edge tracking if
the split region is strong enough to track; another
algorithm might be to find cytoplasm notches in the
touching cytoplasm envelope as split junctions when
the split region cannot be seen (this is similar to
[Brend77}) .

{c) Develop a backtracking boundary follower which
would follow texture gradients of the
cytoplasm/background or cytoplasm/cytoplasm edges.

(d) Implement teardrop continuity of curvature
aigorithm for poly nuclei fragment articulation.

{e) Develop RLM global shape features discussed in
[LemP78 ].

() Develop rouleaux (overlapping RBCs) processing
met hods incorporating shape and overlap analysis.
This might also be extended to handle RBC overlap
of leukocytes.

(9) Develop a Golgi region finding algorithm based on a
lightened region in cytoplasm conditioned by a stab
nucleus shape.
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{h) Develop a texture based segmentatioh aigorithm
(possibly based on a BTT(F) extension) for finding
granules in cytoplasm.

(i) Develop a similar BTT (T} algorithm for finding
vacuoles between cell and nuclear houndaries (Note
that [Brend77] detected vacuoles touching the
inside of the cell membrane but did not detect
those not touching it.).

{j) Develop a BTT(T) algorithm (possibly also using
BTT (F)) to segment difficult granulocytes such as
basophils based on modelling texture regions
between the cell boundary and the potential nuclear
boundary found by BTT(T).

(k) Develop an ability to work on multiple windows

larger than 256x256 in order to being to handle
megakaryocytes and macrophages.

9.2.2 High level language connection

The connection between the marrow model and the low
level segmentation process could be bridged by a high level
model. The model could be extended as is suggested in Section 2
by combining different levels of processing (control structure
and low level image operations).

(a) Implement a connection of the high level marrow
model with the low level image segmentation.

{(b) Incorporate some of the marrow morphologic and
meta-morphologic data base into a high level model
and use it to drive the segmentation.

{c) Extend the marrow morphologic data base to abnormal
cells and situations which would include disease

sStates.

(d) Work on a methodology for use in a long term cost
effective practical system.

(e) Extend the method to other biological image
domains.
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Appendix
IMAGE DATA BASE

This Appendix contains photographs of the thirteen
multispectral frames of the bone marrow data base., The frames
are numbered 126-3 to 126-10 and 127-11 to 127-15. Each frame
description contains:

1. Four images/frame (white, green {546 nm), blue (420

nm), and the positive difference {(green,blue), denoted
GB.

2. Labeled drawings of each of the frames with objects
labeled with capital letters from top to bottom and
from left to right. In «cases where more than one
object of a given type occurs in a field, a number is
appended,

3. A verbal description of particular features of each
of the frames.

The slide used was a Wright's stain normal marrow Smear
acquired by Markovic from the NIH Clinical Center Hematology
department with slide # H~1163 and staining date of 6-25-77.
The slide was scanned using the BMON2/Axiomat microscope system
on 1-26~77 and 1-27-77. The microscope was set up using the
100 watt mercury arc lamp, Koehler illumination, using the the
100X NA1.32 o0il objective lens. The vidicon camera was used
with the Quantimet automatic video gain control turned on.

Frames are denoted by 126-i or 127-i depending on which date

they were scanned.
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Figure A.1 Frame 126-3. a)} white, b) green, <¢) blue, 4d).
positive difference GB, e) labeled green frame.

Features of interest

— it . s ——

Frame 126-3 contains {(from left to right, top to bottom): a
late * promyelocyte [LPMC), +two normoblasts (NB), and a stab
neutrophil (S¥). There are rouleaux (R) adjacent to the SN and
one wf the ¥NB. The LPMC nucleus is distorted and possibly has
two nucleoli (N). There is dirt (artifact) overlying the RBC in
the lower right part of the field (D) and the RBC at the top of

the field.




Figure A.2 Frame 126-4. a) wvhite, b) green, ¢} blue, 4)
positive difference GB, €) labeled green frame.

