REAL TIME PICTURE PROCESSOR;:
DESCRIPTION AND SPECIFICATION

NCI/IP Technical Report #7a

March 31, 1976
Revised June 23, 1977

Peter Lemkin, George Carman, *
Lewis Lipkin, Bruce Shapiro,
Morton Schultz

NCI/I®=77 /02

Real Time Picture Processor = Description and Specification

—-a.-p-—--———--——-—-—--—-—---—-----————--——-—-———---n-—-----—-—-

NCI/IP Technical Report #7a

Peter Lemkin, George Carman#, Lewls Lipkin,
Bruce Shapiro, Morton Schultz

Ywmage Processing Unit
Division of Tancer Biology and Tiagnosis
National Cancer Institute
National Institutes of Heal th
Be thesda, Md. 20014

#*Carman Electronics, Inc,
Cforvallis, Orepon

March 31, 1976

Revised June 23, 1877

ABSTRACT

The concepts and general design specitications of a new
hardware picture processor are presented, The de=sign was
stronzly influenced hy +the characteristics of biological
images, This device, now in the earlv stages cf construc tion at
the National Institutes ot Health, will meet some of the
reaquirements for interactive design, specification and testing
hy bioclogists of altgori thms for cell classification,
descrirtion and measurement, The RTPP is but one comgponent,
albeit a major one, of our entire system which is intended *to
permit on~line descriptian construction by the cytologiast,

v

TABLECFCONTENTS

SECTION DAGE
Introduction . . . - - . - . . 1
1.1 Overview of this paper - . - 2
1.2 RTPP design goals - - - - . 5 5 2
laleal Picture operations . - . . . - - . . - 4
1.2.2 Picture operations as binary ornerations . . . 5

le243 A level 1V gray scale machine - 3 address

machine . - . ™ P - - - - - . - 5

1.3 The configuration of the RTPP - 3
Axiomat microscope . . A - . 5 . . . A 8
8

(o]

Video input and output devices
Buffer memories - BM - 5 . C
Triple line buffers for image addressing . e e 10
General Picture Processor . - . . . - . e 16
OQuantimet controller - . . L] - . - " . 12
Control of the RTPP hy the PDPfe . 5 . . . 18
The RTIPP as a picture processing peripheral . . « 19
Cell Modeling System - CELWMOD - 19
DDTG - the PTPP debugger/monitor = « 22
RTIFPP Compiler/Assembler = MAINSAIL/GFPAS™ 5 . s 22
GPP Microprogram Assembler « GPPASWM e 23

L] L]
L I] »

pd R ek e ek ek e
L]

oy W ww
[]

NP W=

e]
.
0~ o

Quantimet subsystem - - . . . - . . - . « 24
2.1 Ouantimet modules e s e % & s s s & =" e 24
2.lal Scanner ~ System Control module . - . . . « 25

2.1,2 Syvsatem display module . . . e« o 2 s = « 25

2.1.3 Variable Frame and Scale module . . - . & . 25

Pelat Detector modules , « 26

2e1.5 Light pen . - . . - - - . - . » . « 26

2alabp Digitizer/densitometer -« 26

2eala? MS3 Computer - . . - - - - - 27

2ala8 Function Computer module » » . 27

241,.9 Classifier Collector module . . . = . - + 27

241,10 Standard Computer module . - - « 27

2.2 Microprogramming QMT modules + +« 4+ « =« o <« o 27

243 PDP8e contrel of the Quantimet 28
2e341 Quantimet status register - QSTAT . - . . « 28

2.4 The mask register module ., . - 28

2.5 ‘ QMT cursor - .« e - - - - - - ; - - - « 30
Buffer memory e = . . - . - . « e « 31
3.1 Physical BM memory addressing = . 33
3.1,1 BM controller accessing priorities . . 5 . - 324

GPP - General Picture Processor . - - - A A . A 5 . - . 35
4,1 GP®P organization . - - . - . . . - . . s 35

4,1,.1 VYicroprogram memory = MPM - - . . . » « 35
4,1,2 Program memory - PM " . . . - . . e . ¢ 35
4,1,3 Mappling memory = MM , 9 O « 38
bel ot Date memory -~ DM . = . - - A A . A . 326

»p
L)

Ll
L]

.
[» 341

P
[]
—
|
® ~

&+ pop
. s

R o
.

LSV N]

vi

Extended data memory - XDM - - .
Program memory address push down list

PDL - - - - - - - - - - L]

Arithmetic logic units - ALUs . - . .
Buses: D1 D2 Al A2 CB MYOLD ALU ., . . .

Nata memory modules - DMM . . - « . .

General registers - GR . A -
Image triple line buffers - I1 12 I3 . .
IT=-buffer control : XCLK XCLEKB YCLK YCLKB

XR ST [) - - - - - - - - L] Ld

4.2.4 Extended data memeory interface registers .,
4,2.5 GLINE and PLINE execution registers =
GLINER PLINER . . . - . . .
& ,2.,6 GNPAH and PNBH execution registers - . .
4,2.7 Indirect pointer registers into the XDW -
PXDM 0-15 . . - Y - - - - -
4,2.8 Program counter and program field
register -~ PC and PFR . - - . .
44249 Push down list address counter - PDLCTR .,
44,2410 ALTU registers - ALUA 0-1% and ALUB 0=~15
4,211 Auto address registers ~ A0 through A7 .
4,2.12 Byte address registers ~ GBHA1l GRAZ PBA -
4.,2.13 GPP to PDPBe input ocutput registers - GIN
and GOUT - - - - -
4,2,14 GPP terminal input output registers - TIN
and TCQUT , . - - . - - - - -
4,2.15 GPP analog to digital converter register
= ADC , . . - - - . - . - .
4.2.16 GPP instruction halt register - RALT , .
4.3 GPF run time registers .,
4,3,1 GPP run time status registers = GSTATI1
GSTAT2 . . - - .
4,3,2 GPP run time write protect registers - .
4.3.3 GPP parlty error registers - PMPE GPPE
MPMPE L] L J - - - [] - » - L] L
4,4 Loading the GPP - - . . [-
4.,4,1 Transfer between PDP8e and G°P MPM . .
4,.,4,2 Transfer between PDPSe and GPP MM ., . .
4.4.,3 Transfer between PDP8Se and GPP Py A -
4,4.4 Transfer between PIP8e and GPP DM . .
4,5 Running the GPP , ., & 4« 4« &« =+ + o =
Implementation of the RTPP . . - . . - -
5.1 The GPP control - microprogram control . -
B5elal Microprogram instruction BNF grammar » -
Se2 Internal Control Logic Design » - . . .
5.3 Physical construction of the RTPP
5.4 Buffer memory implementation , . . - . .
Reterences - ™ - . - . - - P ™ - - -
GT®P instruction set - - - - - - . - - . - . -
A1 Instruction groups ., . . . - . . - .
A.l.1 Group subsections - . . .
AJl1,2 Notation glossary for instruction groups .
A2 Summary of GPP jnstructions - . . » - »
As2,.1 GPP instruction group %t

37

37
37
38
40
40
41

44
46

47
43

413

49
49
S0
S0
50

51

S52

53
53
854

54
54

85
56
56
56
57
57
58

59
59
59
60
60
61

62

€4
65
£5
67
68
69

- e e

[P S T T T T I

NN NMNRNNMNRBPOPNMNOMRMRMRPRMRMRDRNODNNBD
¢ s v 8 & s 8 & & 3 8 s b 8 @

[]
NNNNNNNNF‘“"-‘F‘HP‘H"#"\DQ'\IO\Q#UJI\)
NN PUN=20 0NN PEN0=O

?'P R - - A A A
L] L)
. @

GPP
GPP
GPP
GPP
GPP
GPP
GPP
GPV
GPe
GPP
Ggev
GP®
GPP
GPP
GPP
GPP
GPP
GPP
GPP
GPP
GPP
GPo
GPP
GPP
GPP
GPP

instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
instruction
ingtruction
instruction

vii

group %
group %
group %
group %
group %
group %
group %
group %
group %
group %
group %
group %
group
group %
group %
group %
group %
group %
group %
group %
group
group %
group %
group %
group %
group %

2 L] [] * - L]
3 - - - - -
4 L -» L] L] -
5 L] - - - -
6 L] - - L] »
7 - - - - -
8 - - L L L]
g -» - L] - -
10 - - . » -
li - - L - -
12

13 . . . - -

%14 - - L] - L]

15 . B . -
16 . - L] . -
17 L] - - .
18 . L] . - .
19 . L] . - -
20
21 . L] L] L] -

522 L] - L4 - -

23 . - L] - .
24 . - . . .
25 . - . - -
26 o . - - .
27 . . - » .

R GP® 1/0 registers and control panel lights/sgwitches . -
B.l Status registers addressed by the GPP , =
B.2 ALU register‘s - - . - M . . . - .
B,3 GPP line buffer and BM I/0 registers . -
B.4% GPP front panel controls 5 . . . - .

B.4,1 Lights on the GPP front panel . . .

C PDPBe I/0 transfer instructions for the RTPP - . . .

Cc.1 PDP8e ICTs for RQOC - QMT - stage - control
desk - - - - - - . . - .

Culal Allocation of Cuantimet program QPROG
words . - F - - - . - . -
Mela2 Quantimet shift register control . -
T Cel.3 The QMT shift register coummands . . .
Cela?t Quantimet control signals . . . - .
Cal.S Shift register simulated operation , .
Cala € Peading and loading the SRG . . - S
Cul.7 Allocation ot status register QSTAT .
C.2 PDF8e I0OT Instructions for RTPP-PDP8e DMA
2.3 POP8e IOT Instructions for BM contreoller .
Cad PDPEe IOQOT Instructions for GPP controller
C.5 PNPBe IOT Instructions for X8E controller
C.6 PDESe I0T Instructions for PDPBe core line
buffer controller . . - . . .
Cabal Microprocessor I0Ts &
Ca? Allocation of PNP8e I1I0Ts for the RTPP ., .
Coa7 .1 Alphabetic listing of PDP8e IOTs - B
c.8 PDPSe Device code allocation ky decade .
C.8.1 Numerical listing of PDPBe INTs , . .

71
73
75
77
A1
84
87
88
a0
91
93
o4
96
97
99

102

103

104

106
107
108
109
110
111

112
113

114
114
115
116
117
118

119

126
129
130
131
133
134
136
138
139
141
142

143
144
145
145
149
150

viii

Examples of programming the GPP . S -

Da.l

SS90V oy
. .
N RFEWN

Gradient used in Kirsch algorithm . . .
Eight neighbor filter processging - example
Edge and curve detection - example ., . A
Aistogram computation - example
HBaltvoint I/0 « exanple -
Random Neighborhood Accessing - example A
Area and perimeter computation - example .

GPPASM BNF Grammar Specification -

155
155
157
158
161
162
163
164

166

Figure
Figure
Figure
Figure

Figure

1.
2.
3.
4,

5.

ix

LISTOFTFTIGTU

GPP triple line buffer addressing

Block diagram of RTPP .
Interactive control desk .
CELMOD system block diagram

GPP line neighborhood addressing

12
13
14
21

43

X

LISTOFTAELTES

Table 4 «1 GPP O!‘gﬂ.ni za tion - - . - - - - - . . - . . - « 39
Table 4,2 Triple-line I-buffer coantrol registers * e & 8 & e« e o 45
Table 4.3 XDM interface regiaters . . - . - - . - - - - . . 47

4.4 GPP status registers GSTATI and GSTAT? . . - 5 « D4
Table 4.5 Write protect registers WPER WPST . . - . . . - - « D4

SECTION 1

Introduction

This paper discusses the functional hardware design
specification of a Real Time Picture Processor (RTPP) ([Lem74],

{rarm7a) for wuse in designing imaze processing systems for
hiological waterials. Real time, as is used here, denotes time
proport ional to that required for comfortab le humean

interaction,

The concepts and general desien specifications of a new
hardware picture processor are presented, The design was
strongly influenced by the characteristics of blological images
TLem74]. This device, now in the early stages of
construction at the National Institutes of Health, will meet
some of the requirements for interactive design, specification
and testing by biologists of algorithms for cell
classification, description and measurement. Additional
detailed hardware specifications of the Real Time Picture
Processsor, RTPP, are documented [Carm?6]. The RTPP is but oane
component, albeit a ma jor one, of our entire system which is
intended +to permit on-line description construction by the
cytologist. The overall discussion of the systenr components is
in [Lem76c].

The Real Time Pleture Processor in its role as a
microscope controller is designed to perform at least the set
of operations performed by the NCI Grain Counter-1,1 [Lipl7al],
These operations include Jjoystick control of an optical
microscope stage in X, Y, and focus, The RTPP, in addition,
allows stepping motor contrel of a 4:1 microscope zoom, a
rotary monochromator, and a rotary neutral density filter.

The asystem is designed for extremly rapid serial
digital processing of digitized images to be carried gut in
what for +the user, seems Llilke, real time. Special purpose
hardware makes this speed possible, Output from the RTPP is in
the form of images +to be displayed, lists of properties of
objects in the image, or processed images, Because of powerful
gray scale manipulation instructions, computations are not
limited to processing planes of binary valued images.

These capabilities allow flexible experimentation with
an on-line microscope image picture processing facility.
Emploving this facility, users have the ability to generate
precise definitions of hiological cell classifications using
the PRTPP as input for an interactive relational data model
residing on a remote PDP10 computer. Furthermore, the system
will allow the user to make measurements of cell parts and to
develop heuristic measures for cell characterization.

Recause processing is fast (on the order of tenths to a
few s=seconds), the interaction hetween user and the system is
1

2 Intraduction

well matched to allow for experimentation with more comple x
algorithms than usually attempted with serial systems, Several
papers ([Lem74] and [Lem75]) give reviews of some recent
special purpose image processing hardware.

1,1 Overview of this paper

bl B R IR R R R R R B R e ——"

Section 1 introduces the rationale on which the
structure of the PTPP is based, Sections 2 throuwh 5
discuss components: i.e. the Quantimet (QMT), buffer memories
(BMa), triple line buffers, and General Picture Processor (GPP)
respectively 1in more detail, Section 6 discusses the
physical iamplementation of the RTPP while Section 7 comprises
references, Avpendix A details the GPP instruction set while
Avpendix B 1lists the GPP I/C registers and GPP I/0 lights and
switches, Aprendix © presents the PDPSe Input Output Transfer
instructions used in +the RTPP, Appendix D gives several
examplesg, including estimated running times, of several
algorithms programmed for the RTPYP,

1.2 RTPP design goals

W L i M S S WP R AR N G Wm W e e de W

There were several (sometimes conflicting) design goals
used in defining what should go 1intec a Picture processing
facility such as the TRTPP, Long experience in - picture
processing on general purpose serial machines has resulted in
the production of picture processeing packagee guch as PAX
{JonnrE70], Some of these operations consist of simple pixel
hboolean binary planar operations, 4 and 8 neighbor operations,
and then more complex operations such as blob finding, etc,
Obviously, as the complexity of an operation increases, so0 does
the complexity of it3 hardware iaplementation. We
decided that neighborhood processing was the upper Llimit of
complexity that the rpresources availiabtle to our group would
allow us to undertake, Several years of biclogical experlience
posed another rvrequirement: i.e. that grayscele texture
measure algorithms bhe easy to implement, This means doing
integer arithmetic on gray scales images rather than boolean
arithmetjic on planes of binary images,

A Zeneral gray scale parallel processor is an
unrealistic goal, The conplexity of such a device, (at +the
current state of the hardware art and occasioned by the
combinatorics of the required hardware interconnections) place
it well beyond the construction abilities of a small group,., The
cost of such a device also would make it difficult to justify
if it were to be dedicated rather than a shared resource,

Ag will be seen we have drawn often from the good
efforts. of other computer and picture processing system
designs, (especially [Dec?1], [Dec72al), [Dec72b], [Decs7],

i.1 - 1,2

Introduction

[Thor70]) as well as many other influences, It was hoped that
sone of the best (and not necessarily the most complex or
costly) features of some of +the above machines could be
incorporated into our design,

‘ Before going into the design of the RTPP the
definitions of some ot tte terms usgsed in the rest of this paper
are given,

Picture - set of gray values

A image part of a picture is a square array
approximation of the corresponding real image. Each element in
this sampling array is said +to have an integer gray value
called a pixel, This gray value is a measure of the darkness or
whiteness of that pixel, In our discussion, white will bhe zero
and black 255, This representation is said to have 256
linearly resolvable gray levels or values. The gray value is
generaly «iven in the range of the powers of a binary number as
it is usually derived from the output of an analogue to digital
converter, i.e., 8, 16, 32, 6a, 128, 256 etc. An
alternative view (which lies at the basis of such
implementations as PAX) of an image 18 as a set of overlying
binary arrays more commonly called binary planes, Thus 256 gray
values is represented by BS=bits or 8 binary planes.

Neighborhood

Within a image, one usually deals with the concept ot
ne ighborhood. A neigtborhood i a set of pixels close +to
(usually touching) a given pixel, An example of this is all
pixels touching a given pixel in a arravy, For a square array
there are 8 such pixels and consequently this 3x3 set of pixels
is called the 8 neinhborhood or 8 nearest neighbors, In this
paper and in the RTPP the labeling of the 3x3 nelghborhood is
as follows:

O p ot
[+ s N .
~N O -

This cholce of neighborhood labeling facilitates chain
coding as the pixel index corresponds to itg angle with the
central pixel divided by 45 degrees.

»

Current pixel

The current pixel is the central pixel (8) in this 3x3
array. The current nelghborhood is the 3x3 array surrounding
the current pixel,

Neighborhood operation

A neighborhood operator is a unarv or binary ovperator
which maps nelighborhoods into pixels, One of the ways the
neighborhood operator works is to do vwvarlous operations on
parts of the neighborhood array as specifiled by an ordered list

1.2

4 Introduction

of pixels to be operated on., When this list is ardered in terms
ot the crientation of neighborhood elements, it 1s called a
direction list,

Pixel operator

A pixel operator is a unary or binary operator which
maps pixels into pixels in a 1 ta 1 (x,y) mapping,

The RTPP performs neighborhood oneraticns by executing
a program on a neighborhood for each neighborhood in the plane,
This is actually done using speclial purpose hardware called the
General Picture Processor (GPP)} which will be discussed below.
The GPP is degigned to atlow pixel operations to be performed
on all pixels of a 3x3 neighborhood within a single I/0 access,
thus allowing 3 lines to be processed at a time.

1.2, Picture operations

- - Ll R e e]

Twage data procesgsing in particular consists of doing
mostly hinary argument algebraic cperations. These can be
enumerated in an interesting way as shown below, The
followina are binary algebralc picture operations where "o is
a general operator, Let I1, I2 and I3 be images., Then,

I1 o 1I2 == I3

11 o0 =-=>I3

Iif o I2 ==) a property list

I1 o I2 -=> a relational data structure.

The operation I1 o0 =-«~>I3 may be thought of as elther a
unary operation or a binary operation with a nmall second
operand,

These picture operations might include such operations
as hoolean: bit set, bit clear, bit complement, and, or,
exclusive or, equivalence; direction list processing; raxima:
minimas Fourier transforns; threshold slicing} scaling;
component label ings propagation of edges; edge finding;
pixel-wise addition, subtraction, multiplication, division;
rotation and shifting of images:; gradient; gray level
histogram. Run~length/gray~scale texture histograms should also
be computable by the GPP as well a large class of other picture
ovnerations, The TPAX functions mentioned above are described
by Johnson [LipR70],

In Appendix D sanple GPP programe are shown, which
corpute some of the abhove mentioned operations and for which
timing estimates are given.

Introduction

ls 2.2 Picture operations as binary operations

AR D G e e e S MR W N L e W SR SR R N T N D e mm T e WD S SR SR A W EE S SR ke wm e e

These basic binary argument relations on picture data
are tvpical of picture processing in systems, What varies is
the complexity of the operation "o", The increasing complexity
of operations in the binary image plane 1& shown below in five
increasingly complex levels I to V. Let "x" below be a pixel
in a NxN neighborhood., As will be shown, an analogous hierarchy

also exists for gray scale machines.
Let I,j(k) be the k“th pixel in picture j.
(I) Pixel (picture element) operations:
I1{(k) o I2(k)==>T3(Kk),
(II) Neighborhood operations around a pixel into a pixel:
XXX
XXX o I2(K) == I3(k)a.
XXX

I1

(I1I1) Neighbbrhood contextual operations into a pixel:

XXX XXX
XXX ©0 XXX =) I3(xk),
XXX XXX

il 12

(IV) Neighborhood operations into a neighhorhood:

XXX XXX XXX
XXX O XXX - XXX
XXX XXX XXx

I1 12 I3

(V) special high level functions:
edge detection, differentiation, smcothing,
propagation, etc.

With progress from level I to IV and V, the increasing
cooplexity (number of connections, number of nodes, numher of
modules) for a hardware circuit toc perform such san operation
increasesgs, We use this wiring complexity as an estimate of the
"complexity"™ of the operation and +thus +te characterize the
conmplexity of a given level of operation,

Most small neighborhood parallel binary machines

exhibit maximum complexity of levels II or TIIT. For an NxN

2 4

binary plane image these have complexity levels between N and N

(e.g. for a 3x3 array this is 9 to 81). The ILLIAC III is an
1.2

€ . Introduction
example of a level IV hinary machine,

The same five levels of cperations could be apnlied to
the class of gravy scale image machines, There is only one

known existing gray scale processor, the ILLIAC IV,

It is interesting to examine +the conmplexity of gray

scale parellel processing operations, Assume a K bit gray

scale {for binary images X is 1) and an NxN image. A binary

machine having level II complexity would be interconnected on

the order of NXNxl. Then a gray Scale machine (having K bits

of gray scale) of level IT complexity would be EKxNxN

interconnec ted, The complexity of level III operation is on the
2 S

order of (ExNxNIx(ExNxNIXN or (K MN). For 1level IV +the
complex ity is of the order of (ExXNxN)Ix(ExNxN Ix(KxNxN) or
2 (&)

(K YWwv), CGhviously, the costs cf inplementing a machine rise
with its complexitv. The cost of debugping, documentation, and
maintenance follow a similar increase with increasing

complexity,

1.2.3 A level IV grav scale machine = 3 address machine

A gray scale picture processor of at least level 1V
complex ity is needed to meet the requirements of the Real Time
Picture Processor delineated above, This is the least complex
machine that permits full generality, The use of such a level
1V machine as a design tool will, we helieve, allow the proper
selection of some level V functions,

Although a ¥ bit gray scale wachine can be simulated
using K bhinary nlanes, the expression of algorithms is awkward

and usually inetficient.

Not surprisingly, a parallel gray scale machine of

level IV is beyond the resources of cur laboratory. Cur
solution to the design/maintenance dilemma has been to design a
fast serial machine which operates on neighborhoods of
rectangularly tesseltltated aray scale picture arravs., The

machine”’s speed and a felicity in expressing algorithms is
achieved partly through the use of triple operand instructions,
In this machine a neighborhood has a serial representa tion,

The foltlowing example iltustrates serjal
representation, Let us consider the images 11 and I2 (one of
which may be the temporal successor of the other, or they may
represent memhers of a set of serial sections etc), It is
desired to find a measure of pattern similarity (in order to
spatially or temporally align +the images)., The problem 1is
solved by finding a measure of ypattern similarity between
neighborhoods Il and I2 by computing their product and summing
this product into the central pixel of I3, A1l neighborhoods
are 3x3, Neighborhoed ¥l, for example, comprises pixels T1(8)
(its central pixel) and boundary pixels T1(0) through I1(7).

1.2

Introduction

a8
The operation to be performed is I3(8) * SUM TI1(4i)I2(i)d.

i=0
The neighborhood processor could perform the following sequence
of operations:

Form the products array I3 from Il and 12, :)
I3(0)<{=-=11(0) MUL 1I2(0) product ot I1(0), I2(0) into I3(0)
I3(1)<-=-X1(1) MUL I2(1) IT(1), I2(1) into I3(1)
I3(2)<-=11(2) MUL I2(2) ‘

I3(3)<==-I1(3) MUL I2(3)
13(4) <¢=-=T1(a) MUL 1I2(4)
I3(5)<~=11(5) NUL I2(5)
I3(56)<--11(6) MUL I2(&)
I3(7)(==T1(7) MUL 1I2(7)
I3(8)<¢--11(8) MUL I12(8)

etc,

naturally there is a way
to do this with a loeop
gtructure

) wh = as wb ws

Form the sum of the pixels in the I3 neighborhood.
I3(8)<¢=~I3(8) ADD I3(0) 3 sum the pixel product into I3(8) .. .
I13(8)¢(==-I3(8) ADD I3(1) ' ‘ el
I3(8)<~=13(8) ADD X3(2)
I3(8){(--I3(8) ADD I13(3)
I3(8)¢(--I3(8) ADD I3(4)
I3(8)<(~=I3(8) ADD I3(5)
I3(8)<¢~~-I3(8) ADD 1I3(s6)
I13(8)(~~I3(8) ADD I3(7) ; The sum of the entire neighborhood
3 product 1g now in I3(8)

These operations, performed over the entire set of
corresponding neighborhoods and resulting in +the construction
of a third image, where the gray value at the point is a
measure of the local saimillarity of the anticedent images,
constitutes a solution to the problem.

These iterative neighborhood operations, prohibi tively
expensive in time and computer cost on standard machines are to
be implemented on the General Picture Processar (GPP), This is
the fast serial 3-address component of the RTPP. As will be
further detained below, the 3-address machine is closest to the
triple operand concept at the base of the mapping: IlolI2-->I3.

8 Introduction

i.3 The configuration of the RTPF

The real time picture processor hardware shown in
Fipure 2 consists of an Imance Quantimet 720 (QMT); a Zeiss
Axiomat microscope with stepping stage, focus and light source}
a galvanometer mirrcer precision scanner; a Dicomed model 31
64 ~gvray level storage display; up to eight 256x256 16-bhit gray
level buffer memories (BM); a general picture processor (GPP)3
a PDhY8e computer with 32K core; a four 1.5 million word disk
cartridge drives] an interactive control desk shown in Figure
2, and a high speed connectian to a PDP10 computer on which the
modelling programs are rune.

1.3.1 Axiomat microscogpe

A Zeiss Axiowat microscope is used to supply images +to
the RTPP gystem, It has been modified s¢ that the focus and
4:1 zoon knob controls are under computer actuated stepping
motor control, 1In addition, the stage X and Y positions of the
slide are moved by computer driven stepping motors. The light
illumination subsygtem contains variable wavelength
interference and variable neutral density filters, The se two
functions are implemented by use of continuous rotary wedge
filters which are controlled by the computer wvia high apeed

stevping motors. Currently, a Quantimet plumbicon or wvidicon
scanner _and a precislon galvanometer mirror scanner are
interfaced to output ports of +the Axiomat, There is an

additiconal viewing port within the viewer”’s reach. Thus there
are three image planes accessable simul taneously,

l1.3.2 Video input and output devices

The wvideo input, display, and certain image processing
functions can be performed by various 1I/0 devices connec ted to
the multiple output ports of a Zeiss Axiomat Microscope,.

A Quantimet 720 image analyzer has been incorporated
into +the RTPP, The plumbicon camera video is digitized to
B=~hits for sanpling by the system (at a 8 MHz rate) amdt is then
reconverted +to an analogue signal for reinsertion into the
Quantimet video input chain,. The Quantimet includes a 10.1
frame/second television display end soxe wainimal feature
extraction and measurement hardware to be discussed below,

A precision galvanometer mirror scanner with a
1024x1024 pixel random access window and 256 gray level video
output can also be used as a digitizing input device to the

RTPP from the microscope. The PDP8e may route mirror scanner
data to a buffer memory for display on the Quantimet or further
procesing by the RTEBRP, In addition, a Dicomed model 31

1.3

Introduction

1024x1024 picture point €4=-gray level precision storage display
may also be used a8 a storage output device in the RTPP,
Presently, hardcopy images from the system are produced by
photographing the Dicomed display.

The Quantimet is the preferred 1/0 device for real time
interaction hbecause aof its rapid frame rate, The digitized
picture from the plumblicon scanner video is a 256 (&4 usahble)
arav level digitized image within a BS0x680 pixel window, The
QMT display may also be used to post images from buffer memory
windows Inserted within original scanner image data. There are
two types of cameras: a plumbicon and a vidicon., The plumbicon
gives better linearity for wuse with densitometry while the
vidicon has a larger dynamic light input range. When one of
these cameras Iis used on the Axiomat at the same time the
galvanometer scanner is used the difference in dynamic range ot
light intensities required 1s a problem, This is solved by
putting N.D, filters in front of the TV camera. In addition, a
shutter protection circuit is used to turn off the image when
no TV scanning is being done or if the 1light level into the
camera is too great,

1.3,3 Buffer memories - BM

Although a histologic slide can be used as a random
access read only memory, it is inadequate for usge in processing
the information it contains, It is necessary to retain images
and their transforms in buffer memories, and to be able to
access them and displav them rapidly. In order to do this our
Real Time Picture Processor needs facilities to store at least
four entire images or transforms at once (e.g. to store a
Fourier transform and a Fourier filter takes 4 images « 2 real
and 2 imaginary), and the ability to access part of them very
quickly, This rapid pixel accessing is the primary reason for
the use of buffer memories,

Our approach has bteen to design buffer memories each of
which c¢an contain a reasonable size of working image (256x256
pixels), At a nominal maximum optical resolution of about 0.25
microns, a biologically usable picture window is approximately
50 microns or more corresponding to about 200 pixels. The RTPP
uses a 256x256 pixel window,.

Eight 256x256-=-word 16=bit/word gray scale buffer
memories are being built which may be accessed by either the
Quantimet video scanner/display, the GPP (general picture
processor), or the PDP8e computer, Each buffer memory holds two
8-kit gray scale images, one in the low and one in +the high
half of the 16=-Hit BM word. When a BM is not reading or
writing data to the GPP, it can be used to continuocusly recycle
a picture for posting on the Quantimet display and/or as input
to the Quantimet video-input chain using a fast 8=bit digital
to analog converter, The PDPB8e controls +the scanning (into)
and the posting of images (from) the buffer memories. In
addition, the PDP8e computer can read/write data from/to buffer

1.3

10 Introduction

memories using rapid direct memory access (DMA) techniques, The
PY can also he used as a btinary data wask for Ouantimet or
other BM da ta.

A BMY can acquire a selected 25€Ex256 window of a oOMT
scanner image or an image loaded from the PLDP8e, Thig image can
then be accessed pixel by pixel or Tline by line from the GPP ar

PN PRe. Its contents may &also he posted ocn the Quantimet
display {uaosing a fast D/A and digitized video meltiplexing).
%hen uese I in this mode, the QMT is able to process synthesized

video. Using a direct memory access (DMA) channel, the PDV8e
can then access the huffer memories, The GPP also can directly
access the buffer memories for performing transformations on
the image,

The buffer memories are organized so that it is wmost
econownical te transfer entire horizontal lines of data between
them and the GP® processing unit, Vertical lines or randomly
accessed pixels can also be transferred but at only 1/4 the
data rate.