Features of interest

el A e el ST B oA AW S e ey S S e e e vl e

- Frame 126-4 contains (from left to right, top to bottom): an
empty region due to wetting effects (E), part of an early stab
{(ES) (cut by top of frame}, a late promyelocyte (LPMC), a
3-lobed bridged poly (3P), a lymphocyte {LC), RBCs in rouleaux
(R), a lymphoblast (IB), and an eosinophilic late metamyelocyte
{(ELM) (in the lowver left corner of the frame). The LPMC, 3P,
and LB are touching. The rouleaux are adjacent to 3P, LB, and
ELM. The LPMC has a nucleolus (N). The 3P has a very fine
bridge between the lobes. The LB is sufficiently
undifferentiated that some hematologists might prefer to call

it an undifferentiated "blast" cell.
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Figure A.3 Frame 126~5. a) white, b) green, <¢) blue, d)
positive difference GB, e) labeled green frame.

Features of interest
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Frame 126-5 contains (from left to righat, to§ to bottom): dirt
overlying RBC (D), 2 neutrophilic metamyelocyte (NMM),
platelets (PL), rouleaux {R), dirt overlying RBC in the center
(D}, a naked nucleus (NN) of unspecified class membérship, an
eosinophilic metamyelocyte (EMM), and a three-lobe poly (3P).
The PL is touching the top of NMM. Rouleaux R are between NMM
and EMM, and NMM and NN. 2Another R is touching NN. The NMNM
has about 30-40 azure granules and its Golgi region is

particularly prominent. The NN has a nucleolus N.
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FPigure A.4 Frame 126-6. a) white, b) green, <¢) blue, d)
positive difference GB, €) labeled green frame.

Features of interest
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Frame 126~6& contains (from left to right, top to bottom): part
of a naked nucleus NN (touching the left frame edge), RBCs
overlying NN, platelets (PL), a poly (P1}, a myelocyte with too
mature nuclear texture (MC), a stab (ST), an overlapping poly
{op1), a polychromatic normoblast (PCN}), a poly {P2),
a lymphocyte intersecting the frame (LC1), a lymphocyte (LC2Z),
and an eosiniphil intersecting the left and bottom of the frame
{(ES) . The MC has no secondary granules, is large like a
promyelocyte but has no nucleolus. The nuclear texture 1is out
of phase with respect to the cytoplasm because of the lack of

secondary granules,
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Figure A.5 Frame 126-7. a) white, b) green, ¢} blue, 4)
positive difference GB, €) labeled green frame.

Features of interest

" — — i ol T oo o = e e e i s

Frame 126-7 contains (from left to right, top to bottom): part
of a late metamyelocyte (LMMC) intersecting the top of the
frame, a platelet (PL1} on the bottom of a basophilic
erythrobiast (BEB), rouleaux (R), platelets (PL2), a distorted
normoblast cell {DNB), an early nprmoblast (ENB}, and
normoblasts in various stages of maturation {(NB1,NB2),
{NB3,NB4}, (NB5,NB6) with {NB6) intersecting the bottom of the
frame. The PL2 are between BEB, DNB, and NB1 and NB2. The

normoblasts are touching one another.
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Figure A.6 Frame 126-8. a) white, b) green, <¢) blue, @)
positive difference GB, e) labeled green frame.

Features of interest
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FPrame 126-8 contains (from left to right, top to bottom): RBCs
with some touching each other and leukocytes, a poly (P1), a
basophilic erythroflast (BEB) with a light region artifact on
top of it, a poly (P2), a mature eosinophil {(ME), a poly {(P3).
a basket <¢ell with vacuoles of degeneration and RBCs
overlapping it (BC). The BEB has dark cytoplasm because the
basophilic material is pushed to one side which is probably an

artifact. The basket cell has eosinophilic cytoplasm.
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Figure A.7 Frame 126-9. a) white, b) green, ¢} blue, d)
positive difference GB, e) labeled green frame.