1.3.4 Triple line buffers for image addressing

Given the basic architecture of the GPP, an addressing
mode to implement the fast triple operand processing is needed.
It was decided that the NxN neighhorhood should be directly
addrescsable for all I1{(i), T2(3j) and I3(k) in the three current
NxN neighborhocods (i, j,k), letting the neighborhood he
tessilated through the entire image.

The NxN selected is a 3x3 neighborhood becauvse of the
combinatorial constraints which inerease intolerably rapidly
for any "larger neighberhcod, Three NxN neighborhoods are
required for the images 11, 12 and I3: therefore 27 directly

addressable pixels are needed for N=3, Forty=-eight and 75
directly addressable pixels would he needed for N=4 and N=5
respectively, For any size N one could argue +that some
algorithm would need N+1, Since a 3x3 nelghborhood 18 the

minimum size that intrinsically handles 4 and 8 neighbhorhood
procescing (a symmetrical central pixel), at least a minimum of
processing power exists with this size, If necessary N*1 can
be simrulated in software for any N, Therefore, it was decided
to hold down the complexity of the hardware and let N=3,

Finally, to make an entire neighborhood directly
addressable, the processor has three line-buffers, each capable
of holding N entire 1lines of image data (N=3), Figure 1
illustrates an N=line buffer with K~bits/pixel and ¥
pixels/line. In this design (N,E,M} = (3,16,256), Three triple
line buffers are implemented.

The processor can transfer an entire line at a time
either hetween a buffer memory and the ltine buffer or vice
versa, The line buffers, being implemented with fast
registers, constitute a kind of cache memory (a sSpecial type of

1.3

Introduction

hardware used to optimize data rates between a processor and
its main data memory).

The problem of addressing a neighborhood is reduced to
the problem of addressing the line-bufters, Thus,
neighborhood vrocessing of an entire image can bhe accomplished
bv a sequence of actions: first, processing is done on each
3-pixel-wjde current neighberhocod of an 3=line-deep
line-buffer, Then a processed line (usually the oldest) is
moved out of the line-buffer to a buffer merory and a new line,
usually the next line iIn the raster source image, replaces it,
The procesesing loop is then repeated, until the entire image
has heen processed, Three line buffers, providing 8 neighhbor
processing, maintain the full generality of level 1v
orerations, A more complete description of the hardware is
given later in this document.

11

12 Introduction

Dynomic X Address Vectors

-] TxT [x+d]
- {YH
L or) <—{ ¥ | Dynamic Y Address Vectors
Triple Line Buffer
Y-
Ql2 ees Ll'\'| n nel see 255

‘Current Neighborhood

X1 X X+
YH[3 2|1
Yl 4|80
5|67

GPP Neighborhood Addressing Map

Figure 1. GPP triple line buffer addressing

Associated with each line huffer is a set of three X and one Y dynanic
address vectors, These dynamic address vectors define the current
3x3 neighborhood pixels 1in the tine rtuffer, Therefore tessellation
through different neighhorhoeods is easily performed by changing these
address vec tors, An idinstruction is available to selectively
increment or decrement (X-1i,X,X+*1) in Ii, I2, and I3 at one +time thus
effectively moving the current neighborhood +to the left or right
respectively,

Introduction 13

Dicomed 31 Display
1024 X 1024
€4 Grey Levels

Galvonometer Scanner _
1024 X 1024 CRT Grey Level Display
256 Grey Leveis 860X 720
Video
Computer Comrolled—‘ Image Plumbicon/Scanner Video & Contral | Up To Eight 16-Bit X
Microscope Quantimet 720 256° Butter Memories
Control ' Data
POPE/E Data & Control GPP
[= 32K Core General Picture
6M Disk Processor

! 3

Emulator Channels Control Desk

TTYI

POPI/20

Message Switcher PRI Gl

E High Speed Channel

PDP-IQ System

Figare 2, Block diagram of RTPP

The PDPB8e computer directs the microscope stage to positions determined
€i ther manually by the operator or automatically by the PDP10 system,
Images may be acquired by the buffer memories for processing by the GPP,
Raw images as well as processed images may be displayed on the Quantimet
720. Precision scanning and display are implemented by the galvanometer
mirror scanner and Dicomed disnlay respectively. The user may interact
with the system either through a control desk or a teletype.

14 Introduction

Figure 3. Interactive control desk

The RTPP interactive control desk 18 situated next +o the RTPP with the
Nuan timet video display to the rear of the control desk and the Axiomat
microscope off to the gide. A Grat=-Pen spark tablet i3 located
immediately in front aof the operator with the pushbuttons and lights
mounted in two large hoxes to the left and right. The remote Quantimet
variable frame and scale keys are located in a small box with a movable
cable as i3 Joystick for the Zeiss Axiomat (x,y) stepping stage, The
latter has a long cakle and may be uged at the microscope for control of
the stage while viewing +thru the evepiece of +the mlcroscope, The
control desk controls are listed as follows going from left to right and
top to bottom (for the left box first): the QSTAT lights indicate the
status of the Quantimet interface; the pots are connected to A/D
channels in both the PD®8e and the GPP; the GPP gwitches are read hy the
SWITCHA register; FBW2 are lighted "command” keys for the PDP8e:
DISPLA/B are GPP display registers, the remove frame swi tch enahles +the
remove frame and scale switches even when the PDPS8e has not enabled
them; the frame size switch freezes the frame and scale sizes so that a
frame of fixed size may be moved arcund? the standby switch places the
Quantimet display and system control in standby mode; the motors enable
switch (also in joystick box) enables the stepping motors when the 1liesht
above it is ons the gcan simulation sSwitch moves the galvanometer
Scanner independently of the PDPS8e so that the gain/baseline controls
may be setup with using the PDP8e. For the right control box, the
controls are: keypad display of keypad input for the PDP8e; FBW3
"classification™ keys for the PDP8e; DISPL/2 PDP8e display lights which
are decoded as BCD in the top lights and as octal in the hottom lights;
FBWA PDP8e toggle switches; keypad to input 6 BCD digite to the PDPBe;
FBWS /6/7 PDPRe octal digiswitches; Execute key used to execute
(interpretively by the PDPBe) instructions given in the digiswitches;
eight S-position spring loaded toggle switches control various stepping
motors with a fast and slow epeed in bhoth forward and reverse
directions,

i5

Introduction

[OLUOD SHHAD, A)y oBOLS SENZ

| PEERN)
N._!...ninf %
R
] T
] [_
g @ ﬂ h!hmiw!mu wtmu..lm;m.ml
ARAD »
AV g
ﬂ @ 2

@@@G@@@@@c@@ %@

@@@@@@@@@ﬂ@@

..i._n podiay

£ 2andtg

ol HOOS PAD i DRDLIO, BOWRY

& @m E ve v € 7
e DOOE
toon Do onaT

RS ddd OB SRR TR) %@@ P
BB SSRGS

16 Introduction

1e3.5 General Picture Processor

The General Picture Processor (GPP) is a stored program
very fast serial processor which can rapidly access and process
image data through current picture neighborhoaods. It uses the
concept of triple operand instructions on up +to 3 different
current neighborhoods, These current neighborhoods may be taken
from three diffent triple line cache memory tuffers which in
turn are backed by the slower buffer memories,

The programs which the GFP executes are loaded into a
GPY program memory (PM) by the PDP8e which controls the GPP as
a peripheral device, The GFP programs will be written and
compiled on the the PDP10 system and assembled on the PDPSe.
The PDP8e interacting with the FDPI10 will be able to load the
binary compilation files into the GPP or to save (get) these
files on its own local disk for later use,

The PDP10 system, which is described suhsequently in
other documents ([ShapB77], {Lem76c], [Lem76d]), and in sectiocons
(1.,4-1,5,1,7) is written in PDP10 SAIL [Vanl73] language., It
consists of a high level procedural description language PFRDL
I ShapB77] which will be used interactively te build
mornhological descriptions of biological jimages. PRDL will
cause the low level picture processing functions te be
evaluated on the RTPP rather than an the PDP1O., An image
processing program PROCL1O [Lem?éd] is currently being used on
the PNDP10 to emulate various image processing procedures which
could run on the RTPR, Various often called procedures such
as fetching a plcture neighborhood have been shown (using
PROC10) +to be useful iwmage processing primitive operations
which are time consuming using normal PIP10 instructions. Thus
such operations are committed +to GPP hardware instructions
{hoth through actual hardware and through microprogram
implementation),

Running RTPP programs will be accomplished by having
PRDL. functions for the RTPP he compiled by the MAINSAIL
cross-compiler [Wil75] aon the PDP10. The ocutput of MAINSAIL 1is
then sent to the PDPB8Be where it is assembled by the RTPP
assembler GPPASM [Lem76b] on the PDPB8e, Thus PRDL functions
which run on the RTPP can be constructed and later be called by
PRDL through the RTPP moni tor DDTG [Lem76a] (see section 1.6),
The communication te tween these varilous pracessors must be
intimate and the ultimate resgponsibhility for insuring this lies
with the PRDL system,

BMON2 {[Lem77] 18 a PDPBe image grocessing system
running on the RTPP constructed to date(il.e. excludting the
GPP). The RTPP subset congists of a PDP8e computer, Quantimet
720 TV image analyzer, Axiomat microscope with stage, focus and
zoom stepping motor control, interactive control desk, GraphPen
tablet, and image buffer memory. Control of the system 1is
effected by interaction through the teletype or contrel desk,
Teletype commands are entered via the 0S8 command decoder (with
the implication that BMON2 may be run under 0S8 BATCH). Qver

1.3

Introduction

100 operations are available, Results are converted to microns

for user convenience, Teletype commands may be dynamically
assigned to the 12 command keys on the control desk which may
be saved and restored from disk files, This allows

individually selected subsets of BEMONZ2 commands to be called
di rectly from the control desk.

17

18 - Introductiecn

1.3.6 Quantimet controller

A AT R S W AR AR U VR NS R R R S TR G TR SR T TR SR AF W WP W

The interface between the Quantimet and the PDP8e
consists of an interface to "program” the Quantimet (e,g. use
thresholded video {by some c¢criterial)l t¢ measure the total
area); acquire OMT datas; digsplay numbers on the right QMT
number display; load various QMT detector threshold and sizing
limit registers and "live frame" frame and scale window
coordinates,

In addition, special hardware 1s used to acquire a set
of 2=nroperties/ohject for all objects Iin the scene (up to 1024
ob jects), The properties are taken from the set of object
features computed hy the intrinsic Quantimet Function Computer
modules. These properties include: integrated density, area,
perimeter, horizontal and vertial projections, and horizontal
and vertical ferets, This acqguisition is accomplished
during a single scan of 0,1 second. The additional hardware
constructed by us includes, a 1024 datum deep stack of the
bottom most end points of blobs called Anti~Cooincidence=-Points
(X=ACP, Y-ACP); &a stack of 1 bit/word detector-bit of the
associated detected level; and a asgssociated dual data stack
which accepts two OMT data words from the function computers of
6 BCD digits each,

At the occurence of each ACP (which corresponds to the
recognition of a discrete bleob) all the above stacks have data
pushed into them, The PDP8e can unload the data after it has
been acquired by the Quantimet, In addition, data can be
pushed on matching the (X,Y) coordinates of the QMT with those
of the front of the (X-ACP, Y~ACP) stack. Since the ACP stack
may he loaded by the PDP8e, this offers further possihilities
for data acquisition by neasuring the detection at the
coordinates of the synthetic ACPs,

Other Quantimet related hardware includes a specially
constructed Mask register for acquiring and, storing and using
arbitrary convex shapes and a programmable display cursor,
Both of these devices are described in more detail in Section
2.

1.3.7 Control of the RTPP by the PDPSe

The RTPP complex, (Figure 2), under control from the
PDP8e minicomputer, may position the active microscope elements
(eg., focus, stage, zoom, etc) and adjust the live frame image
of the OQuantimet according to program requirements or in
response to the operator’s directlons at the control desk,
The PDPS8e has full control over the Quantimet to program it and
acquire single data sScans, Live frame videc (within specified
256x256 windows) may be stored in any or all eight buffer
memories, and disonlayed on the Quantimet at the direction of
the PDPBe, To process image data in the buffer memories, the

1.3

Introduction

PDPBe loads a specific program Iinto the instruction memory of
the GPP and initiates execution, Results may be passed back to
the PDPBe for storage or transfer to other computers, or
displayed on the Quantimet, or both.

1.4 The RTPP as a picture processing perirpheral

R MDD IR I WY WD SR B A A S e e e R R D W AN eb M S S M WD D S A D e e e R R D MY WD S A e

The RTPP is really a specialized peripheral processor,
a level of complexity beyond the now accepted class of display
controllers, The latter usually consists of a programmable
special purpose computer with a moderate amount of memory and a
digital image display, The display controller is intended
to remove from its large general purpose host computer a large
portion of the burden of interactive display programs. In
terms of the host computer and its associated facilities there
can be little doubt that such a solution to the display problem
is usually economically and computationally Justified,

It may be noted that the RTPP, as a picture processing
peripheral, removes a proportionately greater burden from the
host computer’s CPU and core memory than does the display
controller, There is no need now to devote as much channel
capacity for the +transmission of raw picture data and their
transforms, Instead, a system of distributed computing, made
possible by the RTPP, allows the exchange of higher level data
such as property lists, effectively resulting in marked
information compression., This in turn allows more effective use
of a wide range of facilities available on the general purpo se
host computer,

RTPP output would usually be images and/or lists of

properties of objects contained in the images. The major
component of the RTPP real time interacticn 18 the General
Picture Processor (GPP), This hardware processor allows

extremely rapid serial digital processing of digitized gray
scale imapes using 8pecial purpose hardware including image
buffer memories and fast addressing schemes. Because the
GPP/image buffer memories handle gray scale data (not merely
binary black and white images) a larger set of useful picture
functions can be quickly desiened and executed than with a
strictly binary image processor.

1.5 Cell Modeling System -~ CELMQD

A biological cell relational data modeling system will
analyze the sScene using RTPP generated picture primitives as in
({ Lem72], (ShapB74]) and involves the use of procedural
definition on a semantic data base, This modelling system 1s
called CELMOD {Lem?éc]. It consists of the three PDP10 programs
(PRPL [Lem76b], PROC10 [Lem76c] and MAINSAIL [Wil75]) and the
RTPP. A block diagram of CELMOD is given in Figure 4,

This model will te interactive to allow a biologist to
loa - 1.5

19

20 Introduction

define what he means by a particular claes of cells and
gsanipulate properties and relations of objects in the images.
The biologist bdbDy means of iterative compoeition of processes

can build up explicit connections between his semantic
information and the image information represented at the
individual pixel level, Being an interactive system, it will

be easier for him to elicit the subconscious clues that he uses
in making these decisians,

The decription language is called the "Procedural
Description Language (PPDL) which runs on a PDP10 and is
described in [Lem?6b], The RIPP will +thus also serve as a
feature extractor {for PRIL, Figure 4 shows a block diagram
of the CELMOD system, The overall connection between the RTP P
and PRPL is described in more detail in [Lem76b],

The CELMCD system will be able +to perform image
processing operations on the PDPIC using PROCLI0O while the RTPP
is heing constructed.

Introducticn

PRDL
PROC10 e Procedural Description MAINSAIL
PDP-10 Picture Language Compller for RTPP PDP-10
Processing System je
Modeling System
Function Property
Requesis Lists
Massage Switcher POP-11
DDTG :
Control GPPASM
Console RTPP Monitor Assembler for RTPP RTPP-
PDP&/
General Picture Processor
Buffer Memory
Image Analyzer

Figure 4, CELMCD system block diagram

CELMOD is composed of two ma jor software systems running on different
machines, The PRDL program runs on a DECSYSTEM=10 and is used to model
cell images assuming the features are extracted, The RTPP has a resident
monitor called DTG which executes functions requested by the PRDL
system and returns feature lists, The user sits at the RTPP control
desk communicates with PRDL through a GT40 line graphics—-teletype video
terminal, The microscope data are visible on the RTPP display, The
connection between . the two systems 1is made via a PDP11,/20 message
switcher which is an operationally invisihle high speed link between the
two systems,

21

22 Introduction

1.6 DDTG - the RTPP detugger/monitor.

DpNTG [Lem?éa], a moni tor/debugger is constructed fTor
user and/or computer control of the RTPP, Functionally, DDTG is
mnore than a simple ccmbina tion of monitor and debugging
facilities, As the RTPP operating system, it is required to
interpret direct (i.e, via control console) user commands, or
a string of commands generated by user-PDP10O interaction, In
addition, it is regulired to provide accees and control (at
machine language word level) of major memory structures (PDPSe
core, GPP program memory, GPP general register memory (GR) and
buffer mewories). It nrovides full control for a varlety of
imaze acquisition and low level analytic peripheral devices
(e.x. Axiomat microscope stage, focus, etc, the Cuantimet
72C and a variety of its plug in modules, a special mirror
scantier, a sSonic tablet, and a rapid scan spectrometer),
Nieplay control functions of UBDTG also include the Dicomed and
Quantimet displays.

DDTG has the ahility te store, retrieve and execute
{ from PDPBe disks) PDPsge and/or GPP programs (user or °DP1Q
fenerated) (cf, Figure 4). Since in stand alone mode, DDTG is
to be used as much by blologists as by computer scientists, the
user interface allows many high level and seeming English
command constructs, This in turn permits easy construc tion of
understandable ccontrol Programs for stand alone use,
exploration and debugging at a very high level,

DDTG, written in standard PDPBe FortranII-Sabr consists
of 4 major parts: an interpreter, parser, symbol table, and a
large set of worker routines, The last include such features
as loaders for the various component conputers aof the PRTPP, as
well as extensive and flexible disk I/0 routines, a wide
variety of stylized data structures,

DDTG has capabilities which allow it to lead and run
programs in the RTPP and +to monitor their activity, An
extencsive set of commands are implemented to facilitate image
data acquisition and display, and the running of small picture
operation programs called "special segments", The General
Picture Processor (GPP) portion of the RTPP will, in per forming
picture operations, require special segment support from DTG,
In addi tion, mechanisms are available for RTIPP oprogram
interaction with 0S/8 in order to facilitate the implementation
of image processing programs {(exclusive of DDTG) to process
DTG produced data.

1.7 RIPP Compiler/Assembler - MAINSAIL/GPPASM

WD W N N MR W A SR elm AR TED W W em RS W ED SN R M A s TR I AR W WD N R A R WD W N AR e

The RTPP will have access to a very powerful
cross=compiler MAINSAIL [Wwil75] and a low leve assembler GPPASM
[Lem76b]. MAINSAIL will run on the PDP10 and compile a dialect
of PDP10 SAIL which includes teletype I/0 and records but not
LEA® or file structured 1/0, As the initial RT?? has no

1.6 = 1,7

floating point hardware, the initial MAINSAIL to be used has
no real arithmetic constructs, Registers (such as line buffers
Tj(k)) will be represented as reserved symbols (Ijk). MAINSAIL
will output assembly language source code for GPPASM,

GPPASM is a low 1level assewhler which produces
non-relocatable load modules., It has labels and timited
arithmetic capabilities as it was designed to run efficiently
on a PDP8e. This last aspect is irportant for the debugging and
maintenance of the RTPP, The GPPLDR which loads the absolute
binarv files produced by GPPASM is part of DDTG, GPPAS M
permits the use of RFEQUIRE (file> LOAD or SOURCE statements and
thus a run time library can be assembled or loaded with main
programs,

The GPPASM grammar was designed to be easily parsed by
a simple finite state acceptor with a small auxillary stack,
The assembler has either 2 or 3 passes depending on whether an
assembly listing file is +to be generated, The <first pass
incorporates declaration, PM and GR label resclution: the 2nd
pass generates the PM and GR output code segments while the 3rd
nass optionally generates an assembly listing. The PDPge
epecial (PALB) segment is stripped out during the 1st pass and
is later assembled by a modified verzsion of PAL8 and
concatinated with the P¥ and GR segments, The CGPPLDR in DDTG is
able +to analyze and load such GPP binary load files. The BNF
arammar for the GPPASM assembly language is given 1in Appendix
B,

1.8 GPP Microprogram Assembler - GPPASM

The actual! GPP inmplementation employs Microprogram
control discussed in detail in [Carm?7]. The microprogram is
stored in a 128-bitx8K RAM hy the PDPBe. Microprograms are
assembl ed on the PDP8e also wusing the GPPASM assemhbhler
[Lem76b], The microassembler is discussed in wore detail in
Section S5,1,1.

3

24
SECTION 2

Ouantimet subsystem

The Quantimet 720 [Fish?1] is a modular low level imaze
procegsor which is used pricmarily as an I/0 device rather than
as an stand alone image grocessor, In additjon to the bhasic
scanner and display modules of the QMT, other hardware modules
are used to accomplish elementary functions such as ob ject area
as determined hy thresholded detected video: perimeter, nurher
of objects in a field, integrated density under a mask, and
several intercept properties, The Quantimet functions are
controlled and programmed by the PDPBe minicomputer or may be
used as a stand alone device,

The OQuantimet part of the Real Time Picture Processor
consistys of the following Imanco Quantimet 720 modules:

Plumbicon (or vidicon) non-interlaced TV vraster scanner
System Control module

System Display module

Variable Frame and Scale module

Standard Detector module

PDigitizer/Densitometer module

1«Dimens ional detector module

Amender module

Standard Computer module

MS3 Computer module

2 Function Computer modules (with Density option)
Ligsht pen module

Class ifier Collector module

The Classifier Collector module 1is added primarily for
maintenance of the Function Computer modules,

Pel Quantimet modules

The‘basic func tions of these modules are enumerated
here as an aid in understanding the design of the real time
2.1

OQuantimet suhsystem

picture processor system, For further details sgee [Fish?l].
The bhasic design for some of the Ouantimet modifications was
done initially for the NCI Grain Counter-I [Lipl7a].

2.1.1 Scanner - Syvstem Ccntrol module

Ll R I R R R A Lk N T Sy —

The TV scanner (either a Plumbicon or vidicon camera)
and system control produce a 10,1/second 880x720 digiltally
derived TV image., Actually, a smaller window iz used which is
called the big frame consisting of B60x680 lines., Inside the
big frame is still a swaller frame called the live frame. Data
inside the live frame is the data which is used by the rest of
the Ouantimet. The live frame is derived from many sSources,
some of which are the variable frame and scale, detected video,
light pen mask ocutput, buffer memory derived detected video and
computed video of the various modules.

The TV camera 1is physically connected to the Zeiss
Axiomat microscope through an IPY designed and constructed
mechanical’ interface, This interface includes a Zeiss
electromechanical shutter which is closed either by the
computer (which can also open it) or by an automatic shut-of?f
circuit which senses too much 1light entering the Ouantimet
camera, This latter feature prevents camera damage with too
much light, The interface also has roon for several neutral
density {filters so that the light levels can be balanced for
running both the galvanometer scanner and the Quantimet camera
at the same time,

2e 1.2 System display module

The system display module is used to mix the system
input video with the output display signals frornx the Standard
computer, MS3 computer, Amender, Frame and Scale, 1-D detector,
Pigitizing detector, Function computers, Classifier Collector,
and light pen modules, These display signals will either
fully intensify or partially blank the system display,. This
mixed wvideo signal is then displayed on a 10.1 rasters/second
orange phosphor TV monitor, This phosphor is designed for
slow decay times to reduce flicker, However, it does 8o at
cost to the grayv scale resolutioen,

The RTPP will be able to blank out the scanner video
and substitute synthesized videco in its place inside of buffer
memory 25€x25€ pixel windows, This is discussed in more detail
in Section 3 on the tuffer memories, The Quantimet display
cursor and mask register displavs are added to the Quantimet
di splay inputs (Scale mixer knob and Guard wmixer Xknobs
respectively),

2,1

25

26 Quantimet subsystem

2¢e 1.3 Variable Frame and Scale madule

The Variable Frame and Scale module gzenerates a live
Variable Frame by generating a rectangular computing window
specified by (hor~-position, hor=silze, vert-position,
vert-size), When in variable frame mode, any data inside this
window will be enabled for detection by the Quantimet hardware:
othe rwi se detection takes place within the standard live frame,

2e la & Detector modules

There are three detector modules : the
Digitizer/Densitometer, the 1-D detector and the Standard
detector modules, The Digitizer can be used as a detector (high
speed caomparator) t¢ “4ransform the analos video intc a
detected/not-detected digital signal according to the selected
threshold values, The 1-D detectar performs avto thresholding
in 1 dimension (X-axis) to detect objects in a hackground
phase, The Standard detector performs simple thresholding. The
Digitizer and 1D detectors have a 64 gray level range while the
Standard Detector maps up the white to black range into 4096
divisions. The thresholds in the Pigitizer/detector and
Standard Detector have been modified so0 as to ke able to be
loaded by the PDP8e,

2.1.5 Light pen

The light pen module will generate a mask of a detected
object selected with the light pen, There is a restriction that
the obJject be vertically convex so as to generate the complete
mask .,

2elet Digitizer/densitometer

The Digitizer/densitometer also functions as a
densitometer, It integrates detected gray scale data in the
renge of [0:63], It does this by using a fast 125 nanosecond
A/D converter and taking an optional log of the signal, I+
gives relative density directly. Using this module one can
perform densitometry when suitably calibkrated.

Quantimet subsystem

2e 1. 7 MS3 Computer

The MS3 computer module uses the detected video from
the detector wmodules to compute global area, rerime ter,
intercept and count, The "pattern recognition” mocde of
oneration activates two Function computer modules for acquirineg
ob ject specific data,

2s1.,8 Function Computer nodule

The Function computer computes for each detected ob ject
area, integrated gray-value or log-gray-value, perimeter,
vertical projection, horizontal projection, horizontal feret,
and vertical feret, An ohject is marked by +the occurance of
its anti-coincidence point (ACP), Data is not acquired for
partially represented objects (in which the ACP falls outside
cf the live frame),

2.1.,9 Classifier Collectaor module

A Classifier Collector module may be used to accept 2
Function Computer module ocutputs for stand alone operation, Tt
is alsac able tc compare funection values from the function
computer output against a range of values to determine whether
the ACP {object label) should be used.

2. 1la10 Standard Compmuter moaodule

The Standard Computer module is sipmilar to the M52
Tomputer except that it Hdoes not compute perimeter and has no
pattern recognition mode,.

2.2 Microprogramming OMT modules

Many of the QMT wmodules menticned above may be
microprogrammed to select either nodes of operation for
functions to compute. This is done by enabling a rear status
register on each of the modules called the "programmer” input,
On the RTPP this is done by loading, for each OMT scan, a
orogram word which consists of eight 12-hit status words called
the Quantimet Program registers denoted QPRCG1 through QPRCGS,
These registers and their allocation in +he Quantimet subsystem
is discussed in Appendix .3,

2.2

28 Quantimet subsystem

2.3 PDPRe control of the Quantimet

The Quantimet way be controlled Lty +the PDP8e in a
single step data acquistion mode, When the System Control
module “Continuous/Auto’ switch is put in “Auto’, it is placed
under control of the PDPBle, Fssentially, DDP8e control is
effected by manipulation of the eigh+t 12-hit static programming
words and the QSTAT status register, The PDPRe STOMUT
instruaction will start the Quantimet data acguistion when the
Quantimet scanner reaches the start (top) of the next scan
frame, The OQMSKP skip instruction can he used to test when the
data acquisition is dene, At this time, the whole field
Quantimet data is available to the PDP8e in the QDAT1, QDATZ2,
and QDAT3 input instructlions which will read 7 BCD digits (LSD
to MSD) into the PDPBe accumulator. This whole field data 1s
displayed automatically in the left Quantimet display. The
right CQuantiwet disvlay may be loaded by the PD®8e load
instructions LQDT]l, LODT2 and LQDT! (MSI to LSB).

Function computer data as well as ACP {(x,v) coordinates
may be acauired in a single Quantimet scan through a 1024 word
(69=bits/word) shift register. This is described in more detail
in Avpendix C.l1.2.

2e 31 Quantimet status register = QSTAT

g o T A W N W S D Y S g S W AU R SER D VN A M Y WA WS WE WP WE R MR W ORR WM W W WP

A status register QSTAT controls operation of the
OQuantimet/PDPB8e interface and various options on the Quantimet,
This control includes enabling the Frame and Scale control desk
switches, shift register data acguistion system for Function
Computer data, standby and camera shutter activation., These are
discussed in Appendix C.1.7.

2.4 The mask register module

Detected video is used to generate a 720 picture line
Quantimet mask of entry and exit line intercept positions
stored in a hardware Mask register, This Mask register can be
used to supply the OMT with a detection region mask by reading
the mask as the QMT goes through a scan, The mask register
is a (1024 word) BRAM which is loaded either from with the QMY
detected video on a command from the PDP8e (GETMSK) or from the
PDP8e directly. On the PDP8e issuing the GEIMSK instruction,
detected video is used to determine “DET-ENTRY" and "DET-EXIT"
for the entire OQMT live frame,

When the mask register is not being loaded, it cycles
with +the OQMT and outputs a (QOPROG selected) mask of either
variable <frame, mask or various logical comginations of
variable frame and mask (see QPROG2{0:3])., The QPROG2 selected
mask display intensity is controlled by the display "guard®
knob, A display of the Mask register output alone (without the

2.3 - 2.4

Quantimet subsystem

frame and sScale) is also available and is selected hy
QProGg7[021], The display intensity for this disvlay is
controlled by the display "scale and figures" knob.

The addressing in the mask register is the same as that
of the frame and scale window . The QMT VTRIG, SYNC, (HTRIG),
and Clock signals are used to generate the actual addreases.,
The entrance/exit acquisition algorithm works as follows, When
detected video first goes true (enter a solid blob) the "%x"
coordinate at the Y th line inside the frame is entered into
the Y th (0 to 719) "DETI-ENTER" of the mask register, When the
detected video first goecs false again (leaving a blob), the
"DET-EXIT" "X" coordinate is entered for the Y th line. Ry
default a line’s "DET-FNTER" when "getting"” a mask is assumed
to , be 1023 before a line is processed. This takes care
of the case where no data or only entry data is present. Note
that only +he first abject in a line is detected and that
oh jects with concave inward tops or bottoms will not be
acquired properly because horizontal slices of such ob jects
have multiple entrance/exit points,

The mask register can be loaded or read from the PDPRe,
The main use of the mask register would be in masking QMT data
with =synthesized masks or in accessing actual perimeter X-Y
coordinates,

Control of the mask register from +the PDP8e¢ is done
with the GETMSK, MSKADR, RMASKE, RMASKX, LMASKE, and LMASKX
PDP8e instructions, GETIMSK enables the acguiring the next QMT
detected video mask into the mask register, Now doing a STQMT
command starts the actual mask acquisition from the inout
detected video, MSKADR loads the line rumber for subsequent
1/0, Then RMASK= and LMASK- do TI/9 on that MSEADR’ s
entrance/exit pixels,

Note that RMASE- and LMASK- are allcowed at any time
except during mask acqueition, the mask generated Pfor an
object will be a fairly good approximation to its boundry &Ziven
that the object has no concave upward or downward regions. The
following 0S8 Fortran II oprogram will get a mask from the
de tected video inside the current frame and save it in the
PDPBe memory,

DIMENSION IENTER(720},IEXIT(720)

s GETMNSK /enable a mask to be accessed
5 STOMT /start mask acquisition
S NOTDCNE, QM SKP
s J¥MP NOTDONE
DO 100 I=1,720
s TAD \I
s MSKADR
s RMASKE
s DCA \JENTEP
s RMASKX
s DCA N\JEXIT
IENTER(I)=JENTER
100 IEXIT(I)=JEXIT

29

30

2.5 QMT cursor

An X=Y cursor is available which can he loaded from the
PDP8e using the same coordinate system as the Frame and Scale
and mask register devices, It appears as a 10 pixels tine
segment to the right on the actual (x,y¥) position on the
"scale" display control, It is programmed in DDTG software to
be used with the Graf~Pen to track tte pen on the QMT screen
whether the pen is actually using the data or not. To make the
cursor disappear, load XP or YP, The PDF8e commands LDXP and
INYP load a binary coordinate pair into the cursor controller.
The cursor display intensity on the Quantimet display is
controlled by the "scale and figures"™ Xnob,

SECTION 3

Buffer memory

The RTPP is designed to use up to eight gmray scale
buffer memories (BM), The memories may be simaltaneously
selected by the PDPBe for posting of images (displaying on the
Quantimet display) or acquiring OQMT scanner data. However,
there is a restriction that no +two active BEM windows can
intersect during display or scanning as data will bhe lost from
one of the memories,

A BM consists of 65K (25&6x256 pixels) 16-hit/words with
gray scale data being stored in both the high and low 8=-hit
bytes of a 16=bit word, Binary detected video images are stored
as signed 8-bhit bytes, Since each BM is synchronlzed with
the OMT independently, wup +to 512 X 1024 pixels "could” he
vosted in real=-time (i1f +the Quantimet display were large
enough)., Usually, a 256x256 window will be displaved and the
other BMs may contain variants of that displaved window, One
may select the high ar Tow 8-bit bytes in a gilven buffer
memory. Each 8=bit slice may then be used to store separate
images or alternatively, for example the high and low 8=-hit
fields may be used to store the real and inwaginary portions of
a Fourier transform.

Synthesized Quantimet video

The OMT video (level adjusted by the system control
module) is digltized using the fast A/D converter to 8 hits
(using 8=-bites of the 9=hit Computer Labs model 7910 10MFZ A/D),

This digitized image is them multiplexed digitally with the

buffer memory data to te synthesized as Quantimet input video =
that 18 substituting butfer memory data for Quantimet TV
scanner data. The digitized video is then resynthesized using
a fast D/A converter (Computer Labs RDA-0815A, 15 MHZ).

Synthesized video, selected for display posting, is
substituted in the window (Quantimet active frame)
f[x8:%xB+255],[YB: ¥YB+255]] for the QMT scanner video input to
the rest of the OMT. This results from ocur modification of the
video train which allows the OMT to0o process synthesized video!

In order to s8ynthesize OMT video, the BM first
synchronizes with the QMT, That is, it waits until the QMT
reaches +the (XB,YB) pixel and then starts dumping 256 pixels
into the digital video mul tivlexer. This digitized video is
then converted with a fast T/A to analogue video for Ouantimet
video input. Successive lines are then synchronized similarly,

GPP use of BMs
The GPP can perform I/0 with the EMs, That is, BMs

are used for storing and retrieving intermediate pictures while
3

31

32 Buffer memory

doing picture processing., This is done synchronously by line
after the line’s row or column address 1is specified by the GPP
LINE instruc tion, The GPP can also random access the BM in
single word or neighborhood mode,

It is possible far two different devices to access two
di fferent BM’s simultaneously under certain conditions, The
eight BMs are divided into parallel memory systems (group A -
BRva 0O to 3, and group B - BMs 4 to 7). Provided each device
access is to a different group of 4 mewories +then parallel
access is possible, The BM access priorities from highest to
lowest are: BM input fronm OMT scanner, GPP I,/0, PDP8e I1/0, BM
posting on the QMT displayv.

If two devices require I/0 oaon the same BM group
memories simultaneously, then the highest priority device
obtainse access (BMO), For example, if +the GPP reguests 1/0
durinz a posting on the QMT sequence, then the "would be" BWM
posted data becomes the actual QOMT scanner data. If the scanner
data were a dark ohject then the resulting posted image would
have light holes in it representing a higher prioerity access
coanflict,

BM scan and display selection

Two types of images may he acquired: 8~bit grayscale
and bhinary images, Binary images are stored in the huffer
memories as signed 8-hit hytes, Images are stored and used by
selecting a high or low byte to be accessed, PDP8e commands
GETA, GETB, POSTA, and PCSTB perform these control functions,

They all load 12=bhit command registers (from the PDPge
AC) which selects which byte to use, which buffer memories to
enahle, and whether to perform gray scale or binary (leading
bit of a byte) I/0. The actual scan is started with the STQMT
operation, The command register format (the same for all four
GET-/POST- instructions) is as follows:

[023] = (0) use low byte for pix, high byte for binary mask
(1) use high byte for pix, low byte for binary mask

[4:7] = (D) use gray scale data
(1) use binary mask data

[8:11] - (0) don”t select a EBM
{1) select a BM

BM window and scan acquisition

A buffer memory can accept a 256 X 256 x 8=bit grav
scale image from the Quantimet video (digitized wvia Computer
Labs 8=-bit A/D) starting at the upper left hand corner
coordinates denoted (XB,Y¥B), This is done in less than
orie QMT scan cycle of 0,1 second. During this time the BWM
group 1s unavailiable to both the GPP and the synthesized video
generator But other BM I/C operations, GPP or PDP8e 1I,/C, may

3

Buffer memory

take place., The lesser priority operation will he disconnected
only durine the part of the horizontal scan line that the BM
recieves data from the OQOMT. All other lines in +that BM group
during this “GET” function are available for lower priority I1/0
except posting,.

At the end of acquiring +the QMT image, the BM |is
disconnected from the digitizing video channel, During a
scan, the BM accepts 256 sequential pixelszs/line starting at the
X cocrdinate XB of each line for each of 256 lines beginning
with line YB, The BM window 80 defined is determined by
comparing (XB,YB) with the real=-time (xreal,yreal) coordinates.
Fach BM has a pair of window coordinates (XB(i), YR(1)) which
may he loaded by the PDP8e, The eight window coordinate pairs
are loaded from the PDP8e hy the commands { BMX1,BEMY1) where
i=fo:7]. ‘

In addition, the detected Quantimet video may be
acquired as a bhinary mask into buffer memories using the GETA/B
command with the appropriate bits [4:7] set. It may be inserted
into the Quantimet frame input using the POSTA/B instruction
with the appropriate bits [4:7] set. The resulting mask may be
used for further Quantimet date acquistion,

It should he noted to aveid confusioan that BM window
positions are independent of the frame and scale window
posi tion,

PDP8e accessing of BM data

The PDP8e can transfer up 1o 4K PDPBe 12-bit words
using direct memory accessing (DMA) to/from a BM. Thus the
transfer of a compglete BMs contents would take several DMA
transfers, Four PDPBe/BM DMA packing modes are available,
all of which optimize the 12/16 blt word size differential, The
first 2 modes transfer three 8-hit bytes (elither high or low
byte) in three BM words into +twe (0S8 packed Tormat) PDPBe
words, The third mode transfers three 16-hit EM words in four
(0S8 packed format) PDPSe words, The fourth mode transfers
16=-hit BM da ta in two PDP8Se 12-hit words in packed
sign-extended FAE (extended arithmetic element of the PDP3e)
double precision format so that the PDPSe c¢an do arithmetic on
full BM words without extensive packing and unpacking.

3.1 Physical BM memory addressing

Although it 1s unnecessary to understand +the physical
implementation of the BMs to use them, the underlying structure
is presented here for those who are interested. The 19-bhit BWM
address specifies a buffer memory location and may be broken
down into the cancatination (&) af subaddre ases 3
UBM[0:2 JRYXADDR[0:15].

UBM[0:2] selects a BM unit,

33

34

Within a BY, YXADDR selects the data:
YXADDR[0:15]=YADDR[0:7 JaXATDDR[0:7].

Then the

row address = YADDR[0:7],
Column address = XADDR{O0:7].

Each buffer memory is divided into four physical memory cards,
YADPR{0:1] selects the wemory card, The BM word slze irs
l16-bits, The memory cards are four way interleaved so tha t
64-bits of date may be transtered in one S00 nsec memory cycle,
The huffer memory is constructed in such a way that only four
16=-bit words of deta addressed modulo YXADDR[6 :7 =00 are
ohtained in one memory cycle, Therefore, randem addressing of
RY words requires 500 nsec/word minimums whereas horizontal
raster or line by line transfer (i.e . continuous incrementing
of YXADDR) will result in an effective 125 nsec,/word transfer
rate,

3s1a1 BM controller accessing priorities

el R I R R N L L L P L L LT

During a BM-QMT scan acquisition, the posting of data
to the QMT is discontinued during that entire scan for +that
respective BM group, Pesting of BM data from one BM group may
take place during the same scan that acquisition of OMT video
data by the cother BM group. In fact, video data being posted by
one B¥ group may be ltoaded into the second BEM group during the
acquisition scan,

The (XB(i), YB(i)) position for each buffer memory is
used to select where +the data shall be taken and the image
posted on the display. This allows the operator to position the
transform window exactly where it is needed to operate on data.
The hardware priority networks resolvese conflicts i+ +two or
more BM windows intersect (1in case the software does not
prevent their intersection),

If while posting BM video data on the CMT a conflict
occurs with BM I/0 other than acquiring QMT video, then during
the duration of the conflict the origonal scanner video 1is
posted rather than the BN wvideo,.

SECTICN 4

GPP - General Picture Processor

4,1 GPP organization

The general picture processor, GPP, is oprimarily used
to serially perform rapid local neighborhood processing on
image data stored in the butftfer memories., The GPP is organized
as a 16-bit, 23 complement, pipelined, register to register
trans fer machine, It is dynamically microprogrammable so that
real time ixplementation ot complex register to register type
machine instructions are possible, The GPP behaves as a PDP38e
veripheral processor for which the PDPBe assembles, loads and
starts programs, services requests for monitor operations, and
stops.

The GPP is a reentrant wmachine, a program memorv (M)
is distinct from a data memory (DM) or an extended data memory
{XDM), Both the program and extended data memory may be
addregssed with a maximum 32-hit address, The data memory may
be addressed with a 16=bit address,

A detailed description of the various data spaces and busses

ie given in [Carm77].

4,1.1 Microprogram memory = MDY

The GPP has siX separate memory groups or "spaces",
The first is the wmicroprogram memory, MPM, Each of the
addressed microprogram memory locations makes up a
microinstruction, A single wmicroinstruction theoreretically
may have as many as 128 microcommands (thus a MPM word |is
128«bhits wide), There is a maximum of 8Kk microinstructions,.
The microprogram memory is loaded directly by the PDHP8e through
program register transfers,

As part of the MPM word, 32-hits are allocated to two
16=-bit flelds, MRA and MRB, These fields allow the
microprogram to supply arguments when forming complex
instruc tions,

4, 1.2 Program memory - PM

N R R M R D WS T EE R R WY WA N ER WD AN AR A AR

The second memory space is +the program memory, PW,

Fach of the addressed program memory locations makes up a GPP

instruction. A GPP instruction is divided into four separate
4,1

35

36 GPP - General Picture Processor

fields, These fields are called the OPR, PFl, P2, and P3, The
OPR contains the instruction operation. If used, Pl and P2 may
contain the address of the two separate data source locations
used by the operation, P3 may contain the address of the data
sink location used to receive the result of the operation, The
triple address instruction format atlows the GPP to rapidly
access two source operands, Pl and P2, in parallel, operate on
them, and deposit the result in a sink operand, P3, with a
single instruction, Each of the program memory fields, OPR,
PL, "2, and P3, are 16-bits wide, Thus a PM instruction is
64-bits wide,

The OPR is divided into two subfilelds: the
OPRgroup[0:8] and the OPRalu[9:15]. The most significant nine
hits, OPRgroup[0:8], i3 used to reference the starting address
of the instruction in the microprogram memory, This 1is done
via a mapping memory (MM) discussged in the next subsection. The
least significant <seven bits in the OPR field, OPRalu{9:15],
are used to select an arithmetic logic unit to be used as the
operation of the instructiaon if any.

A 16~bit program field register, PFR, is provided for
expansion of the program memory address space to 32-bits,.
There are a maximum of 64k instructions per program memory
field. The GPP is initally beilng constructed with one 64k
program memory at praogram field address zero, The program
memory is loaded by +the PDP8e {(using PDPS8e DMA). GPP
instructions are microprogrammed not to alter data in the
program memory thus guaranteeing reentrency.

4,1,.,3 Mapping memory = MM

e e e W W R em e e e

The third memory space is the mapping memory, MM, This
memory is used to map the instruction number, which is part of
the OPR field in the prograr memory, to a microprogram starting
address in the MPM, Thig starting address is used by the
microprogram memory to execute the 1Instruction requested by the
Program memory. The mapping memory is 13-%its by 1K words and
iz loaded directly by the PDP8S8e. The OPRgroup[0:2] can address
the first 512 words of the MM, The Becond 512 wards may be
addressed by use of the APPLY GPP instruction which takes the
10-bit MM address from the Pl instruction field.

4,1.4 Data memory = DM

The forth memory space is the date memory, DM, Each
data memory location is 16-bits wide. The data memory space
is divided into two groups called the data memory I/0 space and
the data memory general register (GR) space.

ATl GPP input and ocutput registers, and many internal
special register are addressed via the data memory I/O0 space,
The top 2k of the 64k data memory space is assigned to the data

4.1

GPP - General Picture Processor
memory I/0 space.

The data memory GR sSpace is a fast (100nsec)
interleaved memory addressed in the firat 62k (63488 words) of
the 64k data memory space, No other register’s addresses are
arsgigned in this 62k GR data space, The GR data gpace |is
interleaved s0 that ¢ach consecutively addressed location is
matually exclusive.

Both the GP and I/0 datm sSpaces are divided into
mutually exclusive data merory modules and will be discussed in
detail later in this section. The data memory is loaded by the
PDPB8e via PDPBe DMA,

4, 1.5 Fxtended data memory =~ XDM

Al B R e e L L Ty

In order for the GPP to access large hlocks of data
used to store images or lists the fifth nemory space, eXxtended
data memory, XDM, ia provided, The XDM 16-bhit words are
addressed with 32-bits. The first 19~bits address the image
buffer memories. The rest of the XDM is not initiatltly
implemented. Pointer registers enable the GPP instructions to
directly address any word in the XDM, GPP instructions 1like
GLINE, PLINE, GNBH, and PNBH are microprogrammed to transfer
blocks of data between the XDM and the data memory, DM,

4, 1, 6 Program memory address push down list - PDL

RER DD N G WS L AR A SR AR AR e e e R WS N NS WD N A A e S N R SR D R WD A e e

The sixth memory space is the progran memory address
rush down list, PDL, A 1€&€~-bit program counter {18 used +to
address the instruction in any field of the program memory.
The 16-bit program fileld register, PFR, together with the
program counter, PC, comprise the program wemory address. This
32=bit address may be stored in a 32-bit by 1K word push down
list (using +the GYP PUSHJ instruction) for returning from a
procedure call (using the GPPF POPJ instruction). Normal GPP
instructions can not read or write on this list. The PDL
itself is not addressed in the data memory space but the stack
pointer is and may be read.

4, 1,7 Avrithmetic logic units - ALUs

R D D TR R N e o S R T WP NN D M SR AN AR AR S

The ALU space is a gset of arithmetic logic units, ALUs,
and up to 32 ALU input data registers, ALUA(O~15) and
ALUB(0-15)., The ALUs are physically divided into groups which
fit on a logic card, The ALU input data registers are
duplicated on each of these logic cards as required and are
addressed as part of the data memory I/0 space. Each ALU logic
card has a maximum of sixteen 16=bit output register ports
called AOUT(0=-15), Cnce an ALU logic card is activated by a
mi crocommand, the carde respective output ports are available

4,1

37

28 GYY - General Picture Processor

ag data to be used in the data memory space. The ALU output
ports are not addressed in the data memory space but are
controlled by microcommands for loading on the acddress or data
buses,

Normally the 7-bit OPRalu field of the program memory
will select the ALU to be used during an instruction. It is
als=o possible for the microprogram memory %o select the ALU via
7-bits of a microcommand field, MRB{8:15]. This feature allows
microprograms to make cmaximal use of GPP ALUs as reguired,

4,1.,8 Puses: D1 D2 Al A2 CB MHOLD ALU

In order to transfer information between various GPP
registers two sets of 16-bit data buses, V1l and D2, and address
buses, Al and A2, are used, Any location in the data mewmory ,
DW, may be addressed by either address bus and its contents
deposited onto either data bus to be stered at a second
location in the data memory. The program memory l6~hit fields
(P1, P2, and P3) may be deposited onto any of these four buses
thereby allowing the program memory to be used as data or an
address for data. Two 16-bit microcommand fields, MRA[0:15]
and MRE[0:15], may drive any one of these four buses. This
allows microinstructions to .contain data or to address data
memory locations,

A single bit conditional bus, CBE, is used as a modifier
to many of +the wmicrocommands, For example, to write in the
data memory first requires a microcommand, The microcommand may
also require the CB tus to be "false", The CB bus is usally
driven by an ocutput from one of the ALUs or from an active data
nemory space register,

The MHCLD bus 1s also a single bit which is used
throughout the GPP, ITf asserted, the GPP does not execute the
present set of microcommands last fetched from the MPM, When
the MHOLD bus is unasserted, the microprogram seguencing
continues., This signal allows different processing times for
ALUs or memory elements than the basic GPP aicroprogram clock
time,

A seven bit hus, ALU, is wused to route .the least
significant seven bits of the OPR[0:15] field of +he program
memory or seven bits from the microprogram memory (MRB[8:15])
to the ALUs, The MFB[8:15)] data allows for the selection of a
particular ALU (other than the one specified by the program
memory OPR field) during the current instruction.

The Dt, D2, Al, A2, CB, MHOLD, and ALU buses are
cormonly referred to as the G-hus,
The following table outlines the GPP organizeation as discussed
thus far in this section,

4,1

I GPP memory
1)

2)

3)

4)

5)

6)

GPP - General Picture Processor
Tahle 4,1, GPP organization

space
Microprogram memory, MPM
a) 128~bits wide by 8K words
b) Each word ia a microinstruction
c) Fach bit is a microcommand
Program mewrory, PM
a) €4-bits wide by 64K words
b) Each word is a GPP instruction
c) Nivided into four fields, OPR, Pl, P2, P3
d) OPR field divided into sukfields,
OPRgroup and OPRalu
Mapping mecory, MM
a) 13-bits wide by 1K words
b) generates microprogram starting address
Data memory, DM
a) 16-bhitg wide by 64K words
b) General registers, GR = 62K words
¢) Input-output registers and special
internal registers = 2K words
FExtended data memory, XDM
a) Addressed with 32-bits
b) 16=bit words
c¢) Direct addremsing via pointer registers
d) Buffer memories addressed in first 19=-bi ts
Program memory address push down list, PDL
a) 32-bits wide by 1K words
b) Stores the program field and program counter
contents during procedure callsg

IT GPP ALY space

1)
2)

3)
ITTI GPP buses
1)
2)
3)
4)
5)
6)

Set of ALU= (add, subtract, or, and, multiply, etc,)

Data space ALU input registers ALUA(O0-15)
and ALUB(0~-15)
ALU space ALU ocutput ports, AOUT{(0-15)

All buses referred to as G-bus
Data buses, D1 and D2

Address buses, Al, A2
Conditional bus, CB

Micro hold busg, VWHOLD

ALU selection bus, ALU

4,1

391

a4 GPP - General Picture Processaor

4.2.3 I-buffer control: XCLK XCLEKE YCLK YCLEKB YRST

T i e e T D IR R MR R R D R P NS SN N WS A G Y BN OB GD G SR SR SR W T S NN A AL S e E Em e e

Several active data memory registers are used to
control functions in the triple~line I«buffers, When an
argument is moved into gne of the XCLK, YCLE, or XRST registers
an action discribed in the following table 4,2 is executed,
The MOVFE instruction may be used to load arguments inte these
registers for their respective executions, The active data
memorv registers, XCLKB and YCLEKE, also discribed in the
following table, execute their respective function as a result
of the argument loaded into them and can then cause a hranch ta
a new program memory location, The MOVEE instruction with the
proper argument is used to load these registers,

GPP = General Picture Processor

Table 4,2 Triple-line I-buffer cantrol registers

P3 Argument

IRVR

XRST

XCLX

YCLE

XCLKB

YCLKB

Pl argument notation is:

{64 sq pixel imaged> - bits 14, 1S = Q0

256 sq pixel imaged =-hits 14, 15 = @1

{512 sq pixel imaged =~ bits 14, 15 = 10
{1024sq plxel imaged - bits 14, 15 = 11

Pl argument notation is:
I1,I2,1I3> ~ bite 10,11,12
(X=1,X,X*1> =~ bits 13,14,15

Peset selected Y counters in Il, I2 or (3 to
X=1 = =1, ¥ = 0, X*+1 = +1,

Pl argument notation is:
(lteft/right> - bit 9
{I1,I2,I3% - bits 10,11,12
X=1,X,X+1> = bits 13,14,15

Increment (bit ¢ of P1 = 0) or decrement (bit 9 of P| =
1) the specified I=buffer X dynamic address vectors,

Pl argurent notation is:

11,I2,I3> -~ bits 10,11,12

Increment the specified line buffer Y dynamic address
vector register and Y line counter,

Pl argument notation is:
{left/right> - bit ¢©
I1,72,I3> = hits 10,11,12
X=1,X,X*1> - bits 13,14,15

Increment f(hit 9 of P2 = zero) or decrement (hit 9 of
P2 = 1) the specified I-huffer X dynamic address
vectors. Then, if all X .NE, 64, 256, 512, or 1024
{ selected by TBMR) then PC<(==D2, :

?1 argument notation is:

11,I2,1I3> - bite 10,11,12

IFr'rement the specified I-buffer Y dvnaric address
vector register and ¥ line counter. If any selected Y
counter (NE. 64, 256, 512, or 1024 (selected by IBMR)
then PC(==P2

46 GPP - General Picture Processor

4.,2.4 Extended data memory interface registers

In order to interface the GPP data memory with the
extended data memory several registers addressed in the I/0
datae memory space are provided, The XDM interface wmay
tranasfer data in block form which requires a current address
register of 32-bits. Registers XDMNCAH and XDMCAL are used +to
store the XDM current address high and low (6-bitga

respectively, The number of words transferred per block
(maximum of 1k) and control codes for the type of I/0 is stored
in register XDMWCC (XDM word count and control), Data writen

on the iIPDM from the GPP D1 or D2 huses is stored in WXDM!l and
WXDMZ2 (write XDM1,2) registers respectively. Data recelved from
the XDPM +to be stored 1In the DM via data buses T'l and D2 is
stored in RXDM! and RXDM2 (read XDM1,2) registers respec tively,
An address register, XDMAR (XDW address register), may be used
to store the data memory address of +the +transferred word,
Table 4,3 summerizes these repgisters and their meanings.

Toe receive data from the IDM the XIM current address
registers (XDMCAH and XDMCAL) are first loaded with the
starting address of the XDM transter data, When the word
count and control are loaded into the XDMWOC rpegister +the
transfer is initiated, To recelive data from the interface the
RXDM regiater is read which will stall the GPP (GPPE
microprogram clock disabled) wuntil +the requested data 1isg
provided by the XDW, When the last XDM data word of the block
transfer is stored in the RXDM register and the read by the GPP
the CB bus will be asserted to allow the GPP microprogram to
branch, This signals the microprogram that the black transfer
is complete.

To send data tao the XDM the XIM current address
registers are first toaded with the starting address of the XDM
transfer data, The word count and control codezs are then
loaded into the XDMWCC register and the transfer is started
when the WXDM register 1s loaded with DM data. If the XDM is
busy when the WXDM is loaded then the GP? will stall, The last
data word stored in the WXDM register will cause the CB +¢ be
asserted thereby allawing the microprogram to branch sigraling
the end of the block transfer,

GPP - General Picture Processor

Table 4,3 XDM interface registers

XDMCAH - High order 1&6-hit XDM current address,
XDMCAL = Low order 1€6-hit XDM current address.
XDWWCC =« Argument notation is:
Gord count? - [&115]
{image sized - [4:5]
00 = A4 =g pixels
01 = 256 s8gq pixels
10 = 512 s5q9 pilxels
11 = 1024 8qg pixels
{axis projectiond - [3]
0 * Horizontal axis
1 = Vertical axis
word sized> - [1:2]
00 = 16-bj ¢t
01 = low byte of XDM
10 = high byte of XDM
Anput/outputd =« [0]
0 = output to XDWM
1 = input from XTW
RYXDM] - Read XDM data via data bus D1,
RXDW2 = Read XDM data via data bus D2,
WXDM) = Write XDM data via data bus D1,
WXDM2 - Write XDM data via data bua D2,
XBMAR - XDM address register used as pointer into the data

4.2.5 GLINE and PLINE execution reglisters - GLINER PLIVER

Two registers GLINER and PLINER are used to pass needed
information +to +the XDM interface when executing +the GPP
ingstructions GLINEF (get image line from XDM) and PLINE (put
image line on XDW), These registers are addressed in the I/0
data memory space and are loaded with the selected I-buffer and
Y line (Y*1, Y, or Y-1), the selected word size (16-bit, high
by te, or low byte), and selected horizaontal aor vertical axis
praojection.

When the GLINE or PLIN¥ GPP instructlion is executed the
XDMOAT and XDMCAL registers are loaded first, then, the GLINER
or PLINER register is loaded which transfers its argument plus
the +the state of the I-buffer mode register to the XDMWCC
register., This would estart +the XDMN I/0 if the GLINE
instruction were executed, I¥ the PLINE instruction were
executed the I/0 would start when the WXDM register is loaded,

47

54 GPP - General Picture Processor

4,3 GPP run time registers

Several run time registers for GPP atatus and I/0 data
memory space write protection are presented in the following
subsections,

4, 3.1 GPP run time status registers = GSTAT1 GSTAT2

- S D D D D D R S G G G W W TR TR WS BN NN SN B S S A O B D e v Gk R D G W e W M RN W W W

Two GPP run tiwe status registers, GSTAT1 and GSTATZ2,
are used 1o alert the PDP8e of special GPP conditions. The two
regigters are 12 bit and are set by special hardware in the
GPrY, The PDP8e mav read the two reglsters which are not
addressed in the data memory space., The status registers are
defined in table 4,4,

Table 4,4 GPP status registers, GSTAT1 and GSTATZ2,.
GSTAT1 hits:
fol =1 => PM parity error.
1) = 1 =) GR parity error.
[2] = 1 => MPM parity error,
[3] = 0 =) GPP RUN-HALT FF is set to HALT.
[3] = 1 => GPP RUN=-HALT FF is set to PUN,
1

[4] = =) GR address base overflow errar,

GSTAT2 bits:
All spares,

D R SR i W wiy S e D W WD N SEP WD WD W W ML D WIS WL WD MED Y WL D G GED GEN GED WL MED MER GEN WD WA Y N SWS BN M D M W A ol Wl mE G Gm G A D em e e e e

4,3.2 GPP run time write protect registers

D N S AR NS EE SL EE A AR A A e e W R e S AR S WS S W TR WD WS SR W e o . - .-

Two registers are used +to protect special I/0 data

memo rvy space registers from being written on by GPP
instruc tions, The first register, write protect enable
regligter, WPER, is used to specify which I/0 data wmemory space
registers is to be protected, The second register, write

protect status register, WPSR, is8 used to signal the PDP8e of
an errorj; i.e. the GPP tried to write on a protected register,
The write protect status register is 12-bjits and can be read by
the PDPB8e, The write protect enable register, WPER, is loaded
by the PDP8e and is also 12-hits, Neither of these registers
is addressed in the data memory space, The definition of the
registers is in table 4,5,

Table 4,5 Write protect registers, WPER WPST
WPST hits:
[0] = 1 «) PDLCTR written,

WPER bits:
[0] = 1 => Enable PDLCTR write protection.

A A N D N W ER e e W e W Gk BN ED M B e de we N e AN M A W D GED M W A R WM R A A A D T M S N R W EN N R WR W A A S g

GPP - General Picture Processor

4.,3.3 GP? parity error registers - PMPF GRPE MPMPE

The program memory, GR data memory, and microprogram
memory is checked for parity errors on each B=bhits
respectively. In order to determine where a parity error
occured sgseveral registers are provided, Hoth the microprogram
memory parity error register, MPMPE, and the GR data memory
parity error register are 16-bits. The program memory parity
register, PMPE, is E=bits, These registers are read by the
PDP8e and are not addressed in the data semory £Epace,

o5

58

4,5 Running the GPP

To operate the GPP the microprogram memory, mapping
Demory, program memory, and appropreate data memory locations
are loaded by the PDPS8e,

To load the MPM and MM the PDPS8e first executes a GMHLT
(GPP microprogram halt) and a GPPCLR (GPP clear}. When the MPM
and MM have been Lloaded the PDP8e executes a GMRUN (GPP
microprogram run) command which starts the MPWM at starting
address Zero. The microprogram memory executes a "monitor"
program which listens for requested DMA I/0 from the PDPS8e or
the GPP run flip flop set 1y the PDPRe,

The PDP8e loads the required program and date memory
and then loads the GPP program counter, Pr, with the starting
address of the program in the PM, The PC is loaded by first
loading the EXDMA words with a 16-bit address and executing the
Le? (lcad PC) PDP8e command,

When the program counter has been loaded the PDPR e
executes the GPPRUN (GPP run) command which starts the
execution of program memory instructions at the starting
addreas defined by the PC,

The PDPSe may then wait for communications from the GPP
via the GIN and GOUT GPP registers or read the GPP status
register, The status registers contains, in part, the state of
the GPP ran flip flop which was set by the PDPSe GPPRUN
command.

The GPP may turn the GPPF RUN~BALT flip flop offt (MOVE
argz, ,halt) thereby halting GPP instruction execution hy
returning +to the microprogram monitor, The GPP RUN-WALT flin
floo set to HALT may be used as a signal to the PDP8e that +the
GP® program halted, The PDP8e will analize the argument in the
halt register to see if the program has been normally completed
or the GPP requests aid from the PDPS8e.