Features of interest
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Frame 126-9 contains (from left to right, top to bottom):
leukocytes embedded in rouleaux (R) <c¢lusters, an isolated -
platelet (PL) between two polys (P1) and (P2), a poly (P3), and
a distorted late metamyélocyte (LMM) at the bottom. The polys
seem to each have four lobes. The lobe (L) between P2 and P3
could be mistaken as belonging to P3 instead of probably
belonging to P2. The LMM is possibly a stab which is compressed
by the RBCs (although the nucleus and cytoplasm distortion
makes the decision between a late metamyelocyte and stab
difficult). The granules of LMM are probably compressed at the

surface.




151

Figqure A.8 Frame 126—-10. a)} white, b) green, <) blue, 4)
positive difference GB, e) labeled green frame.

Features of interest
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Frame 126-10 contains (from left to right, top to bottom): a
few RBCs with one adjacent to two touching four lobed polys
{P1) and (P2), a platelet (PL) adjacent to P1; the cell at the
bottom is in mitosis (MI) and is touching P2, The cell in
mitosis has teardrop extensions comming out of the cytoplasm at
the bottom. Because of the shape, there might be confusion
between a cell in mitosis and a stab. However, the cell does
not show many granules iﬁ the cytoplasm which would be the case
in a stab, the nucleus 1is denser in general, the nuclear
texture is different, and the breadth of the nauclear bridge is
greater in the case of the <c¢ell in mitosis. The rightmost
nuclear lobe of P1 has a slight downward extension which may
represent a nuclear appendage or fragmenentation of a nuclear

bridge.



Figure A.9 Frame 127-11. a) white, b) green, <¢) blue, 4)
positive difference GB, €) labeled green frame.

Features of interest
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Prame 127-11 contains (from left to right, top to bottom): a
three lobe poly (3P) with two lobes overlapping one another, a
large lymphocyte (LL), and RBCs with some grouped in rouleaux.
The large lymphocyte is not found too often in the marrow. It
has several azurophilic granules in its cytoplasm. It might

possibly be classified by others as a small monocyte.
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Figure A. 10 Frame 127-12, a) white, b) green, <¢) blue, 4}
positive difference GB, €) labeled green frame.

Features of interest

— - - ——

Prame 127-12 contains (from left +to right, top to bottom):
¢lumped and distorted BRBCs, a transition stage between late
promyelocyte and myelocyte (TM), and a promyelocyte (PM). The
TM has secondary and azurophilic granules. The PM has no

secondary granules and has a nucleolus (N).
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white, b) c)
positive difference GB, e) labeled green frame.

Features of interest

Prame 127-13 contains {from 1left to right, top to hottom):
rouleaux (R) in the upper left corner, and a macrophage (MP)
which extends outside of the scan field. The cytoplasmic edges
are notably indistinct, and the normally variable texture of
the cytoplasm is futher accentuated by ingested material. It
has platelets (PL) near the top with adjacent RBCs on the upper
left. Several ingested, partially digested nuclei are visible
{(I)« Its nucleus (NUC) is larger than the I. An early
metamyelocyte (EM) is partly in the lower left corner of the

frame.
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Figure 4.12 Frame 127-14, a) white, b) green, <¢) blue, 4)
positive difference GB, e) labeled green frame.

Features of interest
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. Frame 127-14 contains (from left to right, top to bottom):
naked nuclei (NN} intersecting the top of the frame, a
lymphocyte intersecting the top right corner (L1), a poly (P).
two touching stabs back-to-back {51} and ({S2), a distorted
large lymphocyte {DLL) having cytoplasm between S1 and another
_ stab (S3) in the center of the frame, two overlapping naked
nuclei (ONN) intersecting the right center of the frame,

rouleaux (R) at the lower left of the DLL, and a myelocyte

{MC) .




Figure A.13 Frame 127-15. a) white, b) green, c¢) blue, 4)
positive difference GB, e) labeled green frame.

Features of interest
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Frame 127-15 contains (from left to right, top to bottom): RBCs
at the top center, a myeloblast (MB), neutrophilic myelocytes
(NM1) and (NM2), an RBC with overlying dirt {D), an
eosinophilic myelocyte (EM), a single platelet (PL1) between
NM1 and.EH. platelets (PL) on the left of MB and the NM2, a
poly (P) at the lower left also touching PL, and unknown naked

huclei (UNN) at the lower left bottom.
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