The resulting GPP data, if any, may be transfered to
the PDP8e, To run additional programs, only the program memary
and reqguired data memory need be loaded.

SECTION 5

Inplementation of the RTPP

This section discusses the construction of the various
electronic and mechanical components of the RTPP,

S.1 The GFP control - microprcaram control

L ik e LR R e e G A D D e TR N SH SR e N N R e e S e W W A A e

‘ The GPP control logic is ieplemented as a

microprogrammahle controiler, The microprogram is loaded into
the microprogram memory by +the PLP8Be, The varicus bus and
register enables, function enables etc, are driven hy the
microprogram controller output bus, Thieg bus is 60-bits wide so
that all necessary enables may be performed in parallel, The
microprogram control store is a maximum of 4K words, Note that
the microprogram memory (MCPM) is distinct from the GPP program
memory (PM) although both are 60-bits wide, These
microprograms are loaded into the microprogram control store
RAVs through the PDP8e DMA. Thus experimentation with new
instruction sets is easily performed as is debugging of the
initial instruction se t, A microprogram assembler MICEOD
will assemble microprograms on the RTPPD PDP8e +to facilitate
rapid instruction set debugging. The grammar for MICROP isg
glven here:

S.1.1 Microprogram instruction BNF grapmar

A BNF grammar speclification is given for the @GPP
microprogram caontrol programs. As can be se¢en from the MICROP
grammar, assSembly censists of doing the inclusive-or of all M)

n.w

symbols in a statement up to the Shle Thus each M) symbol has
an associated bit in the microprogram controller output bpus,

microprogram)::=<{microprogrem {(microstatement) |
{microstatement) | <(microprogram)%

<microstatement)::'(lahel)(M-tist)(nddress); 1
/{comment>; | <M>=<number>; | <(origin def);

origin def) ::=0RIGIN {numbenrd

(address) ::* GOTO <(label symbol) | {(label symbold
label>::= (label symbol) : | <(nulld

{label symhold::=*new symbol | <{number)

M-listd::=ddelimd MM=1istd | <M-list) <delimd M) |
S,.1

59

60 Inplementation of the RTPP
M=1ist) (delim)
(el imd :: = space | ,

M>::=PIDABE | PIDBE | P2DARBE | P2DBE | P3DAEBE | P3DEE |
PCDBE | DRADBE | DREDBE | ALUDRE | DRCDBE |
DRCDAB | READ | WRITE | LOQDCTR | INCCTR |}
DECCTIR | ¥FCo000 | ,.. | Fr1111 | BROVF | BRUDF
BRGT | BRLT | BREO | BRLE | BRGE | JUMP | PUSHYJ}
POPF | ...

The wilicroprogram instruction will have a right justified
12-bit address field which 1s wused for Jjumps (JUMP, PUSYJ,
BOPJ) and manipulating counters (LODCIR, INCCTR, DECCTR),
Microprogram subroutines are performed using a 64 word 12-bit
address stack,

5.2 Internal Control Logic Design

The method of Richards [Rich73] for designing complex
controllers is wused in various parts of the system including
the Quantimet controller, BM controller, GPY microprogram
controller, DMA controllers, etc. Richards employs a method
of automatically defining sequential logical states such that a
sequential synchronous counter implementation is easily
realized, It is thus possible +to easgsily and rationally
construct finite state machine (¥SM) controllers. To ease
hardware debugging and maintenance of the RTPP, the "new" state
is displayed in octal LED”s on the cards where the FSMs reside.

5« 3 Physical construction of the RTPP

The RTPP consists of geveral subsections as mentioned
in Section 1.3, Much of the system can bhe bought ready made off
the shelf, Other parts such as the GPP, buffer memory, control
desk and OMT I/0 +0 the PDPS8e are specially milt, We would
like to minimize the amount of special purpose mounting
hardware needed and thus are led to the imptementation of the
basic RTPP control and computational hardware as a set of rack
mounted card files each 19 by 10,5 inches, These card files
hold 16 double height (140 pin) high density wire-wrap cards
made by Cambion. The wire-wrap cards plug into a
semi-automatic wire-wrapabhle power back plane which holds two
70=pin semi-automatic wire-wrappable card scgockets for each
card,

The various buses can then be implemented by
wire-wraping twisted pairs on these power back planes.
Interconnection between card files is by plug connection wit+h
Scotchflex (3-M Corp.) cables directly +to the 70 pin card
sockets, Any cabling between wire-wrap cards is avoided by
all connec tions being done through the bhackplanes, The
wire~wrap cards and power back planes are being constructed

S.2 = 5,3

outaside of NIH already wire=~wrapped with by pass capacitors
moun ted,

The Quantimet and control demk logic (RQC) im housed in
one standard 19" wide, 67 high cabinet, the buffer memories in
anocther and the GPP in a third cabinet, These cabinets
are located between the control-desk/Quantimet=-display and the
PDP8e cabinets,

5.4 Buffer memory implementation

The hardware of the BM isg divided into three sections:

1) memory cards; 2) dual memory card controller; and 3) BM

interfaces,

The memorieg use Camhion specially constructed
sem]l~automatic wire-wrap cards. The Texas Instruments TMS4030

(N channel MOS 4096x1 bi't 22 pin dynamic RAM) is used as the

main memory element., Each card contains a total of 64 TMS4030
memory chips and locations for 35 16=pin TTL support ch}ps.

Four memory cards make up one memory and four memories are

housed in one 16 stot Cambion card enclosure, There are a total
of two card enclosures used to house the eight EMs ,

The dual memory controller logic 138 contained on one'

Zambion wirewrap card, Both controllers are totally independent
and may operate in parallel. The dual contoller contains the
refresh logic for the dynamic RAMs and the priority logic to
sService a total ot five I/0 requests from various BRM
interfaces, ' '

Each BM interface reqguires a minimum of three card

slots to communicate with the dual BEM address, data and control.

buses., Five separate Interface locations or a total of 15 card
slots plus the dual memory controller card make up the third 16
8lot Cambion card enclosure, A fourth Cambion card enclosure is
used for additional BM interface logic. All IO on the buffer
memories may be in i16-bit word or 8~bit byte modes.

61

62
SECTION 6

References

Carm74. Carman G, Lenmkin P, Lipkin L, Shapiro B, Schultz ¥,
Kaiser P:A real time picture processor for uysgse in biological
cell identification - ITI hardware implementation, Je FHist,
Cyto., Vol 22, 1974, 732:740,

Carm76, Carman G, Lemkin P, Schultz M:RTPP =~ System
Documentation, Vol TI: Microscope, Scanner and Quantimet
Contreoller, NCI/IP Technical Report #13., In prep.

CarmT77. Carman G, Lemkin P, Lipkin L, Shapirc B, Schultz
M:Micropogram Control Architecture for +the General Picture
Procegsor,. NCI/IPU Technical Report #22, April 22, 1977.

Necb?, Digital Fquipment coproration:LINC8 small computer
handbook, Maynard, Mass, 1967,

Dec71. Digital Egquipment Corporation:PDP11/20 processor
handbook, Maynard, Mass, 1971,

Dee72a, Digital Fguipment Corporation:PDP8e and PDP8m small
computer handbook, Maynard, Mass, 1972,

Dec?2b, Digital Equiprent Corporation:DEC system 10 assembly
language handbook., Maynard, Mases, 1972,

FishTl. Fisher C:The new QUANTIMET 720. The Microécopq Vol 19
No 1, 1971, 1:20.

JohnE70, Johngton E:The PAX II picture proceseing system, In
[LipB70].

Kireg, Kirsech R:Computer determinntion- of the constituent
structure of biological images part 1. NBS report 10 173,
Dec 1969,

Lem72, Lemkin P:A simplified biclogical cell world model for
question answering using functional description., Univ., ot
Maryland, Scholarly Paper #75, May, 1972,

Lem74, Lemkin P, Carman G, Lipkin I, Shapiro B, Schul+tz M,
Kaigser P:A real time picture processor for use in bilological
cell identification <« I systems design, Je Hiet. Cvto,
22, 1974, 725:731.,

Lem75, Lemkin P:A Literature Survey of the Technological Basis
for Automated Cytology. Univ, Md. TR=386, June, 1975,

Lem76a, Lemkin P:Functional specifications for the RTPR
monitor - debugger DDTG, NCI/IP Technical Report #2, Feh 1976,
6

Lem76b, Lemkin P, Shapiro B, Schultz M, Lipkin L, Carman
G:GPPASM - a PDP8e agmembler for the General Picture Processor,
NCI/I® Technical Report #16, Dec 15, 1976,

Lem76c., Lemkin P, Shapiro B, Lipkin L:The CELMOD Biological
Imapge Modelling System, NCI/IP Technical Report #14., In prep.

Lem76d. Lemkin P, Gordon R, Shapiro B:PROCIO = An image
processing aystem for the PDP10. Operation and Descrintion.
NCI/IP Technical Report #8, Dec 16, 1976,

L7m7e, Lemkin P: BMONZ2 « Buffer wemary monltor system for
interactive image processing. NCI/IP Technical Report #2ta,
June, 1977,

LipR70, Lipkin B, Rosenfeld A {(Eds):Picture processing and
Peychopictorics. Academic Press, 1970,

LipL74. Lipkin L, Lemkin ¥V, Carman G:Automated Grain
Counting in Yuman Determined Context, J. Hist. Cyto. vol 22,
1974, 755,

Rich73. Richards C:An easy way +to design complex program
controllers, Electronica, Feb 1, 1673, 107:113,

ShapB74, Shapiro B, Lemkin P, Lipkin L :The application of
artificial intelligence techniques to bilological cell
identification, J. Hist. Cyto, Vol 22, 1974, 741:750.

ShapB77., Shapiro B, Lenmkin P, Lipkin L:PRDL - Procedural
Description Language. NCI/IP Technical Report #13, June 1977,

Thor70, Thorton J E:The control data 6600 = design of a
computer, Scott, Foresman and Co, 1970,

VanL73. VanLehn KX:S8ail User Manual, Stanford Artifical
Intelligence Laboratory memo AIM=204, July 1973,

Wil7?5., Wilcox C:MAINSAIL =~ MAchine INdependent SAIL. DECUS
meeting, Languages in Review Session, 1975.

63

64
APPENDIX A

GPP instruction set

A s e B G M v O D M S AR Y e S e

The instruction set of the GPP allowe for not only the
usuyal set of operators needed in a triple addreass type machine,
hut also specific operators oriented toward neighhorhood
processing and I/0 image transfers, These include the following
five clagses of instructions for which examples are given in
tabhle A,1l,. Paeference [Carm??] discusses the microprogram
control structure in detail,

Table A,! Examples of some RIPP instructions
1) Register—-to-register transfers,
MOVE P1,,P3 31 P1 to P3
INC P1,,P3 $ increment Pl by 1 into P3
ADDSR ,P2,P3 $ add P2 and ALUA(Q) register,
store in P3
GESA P1,,.,P3 s if Pl > ALUEB(Q) store Pl in P3
FLOAT P1,,.P3 3 float the single precision P1 to
a 48-hit floating point P3
DFLOAT Pi,, P3 35 float the double precision Pt to
a 48-bit floating point P3
2) P1 operated on by P2 to be deposited in P3,
ADD P1,P2,P3 sum of Pl and P2 stored in P3
MUL P1,P2,P3 product of P1 and P2 gtored in P3
AND P1,P2,P3 Logical AND of P! and P2 stored in P3
MOVBIT P1,P2,P3 hitset P3 from Pl under mask P2
DSUB P1l,P2,P3 Double precision Pl subtract double
precision P2 stored in double precision P3
FMAX P1,P2,P3 3 Floating point maximum of Pl and n2
stored in P3
3) Cenditional branch instructions

wi @i ad ad g

EQB P1,P2,P2 $ if P1=P2 then goto P3 else do next
instr,

GTB Pl1,P2,P3 $ if P1>P2 then goto P32 else do next
instyr,

DLTB P1,P2,P3 .3 if double precision Pl (P2 then go to
P3 else do next instr,
FLTB P1,P2,P3 3 if floating point P1)>P2 then go to
P33 else do next instr,
4) Control instructions

PUSHS ,,P3 3 procedure entry, stack return address

ORI ,, 3 procedure exit to stacked return
address

JUMP | B3 s unconditional GOTOC

5) I/0 instructions,

MOVE P1,,XRST 3 reset X dynam, vectors as a
func tion of argument, P11,

MOVE P11, ,XCLK 3 incr., X dynam, vec, as a
function of the argument, Pl,

MOVE P1,,YCLX 3 advance Y dynam. vec, as a
function of the argument, Pl,

A

GPP jinstruction set

BMIO P1,P2,LINE 3§ read or write a 256 word line
of the BM am a function ot Pl and P2,

BMIO P1,P2,GETII 5 Fetch a neighborhood into the It
line bhuffer as a function of Pl and P2.

MOVE “PBM2,,P3 ; read BM2 datum into P3

MOVE P1,,”“PBM2 3 write Pl inta BEM2

MQOVE GIN, ,P3 5 read word from PDP8e channel

MOVE P1,,GO0UT 3 write word to PDP8e channel

MOVE TIN,,P3 $ read GPP terminal input channel

Among the I/0 instructions are whole 1line, local

ne ighborhood, and single pixel transfers from/tc the buffer
memories, The latter type of instruction allows random access

of the buffer memories, The line transfer allows entire
horizontal or vertical 256 (16-bit) pixel 1lines to be
trans fered, The local neighborhood +transfers allow randomn

accessing of neighborhoode within the buffer memories in one
instruc tion,

A GPP instruction cycle consists of fetching an
instruction from the VM, incrementing the PC instruction
program counter, and then executing that instruction, The
contents of +the PC is the index of the next instruction to be
executed in the PM, The instruction is executed by fetching
the two input operands, performing the operation, and then
Storing the result in the output operand if so directed,

A.,1 Instruction groups

- R R AR SR S e wm e e W

In order to obtain maximum speed, in-line microprograms
are used to control all instructions, This requires redundant
addressing of arguments but results in considerably greater
speed that using microprogram subroutines, Therefore all
instructions are divided 1Into groups that have similar
characteristics required by the microprogram control structure.
Each of the instruction groups are divided into subsections in
order to explain their properties,

A,1,1 Group subsections.

Under the subsection, "NOTATION", is a representation
of what registers are filled with what arguments and where +the
resulte are sStored if any. A text description is presented
under the subsection, "DESCRIPTION", The subsection, "GROUP
ADDRESS MODE TABLE", presents the different types of program
memory P field addressing allowed, If the P field has no prefix
then normal addressing is assumed, Normal addressing is where
the contants of the progran memory P field is the address of
the argument used in the instruction,

If the P field has a # as a prefix then immediate
eddreasing is used, Immediate addressing is where the contants
of the program memory P field is used as the argument by the

A.l

&S

66 G¥P jinstruction =et

instruction, If the P field has a ° as a prefix then indirect
addressing is used. Indirect addressing is where the contants
of the P field is used as the address of the address for the
argument used by the instruction.

Whenever +the P field 1s used as the branch argument
then normal addressing is used to denote that the contents of
the program memory data will be used as the data losded into
the program counter, PC, Alsc whenever the P fileld is used as
the branch argument then indirect addressing is used to denote
thet the contants of the program memory data will be used as
the address of +the data to be stored in the program counter,
PC.

The table also contains the address of the mapping
memory Llocation which contains the starting address of the
microprogram which will execute the instruction using the

respective addressing mode,

The third column in this table gives the number of
microcycles to complete only the addressing part of the
instruction, The total number of wmicreocycles used in the
ingtruction is this number added to the number of cyecles used
by the ALU (if wused) found under "ALU cycles" in the

"OPERATIONS" subsection.

The last column is the label in the microprogram source
file used to execute the instruction. The next subsection 1is
called the "OPERATICNS". Here the progranm memory OPR field is
specified. This opcode plus the specified P field make up the
ingtruction which is assembled by the GPP assembler, GPPASM,
Example instructions, if necessary for further clarification,
may be found under the "INSTRUCTION EXAMPLES" in the group
subsection.

GPP instruction set

A.,1.2 Notation glossary {for instruction groups

The following is a glossary of the notation used in the
instruction groups,
1) P3 (== Pl +P2 denotes the data represented by Pl and P2 added
together and deposited into the address represented by P32,
2) , denotes parallel operations,
3) 5 denotes sequential operations,
4) # prefix to the P fields denotes immediate addressing.,
5) No prefix to the P fields denotes normal addressing,
6) © prefix to the P fields denotes indirect addressing,
7) .EQ. denotes that 22 conplement arithmetic 15 used. All
these compare functions will use 28 complement arithmetic.
8) * denotes 2s conplement addtion,
9) -~ denotes 28 complement subtraction,
10) # denotes 2s complement multiplication.
11) / denotes 28 complement divisian.
12) AND denotes logical bit AND., All boolean functions are used
bit by bit,
13) OR denotes logical hit OR,
14) XOR denotes logical bit EXCLUSIVE OR (also called +the RING
SUM or SUM MODULO=2), .
15) EQV denoctes logical bit EQUIVALENCE {(also called +the
BICONDITIONAL or DOT MCDULO=2, _
16) NOP denotes logical bit N-OR (also called NEITHER-NOR),
17) NAND denctes logical bit N-AND (also called the JOINT-DENIAL
or SHEFFER-STROKE. .
18) IMPLIES denotes logical »it IMPLIES (alsoc called +the
CONDITIONAL), .
19) BUTNOT denotes logical bit BUT=NCT (also called the INRIBIT
AND),
20) P3{ 0:7] denotes the argument P3 bit O through 7.
21) Bit O is always the left most and is the most significant
bit in a word.
22) Pj! denotes the data addressed by {Pj+t),
23) Pj!! denotes the data addressed by (P j*2),
24) (Pj! & PJ) denotes a double precision (32=bit) word where
Pj! is the most significant 16-hit word.
25) (Pj & Pj! & Pj!!) represents a floating peint number,
26) €[{ALUA(0)] denotes "function of ALUACO)".
27) MM Adr denotes mapping memory address,
28) M Cyc denctes microprogram cycles.
29) MP Label denote microprogram starting address label,
30) ALU code denotes +the code number of the ALU used by the
instruction. This number becomes the OPR[9:15] tield.
31) ALU cycles denotes the number of microprogram cycles used to
perform the ALU function.
32) In general, all cperation prefixes of B, D, and F refer to
byte, double, and floating precision instructions respectively.
33) in general, all operation suffixes of B refer to branch
instructions. An exceptian is the operations with suffix SB
which refers to getting the P2 operator for ALUB[i].
34) ANl gymbols in upper case are either instructions or
input/output space addresses,

67

68

A,2 Summary of GPP instructions

LR L IR Y TR R R L L R L RN

Byte Iinstructions:

BMOVES
BMOVPL
BSTHSA

BAND
BGET1
BSTLSB

G®P

BOR
BGET2
BSTREB

Sinele precision instructions:

MOVE

ADD
AND
BUTNOT
REV

NE

ADDSA
ANDSA
BUTNSA
MEKYXSA

ADDSH
ANDSB
BUTNSB
MKYXSB

INCB
NEB

MOVER

sUB

OR

SHF TR
MAKXYA
BMIO

SUESA
ORSA
SFTIRSA
GTISA

SUBSH
ORSB
SFTR 8B
GTEB

PECHE

Double precision:

DADD
DLT
DXOR
DINC
DASR
DINCE
DNEB

Floating point:
FADD
FGT
FMIN

FINCB
FNEB

Specials:

JUMP

DsUB
DGE
DEQV
DDEC
DASL
DDECH

FSUB
FLT
FLOAT

FDECE

PUSHJ

MUL
XOR
SHFTL
GY
INC

MULEA

XORSA
SFTILSA
LTSA

NULSB
XORSEH
EFPTLSB
LTSE

GTB

DMUL
DLE
TNOR
DSWAP
DROTR
DGIB

FMUL
FGE
DFLOAT

PFGTH

roPrJ

instruction set

BREV BMOVLI BMOVHH
BPUT BEETL BSETH
DIV MAX MIN
EOV NOR NAND
ASR ASL ROTR
LT GE LE

DEC MINUS BSWAP

DIVSA MAXSA MINSA
EQV SA NORSA NANDSA
ASREA ASLSA ROTRSA
GESA LESA EQSA

DIVSE MAXSE MINSB
EQV SR NORSE NANDSBH
ASRSH ASLSE ROTRSH

GEEB LEER EQSH
LTE GER LEB
DDIV DMAX DMIN
DEQ DNE DAND
DNAND DINPILTI DBUTNO
DCOMP DREV DSHFTR
DROTL

DLTB DGEB DLEB
FDIV FMINUS FINC
FLE FEQ FNE
FIX DFIX

FLIB FGER FLER
APPLY

A.2

BMOVLHY
BSTLSA

MOVRIT
IMPLIESR
ROTL

EQ

MVEBTSA
IMPLSA
ROTLSA
NESA

MVBTSB
IMPLSH
BOTLSB
NESB

EQB

DGT
DOR
DM INUS
DSHFTL

DEQB

FDEC
FMAY

FEQB

GPP instruction set

A.2.1 GPP instruction graoup %1

NOTATION: =~ P3 (== P1: - L .
DESCRIPTION: Data in Pl or addressed by Pl is moved to lTocation
addrezged by P3. Pl and P3 may address all of the data memory
space.

GROUP %1 ADDRESS MODE 1TABLE:

Address Mode MM Adr M Cyc MP Label

#P1, ,P3 ?: «Pe G%1B1

#P1, ,°P3 1P aPa G%1 B2

©},,P3 P «Pe G%1 B3

P1,,7P3 17 «Pe G%1 B4

‘P1,,P3 27 «?e G%1 85

“P1,,’P3 7P «?e G%1B6

OPERATIONS

MOVE ALU code none ALU none ALU cycles none
- P3 (== P1;

INSTRUCTICN EXAMPLES:

MOVE arg,,123
The data in location arg is stored intoc the local neighbhorhood
(pixel 3) of the triple line buffer, I2,

MOVE arg,,GOUT

The data in 1location arg 1s deposited into the GOUT reglister,
The GNOUT flag is set which signals the PDP8e that fresh data is
in the GOUT register. When the PDPBe reads the GOUT recsiater the
GOUT flag will be cleared.

MOVE arg,,GOUTS

The data in location arg is deposlited into the GOUT register,
The GOUT flag is set which signals the PDPBe that fresh data is
in the GOUT register. The GPP then stalls until the PDP8e reads
the GOUT register,

MOVE GIN, ,data
Data from +the GIN reglster is deposited into the location
addressed by data,.

MOVE GINS,,data

If the PDP8e has not loaded the GIN register aince +the last
addressed GIN or GINS then the GPP will stall., When the PDPae
does load the GIN register, the data will ke deposited into the
location addressed by data.

MOVE data,, XCLK

The data addressed by the data is deposited into the XCLEK
register, The specified action as a function of the X LK
register is executed and the GPP continues,

A.2

&9

70 GPP instruction set

MOVE data, ,9ALT

The data addressed hy the data is deposited into the WALT
regiater, The program execution then halts and the PDPBe |is
signaled by the WALT flip-flop being set,

GPP instruction set

A.2.2 GPP instruction group %2

NOTATION: P3 (== p13
Condition (== £{P3 addressed location];
If condition 1is true

then PC (== P2

else continues
NDESCRIPTION: Data in Pl or addressed by Pl is moved to locatl on
addressed by P32, Pl and P3 may address all of the data memory
space, The data memory location has the option ot driving the
conditional bus, CB. If the CB ie true then +the PC is loaded
with data from or addressed hy P2,

GROUP %2 ADDRESS MODE TABLE:

Atdress Vode MM Adr M Cyc MP Lakel
¥P1, P2, P3 19 «Pe G%2B1
#P1,P2, “P3 =P 7 G%2B2
#Pt, “P2,P3 1P «7a G%2R3
#P1,°P2,°P3 317 aPe G%2Ba
Pi1,P2,P3 1?3 +Pe G%2 B85
P1,P2,7P3 i «7e G%2R6
P1,”P2,P3 2P a?Pe GR2B7
Pl1, P2, P3 P P G%2E8
“P1,P2,P3 P P G%2B9
‘P1,P2,“P3 P 2P e G%2EB10
‘P11, ’P2,P3 K «Pe G%2EB11
“P1, ‘P2, P3 1P «?e G%2B12
OPERATIONS:

MOVEB ALU code none ALU none ALY cycles none

- - P3 (== P1; then if condition is true
then PC (== P2
else continue;

INSTRUCTION EXAMPLES:

MOVEB #0,branchaddress,GOUTH

If the GOUT flag is still set (PDPS8e has not yet read the GOUT
reglaster), the next GPP instruction will be executed from
program address branchaddress, If +the flag was cleared, the
branch will not occure. The argment #0 is ignored.

MOVEB #0,branchaddress,GIN

It the GIN register has not been loaded by the PIPBe since the
last addressed GIN or GINS was used then the next GPP
instruction will be executed from program address bhranchaddress,
If the GIN register is full of fresh data then the tranch will
not occure, The argment, #0, is not used.

MOVEB pl, branchaddress ,XCLKB

The data addressed by pl is deposited into the XCLK register.

The XCLK function takes place as specified by the XCLK register,

If the condition in the function is true then the GPP prog ram
A, 2

71

72 GPF?P inatruction set

will branch to branchaddress,

GPP instruction set

As2.3 GPP instruction group %3

NOTATION: ALUA(O) {(==P15 ALUB(0)<{==P2; ALUB(1) (==p3;:
P3 (== [ALUA(O), ALUB(O), ALUB(1)]: :
where the function is one of the specified ALUs,

DESCRIPTI ON: Data from or addressed" by Pt is deposited in
ALUA(O), Data from or addressed"” by P2 is deposited in ALUB(O).
Data from or addressed by P3 is deposited in the ALUB{(1).
ALUACO), ALUB(O0) and ALUB(1) are the inputs +to the selected
arithmetic unit of the GPP called foer as a function of the
instruction. The ocutput of the ALU is deposited in the data
register addressed by P3,

GROUP %3 ADDRESS MODE TABLE:

Address Mode MM Adr M Cyc MP Label
#P1,#P2,P3 :?1 «7Pe G%3PB1
#¥P1,#P2,°P3 P2 «?e G%3B2
#P1,P2,P3 P «Pe G%3E3
#P1,P2, “P3 17 a?e G%3E4
#¥P1,” P2,P3 17 7 G%3R5
¥P1, P2, “P3 P a7 G%3B6
P1,#P2,P3 2?7 «Pe G%387
P1,#P2, P3 7P «Pe G%3 B8
P1,P2,P3 27 «?e G%3B9
P1,P2,P3, MEDF =P «?e G%3B10
P1,P2, "P3 - a?a G%3B11
Pl1,P2,”P3, MEDF 1P «Pa G%3E12
P1, P2, P3 37 «Pe G%3B13
P1, P2, “P3 1 ?: «Pe G%3FH14
‘pP1,#P2,P3 1P «?e G%3B15
“Pi,#P2, P3 P P G%3B16
‘P11, P2,P3 P eTe G%38B17
“P1,P2,”’P3 1?: o P e G%3B18
“Pl, “P2,P3 HE «Pe G%3P19
‘P1, “P2,”P3 tP ePa G%3B20
OPERATIONS:
BMOVES ALU code #7? ALU PMOVES ALU cycles ?#
————— If ((Pt .,AND.(P2/256)),NE.0) :

Then P3 (== (255,AND,P2),0R.P3

Else P3 (== p3;
BA ND ALU code #7 ALU BAND ALU cycles ?¥
-——— P3[0:7] (== P3{0:7], P3[8:15] (=~
rif8:15].AND.P2[8:15];
BOR ALU code #7? ALU BOR ALU cycles 7%
- P3[0:7) (== P3[0:7], P3[8:15] <== pP1[8:15].0R.P2[8:151];

INSTRUCTION EXAMPLES:

BMCVES “argl,arg?,result
A.2

73

74 ‘ GPP instruction met

The data Indirectly addressed by the argument, argl, is bit
logically ANDed with the addressed argument, arg2, shifted right
(with =zero Z2ill) 8 hits. It this result is not equal to zZero
then the addressed location, result, is bit logically ORed with
the argument, arg2{8:15] only. If the previous result is equal
to zero then the addressed location, result, is unchanged. This
is a bit~smet operation for copying 8-bit PAX type image planes,

CAUTION: ALU A and B registers may not be used as P3 arguments.
Check microcode author after microprograms are written.

A.2

Ae2+.4 GPP instruction group %4

NOTATICN

DESCRIPT
ALUA(O) .
ALUR(1),
arithmet

H ALUACO

TON: Data

ALUA(O)
ic unit of

instruction, The
register addressed

GPP instruction set

J{==P1; ALUB(1){(==p3;
P3 (== [ALUA(O), ALUB(O), ALUE(1)]:
where the function is one of the gpecified ALUs,

from or
Data from or addressed
and ALUB(1)

addressed"
by P3 1is de
are the inputs to the

the GPP called

output of

by P3.

GROUP %4 ADDRESS MODNE TAELE:

Address

#P1, ,P3
#P1, ,”°P3
P1,,P3
P1,, “P3
‘Pt,,o3
“P1,, P3

QPERATIO

BRFV

BMOVLH

BMOVHL

BGETI1

BGET2

BPUT

Mode

NS:

ALU
P3[0:7] (==

MM Adr

ab a9 3 se 20 W2

LU TR T I Y R ¥ T
IR EEE BEL BE BN

code #7
P3f0 :7]

for as a h

M Cyc MP Label

- - - e - - -

.‘P.
aPe
o7
.?'
-?.
«Pe

ALU

G%4EH]
G%4B2
G%4E3
G%4 B4
G %4 B5
G%4 B6

BREV

P3[8:15 (== bit reverse of Pi[8:15];
{for use in FFT).

ALU
p3[0:7] (==

ALU
P3[0:7] (==

ALU
PE[0:7] (==

ALU
P3[(0:7] (==

ALY
It GBA1{17)

ALU
If GBA2T17]

ALU

code #7
P3[o:7],

code #7?
P1l0:7],

code #7
P3[0:7],

code #7?
ri[{8:158],

code #7

ALU EWOVLL
P3[(8:15)] ¢== pP1{8:15];

ALU
P3[8:

ALU

EMOVEH
15] ¢== p»3[8:

BEMOVLH

unction of
the ALU is deposited in

ALU cycles

ALU cycles

ALU cycles
15];

ALTU cycles

p3{8:15] ¢== P1{o0:71;

ALU

BMOVHL

ALU cyeles

P3[8:15] (== P3[8:15];

ALU

= 0 then BMOVHL

code #7

ALU

= 0 then HMOVHL

code #7

ALU

If PBALI[17] = 0 then BMOVLEH

INSTRUCTION EXAMPLES:

BGETL “GBA1I,,resultantbyte
The get byte auto address register,

BGET1
else BMOVLL;

BGET?2
else BMOVLL:

BPUT
else BMOVLL:

GBAl, 1is use
A. 2

ALU cycles
ALU cycles

ALU cycles

PH

H

PH

.

4.

PH

K4

PH#

by Pl 18 deposited in
posited in

the

selected

the

the data

d as the address

75

76 GPP instruction set

of the argument for Pl, This 17=-bit autc address register will
be incremented atter the instruction is completed, Only the
high order 16-bite are used for the address, If bit t7 of the
GBAl register is 0 then the BMOVHL ALU 18 used otherwisme +the
BYOVLL ALU is umed to create the argument deposited in da ta
memory space location resultantbyte, This instruction is used
to suck hytes from two hytes per word packed data lists, The
next time this instruction is used the next packed byte will be
sucked., &84

BGET1 “GBALl,, resultantbyte

The get byte auto address register, GBAl, ig used a8 the addreas
of the argunment for Pi, This 17-bit auto address register will
not he incremented after it is wused as the address for the
argunent, Only the high order 16-hits are used for the address,
If bit 17 of the GBAl regisgster is 0 then the BMOVHAL ALU is used
otherwlse the BMOVLL ALU 1s used +to create the argument
deposited in data memory space location resultantbyte,

CAUTION: ALU A and B reglsters may not be used as P3 arguments.
Check microcode author atter microprograms are written.

A. 2

GPP instruction set

A.2.5 GPP Iinstruction group %S

D R R A W D S e e e R D n EE D W A N W W Wk Em W

NNTATION: ALUA(C)<{==P1; ALUB(O){(==p2;
P3 (== f[ALUACO}, ALUB(0O)];
where the function is one of the specified ALUs,
XARO 1s loaded as a function of the ALU,

DESCRIPTION: Data from or addressed by Pl is deposi ted in
ALUA(O). Date from or addressed"” by P2 is deposited in ALUB(O),
ALUA(O) and ALUB(0) are the inputs toc the selected arithmetic
unit of the GPP called for as a function of the instruction. The
output of the ALU is deposited in the data register addressed by
P3. The XAROQO register ig loaded as a function of the ALV,

GROUP %5 ADPDRESS MODE TAEBLE:

Address Mode MM Adr M Cyc MP Label

#P1,#P2,P3 P «?. G%SB1

#P1,#P2,°P3 17 «?e G%SE2

#P1, P2, P3 17 «Pe G%5B3

#P1, P2, “P3 P «Pe G%SB4

#Pi, "P2,P3 =P «?e G%SBS

#P1, ‘P2, P3 1P a7 G%5B6

P1,#P2,P3 P ePe G%SE7

Pl,#P2, P3 Hy P G%SES8

P1,P2,P3 H'CH «?e GASBS

P1,P2,P3, MEDF P «?e G%SEBE10

P1,P2,“P3 7 aTa G%S5E11

P1,P2,”“P3, MEDF P ePe G%5R12

PL, P2, P3 Y + P G%SH13

P1,7P2,”P3 2P P G¥%¥SR14

‘Pi,#P2,P3 19 «Pe G%S5B15

‘Pl,4P2,°P3 P «? e GAS P16

“P1, P2, P3 1P 2P G%SE17

“P1,P2, “P3 1P «?e G%5H1 8

“P1, “P2,P3 27 «Pe G%SB19

“P1, ‘P2,”P3 =7 «Pe GXSEB20

OPFRATIONS:

ADD ALY code #7? ALU ADD ALU cycles P#
------ P3 (== P1+P2, XARO (== overflow;

SUB ALU code #7 ALU sUB ALU cycles 7%
mmemwe= P33 (== P1=P2, XARO (== underflow;

MUL ALU code #¥7 ALU MUL ALU cycles 7P#
wu=—== P33 (== PL#P2, XARO (== hi order of the 32 bit product:
DIV ALYT code #7 ALU DIV ALU cycles 7?#

m===ws P3 (== PI/P2, XARO {*= remainder;

MA X ALU code #7 ALU MAX ALU cycles 7P#
------ P3 (== maximum of P1 and P2, XARO (== 0
A.2

77

78

MIN

MOVBIT

AND

ORrR

IMPLIS

BUTNOT

SHFTR

SYFTL

ASR

ASL

ROTR

ROTL

GPP instruction set

ALU code #7%7 ALU MIN ALU cycles
P3 (== minimum of Pl and P2, XARO (== 03

ALU code #7 ALU MOVEBI1 ALU cycles
If£ ((PL.AND.(P2/25€)),EQ.0)

then P3 (== 0

else P3 (== (255,AND.P2);
XARO (== 03

ALU code #7 ALU AND ALU cycles
3 (== bit AND of Pl and P2, XARO (== 0;

ALU code #7? ALU OR ALU cycles
P3 (== pit OR of Pl and P2, XARO (== 03

ALU code #7 ALU XOR ALU cycles
P3 {== bit XOR of Pl and P2, XARQ (== (3

ALU code #7 ALU EQV ALU cycles
P3 (== bit EQV of Pl and P2, XARQ (== Q:

ALU code #7 ALU NOR ALY cycles
B3 (== pit NCR at Pl and P2, XARO (== 03

ALU code #7 ALU NAND ALU cycles
P3 (== Hit NAND of Pl and P2, XARO (== 03

ALU code #7? ALU IMPLIES ALU cycles
P3 (== bit IMPLIES of Pl and P2, YXARO (== (i

ALU code #7 ALU BUTINOT ALU cycles
P3 (== bit BUTNCT of Pi¥ and P2, XAROQ (== 03

ALU code #7 ALU SHRIR ALU cycles
P3 (== pightshift P1 by P2 Mod 16 bits O £111,
XARO (== 03

ALU code #7 ALU SBFIL ALU cycles
P3 (== leftshift Pl by P2 Mod 16 hits 0O il
XARO (== 03

ALU code #7 ALU ASR ALU cycles
P3 (== rightshift Pl by P2 Mod 16 bits bhit 0O £il1l,
XARO (== 03

ALU code #7 ALU ASL ALU cycles
P3 (== leftshitt Pl by P2 Mod 16 bits bit 15 £il1l,
XARC (== 03

ALT code #7 ALY ROTR ALU cycles
P3 (== rotate right Pl Ly P2 Mod 16 bits,
XAROD (== 03

ALU code #7 ALU ROTL ALU cycles
P3 (== rotate left P1 by P2 Mad 16 bits,
XARO (== 03

A.2

PH

4

P8

PH#

H

¥

¥

PH#

PH

H

PH

?H

PH

TH

PH#

P#

GPP instruction set

REV ALU code #7 ALU REV ALU cycles 7#
—===w=~ B3 (== bit reverse of P1, XARO (== 03
{for usge in FFT).

MAKXYA ALU code #7? ALU MAEKYXADDR ALU cycles 7#
----- ~ P3[0:7] <== P2[8:15], ©P3[e:15] (== Pi{8:15],
XARO (== 03

BSETL ALV code #7 ALU BSETL ALY cycles 7#
==-=«- P3[0:7] <== Ptlo:7]), P3[8:15] <== p2[{8:15],
XARO (== 0;

PSETH ALU code %7 ALU BSETH ALU cycles P#
------ P3l8:15] (== P1{8:15], P3{0:7] <= P2[0:7],
XARO (== 03

GT ALU code #7 ALU GT ALU cycles ?P#
mmmawe T4 P .GT.,P2 then P3 (== Pi el@e cantinues;

LT ALU code #7 ALU LT ALU cycles ?#
——===« JIf P1,LT.,P2 then P3 (== P} else continue;

GF ALU code #7 ALU GE ALU cycles 7#
mmume= T¥% Pl,.GE.P2 then P3 (== Pp1 else continues

LE ALUO code #7? ALU LE ALU cycles ?P#
cmw=w= TIf P1,LE.P2 then P3 (== Pi else continues

EQ ALY code #7 ALU EQ ALU cycles 2?#
==e=w= Jf P1.EQ.P2 then P3 (== P1 else continues

NE ALY code #°7? ALU NE ALU cycles ?#
=aw=w=- I+ P1.NE,P2 then P3 (== Ppi else continue?

BMIO g ALU code #7 ALU AND ALU cycles ?7#
=wwvwae= P3 (= bit AND of P1 and P2, XARO (== 03

Note: BM 1/0 execution registers, LINF, GETI1, GETIZ2, and GETI3
are used as P3, The AND function is then ignored and the BM 1/0
function 1is executed. A description of the BM I/0 execution
registers is found in section 4 under "Data Memory Modules".

INSTRUCTION EXAMPLES:

ADD 117,127,137
Data from the local neighborhoods of Il and I2 is added together
and deposited in the I3 local neighhorhood.,

ADD I15,125,G0U0TS

Data from the local neighhorhoods of Il and I2 is added together
and deposited in the GOUT register. The PDPRe must recelve the
data before the GPP continues with the next instruction.,

BMIO argl arg2,LINE

The data from the addressed arguments argl and arg?2, is

deposited into the ALUA(O) and ALUB(0) registeras respectively,

The data memory sapace register, LINE, which ia cne of the BM I/0

execution registers, is then addressed and the EM input output
: A, 2

79

80 GPP instruction set

transfer takes place as a result of the ALU reglseters, The GPP
program will not procede until the I/JO is complete., A
description of the BM I/0 execution registers is found in
section 4 under "Data Memory Modules".

AND GINS,arg2, FALT

The GPP stalls until data is loaded from the PDP8e into the GIN
register, The GIN register and the argument, arg2, are then bit
AND together and deposited inte the HALT register. The GPP
instructions stop and the PDPBe is signaled that the halt flip
flop is off, Only the PDP8e can restart the GPP at this point.

GPP instruction set

As24.6 GPP instruction group %6

NOTATION: ALUA(O Y {(==pP13
P3 (== £[ALUA(O), ALUB(O0)];
where the function is one of the specified ALUs,
XARO is loaded as a function of the ALU,

DESCRIPTION: Date from or addressed by Pl ia deposited in
ALUA(O), ALUA(O) and ALUB(0O) are +the inputs to the selected
logic wunit called for by the instruction, The output of the
logic unit is deposited in the data register addressed by P3,
The XARQ register is loaded as a function of the ALU., Note that
the loading of the ALU registers is not symmetric and that only
ALUA(O) is loaded,

GROUP %6 ADDRESS MODE TABLE:

Address Mode MM Adr M Cyc MP Label

#¥P1,P3 :P: P G%& R1

#P1, “P3 P +Pa GAG B2

P1,P3 2P «?e G%6R3

P1,°P3 17 «Pe G%&ER4

“P1,P3 2?1 «?e G%6RS

“Pl, “P3 1?1 «Pe G%6B6

OPERATIONS:

INC ALU code #7? ALU INC ALU cycles 7#

=-==== P3 (== Ple1, XARO (== 03

DEC ALU code #? ALU DEC ALU cycles ?#
mw-w-= P3 (== Pl=1, YARO (== 03
MINUS ALU code #7? ALU MINUS ALU cycles ?#

T 3 (== -P1, XARO {== 03

COMP ALU code #7 ALU CoOmMP ALU cycles 7#
—====~ P23 (== bit complement of P1, XARO (== 03

BSWAP ALU code #7 ALU BSWAP ALU cycles 7#
====== P33 (== hyte swap of Pi, XARO {(== 03

ADDSA ALU code #7 ALU ADY ALU cycles 7?#
——==w= P3 (== PI+ALUB(O), XARO (== gverflow}

SUBSA ALU code #7 ALU SUB ALY cycles 7P#
----- - P3 (== P1-ALUB(O), XARO (== underflow;

MULSA ALU code #7 ALU MUL ALU cycles 7?#
vem==== P33 (== P1#ALUB(O0), XARO <{== hi{ order of the 32 bit

product;

DIVSA ALY code #7 ALU DIV ALU cycles 7#
====== P3 (== PI/ALUB(0), XARO <(== remainder;

A.z

81

82

MA XSA

MINSA

MVBTSA

ANDSA

ORSA

YORSA

EQVSA

NORSA

NANDSA

IMPLSA

BTNTSA

SFTRSA

SFTLSA

ASRSA

£il,

ASLSA

f£ill,

RCTRSA

GPP instruction set

ALU code #7? ALU MAX ALU cycles ?#
P3 (== maximum of P1 and ALUB(Q), XARQO (== 03

ALU code #7 ALU MIN ALU cycles 7#
P3 {(*= minimum of Pl and ALUB(0), XARO (== 03

ALU code #7 ALU MOVRIT ALU cycles 7#
If ((PL.AND,(ALUB(0)/256)).EQ.0}

then P3 (==

else P3 (== 255, AWD, ALUB(0);
XARO (== 0%

ALY code #7 ALU AND ALYV cycles 7P#
P3 (== bit AND of Pl and ALUB{(O), XARO (== 03

ALU code #7 ALU OR ALY cycles 7#
P3 (== bit OR ot Pl and ALUB(O0), XARO (== 03

ALU code #¥? ALU XOR ALU cycles ?#
P3 (== bit XOR ot Pl and ALUB(O0), XARO (== Q3

ALU code #7 ALU EQV ALU cycles 7P#
P3 (== hit EQV of P1 and ALURB(0), XARQ (== (3

ALU code #*% ALU NOR ALU cycles 7T#
P3 (== hit NOR of P1 and ALUB(O), XARO (== (3

ALU code #7 ALY NAND ALU cycles 7?#
P3 (== bit NAND of P1 and ALUB(0), XARO (== 03

ALU code #7 ALU IMPLIES ALU cycles ?7#
P3 (== bit IMPLIES of Pl and ALUB(O), XARO (=> 0;

ALU code #7 ALY BUTNOT ALU cycles 7P#
P3 (== bit BUTINOT of P1 and ALUB(O0), XARO (== 03

ALU code #9 ALU SHFIR ALU cycles 7#
P3 (== right-shift P1 by ALUB(O) Mod 16 bhits 0 f£iltl,
XARO (== 03

ALY code #7? ALU SHFTL ALU cycles 7%
P3 {(=* left-ahift P1 by ALUB(O0) Mod 16 hits 0 111,
XARO (== 03

'ALU code #? ALU ASR ALU cycles ?#
P3 (== pight-shift P1 by ALUB(O) Mod 16 bits; bit 0

XARO <== 03

ALU code #7 ALU ASL ALU cycles 7#
P3 (== left-shift P1 by ALUB(O) Mad 16 bits; bit 15

XARO (== 03

ALU code #7 ALU ROTR ALU cycles 7¥
P3 (== rotate right Pl by ALUB{O) Nod 16 bits,
XARO <(*= 03
AL 2

ROTL SA

MEKYXSA

BSTLSA

BSTHSA

GTSA

LT SA

GESA

LESA

EQSA

NE SA

P3

P3[0:7] (==

ALU code

GPP instruction set

#7P

ALU ROTL

ALU cycles

{== rotate left Pl by ALUB(O) Mod 16 bits,
XARO (== (3

ALU code

XARO (== 03

P3[0:7] (==

ALU code

XARO (== 03

r3{8:15]

ALU code

XARO (== 03

It

It

It

L8 o

It

It

ALU code

P1 ,GT.ALUB(0)

ALY code

P1.LT.ALUB(O)

ALU code
Pl .GE.ALUB(O)
ALU code
P1,LE,ALUB(O0)

ALU code
P1,.,EQ.,ALUB(0}

ALU code
Pl ,NE,ALUB(0)

INSTRUCTION EXAMPLES:

N

LN

Pifo:71],

#7

(== ?1{B:15],

#7?
then

#7?
then

#7
then
&P
then

P
then

P
then

ALUB(0) 8:15],

P3

P3

P3

P3

P3

P3

ALU MAKYXADDR
r3[8:15] ¢~ Pifs 5],

ALU BSETL

ALU BSETH
v3{0:7] <== ALUB(O0 }oO0:71],

ALU GT
(== Py

ALU LT
(== P}

ALU GE
{== P1
ALU 1E
{== P1

ALU EQ
(== P

ALU NE
(== P1

A. 2

else

elge

else

else

else

elae

ALU cycles

ALU cycles

P3[(8:15] <¢== ALUB(O)B:15],

ALU cycles

ALU cycles
cantinue;

ALU cycles
continues;

ALU cycles
cantinue}

ALU cycles
continues

ALU cycles
continue;

ALU cycles
continue;

¥d.d

?#

?H

H

PH

PH

#

H

H

83

84 " GPP instruction met

A,2.7 GPP instruction group %7

NOTATION: ALUB(0O){==P2;
P3 (== f[ALUACO), ALUB(0)];
where the function is one of the specified ALUs=s,
XARO 18 loaded as a function of the ALU, '

DESCRIPTION: DPata from or addressed bhy P2 isa deposl ted in
ALUB(O0). ALUA(O) and ALUB(O) are the inputs to the selec ted
logic wunit called for by the irnstructicon. The output of the
logic unit is deposited in the data register addressed by P33,
The XARO register is loaded as a function of the ALU, Note that
the loading of the ALU registers is8 not aymmetric and that only
ALUB(0) 1is' loaded. These instructions are the arithmetic list
processing instructions and take the form of "operator “ST”ore™.
It is useful when a previous result can be left in the ALUA(O),.

GROUP %7 ADDRESS NODE TABLE:

Address Mode MM Adr M Cyc MP Label

#P2,P3 1?1 «?e G%7BE1

#P2, “P3 27 «Pa GX7E2

p2,P3 P oPe G%7B3

F2,”P3 :?: - G%7H4

‘P2, P3 P «Pe G%7ES

‘P2, ‘P33 :?: S G%X7B6

OPERATIONS:

ADDSB ALU code #7 ALU ADD ALU cycles ?7#

====== P3 (== ALUA(0)+P2, XARQ (== overflow}

SUBSB g ALU code #7 ALU SUB ALY cycles 7#
m—-=e= P3 (== ALUA(O0)-P2, XARO (== underflow;}

MULSB ALU code #»? ALU NUL ALU cycles 7#

m=eme= P33 (== ALUA(O)*P2, XARO (== hi order of the 32 bit
products

DIVSB ALY code #7 ALU DIV ALU cycles 7#

w=e=w=e P3 (== ALUA(O)/P2, XARO (== remainder;

MA XSB ALU code #7% ALU MAX ALU cycles 7#
w===== P3 (== maximum of ALUA(O) and P2, XARO (== 03

MINSB ALU code #7? ALY MIN ALU cycles 7#
====== P3 (== pninimum of ALUA(O) and P2, XARO (== 03

MVBTSH ALY code #7? ALU MOVEBIT ALU cycles ?P#
=we==== Tf ((ALUACO).AND,(P2/256)),EQ.0)
then P3 (== 0
elge P3 (== 255, ANIL.P2;
XARO (== 03

ANDSB ALU code #7 ALU AND ALU cycles 7P#
A2

ORSB

XORSB

EQVEB

NORSH

IMPLSH

BTNTSE

SFTRSH

SFTLSB

ASTRSH

£fill,

ASLSB

fill,

ROTRSB

ROTLSB

MK YXSH

BSTLSHB

GPP instruction set
P3 (== bit AND of ALUA(D) and P2, XARO (== 0

ALU code #7 ALU OR ALU cycles 7¥
P3 (== bit OR of ALUA(O) and P2, XARQ (== (O3

ALU code #7 ALU XOR ALU cycles 7#
P3 (== bit XOR of ALUA(O) and 92, XARQ (== 03

ALU code »7 ALT EQV ALY cycles 7#
P3 (== bit EQV of ALUA(O) and »2, XARO (== 03

ALU code #7 ALU NOR ALU cycles 7#
P3 (== hit NOR of ALUA(O) and P2, XARO (== 03

ALU code #7 ALU NAND ALU cycles 7?#
P3 (== bit NAND of ALUA(O) and P2, XARO (== 03

ALU code #7 ALU IMPLIES ALU cycles 7#
P3 (== Hit IMPLIES of ALUA(O) and P2, XARO (== 03

ALU code #7 ALU BUTNOT ALU cycles 7P#
P3 (== bit BUTNCOT of ALUA(O) and P2, XARO (== 0j;

ALU code #7? ALU SHFTIR ALU cycles 7#
P3 ("= right-shift ALUA(C) by P2 Mod 1€ bits O fily,
XARO (== 03

ALY code #7 ALU SHFE1L ALU cycles 7#
P3 (== lett~shift ALUA(O) by P2 Mod 16 bits 0 £ill,
XARO (== 03} '

ALU code #7 ALU ASR ALY cycles 7¥%
P3 (== right=-shift ALUA(O) by P2 Mod 16 bite; bit 0

XARO (== 0;

ALU code #7%7 ALU ASIL ALU cycles 7#
P3 (== left-gshift ALUA(O) by P2 Mod 16 bite; bit 15

XARQ (== O3

ALY code #7? ALU ROTR ALY ecvcles P#
P3 (== rotate right ALUA(D) by P2 Mod i€ hits,
XARO (== (3%

ALY code #7 ALY ROTL ALU cycles 7?#
P3 (== rotate left ALUA(O) by P2 Mod 16 bits,
XARO (== 03

ALU code #7 ALU MAKYXADDR ALU cycles 7#
P3[0:7] <== P2[(B:15], P3[8:15] (== ALUA(O)8:15],
XARO <== 03

ALU code #7 ALU BSETL ALU cycles 7#
P3[0:7] <(== ALUACOMo0:7], P3(8:15] ¢(== p2[8:15],
XARO (== 03

A2

85

86

BSTHASH

ALY code

P3[8:15] (== ALUA(O)I[8:15],

XARO (== 03
ALV code
If ALUA(O).GT, 22

ALU code

If ALUA(O),LTI. P2
ALU code
ALUACO).GE, P2
ALU code
ALUA(G) . LE, P2

It
It

ALU code
If ALUA(O),EQ,P2
ALU code

If ALUA(O) ,NE,.P2

INSTRUCTION EXAMPLES:

GPP instruction set

#7?

N
then

7?7
then

#P
then
HP
then

#?
then

¥
then

P3 (--

P3

r3

P33

r3

P3

AL.U BSETH

p3[0:7]

ALU GT
ALUA(O)

ALU LT
{== ALUA(O)

ALU GE

(== ALUA(C)
ALU LE

{== ALUA(OQ)

ALU EQ
{== ALUA(O)

ALU NE
{== ALUA(O)

A.2

ALU cycles 7#¥
(== P2[0:7],

ALU cycles 7P#
else continue;

ALY cyvcles 7#
el ge continue}

ALU cycles 7#
elee continues

ALU cycles ?7#%
else continue?

ALU cycles 7?#
else continues

ALU cycles 7#
else continue;

GPP instruction set

A,2.8 GPP instruction graup %8

NOTATION: ALUA(OQO) {(==P13 P3{==ATUA(O)I®ALUR(O0);
If P3=0 then PC{(==P2 else continue;
(#=0One of GPP gpecified ALU operations,)

DESCRIPTIION: Data from or addressed by Pl is deposited in
ALUACOY, ALUA(O) and ALUB(0) are the inputs to the sBelec ted
togic unit called for ty the instruction. The output of the
logic unit is deposited in the data register addressed by P3, If
P3=0 then move P2 into the PC, The INCB and the DECE are
implemented in order to simplify the implemetation of for and do
loop=.

GROU® %8 ADDRESS MODE TABLE:

Address Mode MM Ader M fyc MP Label
#¥P1,P2,P3 P «e G%B8H1
#P1,P2, “P3 171 «? e G%8R2
#P1, "P2,P3 HIE «?Pe G%8B3
#P1, P2, P3 P o7 G%S R4
P1,P2,P3 P «Te G%8ES
PL,P2, P3 2P e?Pa G%BE6
P1,”P2,P3 1P «Pe G%8R7
P1,7p2,“P3 2?2 «?e G%8 B8
‘p1, P2, P3 :?: «?e G%8B9
‘Pl,P2, “P3 P «Pe G%8B10
“P1, “P2,P3 :?: «Pe G%8B11
‘P1, “P2,°P3 1P «Pe G%8E12
OPERATIONS:

INCB : ALU code #¥7? ALU INC ALU cycles 7P#

m====w P3 (== Pi+1, if P3 = 0 then PC (*= P2 else continue}

DECH ALU code #7 ALU BDEC ALU cycles 7P#
- P3 (== P1=-1, if P3 = 0 then PC (== P2 else continue;

INSTRUCTION EXAMPLES:

Ao 2

a7

88 ' ‘ GPP instruction set

A.2,9 GPP instruction group %9

NOTATION:® ALUA(O)(==P1, ALUB(O){==P2;
Condition <{=** ALUA(O)®ALUB(0);:
If condition is true then PC{(==P3
else continue;

DESCRIPTION: Data from or addressed by Pl isa deposited 1in
ALUAC Q) , Data from or addressed by P2 is deposited in ALUB(0),
ALUA(O) and ALUB(0) are the inputs to the selected arithmetic
unit of the GPP called for as a function of the instruction,.
The output condition of the ALU is then tested. It true, data
from P3 is deposited into the PC,

GROUP %9 ADDRESS MODE TABLE:

Address Mode MM Adr N Cyc MNP Label
#P1,#P2,P3 P «Pe G%9R1
#P1,#P2,°P3 21?1 +Pe G%9B2
#pP1,P2,P3 1P a?e G%9B3
#P1i, P2, “P3 <P +Pe G%9B4
#P1, “P2,P3 7P «?e G%9BS
#P1,°P2,°P3 P «?e G%9B6
Pl ,#P2,P3 R «Pa G%987
P1,#P2, “P3 t? e G%9B8
P1,P2,P3 P «Pa G%9E9
P1,P2,P3, MEDF :7? e?e G%9B10
P1,P2,”P3 P «?e G%9E11
P1,P2,“P3, MEDF =P «Pe G%9B12
P1,’P2,P3 1P «?e G%9B13
P1,”P2, “P3 2P «?Pe G%9EB1 4
“pi,#P2,P3 1?1 aPa G%9E1S
‘Pl,#P2,"P3 17 «Pe G%SB16
‘pP1,P2,P3 P «Pe G%9BL7
“pP1, P2, “P3 =P «a?e G%9B18
‘P11, “P2,P3 1? P G%9E19
‘P1, ‘P2, P3 :?: «Pe G%9B20
OPERATIONS:

GTB ALU code #7 ALT GT ALU cycles ?7#
wmm=== If Pl.GT.P2 then PC {(*= P3 else continues)

LTH ALU code #7 ALU LT ALU cycles 7P#
—————-- If P1,LT,P2 then PC {(*= P3 elme continue;

GEB ALU code #°? ALU GE ALU cycles 7#
——wem=w If Pl,GE.P2 then PC {(=* P3 else continue}

LEB ALU code #7 ALU LE ALY cycles 7#
rmmwmea Jf Pj,LE.,P2 then PC {(*= P3 else continue;

EQB ALU code #7 ALU EQ ALU cycles 7P¥
vmwwwm [¢ PlL,EQ.P2 then PC (== P3 else continues

A.2

GPP

NEBR ALU code #7
mm=mw= If P1,NE.P2 then PC (==

INSTRUCTION EXAMPLES:

inatruction set

ALU NE

ALY cycles ?7#

P3 elme continue;

89

90

GPP instruction set

Aa2,10 GPP jnetruction group %10

NOTATION:

DESCRIPTION

Group 8 by accessing groups of 2 words assocliated with P11,

ALUA(O) <== P1,
ALUB(0) (== P2,

ALUA(1) (== P11!;
ALUB(1) (== P21}
P3 (== [ALUACO), ALUA(1), ALUE(O), ALUB(1)],
P3! (== f[ALUACO), ALUA(1), ALUB(Q), ALUB(1)]};
XARO (== [ALUA(O), ALUA(1), ALUR(O0), ALUB(1)],
XAR1 <== f£[ALUA(O), ALUA(1), ALUB(O), ALUB(1)];
where the function is one of the aspecified ALUs,
s Double

precision arithmetic 1s implemented with

P2,

and P3 effective addresses, The address Pi+l is denoted here as
GROUP %10 ADDRESS MODE TABLE:
Address Mode MM Adr M Cyc WP Label
P1,P2,P3 :?s - G%10B1
P1,P2,”P3 P «? e G%1082
P1,”P2,P3 TP «Pe G%1 0B3
P1,”P2,“P3 P «?e G¥%10EB4
‘P11, P2, P3 172 «Pa G%1 0OB5
‘PL, P2, “P3 1?: «? e G%10B6
‘p1, "P2,P3 7P o G%1 0B7
“P1, “P2,°P3 1P - G%10BS
OPERATIONS:
DADD ALU code #7? ALU TDADD ALU cycles 7#
—eeme= (P31 & P3) (== (P1! & PI)+(P2! & P2),
{XAR1 & XARO) {(=* ogverflow;
DS UB ALU code #7 ALU DSUBE ALU cyclem 7#
wmmm-e (P31 & P3) (== (P1! & P1l)+(P2! & P2),
(¥AR1 2 XAROQ) (== underflow}
DMUL ALU code #7 ALU DMUL ALU cycles 7?#
ewm=—== (P3! & P3) (== lower order (Pl! & P1)I)x(P2! & P2),
(XAR1 & XYARO) (== high order (P1?' & P1)#(P2! & P2);
DDIV ALU code #% ALU DDIV ALU cycles 7?#
& IE IO (P3! & P3)C(==(P1! & P1)/(P2! & P2),
{ XAR1 & XARQO) (== remainder;
INSTRUCTION EXAMPLES:

GPP instruction =set

Aa.2,11 GPP instruction group %11

NOTATION: ALUA(O) <== P1, ALUA(1) (== p11;
ALUB(O) (== P2, ALUB(1) (== p21;

P3 (== £{ ALUACO), ALUA(1), ALUB(O), ALUB(1)],
P31 (== £[ALUA(CO), ALUAC1), ALUB(O), ALUB(1)];
where the function is one of the sapecified ALUs.

DESCRIPTION: Date addressed by Pl and P1! is deposited in

ALUA(O) and ALUA(1). Data addreassed by P2 and P2! is deposited

in ALUB(O) and ALUB(1), ALUA(O), ALUA(1), and ALUB(0), ALUB(1L)
are the inputs to the selected arithmetic unit of the GPP called
for as a function of the instruction, The output of the ALU is
deposited in the data register addressed by P3 and P3!,

GROUP %11 ADDRESS MODE TABLE:

Address Mode MM Adr WM Cyc MP Label
P1,P2,P3 7P e?e G%11B1
P1,P2,“P3 1?: «Pe G¥%11B2
P1,”P2,P3 P «Pe G%1183
P1, P2, P3 1P «Pe G%11 B4
‘P1,Pz2,P3 P «?s G%11EBS5
“p1,pP2, "P3 1Pz P G%11B6
‘p1,’P2,P3 - «Pe G%1187
“p1,“P2,“P3 2P «?e G%1188
OPERATIONS:

DMAYX ALU code #7 ALU DMAX ALU evcles P#

------ (P3! & P3) (== maximum of (P1! & P1) and (P2! & P2);

DMIN ALU code #9? ALTU PMIN ALU cycles 7#
mwm=== {(P3! & P3) (== minimum of (F1! & P1) and (P2! A P2);

nGT ATLU code #7 ALU LDGT ALU cycles 7#%
- I+ (PL! & PL),GT.(P2T! & P2)
then (P2Y & P3) {== (P2! & P2) else continue;

DLT ALU code #7 ALU DLT ALU cycles 7#
~—--=- I€ (P1! & P1),LT.(P2! & P2)
then (P3! & P3) (== (P2! & P2) else continue:

DGE ALU code #% ALU DGE ALU cycles 7#
—_————— I£(P1! & P1).GE.(P2! & P2)
then (P3! & P3) (== (P2! & P2) else continue;

DLE ALU code #7 ALU DLE ALU cycles 7P#
----- - If£ (P1! & PL) LE,(P2! & P2)
then (P3! & P3) (== (P2! & P2) else continue:

DEQ ALU code #7 ALU DEQ ALU cycles ?P¥
CoOCICE T T If£ (P1! &8 P1),EQ.(P2! & P2}
then (P31 & P3) (== (P2! & P2) else continue;
A.2

91

92

DNE

DAND

DOR

DXOR

DEQV

DNOR

DNAND

DIMPLTY

DB UTNO

IL (P1!

(P3! &

(P3! &

(P3! &

(P3! &

(P31 &

(P31 &

(P3Y! g

(P31 2

GPP instruction set
ALU code #7 ALU DNE ' ALU cycles 7P
& P1).NE,(P2! & P2}
then (P3! & P3) (== (P2! & P2) else continue;

ALU code #7 ALU TDANED ALU cycles 7#
P3) (== bit AND of (P1! & P1) and (P2! & P2)3

ALU code #7 ALU DOR ALU cycles 7#
P3) {== hit OR of (P1! & Pl) and (P2! & P2)s

ALU code #7 ALU DXOR ALU cvcles 7#
P3) {== bhit XCR of (P1! & P1) and (P2! & P2):

ALU code #7? ALU DFQV ALU cycles 7P#
P3) (== hit BQV of (P1! & P1) and (P2! & P2);:

ALY code #7 ALU DNOR ALU cycles ?#
P3) (== bit NOR of (P1! & P1) and (P2! & P2)3

ALU coqe #7 ALU DNAND ALY cycles 7#
P3) (== bit NAND of (Pi?! & Pi1) and (22! & P2):

ALU code #7 ALU DIMPL IES ALU cycles 7#

P3) {== hit IMPLIES of (F1! & P1) and (P2! & P2);

ALU code #7 ALU DBUTNOT ALU cycles ?#

P3) {== hit BUINOT of (P1! & P1) and (P2! & P2);

INSTRUCTION EXAMPLES:

GPP inatruction set

A.2.,12 GPP inastruction group %12

NOTATION: ALUA(O) (== P1, ALUA(1) (== P1!}

P3 (== f[ALUA(O), ALUAC(1)],
P3! (== ¢{ALUACO), ALUA(1)];
where the function 18 one of the specified ALUs,

DESCRIPTION: Date eaddressed by P1 and P1! is deposi ted in
ALUA(O) and ALUA(1), ALUA(O) and ALUA(1) are the inputs to the
selected arithmetic unit of the GPP called for as a function of
the instruction. The output of the ALU is deposited in the data
register addressed by P3 and B3!,

GROUP %12 ADDRESS MODE TABLE:

Address Moade MM Adr M Cyc MP Label

P1,P3 P «7Pa G%12B1

P1, P3 P2 2P G%i2B2

'PI,PB :?Ps «Pa G%12B3

'Pl,'PS TT «Pe G%12 B4

OPERATIONS:

DMINUS ALU code #7 ALU DMINUS ALU cycles 7?#
====== (P3! & P3) (== ~(P1! & P1);

DINC ALU code #% ALU DINC ALU cycles 7?#
. mwem==a (P3! & P3) (== (P1! & P1)+i;

DDEC ALU code #7 ALU IDDEC _ ALY cycles 7#

m===== (P3} & P3) (== (P1! & P1)=1;

DSWAP ALU code #7 ALU DSWAP ALU cycles 7#
=w==== P3 (== P1!, P31 (== P1;

DCOMP ALU code #7? ALT DCOMP ALU cycles 7?7#
====== (P3! & P3) <== pit complement of (P1! & P1 33

DREV ALU code #7 ALU DREYVY ALY cycles P#
----- - (P3! & P3) (**Abit reverge of (P1! & P13
(for use in FFT),

INSTRUCTION EXAMPLES:

A2

93

94 i GPP instruction set

A.2.13 GPP {instruction group %13

NOTATION: ALUACO) (== P1, ALUA{1) (== P1!;
ALUB(O0) (== P2;

P3 (== £[ALUA(O), ALUA(1), ALUB(0)],
P31 (== f[ALUA(O), ALUA(1), ALUB(0)];
where the function is one of the specified ALUs,

DESCRIPTION: Data addressed by Pl and P1! is deposi ted in
ALUA(O0) and ALUA(1), Data addressed by P2 18 deposited 1in
ALUR(O0O), ALUA(O), ALUA(1), and ALUB(0) are the inputs to the
selected arithmetic unit of the GPP called for as a function of
the instruction. The output of the ALU is deposited in the data
register addressed by P3 and P31,

GROUP %13 ADDRESS MODE TABLE:

Address Mode MM Adr N Cyc MP YLabel

P1,#P2,P3 P T G%1381

P1,#P2, “P3 17 «7s G%13m2

P1,P2,P3 7P o7 e G%13EB3

P1,P2,“P3 P «?e G%13Ba

P1,”P2,P3 1?7 «?e G%13B5

P1,”P2, “P3 17 e?a G%13Bs

‘P1,#P2,P3 v E a? e G%1 3R7

“P1,#P2,“P3 2?1 «Te G%13B8

‘P1,P2,P3 7?3 P G%13E9

“p1,pP2,°P3 P P G%13B10

“P1,P2,P3 17 +Te G%13K11

“P1,“P2,’P3 7?3 ePe G%13B12

OPERATIONS:

DSHFTR ALY code #7 ALU DSHPIR ALU cycles ?#

m===== (P31 & P3) (== right-shift (F1! &2 P1) by P2 Mod 32 bits
0 fill;s

DSHF TL - ALU code #»7 ALU DSHFTL ALU cycles P#

——mme= (P3! & P3) (== left=shift (P1! & P1) by P2 Mod 32 bits
0 fills;

DASR ALU code #7? ALU DASR ALY cycles 7#

me==== (P3! & P3) (== pright-shift (P1! & P1) by P2 Mod 32 bilts
bit 0 of P1 fillg

DASL ALU code #7? ALU DASL ALU cycles 7#
====== (P3! & P3) {== right«shift (P1! & P1) by P2 Mod 32 bits
bit 15 of P11 f£ills

DROTR ALU code #7 ALTU DROTR] ALU cycles 7#
mme=se (P3! & PI) (== potate right (P1! & PI) by P2
Mod 32 bits;

DRCTL ALU code #7? ALU DROTIL ALU cycles 7#
A.2

-==~~== (P3! & P3) (==

INSTRUCTION EXAMPLES:

GPP inatruction set

rotate left (P11}

4 Pl1) by P2 Mod 32 bits;

95

96 GPP instruction set

A.2.14 GPP instruction group %14

NOTATION: ALUA(O) (== PIi, ALUA(1) (== P1!3

P3 ¢== £[ALUA(O), ALUA(1)],
P3! (== f[ALUA(O), ALUA(1));
where the function is one of the specified ALUs,

I¥f (P31 & P3) = 0 then PC (== P2 else continue;

DESCRIPTICN: Data addressed by Pl and P1! is deposited in
ALBUACO) and ALUA(1), ALUA(O) and ALUA{(1l) are the inputs to the
selected arithmetic unit of the GPP called for as a function of
the instruction, The output of the ALU s deposited in the data
register addressed by P3 and P3!., If the output is zero then
the P is loaded with the argument from P2,

GROUP %14 ADDRESS MCODE TABLE:

Address Mode MM Adr ¥ Cyc MP Label
FPi1,P2,P3 P P G%14B1
P1,P2,7P3 =P a? e GX14RH2
P1,”“P2,P3 =7 «7e G%1483
P1, P2, “P3 t?s «? e G%14 B4
‘p1,P2,P3 t7Ps: P G%1 485
‘P1,P2,“P3 P «?e G%14B6
‘p1,”P2,P3 1P aPa G%1487
“P1,”P2,”P3 I + P G%14E8
OPERATIONS:

DINCBEB ALU caode #7 ALU DINC ALU cycles 7#

m—m—ww (P3}! & P3) (== (F1! & P1)13
If (P3! & P3) = 0 then PC (== P2 else continue;

DPDECRH ALU code #7 ALU DDEC ALU cycles 7P#
—wmma=e (P31 & PI) (== (P11} & Pl)~13
I+ (P3! & P3) = 0 then PC (== P2 elsgse continue;

INSTRUCTION EXAMPLES:

GPP instruction set

A.,2.15 GP? instruction group %15

Lk B R R R Rl R T R Y T peepp—"

NOTATION: ALUA(O)Y (== P1, ALUAC1)Y (== p1!;
ALUB(0) (== P2, ALUB(1) (== P21;

Condition <== f£[ALUA(O},ALUA(1), ALUB(0),ALUB(1)],
where the function is one of the specified ALUs,
I¥ condition is true, then PC (== p3;

DESCRIPTION: Data addressed by Pl and P11 ia deposi ted in
ALUACO) and ALUA(1), Data addressed by P2 and P2! is deposited
in ALUB(Q) and ALUB(1), ALUAC(O), ALUA(1), and ALUEB(0), ALUB(1)
are the inputs to the selected arithmetic unit of the GPP called
for as a function of the instruction. The output condition of
the ALU is then tested, If true, data from P3 is deposited into
the PC-

GROUP %15 ADDRESS MODE TABLE:

Address Mode MM Adr M Cyc MP Label
P1,P2,P3 :7P: P G%15B1
P1,P2,”°P3 P «?e G%15E2
P1, P2, P3 = ?: aelc G%1SR3
P1,”P2,°P3 2P «? e G%15Ba
“P1, P2, P3 P «Pe G%1SBS
‘P1,P2, “P3 - «? e G%1586
“P1,“P2,P3 1 «Pa G%1587
‘P11, P2,"P3 P «?a G%15B8
OPERATIONS:
DG TB ALU code #7 ALU DGT ALU cycles 7%
w—==== If (P1! & P1),GT.(P2! & P2) then PC (== P3
else continues
DL.TB ALU code #7? ALU DLT ALY cycles 2#

- Ir(P1! & P1),LT,(P2! & P2) then PC {== P3
else continues

DGEB ALY code #7 ALT DGE ALU cycles 7P#
————— If (PL! & Pl).GE.(PZ! & P2) then PC (== P3
else continue;

DLEB ALU code #7? ALU DLE ALU cvcles ?#
wm==== JIf (P1! & P1),LE.(P2! & P2) then PC (== P3
else continue;

DEQB ALU code #7 ALU DEQ ALU cycles 7P#
===e== JIf (P1! & P1)},EQ.(P2!" & P2) then PC {== P3I
else continuej

DNEB ALU code #7 ALU DNE ALU cycles 7P#
————— If£ (P1! & P1).NE,(P2! & P2) then PC (== Pp3
else continue;

7

98

INSTRUCTION EXAMPLES:

GPP instruction set

GPP instruction s=et

A.2,16 GPP instruction group %16

L R R e R L L L s

NOTATION: ALUA(Q) (== P1, ALUA(1) (== P11!;
ALUA(2) (== P11!3
ALUB(O) (== P2, ALUB(1) (== P21;
ALUB(2) (== P21!;

(P3 4 P3! & P311) (== £[ALUA(0-2), ALUB(0-2)];
where the function is one of the specified ALU=s,

DESCRIPTION: Data addressed by Pl, Pl! and P1!! is deposited in
ALUACO)Y ¢ ALUAC1), and ALUA(2), Data addressed by P2, P2 and
P21t is deposited in ALUB(O), ALUB(1), and ALUB(Z2), ALUA(O=2)
and ALUB(0-2) are the inputs to the selected arithmetic unit of
the GPP called for as a function of the instruction, The output
of the ALU is deposited in the data register addressed by P3,
P3Y, and P31!,

The floating point number representation uses the excess
exponent code because of its interesting praperties, The se
include the ability to test if a floating point number is >, =,
or {0 by testing the exponent word as if it were a 16=bit
integer. The 32=bit 2’8 complement mantissa ias designed so that
the double precision ALUs may be used to carry out 1{ts
arithmetic after the words are aleigned, Note that the sign bit
of the 2°s complement mantissa is duplicated in the sign bit of
the exponent word, The representation is as follows:

word 17 l1=-bit mantissa sign | t15-bit signed
720000 excess expon, |

word 2: 12”8 complement high order mantissal

word 3: 12”8 complement low order mantissal

Note: 0.0 has word 1=0 11!

Note: + number has bit 0 of exp. word =0

Note: - number has bit 0 of exp. word =1

eg. 1.0 = (Ol1000..-001),(0100.-.000)(000.-.000)
ege =1.0 = (1}11000,,.001),(1111,,..,111)0(111,,,111)
eg. 0.1 = (011000,,..000),{0100,..000){000,,.000)
eg. 0,01 = (010111.4.4111),(0100,4..000¥000,...000)
eg. 0,00t = (0f0111,.,.,110),(0100,,.000){000,..,000}
eg. 0,000 = (0|0000,,.000),(0000,..000)000,,.,000)

Various floating peoint arithmetic and conversion errors are
reported in a GR I/0 space status reglster,

FPPSTATUS{ 0] = exponent overflow error

FPPSTATUS[1] exponent underflow error
FPPSTATUS[2] mantissa avertlow error

FPPSTATUS[3] mantissa underflow errar
FPPSTATUS] 4] division by zero,

GROUP %16 ADDRESS MODE TABLE:

Address Mode _ MM Adr M Cyc MP Label

A.2

Q9

100 GPP
P1,P2,P3 7T «Pe
»y,P2,°P3 2?3 «?e
P1,’P2,P3 :?: P
Pl,'PZ, 'P3 P -?.
“p1,P2,P3 2P «?e
'PI,PZ,'PE} :?= .?.
‘P1,792,P3 iy «Pe
“P1,7v2,7P3 1?7 -
OPERATIONS:
FADD ALU code #7 ALTU
aw—wm= (P3 & P3! & P3!1!') (== (P1 &
P21t)3
FSUB ALU code #*7 ALU
CC It (P32 & P3Y & PRI} (== (P1 &
P2111);
FMUL ALU code #7 ALU
—————=- (P3 & P3! & P31} (== (P1 &
P211);
FDP1IV ALU code #°7 ALU
w————— (P3 & P3! & P3!!) (== (P1 &
P211);
FMAX ALU code #7? ALY
werwe=w (P33 & P3! & P31} (==
maximum of (P1 & P1!¢
e211)3
FMIN ALU code #7 ALY
LA iE e (P3 & P3! & P31t) (==
: minimum of (P1 & P1!
P21
FGT ALU code #7? ALU
——————— I£(P1 &4 P1! & P1!t),GT. (P2
(P3 & P31 & P31V) (== (P2 &
FLT ALU code #7 ALU
—mme== If (Pl & P1! & P1'1).LT.(P2
(P3 & P3! & P311) (== (P2 &
FGE ALU code #¥7? ALU
- ILf (P1 & P1! & P1T1).GE, (P2
(P3 & P31 & P311}) (== (b2 &
FLE ALU code #¥7? ALU
- - - I£(P1 & P1? & P11), LE. (P2
(P3 & P3! & P31!) (== (P2 &
FEQ ALU code #°7? ALU

If (P1 &4 P1! & P1!Y).EQ.(P2
(P3 & P3! & P31!) (== (P2 &

instruction set

G%16B1
G%16B2
G%16B3
G%16B4
G%1 6R5
G%1 &6B6
G%16B7
G%1&E8

FADD ALU cycles 7#
P1YT & P111) +« (P2 & P2! &

FSUR ALU cycles 7#
1t & P11t) - (P2 & P2! 2
FMUL ALU cycles 7#
P1! & P111) % (P2 & P2! &
FDIV ALU cycles 7#
P11 & P1!!) / (P2 & P2! &
FMAX ALU cycles 7#
& P1!!) and (P2 & P2! &
FMIN ALU cycles 7#¥
& P11!) and (P2 & P2! &
FGT ALU cycles 7#

& P21 & P211) then
P2! & P21!) else continue:

DLT ALU cycles ?P¥
& P2! & P2!1!)Y then
P21 & P211) else continue;

FGE ALU cycles 7#
4 P21 & P2!!) then
P21 & P21!) else continues

FLE
4 »21
P21

ALY cycles 7P¥#
& P2!1) then
& P21!) else continuej

FEQ ALU cycles 7#
2 P2! & P2!!) then
P2t & P2!!) else continue;

A2

GPP instruction set 101

FNE ALY code #%7 ALU FNE ALU cycles 7#
- - If (P1 & P1! & P1I1!) ., NE. (P2 & P2! & P2!1) then ‘
(P3 & P31 & P31!) (== (P2 & P2! & P2!!) else continue;

INSTRUCTION EXAMPLES:

102 GPP 1nstruction set

A, 2,17 GPP instruction group %17

NOTATION: ALUA(CO) (== P1, ALUA(1) (== P1!;
ALUA(2)Y (== P111!;

(P3 &4 P31 & P31!) (== f[ALUA(O-21];
where the functilon 18 one of the specified ALUs,

DESCRIPTION: Data addressed hy Pl, P1! and P1!! is deposited in
ALUA(O) ¢ ALUA(1), and ALUA(2). ALUA(O=-2) are the inputs to the
selected arithmetic unit of the GPP called for as a function of
the inastruction, The output of the ALU 1is deposited in the data
register addressed by P3, P3!, and P31,

GROUP %17 ADDRESS MODE TABLE:

Address Mode MM Adr M Cyc MP Label

P1,,P3] «Pe G%1 781

P1,, “P3 1P «Te G%1 782

‘pt, ,P3 :?: «?e G%1783

‘P1,,” P3 TP «Pe G%1 7B4

OPERATIONS:

FMINUS ALU code #7 ALU FMINUS ALU cycles ?P#

—===== (P3 & P3! & P311)} (== ~(PF1 & P1! & P111);

FINC : ALU code #7 ALU FINC ALU cycles 7#
. mmeme= (P3 & P3! & P3!!) (== (P1 & P1! & P1!1)+1}

FDEC ALU code #¥7 ALU FD®C ALU cycles 7#¥
m—mm=== (P3 & P3! & P3!1) (== (P1 & P1! & P11')=-1;

INSTRUCTION EXAMPLES:

A,2

GPP inatruction set

A,.2,18 GPP instruction group %18

NOTATION:

DESCRIPTION:
ALUA(O)} <

the instruc

register addressed by P3,

ALUAC1),

ALUA(O)
ALUA(C2)

(== P1,
(== P11

ALUAC1) (== P11!;

(P3 & P3! & P3!11) (== [ALUA(O-2)7;

where the function is one of the
If (P3 & P3!

then
else

4 P31}
PC (== P2
continues

) =0

Data addressed by P1,

tion,.

and ALUAC2),
selected arithmetic unit of the GPP called
The output of the ALU is
and P3!,

P31,

P1!
ALUA(0-2)

and

P11}

then the PC is loaded with the argument from P2,

GROUP %18 ADDRESS MODE TABLE:

Address Mode

P1,” P2, “P3
‘P1, P2, P3

‘P11, P2, “P3
‘P1,’P2,P3
“P1,“P2,”P3

OPERATIONS:
FINCH
—————- (P3
FDECB
—————— (D3

MM Adr M Cyc
H RS aPe
+?s +P e
:?: «Te
HTH «7?
:P «?e
] «?a
t?P: «Te
P a7 e
ALU code ¥7? ALU FINC
& P37 & P311) (==
IL£ P3
ALU code #¥7? ALU FDEC
& P3! & P311) (== (P1 & P1?

I P3 =

INSTRUCTICN EXAMPLES:

MP Label
G%1 891
G%18E2
G%1 BH3
G%18B4
G%1 8B5%
G%X18B6
G%18B7
G%1888

ALU cycles

(P1 & P11t & P17t)+1:
= 0 then PC<{*=P2 e¢lse continue?

ALU cycles
A P11l)=-13

0 then PC{(*P2 else continue;

specified ALUs,

is deposited in
are the inputs to the
for as a function
deposited in the data

If the output is zero

PH

H

i03

104 GPP instruction set

A.2.19 GPP instruction group %19

NOTATION: ALUA(D) (== Pl1, ALUA(1) (== P1!3
ALUA(2) (== P11!1!3
ALUB(O) (== P2, ALUB(1) (== p21;
ALUB(2) (== pP211;

Condition (=»= [ALUA(O-2), ALUB(0-2)1;
where the function is one of the specified ALUs.
If condition is true then PC {(*= P3 elge continue;

DESCRIPTION: Data addressed by P1, P1! and P1!! is deposited in
ALUAC O} < ALUA(1), and ALUA(2)., Data addressed by P2, P2! and
LF-RR is deposited in ALUB(O0), ALUB(1), and ALUB(2), ALUA(O0-2)
and ALUBR(O0=2) are the inputas to the selected arithmetic unit of
the GPP called for as a function of the instruction., The output
condition of the ALU is then tested. If true, data from P3 1is
deposited into the PC,

GROUP %19 ADDRESS MODE TABLE:

Address Mode MM Adr M Cyc MP Label
P1,P2,P3 27 aPe G%1 981
P1,P2,°P3 7P P G%1982
P1, P2,P3 1P «Pa G%1 983
PL,”P2,°P3 :?s «P e G%19B4
‘P1,P2,P3 TP «Pe G%19B5
“P1,pP2,°P3 1P «Pe G%1986
‘P1, “P2,P3 1P «Pe G%1 987
‘P1, pP2,°P3 2?2 «?e G%19R8
OPERATIONS:

FGTB ALU code #? ALU FGT ALU cycles 7#

-——ee== T2 (P1 & P1! & P1!!1).GT, (P2 & P21 & P21})
then PC (== P3 else continue;

FLTB ALU code #7 ALU DLT ALY cycles ?P#
wmm—e== £ (P1 & P1! & P1YY).LT.(P2 & P21 & P211)
then PC (== P3 else continue;

FGEB ALU code #7 ALU FGE " ALU cycles 7#
m———=-= If (P1 & P1! & P1!!1),GE. (P2 & P2! & P211)
then PC (== P3 else continue;

FLEB ALU code #% ALU FLE ALU cycles ¥
mmmme= If (P1 & P1! & P1I!).LE.(P2 & P2! & P2!!)
then PC (== P3 else continues

FE@B ALY code #¥7? ALU FEQ ALU cycles 7#
- e —— If£ (Pt & P1! & P11!).EQ.(P2 & P2t & P2!1!)
then PC (=* P32 else continue:

FNEB ALU code #7 ALU FPNE ALU cycles 7#
——e-=e If (P1 & P17 & P1I!).NE. (P2 & P2! & P211)
A.2

GPP instruction set 105
then PC (== P3 else continue;

INSTRUCTION EXAMPLES:

Ao 2

106 GPP instruction nmet

A.2.20 GPP inetruction group %20

R e Gm D G N DR AR NS EE S D G WS WA N W AR W

NOTATION: ALUA(QO) (== P13
(P3 & P3! & P3'1) (== r[ALUA(O)];
where the function 18 one of the specified ALUs,

DESCRIPTION: Data addressed by Pl is deposited in ALUA(O),
ALUA(Q) is the input to the selected arithmetic unit of the GPP
called for as a function of the instruction., The output of the

ALU is deposited in the data register addressed by P3, P31, and
pat,

GROUP %20 ADDRESS MODE TABLE:

Addreas Mode MM Adr M Cyc MP Label

F1,,P3 : P e P G%20H1

P1,, “P3 27 «?e G%20B2

’Pl, ,PB :?: c?o G“ZOBB

‘p1,,“P3 =P «Pe G%2084

OPERATIONS:

FLOAT ALU code #%7 ALU FLOAT ALU cycles 7?#

wmm==e (P3 & P3! & P31!1) (== floating point number of the
single

vrecision number P13

INSTRUCTION EXAMPLES:

GPP instruction set

A.2.21 GPP instruction group %21

NOTATION: ALUA(O) (== P1, ALUA(1) (== P13

(P3 & P3! & P311) (== #[ALUA(O), ALUA(1)];
where the function is one of the specified ALUs,

DESCRIPTION: Data addressed by P1 and P1¢

is deposited in

ALUACO0) and ALUA(1) respectively. ALUA(O) and ALUA(1) are the
inputs +to the selected arithmetic unit of the GPP called for as

a function of the instruction., The output
deposited In the data register addressed by P3,

GROUP %21 ADDRESS MODE TABLE:

Address Mode MM Adr M Cyc MP Label
P1,, P3 :7?s ePe G%21 1/
Pl,, “P3 1P «? . G%2182
“P1, ,P3 1P «Te G%21B3
“P1,, P3 27 «?e G%21B4
OPERATIONS:

DFLOAT ALU code #7 ALU DFLOAT

of the ALU is

P31, and P31,

ALU cycles 7#

------ (P3 & P3! & P311) (== floating voint number of the

double precision number (P1! & P13

INSTRUCTION EXAMPLES:

107

108 GPP instruction set

A.2.22 GPP instruction group %22

A U S AR S A em o AT R YR P D WY D WD N NN NE SN AP SE WE AR AU AR TR G O AR

NOTATION: ALUACO) == Pi, ALUA(1) (== Pi1i;
ALUA(2) (== P1!!;

P3 (== [ALUA(O=-2)]3
where the function 1is one of the specified ALUs,

DESCRIPTION: Data addressed by Pl, Fl1! and P11!! i8 deposi ted in
ALUACO) ALUAC1), and ALUA(2), ALUA(O0-2) and ALUB(0~2)} are the
inputs to the selected arithmetic unit of the GPP called for as
a function of the instruction, The output of <the ALU is
depogited in the data register addressed by P32,

GROUP %22 ADDRESS MODE TAELE:

Address Mode MM Adr M Cyc MP Label

P1,,P3 :?: «Pa G228

P1,, “P3 t?: P G%22R2

‘p1,,B3 :?P: «Pe G%22H3

’Pl-.,’P3 :?: .?. 6*2254

OPERATIONS:

FIX ALY code #7 ALU FIX ALU cycles 7#

wmmw== P3 (== gingle precision number of the floating point
numher (P1 & P1! & P1Y1!):

INSTRUCTION EXAMPLES:

AL 2

GPP instruction set

As2.,23 GPP instruction group %23

NOTATION: ALUA(O) (== P1, ALUA(1) (== p11!;
ALUA(2) (== P11}

(P3! & P3) (== ¢[ALUA(O0-2)];
where therfunction is one of the specified ALUs,

DESCRIPTION: Data addressed by Pl, Pl! and P11! s deposi ted in
ALUAC 0) ALUA(1), and ALUA(2), ALUA(O=-2) and ALUB(O0-2) are the
inputs +to the selected arithmetic unit of the GPP called for as
a function of the instruction, ‘"The output of the ALU 1is
deposited in the data register addressed by (P3! & P3),

GROUP %23 ADDRESS MODE TABLE:

Address Mode MM Adr WM Cyc MP Label

P1,,P3 1 ?: «Pe G%23B1

PL,, P3 :?: a7 G%23B2

“P1,,P3 : 7P «Pe G%23H3

‘Pi,, P3 1?: «? o G%23 P4

OPERATIONS:

DFIX ALU code #7 ALU DFIX ALU cycles ?#

(P3! & P3) (== double precision number of the floating
point number (P1 & Pi! & P111);

INSTRUCTION EXAMPLES:

A.2

109

110 i GPP inamatruction set

A.,Z2.,24 GPP inmtruction group %24

R WP SR RN W SR N TR WL G S D S WD WD MM AR N D A A G0 WR G A e S

NOTATION: PC (== P31,
PFR (== PFBR;

DESCRIPTION: Data from or addressed by P3 is deposited into the
program conuter, PC, The contents of the program field buffer
register, PFBR, is deposgsited into the program field register,
PFR, The next GPP instruction is addressed by the new contents
of the PC and PFR,

GROUP %24 ADDRESS MODE TABLE:

Address Mode NM Adr M Cyc MP Lahel

P3 : P «? e G%24 81

‘P3 27 «Pe G%24B2

OPERATIONS:

JUMP ALU code #7 ALU none ALU cycles none
- PC (»= P3; PFR (== PFRB

INSTRUCTICN EXAMPLES:

GPP instruction set

A.,2.,25 GPP instruction group %25

NOTATICN: PDL{PDLCTR) (== PC and PFR;
PC (== P3,
PFR (== PFRE,
PDLCTR (== PDLCIR + 13

DESCRIPTION: The programg counter, rC, and the program fTield
register, PFR, are stored in the push down list as a funstion of
the push dawn list address counter, PDLCIR, Then data from or
addressed by P3 is deposited into the program conuter, PC, and
the program field buffer register, PFER, is deposited into the
program field register, PFR, The next GPP ingtru tion is
addressed by the new contents of the PC and PFR, Finally the
PDLCTR is incremented,

GROUP %25 ADDRESS MODE TABLE:

Addreas Mode MM Adr M Cyc MP Lahel
p3 ies 2. cezsm

i] . 7P «?a G%2SH2

OPERATIONS:

PUSHJ ALU code #% ALU none ALU cycles none

====== PDL(PDLCTR) (== B(C3
PC (== P3,
PER (== PFRB,
PDLCTR <(== BDLCTR + 13

INSTRUCTICN EXAMPLES:

112 : GPP instruction set

A.2,26 GPP instruction group %26

RN AR AR SR A AN G D D W EE FR AR TP ED R UT R AP AE GR W P TR 4R EE SR R A W

NOTATION: PDLCTR (== PDLCTR = 13
PC and PFR (== PDL(PILCTR):

DESCRIPTION: First the push down list address counter, PDLCTR,
is decremented, Then the program counter, PC, and program fleld
register, PFR, are loaded with the push down liast date addressed
by the PDLCTR., The next GPP instruction i1s addressed by the new
contents of the PC,

GROUP %26 ADDRESS NODE TABLE:

Address Mode MM Adr M Cyc MP Lakel

P1,P2,P3 not used P .7. o%2em1

CPERATIONS:

POPJS ALU code #7 ALU none ALU cycles none

- PDLCTR <(== PDLCTR -~ 13}
PC and PFR (== PDL{(POHLCTIR);

INSTRUCTION FXAMPLES:

A, 2

A.2.27 GPP instruction group %27

NOTATION: MMADR (== Pt
execution proceeds as per the microprogram
addresased,

DESCRIPTION: The contents of Pl is deposited into the mapping
memory address register, The microprogram then proceeds from the
addressed address of the mapping memory, If all starting address
locations are used up in the OPR word then the programmer may
use this instruction to define additional complex microprograms.

GROUP %27 ADDRESS MODE TABLE:

Address Mode MM Adr M Cyc Y2 Label

wp1 Gei se. awarer

OPERATIONS:

APPLY ALU code #7 ALTO 7 ALU cycles none

wwwm=e= MMADR (== P13
Execution proceeds as per tte microprogram
addressed hy Pl, Control continues in the
program at the next instruction unless the
microprogram changes the PC,

INSTRUCTION EXAMPLES:

A. 2

113

APPENDIX B

GPP I/0 registers and control panel lights/switches

Appendix B contains tables of GPP GR space addresses

for interface registers, lights, switches etc,

B.1 Status registers addressed by the GPP

R R F FARE R R R R R PR RN Y R Y R R N T R

The GPP data address space 170000:170077 is reserved

for gtatus registers, The GPP data address space 170400170777
1s reserved for I/0 registers, These addresses may he used for
internal I/0, external I/C, switches, display lights, X-Y
coordinates, etc. The space 1s allocated as follows:

170000

170007

170010

170017

170020

170027

170030

170031

170032

170033

170034

170035

170036

170037

AoD[4:15] - autodecrement register 0.
-

A7D[4:15] - autodecrement register 7.

A0 4:15] - auto~unmodified register 0.

»

A7[4:15] - auto=-unmodi fied register 7,
A0I[4:157 - autoincrement register 0.

L]
A7I[4:15] - autoincrement register 7.

PDLPTL[0:15] = stack pointer to 32-bit 1K PDL, read only
low 16-bits,

PDLPTH[0:15] - stack pointer to 32-bit 1K PDL, read only
high 16-bits,

Read only,

swi[0:15]1 - GPP front panel switch register 0:15,

sw2{ 0:15] - GPP front panel switch register 16:31,

8w3[0:15] - GPP front panel switch register 32:47,

DSPLYA[0:15] - 6 digit (octal) lights, control desk.

DSPLYB[0:18] = 6 digit (octal) lights, control desk.

DSPLYC[0:15] - € digit (octal) tights, GPP front panel,

B.1

170040

170041

170042

170043

170044

170045

170046

170047

170050

170051

170100

170101

170102

170103

170104

170105

170106

170107

170110

170111

170112

170113

170114

170115

170116

170117

GPP 1/0
KNOBo[6:15]
KNOB1[6:15])
ENeR2[{6:15]
KENOB3{6:15]
KNOB4{ 6115]
ENOBS[6:15)
ENOB&[6:15]
ENOB7[6:15]

swalo:15] -

registers and contrcl panel lights/switches
- A/ ctrl/desk knob pot O,
= A/D ctrl/desk knob pot 1.
- A/D ctrl/desk knobh pot 2,
- A/D ctrl/desk knob pot 3.
- A/D ctrl/desk knch pot 4,
- A/L ctrl/desk knob pot 5.
= A/D ctrl/desk knoh pot 6,
- A/D ctrl/desk knab pat 7,

control desk switch register

STATUS[{ 0:15] - GPP/PDP8e sgtatus register (STATGL, STATG?

in PDP8e).

registers

ALUAOG -
ALUAQ =
ALUAI =
ALUA1 =
ALUAZ -
ALUAE -
ALUAZ -
ALUA3 =
ALUAS4 =
ALUAS =
ALUAS =
ALUAS -
ALUAG =
ALUAG -
ALUAY =
ALUAY =

ALU

ALU

ALU

ALTU

ALU

ALU

- ALU

ALU

ALU

ALY

ALU

ALU

ALU

register
register
regiatenr
register
register
reglster
register

register

.regis{er

register
register
register
register
regl ster
register

register

tow order 16-bits.
high order 16~hits,
low order 16-hits,
high order 16-bits.,
low order 16-bits.
high order 16«bits,
low order 16-bits,
high order lﬁ-ﬁits.

low order 16=bits,

high order 16-bits..

low order 16-hits,
high order 16=bits,
low order 16=-bits,
high order 16-bits.
low order 16-bits,
high order 16«-bits.

B.2

115

116 GPP I/0 registers and control panel lights/switches
170120 ALUATIO -~ ALU A register 10 low order 16-bite,
170121 ALUA1CQC = ALU A register 10 high order 16=-bitas,
170122 ALUAL1ll = ALU A register 11 low order 16=hilts=,
170123 ALUAl1l1 =« ALU A register 11 high order 16-bjts,
170124 ALUAL1Z2Z ~ ALU A rvregister 12 low order 16~bits,
170125 ALUA12 = ALU A register 12 high order 16-bits.
170126 ALUAL13 = ALU A regisgter 13 low order 16-bits,
170127 ALUA13 = ALU A register 13 high order 16=bhits.
170130 ALUALl4 = ALU A reglister 14 low order 16~-bits,
170131 ALUAI4 = ALU A register 14 high order.16-b1ta.
170132 ALUA1S = ALU A register 15 low order 16=bits,
170133 ALUALS -~ ALU A register 15 high order 16-bits,
170134 ALUALIS® = ALU A register 16 low order 16-bits,
170135 ALUAL1S = ALU A reglister 16 high order 16=-bits,
170136 ALUA17 = ALU A regiamter 17 low order 16«bits,

. 170137 ALUAL17 = ALU A register 17 high order 16-hits,

B.3 GP” line buffer and BM I/0 registers

W W S S S WD NN S O G U N W A WS W A M S W RN M Gy o W s ke n oh TR TR e e

Various 1I/0 registers are umsed in the program I/0
subroutines for the GPP,

170400 11XM{8:15] - I1 X=1 dynamic address vector,

170601 11X[8:18] I1 X dynamic address vector.

170402 YI1XP[8:15] Il X*1 dynamic address vector,

170403 11Y(8:15])

I1 Y line counter,

-y - -

170404 12%¥mM[8:15]

I2 X-1 dynamic address vector.

170405 12X[8:15] I2 X dynamic address vector,

170406 12XP[8:15] I2 X*1 dynamic address vector,

I2 Y line counter,
B.3

170407 12¥(8:15]

GPP I/0 regiaters and controcl panel lights/switches

170410 I1I3XM[8:15])

I3 X=1 dvynamic address vector.

170411 13%X[8:15] I3 X dynamic address vector.

170412 13XP[8:15)] I3 X+1 dynamic address vector,

170413 I3%¥[8:15] I3 Y line counter,

170414 GIN[0:15] - is a source Pl or P2 address which will
cause a 16=bit word to be read from the previously
initiated PDP8e general DMA I/0 channel,

170415 GOUT{0:15] - 1is a P3 destination address which will
cause a 16-bit word to be written out to the previously
initialized PDP8Se general DMA I/0 channel,

170420 KRB [8:15] - read byte from the teletype input channel
and clear the TTY input ready flag.

174021 KSTATUS[0] - 1 if data available, 0 if no data present.

170422 TLS[8:15] - send byte to teletype output channel and
clear the TTY output not ready flag.

170423 TSTATUS[0] = 0 if TTY output channel not ready, 1 it
TTY output channel ready.

170430 PBMO - indirect gpointer register to BMO,
170431 PBM1 - indirect pointer register to BM1,
170432 PBM2 =~ indirect rointer register to BM2,
170433 PBM3 = Iindirect pointer register to BM3,.
170434 PBM4 = iIndirect pointer register to BMa,
170435 PBMS « indirect pointer register to BME,
1704356 PBME = indirect pointer register to BM6,
170437 PBM7 = indirect pointer register to EN7.

173400: 173777 I1{wv=1] diréct line buffer address
174000:174377 I1{y] 4direct line buffer address
174400:174777 11[{v*1] direct line buffer address
175000:175377 12{y~-1] direct line buffer address
175400: 175777 I2[y] direct line buffer address
176000: 175377 I2[y+*1] direct line buffer address
176400:176777 I3[y=1] direct line buffer address
177000:177377 I3{y] direct ltine buffer address
177400: 177777 I3[v+*1])] direct line buffer address

B.4 GPP front panel controls

The GPP ha=s a front control panel with the following
knobs, lights, and switches to control the GPP directly rather
than through the PDP8e for maintenance and hardware debuggine.

B.4

.-

118

B.24,1 Lights on the GPP front panel

e Ly r L R W L R

l.

Za

3.

10.

11.

PM[0:59] octal (5 groups ot 4 digits) which 1is loaded
when each instruction is fetched from the PM.

Pc[0:15] octal (6 digits) address register is
constantly displayed.

STATUS[0:15)] = trap register., Note any trap will set
the appropriate bit 1In the status register, and halt
the GPP, The PDP8Be can sense and Service this
conditlon,. The bits are allocated as follows:
STATUS[0] = PC address trap,
STATUS[1] = data address bus trap,

8TATUS[2] = PDL overflow [>1024],

STATUS[3] = PDL underflow (POPJ empty stack).
STATUS{ 4] = GPP run FF,

STATUS[S] = PDPBe test/GPP set.

STATUS{ 6] = GPP test/set PDPSe.

STATUS[7] = illegal GPP instr. addr. mode bits,
STATUS[8] = 1illegal PM address

STATUS{9] = illegal Pl address

STATUS{ 10] = illegal P2 address

STATUS[(11] = illegal P3 address
PSPLYC{0:15] - & octal digits (ISPLYC)
FXARADRA[0:31] - data register A, 12 octal digits.
EDRB&DRB{0:317 =~ éata register B, 12 octal digits,
Data adﬁress bus trap DABTRP[0:15] = & octal digits
PC¢ address bus trap PCTRP[0:15] - 6 octal digits.
Group OPR lights GROUP[0:3] = 2 octal digits.

GPP microprogram control program counter Mcpc[o:11] - &
octal digits :

GPP microprogram control bus [0:59] = 12 octal digits

B. 4

PDP8e I/0 transfer instructions for the RTPP
APPENTIX C

PDP8e I/Q0 transfer instructions for the RTPP

PDP8e input output transfer instructions (called IDTs)
used in the RTPP are given here, They are explained in sets of
IOTs associated with particular subsections of the RTPP,

Cs1 PDPBe IOTs for RQC - QMT - stage - control desk

1. TB, TC - Standard Detector 12-bit threshold, These
select the level of detection in the standard detector,

DETB « load threshold detector TH.
DETC = load threshold detector TC.

2e T, T2 - 1-D detector 12=hit thresholds, These select
the Level of detection in the 1-D detector. The data
lines are allocated but the 1interface to the 1-D
detector is not built since to do S0 would be redundent
with programming the Digitizer/detector thresholds.

DET1L - load threshold 1,
DET2 - load threshold 2,

3, Ti, T2 - Densitometer (Digitizer/Detector) 6-bit
threshold, These select the level of detection
in the densi tometer.

DETDIG - load bits 0=-5 to threshold Ti, and load bits
€&=11 to threshold TZ2.

4, HP,HS,VP,VS =~ Frame and Scale coordinates, size is §,
position 1is P. These fTour coordinates determine the
variable frame and are loadable/readable. gsince they

are on an independent up/down counter, they are enabled
by the PDPSe, Note the Frame and Scale position and
size switches must be set to 0 for remote (PDPS8e
controlled) coperation,

HPR - read BCD horizontal position.

HSR = read BCD horizontal size.

VPR = read BCD vertical position,

VSR = read BCD vertical size. .

HPL - load buffer to horizontal position.
HSL - load buffer to horizontal size,

VPL - load buffer to vertical position.
VSL ~ load buffer to vertical size,.

S, (XL,YL) -~ light pen "touch™ coordinates which may be
loaded to overide the light pen or be read from the
light pen wmodule +to determine where the user touched

C.1t

119

120

€,

Te

PDP8e I/0 transfer instructions for the RTPP

the screen with the 1light pen, The pen X and Y
coordinates are 3 digit BCD (12=hits), This controller
has not been built since the Graf-Pen/Cursor
combination with the buffer memories will achieve the
Bame effect, NOTE: ##% NOT INPLEMENTED###,

PENST ~ load pen status (normal/remote) register.,
RPENX =~ read the current normal pen coordinate.
RPENY = read the current normal pen coordinate,
LPENX - load the current remote pen coordinate,
LPENY = toad the current remote ren ccocordinate,

oo

DET-ENTRY[1:720], LET-EXIT[1:720]) =~ mask register
Coordinates in the range of X (0 to 1024)., This set of
2=tuples defines the run-end code of the mask,

GETMSK - enable filling the mask register with 720
ent/ext points starting at the next STOMT.
MSKADR - load the 8 bit mask relative address from acc,
RMASKE = read 10-bit binary e(MSKADR) mask reg=*)ac.
RMASKX -~ read 10-bit binary x(MSKADR) mask reg==dac.
LNASKE = load 10=bit binary e(MSKADR) mask reg (*=ac.
LMASKX = load 10-bit binary x(MSKADR) mask reg{(==ac.,
LDXP - toad the X OMT cursor register (*=0C(AC)
LDYP = load the ¥ QMT cursor regilster<{==C(AC)

Shift register for acquiring QMT function computer
data, (Fcif1:10241], Fcz2[1:1024],
XAc®[1:1024]),YAcP[1:1024]), DET[1:1024]) =~ The 5 field
QMT data "shift" register (With PDPSe controlled
recycle) 1= filled with data on the occurance of an
ACP, The FC1 and FC2 are Function computers 1 and 2
whoge data is available at each ACP in parallel. The
FCl and FC2 are read only (PDP8e) while the XACP, YACP,
DET are read/ write (PDPS8e), See QSTAT enables for use
with SRG.,

RSRGI = read the SRG index counter (8RGL),

RFCIH - read FCl1 front data high (3 digits)

RFCIL = read FCl front data low (3 digits)

RFC2H = read FC2 front data high (3 digits)

RFC2L - read FC2 front data low (3 digits)

RSRGX = read X (10=bit binary) ACP front data. .
RSRGY = read Y (10-bit binary), ACP/DET(1 bit - bit 0)
LSRGB - load ACP buffer (10-bitg)

SMACP - simulate an ACP,

SMCLK - simulate a QMT clock.

SMHALD =~ simalate a QMT hold,

SHSYN - simulate a QMT =sync,

SMVTG - simulate a OMT vtrig.

ADVSR = advance the SRG by 1.

CSRGT =~ clear the SRG index register,

Z8RGI = zero SRG index counter, and advance the SRG.
IZSKP -~ skip on SRG index register zero,

SIZEA = 8izing on the Amender module. Used in Amending
C.1

10.

11,

12.

13.

14,

15,

16.

17.

PDP8e I/0 transfer instructions for the RIP®
operatlon, Note sizing switches must be set to 0,
STIZEA[0:11) - load 3 digit BCD into size register.

SIZEC = sizing on the Classifier/Collector module., Load
the classifier upper/limit register., Note the mantissa
is 2 left BCD digits and exponent is right BCD digit.
To load the lower 1limit register, load the upper
register then dao a QPROG7[10] to transfer the upper to
lower, Note: the size switches must be set to
0.

s1zec[0:11] - ltoad 3 digit BCD into size register,

SIZEM - sizing on the MS3 Computer module, Used in
determining min or max chord size to be computed, Note:
the sizing switches must be set to 0.

SIZEM[0:11] - load 3 digit BCD into size register.

SIZES - sizling on the Standard Computer module, Used in
determining min or max chord size to be computed, Note:
the sizing switches must be smset to O,

S17zEs{0:11] = load 3 digit BCD into esize register.

STQMT - syncronize the PDP8e with the QMT and start the
QMT for ! scan. Also used for GETMSK, GETA, and GETBH.

OMSEP - SKIP if the OMT =scan is done (used after
STQMT),

OQuantimet program word described in Appendix ©.3 -
oPrROG1{ 0:11], QPROG2{0:11], QPROG3[0:11], QPROGa[o0:11],
QProGS[0:11], QPrRoG6{0:11], oProG7[0:11], QPrROGB[0 :11]

Load the PDP8e/QMT status register described in
Appendix C.3 (#% Old GCl.1 QSTa##) which controls the
QMT/PDP8e interface., Note that QSTAT is displayed in
octal on the control desk.

0STAT[0:11] - load the OMT status register.
RQSTAT[0:11] - reads QSTAT into the PDP8e accumulator,

Read the Quantimet full field data accumulator register
(7 BCD digits).,

ODATI[0:11] = read least signitficant BCD 3 digits
QDAT2[0:11] - read middle 3 BCD digits

ODAT3{ 0:11] - read high 1 BCD digit

Load the QMT right display 28 hits of BCD data
LODT1 =- load least significant BCD 3 digits

LQDT2 « load middle 3 BCD digits.

LQDT3 - load high t BCP digit.

C.1

121

122 PDP8e I/Q transfer instructions for the RTPP
18, PDPBe 200 hz clock,

CLEACK = clear the clock
CLESKP - skip on clock active,

19, The following are control desk switches from the 'PDPBe
part of the control desk (Figure 3),

FBW1 = read z,y,x Joystick/focus (bits 3 4 5 speed,
Bits 6 7=z, 8 9=y, 10 11=x).

FBW? - read the 12 command keys,

LFBW2 = load the 12 command key lighta.

FRW3 -~ read the 12 momentary class keys.

FEW4 - read the 12 on/off toggle switches,

FBWS = read digiswitch octal digits 0 1 2 3

FBWES = read digiswitch octal digits 4 S 6 7

FBW7 - read digiswitch octal digits 8 9¢ 10 11

FBW1I0 - read 3 S=position switches TH1, TH2, zoom.
Same format as FBEW]1,

FBWl1l - read 3 S5=position switches freq, intens, sparel.
Same format as FHW1,

FBW12 - read S=-position switch spareZ (speed hit 3,
Motions bits 6 7), and romentary execute bit 0,
Graf-Pen tip switch (pressed down 1s on) bit 11,

20. The following are the general purpcse display lights on
the right control desk. The disgplay is decoded as both
an octal 4=-digit number and a 3-digit BCD number,

DISPi{0:11] - load left display leds which appear in 4 digit
Octal as well octal as 3 digit ECD,

DISP2{0:11] - load right display leds which appear In 4 digit
Octal ag well octal as 3 digit BCD.

21. Load the galvanometer motor wirror dacanner (x,y)
registers, These commands use thee normal
signed Cartesian coordinate system with (X0,Y0) =(0,0).
Negative numbers are 2”8 conplement, The scanner 1is
set to scan a 1024 x 1024 pixel array. This is actually
(=12 to *512) by (=512 +to *+512), Note that a
transformation of +the coordinates 18 necessary to map
them to those of the QMT. The D/A may be used in either
10-bit or 11=bit mode by changing a hardwired jumper,

LGALX[1:11] = C{AC)Y==)GALX, O0==)C(AC).

GALSKP = gkip when the galvanometer scanner is ready
RGAL{1:11] = C(AC)I(*= integrated scanner data.

LGALY[1:11] = C(AC)==)GALY, 0==)C(AC).

22 o

23 .

PDPRle I/C transfer instructions for the RTPP
Zelss stage, focus and zoom stepping motors,

MSTAG = load the 6 stepping motor direction word
as 2=blt pairs (down,up) or (-,+)
(wavelength, intens, zoom, focus, ¥y, x)
Bits function
(o] * wavelength

- wavelength

* neutral density

= neutral density

* Zoom

zoom

focus

focus

+ v stage

v stage
10 x stage
11 - X stage

SMCTR - load the Spare stepping motor direction word
as 2=-bit pairs (down,up) or (=-,4+)

Co~NPg e Wy -
+*

+

pairs,

‘Bits function
4 *+ spare 1
5 - gpare 1|
() + spare 2
7 - spare 2

STEP = smtrobe the stepping motor sequence generator
from the MSTAG and SMOTR registers,

GRAF=-PEN interface sasupplied for model GP=-2, The
interface data sheet is for model 1353 which |is
presumed to be GP-2, There are 4 instructions of which
2 are microcoded tec give the 4th, .

GRFSEP = 6141 skip when pen ready with data.
GRFRXY = 6142 read the next x or y datum,
GRFINC = 6144 increment the datum pointer to next x or v.

to y if it was x, to x 1f it was y.
GRFRI = 6146 read next datum, then increament.

A progfam example shows how these instructions are used,

24,

GRFSKP /skip when data ready,

JMP -1

GRFRI /read x and increment pointer
DCA XDATA /save data

GRFRI /read y and increment pointer
DCA YDATA /save data

Analogue to Digital 1€ channel converter (DEC
AD8-ea/AMB-ea) with an input voltage range of +/= 1
volt, 0+~30 KHZ bandwidth, 10=-bHit resolution, 200 nsece.
apperature time, -

ADCL 6530 Clear AD done and timing error flegs.
Clear enable, mux and status register,
C.1

123

124 PDP8Be I/0 transfer instructions for the RTPP

ADLM 6531 Load mux register from AC[811], clear AC,
ADST 6532 Clear AD done and timing error flags,
Start AD converter., Channel to
be converted is to be determined by
mux register,
ADRB 6533 Clear AD done flag, Contents of
AD buffer ==>ac[0:111].
ADSK 6534 Skip next instruction if AD done=1,
Do not clear flag.
ADSE 6535 Skip next ilnstruction 1if timing error=i,
Do not clear flag.
ADLE 6536 Load enable register from Ac[2:5].
ADRS 6537 Read AD status/enable register and
mux into Acf{o:11].

Status register

Bit func tion

0 Conversjun done

1 error

2 done interrupt enable

3 error interrupt enable

4 external start enable

5 auto increment enable
&=7 not used

8=11 contents of mux register

Input channel Allocation
0 - galvanometer scanner data
1 - galvanometer scanner ref, heam (when implemented)
[8:15] = control desk knobs [0:7]

25 Control desk kXey=pad 1input, The control desk has a &
digit BCDP key pad with clear € and send 8 keys,
bressing the send key 1is sensed with the skip
instruction.

REKYPDH[0:11] - read high 3 BCD digits,

REYPDL{0:11] - read low 3 BCD digits,.

SKPEKPD - skip on S key and clear flag, Note that kev
C being pressed clears the 8§ key as well,

26, Dicomed 31 interface for the PDPBe/Dicomed.. (Cet,
subroutine DICMED,FT for handler specifications),

DICSKP = 6101 = skip on Dicomed read for next input

DICLR = 6102 - clear the Dicomed to make it ready

PICO[0,3211] = 6106 - send command in the AC. Command
bit in AC{0] and command/data in AC[3:11].

27+ External I1/0 intertace which adds groups of 8 input and B8
output 12=bit TTIL channels to the RTPP PDP8e.,

EXADR[0:11] - load channel select register with channels 0:407 5.,
EXIN[0:11] - C(AC){*= C(@elected channel)
EXOUT{ 0:11] ~ C(AC)==>C{selected channel)

Ca.l

PDPBe I/0 transfer instructions for the
Input channel allocation

- day of year in BCD (100,10,1}

= hour (10,1), minutes (10} in BCD
minutes (1), seconds (10,1) in BCD
- patech pannel 12=-bhit input,

W =0
]

Output channel allocation
0 - 12=hit relay register
3 - patch pannel 12=-bit output

)
.
el

RTPP

125

126 i PDPBe I/0 tranefer instructions for the RTPP

C.1,! Allocation of Quantimet program QPROG words

W R W TR W AL D ks T W S el e M ey e Sk D R N OGP W WS NN TN D N G WS A W D S W U S R G AR AW O M A

The RTPP Quantimet has been modi fied 80 as to
microprogrammable from the PDPSe computer uging a set of eight
program words QPROG[1:8]. The following table of QPROG words
describes the control facilities, Features not yet implemented
are marked with a #,

#QPROG1[0:4] = 6«bits detector module (normally leave in
slice mode select 3 (slice B/C))
11000= gselect 1
10100* select 2 threshold A
10010* select 3 threshold B
10001~ select 4 threshold C

QPROG1[6:9] = 4 bits Standard computer
1000 = area

0100 = intercept
0010 = count
0001 = 7PE?P

0000 = off

#QPROG1{10:11] = 2 hits Digitizer/Detector module
0l = density
10 = area
11 = intercept
00 = off

QPROG2{ 0:3) = FRAME 2 ocutput select as a function of
(Mask register output, FRAME 1 output)
The mask register select performs all 16 of the
SN748181 ALY logic operations,
1111 = NCT FRAME 1
1110 = NOT (FRAMF 1 OR MR)
1101 = (NOT FRAME 1) AND MR
1100 *= 1 (FALSE)
101t = NCT (FRAME 1 AND MR)
1010 = NOT MR
1001 = FRAME I XOR MR

1000 = FRAME 1 ANDP (NOT MR)
0111 = (NGT FRAMFE 1) OR MR
0110 = NCT (FRAME 1 XOR MR)
0101 = MR

0100 = FRAME 1 AND MR

0011 = 0 (IRUE)

0010 = FRAME 1 AND (NOT MR)

0001 = FRAME 1 OR MR
0000 = FRAME 1

QPR0OG2{4] = 1 bit digitizer module,
0 = log mode
1 * linear mode

QPROG2[6:9] = FRAME 1 output select as a function of
(Varjable frame and Mask Buffer memory Frame)
The mask register select performs all 16 of the
C.1

PDP8e I/0 transfer instructions for the RTPP

SN74 8181 ALY ltoglc operations,

1111 = NCT VAR FRAME

1110 = NOT (VAR FRAME OF MASE REG)

1101 = (NOT VAR FRAME) AND MASK REG
1100 = 1 (FALSE)

1011 = NCT (VAR FRAME AND MASE REG)
1010 = NOT MASK REG

1001 = VAR FRAME XOR MASK REG

1000 = VAR FRAME AND (NOT MASK REG}
0111 = (NOT VAR FRAME) OR MASK REG

0110 = NOT (VAR FRAME XOR MASK REG)
010t = MASK REG

0100 = VAR FRAME AND MASK REG

0011 = 0 {(TRUE)

0010 = VAR FRAME AND (NOT MASK KEG)
0001 = VAR FRAME CR MASK REG

0000 = VAR FRAME

QPROG2[10:11] * not used...

QPROG3[0:3] = 4 bits amender modute,

1011 = excesg

1111 = isolate
0111 = cluster
0101 = 2311

1101 = agglomerate
1001 = spear

0001 = unmodified

QPROG3[4:7]

4 bits MS3 computer

1000 = ares

0100 = intercept
0010 = count
0C01l = perimeter
0000 = off

QPROG3{8:11])

not used

QPROG4[0:61 = not used

QPROG4[7:9]

MS83 computer XKeys

001 = key 1
o010 = key 2
100 = ey 3

#QPROG5[0:2] = Modified/unmodified switch (1,/0)

001 = MS3 modifjed/unmodified (1/0)
010 = Funct. Comp. 1 modified/unmodified (1/0)
100 = Funct, Comp. 2 modified/unmodified (1/0)

QPROGS[3:5]

Classifier/collector

100 = function 1 select
010 = function 2 select
001

count number of acceptable ACPs as select

#QPROGS[6:7] = MS3 display toggles
00 = MS3 computer display
C.1

127

128 _ PDPBe I/0 transter instructions for the RTP®

01 = MS3 computer display and paralysis
10 = MS3 computer paralysis display

#QPROGS[8:11] = cother display toggles
0001 = Amender display
0010 = Standard detector display
0100 = Digitizer detector display
1000 = Standard Computer display

#QPROG6[0:5] = Display pushbuttons on modules
000001 = classifier top display
000010 = classifier bottom display
000100 = Standard computer display
001000 = MS3 computer display
010000 = Function computer 1 display
100000 = Function computer 2 display

#QPROGE[6:11] = 1=D detector module
000001 = 1
000010 = 2
000100 = 3
001000 = field standard
010000 = Bpecimen standard
100000 = auto delineator
000000 = off

QPROG7{0:1] = Mask register display enables
00 = off
01 = perimeter display
10 *= area display
11 = live frame (generated by QPROG2[0:3]).

QPROG7[2:5] = Punction computer 1 program waord
0001 = volume (integrated density)
0010 = area
0011 = perimeter
0100 = vertical projection
0101 horizontal projection
ot10 horizontal Feret
0111 = vertical Feret

QPROG7[6:9] = Function computer 2 program word
0001 = voliume (integrated density)
0010 = area
0011 = perimeter
0100 = vertical projection
0101 = horijizontal projection
0110 = horizontal Feret
0111 = vertical Feret

QPROG7[10] =~ Classifier move limit transfer.
when this hit is set to 1 (0 to 1) it moves
the contents of the classifier upper limit register
to the contents of the lower limit register when

the Classifier "Transfer™ switch is "up”.

PDP8e I/C transfer instructions for the RTPP

CeleZ Quantimet shift register contrel

The actual counting of objects is done in hardware by a
pailr of special purpose 1024 word (69 hits/word) hardware
static shift registers (SRG), A word has & fields (x, v,
detected, Function Computer 1 data, Function Computer 2 data)
with (10, 10, 1, 24, 24) bits respectively. The SRG can accept
data at a 2 mhz rate. This rate was used so that there would he
no timing problem with the detected objects ceming from the
quantimet at a 8 mhz scan rate (at a ginimum of S picture
points apart or 1.6 mhz), Ohe bit of the v coordinate data is
designated the density bit, In addition to the SBG there is
an index (counter) register, I/0 buffers, x and ¥y coordinate
counters, and associated control gates and flip floos with
which to control the data paths of the SRG conplex,

Another part of +the interface allows data toc be read
from the front of the SRG and data to be loaded into the rear
of the SRG, The QMT can load the SRG as described in 1 and 2
bhelow., The SRG may be operated as a circulanr queue utilizing a
recycle mode (to move data from the front of the SRG to +the
rear of the SRG) or as a regulsr gqueue not using recycle, Data
may be advanced to the <front of the SRG one {x,yv,denaity)
triple at a time, or valid data may be automatically advanced
to the front of +the SRG by advancing the SPRG (1024 less
(SRG-index-register mod 1024)),

The SRG can accept data under three conditions,

1, It is enabled +to accept anti~coincidence points
(blobs) (ACP s) from the Quantimet in which case 1t
will push the running OMT display (x,¥) coordinates for
that blob into the rear of the SRG and increment the
SRG index register by one.

2. It compares the front (x,y) coordinate of the SRG
(the SRG is now thought of as a queue) with the running
QMT (x,y)s If they are equal, it pushes the (x,y)
coordinate again into the rear of the SRG except that an
additional bit in the y SRG is set to 1 if the detector
is on (i.e. in blob) or to 0 1f +the detector is off
(in background).

3. The PDP8e can read (x,y,density) data from the

front of the queue and it can load (x,y,density) data.

inte the rear of the SRG it can read and clear the SRG
index register as well.

129

130 PDP8e I/Q transfer instructions for the RTPP

Cal.3 The QMT shift register commands

The SRG is a 69 bilt wide 1024 word shift register with
the ability to recycle data, This recycle control 1is governed
by bit 1 of QSTAT. Binary data may enter the rear of the SRG
from either the QMT running (x,¥) coordinate counters or from
the PDP8e, Binary data may be read from the front of the SRG by
the PDP8e by advancing the data to be read to the front of the
SRG and then reading 1t.

A SRG index register 1s used ta count (in binary) the
nuomber of (x,y) pairs in the SRG. The index register mav be
read and cleared by the PDP8Se, Theretfore, hit 0 of +the v
coordinate (11 bits come into the PDP8e) 1is assigned to be the
density bit., If it is a 0, then the QMT detector was active at
the time (x,y) was pushed into the SRG, If it is 1, then the
detector wes inactive (undetected)., If a (x,¥) pair was pushed
on an ACP, it will be high by definition of ACP,

ZSRGIX

ZSRGI zeros tre shift register index counter. This
"advances”™ the contents of the shift register to the front
output buffers and sets up the data in the SRG either for
removal or for the xy background compare 2nd pass with the
Quantimet, This is accomplished hy advancing the SPG and
incrementing the SRG index register to 0 modulo 1024, It
there are n points in the rear of the SRG, then the SRG data
need be advanced (1024-n) times, Note that the content of +the

- BRG index register after a ZSRGI will be multiples of 1024, So
generally a NSRGI would te used atter deing a ZSRGI, The
following example shows how one would normally use the ZSRGI:

RSRGI /read and save the index counter

CMA

DCA savelindexcounter

ZSRGY /advance the SRG data to the front,

IZSK" /done advancing?

JMP ,~1 /no

CSRGI /clear out the high order (multiples of 1024) bitsa,

CSRGI

CSRGI clears the shift regiaster index regigter ©bits
fo:11]., This clears only the SPG "index register".

ADVSR

ADVSR advances the shift register (SRG) one position
and increment the SRG "index register” by one. ADVSR is used
to edvance SRG (x,y,density) data to the front of the SRG so
that 1t can be read, and to enter it into the rear of the SRG,

IZSXp

IZSKP skips if the SRG "index register” ig zero -, It
C.1

PDP8e I/0 transfer instructions Ffor the RTPP

is used to test whether bits 4:11 of the shift reglater index

register are 0. The register 1s 12«bits long,

SETQUTY

STOMT starts the Quantimet with the program previously
loaded into the OMT program words QPROG1-8, I+t ini tia tesa the
Ouantimet by issuing the "AUTO" signal to the CMT. It also
SYNChronizes the PDP8e with the QMT VTRIG and QMT HOLD signals,

QUSEP

QMSKP skips if the Quantimet 1s not busy, i.e. the
Quan timet has finished a complete scan initiated by the STOUT
instruction and executed the program word given it. Note tha t
QM T da ta (QDATH, QODATZ, QDAT3) is active for 60 microseconds
after the skip (from QMSKP) occurs.

Cels 4 Quantimet control signals

. S —— D D D R R R e we e e W ww AR W W W W

Signals generated by the QMT are used by the QMT/PD°S8E
RQC controller +to control the operation of the "blob-catcher"
gshift register, These Quantimet signale are enabled at the POC
controller 1if the status register OSTAT[S] is 0., Dtherwime the
simulated instructions can be used,

VTRIG

Is generated by the QOMT at the beginning of each SCAnN,
Data from the last scan is available 60 micreseconds after this
pulse, Note that VTRIG also is used in the RQC controller to
clear the ¥y coordinate counter. (By loading LSRGR == vy
coordinate counter),

SYNC

Is generated by the QMT at the end of each herizontal
scan line, It is used by the RQC controller to load =zero
into the x coordinate counter and increment the y coordinate
counter by 1,

CLOCK

is generated by <the OMT every 125 nanoseconds and is
used by the ROC controller <to upcount the X coordinate
register,

ACP (gated count)

Is generated hy the OQUT MS3 standard computer or
Clagsifier~-collector/Function computers and results from an
object being detected in full feature nmode. It is used hy the
ROC controller to strobe (x, y, density, Function computer data
1, Function computer data 2) coordinate data into the shift
register. The "count out” signal is to te prefered +to using

"C.l

131

132 PDPBe I/0 transfer instructions for the RTPP

"ACP" as it uses the MS3 standard computer sizing whereas "AcCP"
does not. Note that the ACP signal occurs (x+8,y+1) picture
voints after the 1last detected point of an ob.ject. This
vector is subtracted from the bblue blab stack to give the
"detected” blob stack., This is used in the Xy compare pass.

Detected wvideo

ITas a level signal genarated by the detector module and
is used during the 2nd "background compare™ pass of the 3-D
"grain counting™ to signal whether a previous (x,¥) pair (ACP)
is detected now (in a particular wavelength light) or not,

Live frame

Is a eignal from the frame and scale module, It is used
to "and™ the ACP“s coming in s0 that they are inside of the
live frame.

AUTO

Is a signal generated by the PDPBE ROC controller +to
signal the OMT to begin accumulating data during the upcomming
scan, The PDPSE ROC controller synthesizes "AUTO"™ <from
"VIRIG" and "HOLD",

PDP8e I/0 transfer instructions for the RTPP

Caled Ehift register simulated operation

The QMT/shift-register interface can be simulated from
the PDP8e by four instructions, The procedure is to disable
the QMT signals CLOCK, BV FRAME, VIRIG, HOLD, ACP (GATED
COUNT), SYNC, and detected video. Then, PDP8e mignals are used
to simulate +the Quantimet. OQSTAT[S5] is an enable(0) or
disable(l) tor +the Ouantimet signals to control the shift
register logic. Tha t is, disabling the QMT enables the
simulated signals, This enables the operation of a test
program to simulate the ACP/coordinate catcher.

SMCLK

SMCLK simulates the Quantimet CLOCK, The CLOCK is used
to cosmnmtup the x coordinate register.

SVMSYC

- —

SMSYC loads the LSRGB register into the x coordinate
regisgter, and increments= the ¥y coordinate register by 1,
Normally, the LSRGB contains zero, so that doing a SMSYC will
load zero into the x-coordinate register.

SM VTG

SMVTG simulates the Quantimet vertical trigger to load
the vy coordinate éegister with the contents of the LSRGHB
register, Normally the LSRGB contalns zero. So effectively,
it will zero y=-coord.

SMACP

SHACP simulates the ACP gsignal for use as input to the
shift register interface,

SMHELD

SMHELD simulates a QMT hold signal, This instruction is
only used in maintenance programs,

The detector level is simulated by QSTAT[4]
status register: 1 indicates no detection, 0 indicates

detection. Thi=s only applies 1f QSTAT[4]*1 (i.e. in simulation

mode),

133

134 PDPBe I/C transfer instructionsa for the RTPP

C.1.6 Reading and loading the SRG

A AR D Gk G e sk WD AR U G N e e A

The SRG 1is read from the front and loaded from the
rear.,

Reading the SRG

The three SRG registers index, x front of the SRG, and
vy front of the SRG may bhe read directly inte the PDPAE
accunulator,

RSRGI

RSRGI reads the 12=hit shift register index register
used to count the number of ACP s collected 20 far in the shift
register, Note that successive data acquisitlions of ACP s will
count up RSRGI unless 1t is cleared after it is read each time
with a CSRGI.

RSRGX

RSRGX reads the front of the "x" shift register for x
ACP coordinates, It is 10-bits of x coordinate right justified
binary,

RSRGY

RSRGY reads the front of the "y" shift register for vy
AP coordinates, It is 10-bits of ¥ coordinate right justified
. binary. The detected bit is bit 0 and ig 1 1f the ACP was in
the detected region otherwise bit 0 is 0O,

RFC1H

RFC1IH reads +the high order 3 digits of BCD Function
computer 1 data into the PDPBe AC,

RFCI1L

RFC1L reads the low order 3 digits of BCD Function
computer 1 data inte the PDP8e AC.

RFEC2H

RFC2H reads the high order 3 digits of BCD Function
computer 2 data into the PDP3e AC,

RFC2L

RFC2L reads the low order 3 digits of BCD Function
computer 2 data into the PDPBe AC,

Loading the SRG
The SRG may be loaded by using the follawing algorithm:

C.l

PDPB8e I/0 transfer instructions for the RTPP 135
{0] clear the SRG index register with a CSRGI.

(1] disable the QMT CLCCK, SYNC, VIRIG by setting QSTAT
Bit § to 1 (disable), This enables the PDPSBE to
Run the SRG control logic,

[2] for each {(x,¥) coordinate pair, load the x and y
Coordinate counters with the following commands:

LSRGB
.LSRGB loads the SRG hinary input buffer from the PDPEE
accumulator,

[2.1] the x coordinate binary counter is loaded by the
Following sequence of PDPS8e code:

CLA /clear the ACC

TAD x /toad x coord into the AC

LSRGRH /put it into the SRGH buffer

SMSYN /load x~coord register from buffer
/(And increment y-coord register
/By 1. The latter is irrelevant)

[2.2] the y coordinate binary counter is loaded by the
Following sequence of PDP8e code:

CLA /clear the ACC

TAD y /load v coord into the AC

LSRGB /put it into the SRGh bhuffer

SMVIG /load y-coord register from buftfer,
ADVSR /shift the (x,y) data ==) SRG.

[2.3] put zero back into the SRGb buffer so that the OMT
‘ Signals VIRIG and SYNC will operate properly,
(VTRIG, SYNC loads 0). The following code
Will do this:
CLA /0 TO AU
LSRGB /load c(AC) into the SRGh buffer.

136 PDP8e I/C transfer instructions for the RTPEP

C.1.7 Allocation of status register QSTAT

The shift register (SRG) operation is controlled by the
statug regiater QSTAT which enables and disables various states
of the systemn. QSTAT i=s constantly displayed on the RTPP left
side of the control desk, Usually, QSTAT is “4000” octal.

Frame and scale awitch enable for up/down counters., 0
to disable, 1 to enable, There is a manual enahle overide
switch on the RTPP left control desk,.

it 1

Shift register recycle enable, If enabled, then doing a
"ADVSR" will recycle the data in the SRG, as will the "zsPGI",
When doing +the green pass during classification using the Qw7
xy compare, recycle should be on so that data is not 1lost if
the points are +too close +to each other. 0 to disable, t to
enable recycle,

hit 2

Select SRG OMT data acquisition method: push data into
SRG on ACP’s (0), or xy comparator (1). This is used to push
data into the SRG during the first pass (on any ACP), and to
rush the density condition on the second pass (on Xy real QwWT =
xy of the front of the SRG), Note the computer control
"end/full feature™ on the QVT must be on full feature to get
ACP s, The "gated count” output of the MS3 standard computer
module is used so as to apply the sizing condition to all ACP g,
(Sizing set to 1 will get rid of some of the noise.)

bit 3

SRG data "push™ enable for the SRG, It is used to
enable the shift register ACE/xv compare data +to he pushed
auntomatically, It is disabled while reading the the shift
register): 0 to disable, 1 to enable, It enakles the storage
of data in the shift register, Use "ADVSR" to advance the
shift register and (RSRGX, RSRGY, RFC1Y/L, RFC2H/L) to read the
detected data from the shift register. ¥Vhile disabled, +the
user may single shot the QMT and collect data from the QT
systemn control (via QDATLI, QDAT2 ODAT3) without atftfecting the
contents of the SRG.

it 4

Is used to simulate the detector trvue/false line, It is
used primarily during maintenance. 0 irdicates not detected, 1
indicates detected. Thisg line should be active only while the
QMT/PDPEE SRG control is set to FDPSE control (i.e. OSTAT{ 5]=1).

bit 5

-

PDPSe 1/0 transter instructions for the RTPP 137

QMT/PDPSE shift register control selecte the QMT SRG
control (0) or PDPBE SRG control (1). This allows PDPSE control
of the QMT VTRIG (SMVTG), SYNC (SMSYC), CLOCK (SMCLK), ACP
(SMACP) (or count out) and detected video (QSTAT[4]). These
signals are used to drive the SRG complex including the x,v¥v
ceoordinate generator and coordinate shift register,

hit 6

Standby disable status. If a 1, then the QONT display is
put in standby. This is accomplished by use of a relay which
completes the comdition of the OWT display standbv switch,
Therefore the OMT display standby switch must always he in
on {up) positian,. Bit 6 set to 0 is the non-standby status.

hit 7

Frame and scale remote glze kKeysa counters
enable/disable (0/1), It is useful for moving a fixed size
franme around with the control desk keys without disturbing the
size,

bit 8

Open the OMT shutter by loading bit 8. Normally, this
bit is clear which means that the shutter is open. To close the
shutter after it has been opened, clear the hit in QGSTAT{8]. A
control desk toggle switch is used +to overide the computer
control with manual intervention from the shutter control
electronics,

bit summary for QSTAT

EEBESTERMERESESESENER=ENXEE®S

- Frame and scale enable

- SBG recycle enable

= SRG xv comparator enable (disable ACP)
- SRG "push" enable

Simulated detector

- Simulated QMT enable

- Standby disable

- Frame and scale size counter disable,
- QMT camera/Axiomat shutter open[0 }/close[1]

O~NIIAPLWUN=O
[}

138 PDP8e I/0 transfer instructions for the RTPP

C.2 PDPBe IOT Instructiona for RTIPP-PDPRe DMA

Various data transfers must be set up and carried out
between the 8e and the GPP and the PIDPSe and BM, This section
discusses the DMA channel implementation as well as GPP control

DMA from the PDPBe is distributed from one general DVA
card which plugs into the "Master" (RIPP) PDPBe. Several
commands are implemented for the DMA channel control which
enable the selection and specification of DMA activity. As the
DMA channel melected by the PDPB8e DMAGO[9:11] only one channel
can be active at a time! This section describes the DMA
channel,

il. DMAGO instruction to start the specified DMA channel., A
command word in the AC is8 loaded by the DMAGO,

hit function
0 (0) Read device *=)8e
(1) Write device {(==8e
1 (0) Wait for GPP I/0 instruction
(1) Direct I/0 (forced by the PDPS8e)
3:4 packing mode for BM data

00 two Be-words/1 16-tit packed EAE
format (word count = Mod 2)
a1 4 Be-words/6 low 8=-hit BM

bytes (NS8 packed) (word count = Mod 4)

10 4 B8e=words/6 high 8-bit BM

bytes (0S8 packed) (word count = Mod 4)

11 4 8e~wordse/3 16~hit BM

bytes (088 packed) {(word count = Mod

5 (0) normal operation
(1) disable DMA (for malintenance)
6:8 PDP8e extended current address,
9:11 DMA channel select,
000 B™M /0.
001 X8e I1I/0,
oto0 GPP general (GR) 1/0,
o11 GPP program memory (PM) I/0,
100 GPP microprogram memory
(MPM) 1I/0

is allocated (even if not
eventually used).

101 spare
110 spare
111 spare
2. DMASKP skip on DMA channel done,
3a DMAWC load the DMA PDPSe word count from the PDP8e AC,
1.e. binary number ot PDPSe words to be
transfered, NQTE: DMAWC = 0000 will transfer

4096 words. See DMAGC[3:4] for EM word count.

4, DMACA load the DMA PDPBe current address from the PDPSe
Ce?2

4)

PDPBe I/0C transfer instructions for the RTPP 139
AC, i.,e, address of firset transter.,

5. DMACLR clear the DMA channels, Note that a PDPBe «LF
(6007) or PDPBe front panel lear also causes a DMACLR,

Be Each DMA peripheral device (BM, GR, etc.) requires an
additional address at which to perform the DMA in the

peripheral device address space.
EXDMA1 - loads the high 12-bits of 1I/0 device address.
EXDMA2 -~ loads low t2-hits of I/0 device address,

C.3 PDPBe IOT Instructions for BM controller

l. Eight paire of BM (XB(1),YB(i)) coordinate registers
(1:11 bit decimal each),

BMX0 = load the EMO X coord, Reg{==Be acc,
BMY0 ~ load the BMCO Y coord. Reg{==8e acc.,
BMXl -~ load the BEM1 X coord. Reg{==8e acc,
BMYl ~ load the EMl Y coord. Reg{=>=8e acc,
BMX2 ~ load the BEMZ X coord. Reg{==8e acc.,
BMY2 - load the BM2 Y coord, Reg{==8e acc.
BMX3 =~ load the BM3 X coord. Reg{(*=8e acc,
BMY3 = load the BM3 Y coord, Reg{(==8e acc.
BMX4 - load the BM4 X coord. Reg{==Be acc.,
BMY4 - load the BM4 Y coord, Remg{*=8e acc.
BMXS = load the BMS X coord. Reg{{*=8e acc,
BMYS - load the BM5 Y coord, Reg{==8e acc,
BMX6 <« load the BM6 X coord. Reg{=*8e acc,
BMY6 = load the BM6 Y coord, Reg{==8e acc,
BMX7 - load the BM7 X coord. Reg{==8e acc.,
BMY? - load the B¥7 Y coord, Reg{==Be acc.
2e . Two commands (GETA, GETR) are required ta enable the

acquiring of gray scale or detected (binary mask) video
data into buffer memories., Issuing a STCMT instruction
after one of these commands will cause video scan data
to be acquired on the next scan, The BNs are divided
into two groups (A and B) each with their own
sub-controller, Thus one group <c¢an he vosting or
acquiring data while the ather is being used by the GPP
or PDP8e to compute in, Group A includes BMs (0,1,2,3)
and group B includes (4,5,6,7), A status word is loaded
by the PDPBe from the AC to specify these enables,

C.3

140 PDPBe [/C transfer instructions for the RTPP

Bit Function BMi
o} 1 ==>sel. high byte pix/low byte bin mask 0 (A), & (®)
0 ==>gel, low byte pix/high byte bin mask 0 (A), 4 (B)

1 1 (A), 5 (B)
2 2 (A), 6 (B)
3 3 (A), 7 (B)

- mam - D G e e R AR A PR R S S M S D S S I e e G U G O O A N G NN AN S A D W 4T S mm TR WD WP RN S BN AR e mm mm e

4 1 *=)enab, bin mesk acquisiton in BM 0 (A), 4 (B)

0 ==Xdisable bin maek acguisiton in BM 0 (A), 4 (B)
5 1 (A), S (B)
6 2 (A), & (B)
7 3 (A), 7 (B)
8 1 == gselect BM 0 (A)Y, 4 (B)Y

0 == deselect RW 0 (A), 4 (B)
=] 1 (A), 5 (B)
10 2 (A), 6 (B)
11 3 (A}, 7 (B)

Note +that one may acquire the mask byte of a BM while storing
the gray scale data in the other bhyte, The status of the two
gets may be tested by reading in the GET-DONE bits for the two
groupas

RGETA - read done hits for 0,1,2,3 into [0:3].
RGETB - read done bits for 4,5,6,7 into [0:3].

3. Two commands POSTA and POETH are used to specify which

: BMs 40 post an the Quantimet display (at the
corresponding coordinate register specitied windows).
Either the high or low BHM byte may be displaved
according to bits [0:3], In addition the BM binary
mask may be generated if the corresponding bits are set
[4:7]. The BMs to be displayed are gelected from bits
[8:11). So the table given for GETA/GETE also applies
to POSTA/POSTB.

PDP8e 1/0 transfer instructions for the RTPP

C.4% ?DPBe IOT Instructions for GPP controller

i

3.

GPP STATUS[0:15) is read/write by the PIPR8e,

STATG2[8:11] « read GPP status register bits 0:3,
STATG1[0:11] = read GPP gtatus register bhits 4:15

GP2CLR =~ does a GPPF clear to clear GPP registers
including all those done hy a GPP IOCLR and alqo clears
the GPP PDLONT, P and DAB trap enables,

GPPCQONT = does a GPP continue t¢o turn on the GPP run

GPPHLT - does a GPP halt to turn off the GPP run flip
flop.

Load the PC trap register., The trap will halt the GPP
if the trap address appears in the GPP PC with the trap
found bit set in the GPP status register, The panel
switeh must be up to enable, '

PCTRP « load EXDMA1:EXDMAZ2 into the GPP PC trap
register and enable the trap,
PCIDS = disatkle Pr trap.

Load the GP® PC register.

GPDPLAD - toad EXDMAL :EXDMA2 intoc the GPP PC register,
RGPPCH[8:11] - read GP® PC hiah
RGPPNL{ 0211] - read GPP PC low.

Load the DAB trap register. The trap will halt the GPP
if the trap address appears in the GPP DAB with the
trap found hit set in the GPP status register, The
panel switch must be up to enable,

DABTRP ~ load EXDMALl :EXDMA2 into the GPP DAB trap

register and enable the trap.
DABTDS ~« disable DAB trap.

C‘4

141

142 PDP8e I/D transfer instructions for the RTPY

.5 PDP8e IOT Inetructions for XB8E cantroller

S e W Wk ek ek ki il s ey W W W W W R W W SR G W R W NN W W SN U R R A OB A D b e

In controlling the X8F auxillary PDP8e¢ processor, two
output words are used by the X8e Controller,

1. X8ECTL. =~ 1load the X8e control word from the PDPBe AC,
When a bit is on in any ane of these control
functione the function will be executed, There
is nn need to clear the bit,

Bits funct ion

- — -y - .- -

0 Halt X8e
1 Clear X8e
2 Cont X8e
3 Addr load X8e
4 Extd addr load X8e
5 Dep X8e
9«11 Extended current address for X8e.
2. X8ECA ~ X8e current address and switch register, Used

for X8e current address on DMA and the X8e
switeh register when the XBECTL instructlon 1is
used,

Ce S

PDPBe I/0 transfer instructions for the PTP™

C.,6 PDP8Be IOT Instructions for PDP8e core line buffer controller

The triple line buffer may be simulated in PDPBe core
until the GPP jis bullt using a special core line buffer
controler interface, The interface works as foltows: various
‘control reglsters are setup to specify mode, EM number, high or
low bvte, read or write, 3x3 neighborhoocd or length n (n=1 +to
512) pixel line, horizontal or vertial line. The x and ¥ pixel
addresses are specified as PDP8e addresses, The controller then
ge ts the current (x,v) vatues from PDP8e core when I/0 is
regquested,

The controller uses a microprocessor {(uP) (loaded with
a control program previocus to use) to contral FIFO thuffers
between the PDP8e and the uP and the buffer memory controller
and the uP. The controller is illustrated in the following
1 gure,

PDP8e NDmnibus Microprocessar Buffer Memory
i
OO (1 e
DMA 15-bit {(====] FIFO [{~=||==>1 FIFQO |-=-=>BM 19~=bit addr,
Addresg @ 2 | =—=—=e=- -

DMA 12=bit (====] FIFO {<{-=1ll==>1 FIFQ |====)BM 16~bit data

Read = ====a- - e =
DMA 12-hit ---=->{ FIFOQ == {==1 FIFO |{====BEM 16=hit data
Write - - - :

==>1 FIFO (|w====)>8M 16-bit I/0 mode
G e e e control

PDP8e 12-bit--->] REGs |=-=)
Wri te =

PDP8e 12=-bit{-=~1 REGs | (=~~-
Pead status - -
and uP mem,

|
l
t
i
1
!
t
|
|
|
——————— |
1
{
{
|
i
|
t
1
|
|

PDP8e 12-hit--=>1 REGs [--)
Load uP mem, =======
and control

The following INTS control the interface,

1. LBSZR ~ load the line buffer size register from Ac[1:11],

This iz used with line I/0 only.

2. LBBAR (LBBXAR) - load the core line bhuffer address low
12 bits (high 2 bits),

3e LBXPR - load x variable pointer address (low 12=-hits)

C.6

143

144 PDP8e I/C transfer instructiens for the RTPP
4, LBYPR - load ¥ variable pointer address (low 12-hits)

5 LBEXPR = load extended x,y pointer addrees registers
x[6:87, yfo:11].

[LBCTLR - load the BM# and byte control register as follows:
bit Tunction
0 read(0), write(1l)
3 horiz line (0), vertical line(1)
4 3X2 neighborhood(0), line(1)
g low byte (Q0), high byte (1)
9:11 buffer memory #
7 LBGO - start the transfer,
Be LBSKP = skip it tranafer finished.

C.6 1 Microprocessor I0Tag

R AR R SR A N W AR ED R N R O b e S e sk wm e .

Several I0Ts are used to load and read the uP memory as
well as start and test 1t,

1. LUADREL (LUADRH) - load the uP address register.,

2e LUMEML (LUWEMH) - load the uP memory at LUADRL:H,
3. LUCR - load 12=-hit uP control register,

4, RUMEMLJ(RUMEMH) - read the uP memory at LUADRL:H,
Se RUCR -~ read 12=bit uP control register,

PDPSe I/0 transfer instructions for the RTPP

.7 Allocation of PDP8e IOQTs for the RTPP

allocated

RTFP,

The

following 1lists are the PDPBe device codes
for

the OQMT, control desk, GPP, EM, parte of the

C.7.1 Alphabetic listing of PDP8e IOTs

DFVICE CODE

EFE ETETRNFEASR

ADVSHR
BMIN
BMOUT
B X0
BMX1
BMX2
BMX3

s X4
BVMXS
BMXéE
BMX7
BYYO
BMY1
BMY2
BMY3
BMY4
BMYS

- BMY&
BMY7
CLEKACK
CLESK™
CSPGI
DABTDS
DABTR®™
DETI1

DET2

DETDIG

DETBH
DETC
nIrsrl
pDIg®T2
DMACA
DMACLR
DMAGO
DMASK?
DMAWC
EXADR
EXDMAL

EXDMAZ2

6316
6542
6526
6500
6501
6502
6503
6510
65t 1
6512
6513
6504
6505
6506

6507

6514

6515.
£516

6517
6302
6303
631

6422

€423

6424

6420
6421
6435
6436
6073
6074
6070
6071
6072
6450

6524

6525

CARD FUNCTION
RQCA1l10 ADVANCE SHIFT REG,., ONE
BMD25 BM maintenance (spare input}
BMD25 EM maintenance {(svare output)
BMD29 load the BMO coord reg{==8e Acc,
BMD29 load the BM1 coard reg{==8Be Acc,
BMNZ29 load the BM2 coard reg{==8e Acc,
EMDZ29 load the BM3 coord reg{("=8e Acc,
BMNDN2 7 load the BM4 coord regf{"=8e Acc.
BMD27 toad the BMS coord reg{==8e Acc.
BMD27 load the BM6 coord reg(==8e Acc,
BMD27 load the BM7 coord reg{~=8e Acc.
RMD29 load the BMO coord reg{==8e Acc.
BYD29 load the BM1 coord reg{==8e Acc,
BMD29 lLoad the BM2 coerd reg{==8e Acc,
BMD29 load the BM3 coard reg{==8e Acc.,
BMD27 Toad the BM4 coord reg{*=*=8e Acc,
BMD27 - load the BMS coord regf{==8e Acc,
BMD27 load the BM6 coard reg{(==Be Acc,
BMD27 load the BM7 coord reg{**8e Acc,
RQCA4 CLEAR 200 HMZ CLOCEK FLAG .
RQCA4 SEI® CN 200 HZ CLOCK FLAG SET
RQCA10 CLEAR SWIFT REG. INDEX REG.
- . disable GPP LAB trap.
- lLoad EXDMALl :EXDMAZ into the GPP DAB trap
RQCASB 1=D DETECTOR THRESRAOLD 1 (== C(AC)
(#NOT UEED)
RQCAS8 1=D DETECTCR THRESHOLD 2 (== CLAC)
(#NOT USED) : .
RQCAS8 DENSITOMETER &6-bit T1 (LEFT BYTE)
~ AND 12 (RIGHT BYTE) THRESH (== C(Ar)
RQCAS8 TETECTOR TEHRESHOLD B (== C(AC).

I I T I I I R e T R

" RQCAS8 DETECTIOR THRESHOLD € (== C(AC)

ROCAZZ2 CCNTROL DESK DISPLAY 1 (== C(AC)
RQCAZ2 CCNTROL DESK DISPLAY 2 (== C(AC)
RDMA load RTPP DMA current address regilster
RDMA,BMB31 clear the RTIPP TMA interface
RDMA, BME31 start the RTPP DMA PDP 8e {==> DMA
RDMA 8kip on RTPP DMA done
RDOMA load the DMA word count register
ROQCB/EXIN/EXCQUT C(AT)==) C(XADR)
EBUS2 Toad high RTIPP DMA address bus
(also BMD3l, BMD2S, BME31)
EBUSZ . load low RTPP DMA address bus
(also BMD31, BMD2S, BMB31)}

C.7

145

146

EXIN
EXOUT
FB W1
FBW2
FBW3
FB W4
FB WS
FR W6
FBW?
FBW10
FBV¥L1
FBW1 2
GALSK™

GETA

GETB

GE TM SK
GPPFCLR
GPPCONT
GPPHLT
GPPLAD
HP L
HP R
HSL
HSR
IZSKP
LBBAR
LBEYXAR
IBCTLR
LBEXPR
LBGO
LRSKP
LBSZR
LBXPR
IBYPR
LbXr
Lbpyp
LFBW2
LGALX
LGALY
LMASKE
LMASKX
LPENX
LPENY
LODT1
LQDT2
LoDT3
LS RGB
&6 07
6610
6613
6611
6612
MSEKADR
MSTAG

6333
£451
6341
6342
6343
6344
6345
6346
6347
6350
6351
6352
6400

6522

6360
6320
6361
6321
6317
6601
6602
6606
6605
6620
6621
6600
6603
6604
6443
6444
6437
6456
6457
6441
6442
6445
6446
6375
6376
6377
6367
LUADRL
LUADRA
LUCR
LUMENML
LUMEMF
6440
6366

PDPBe I/0 transfer instructions for the RTPP

RQCB/EXIN ClACY(=C{(C(XADR))
RQCB/EXQUT C(AC }==)>C(C(XADR))
RQCH2 C{AC) (== CONTROL DESK DATA WOPRD
RQCB2 C(AC) (== CONTROL DESK LCATA WORD
ROCRH2 C(AC) (== CCNTROL DESE DATA WORD
rOQCH2 CCAC) (== COUNTROCL DFSE LATA WORD
RQCHB2 C(AC) (== CONTROL DESKX LATA WORD
RQCB2 C{(AC) (== CONTROL DESX TATA WORD
RQCR2 C(AC) {== CONTROL DESK DATA WORD
RQCB4 C(AC) {== CONTROL DESK TATA WORD 10
RQCB4 C(AC) (== CONTROL DESK DATA WORD 11
RQCBA C(AC) (»*= CONTRQ)YL DESK TATA WORD 12
CICIE I skip when the galvanometer scanner is
readye.
BMD27 enable acquiring group A BM pix or
' hinary masks
- enable acquiring group E BM pix or
binary masks
RQCA14 LOAD MASK REG FROM QMT CN NEXT STQMT

NP W -

- clear the GPP registers

= continue the GPP

= LT the GPP

- load GPP PC from EXDMAL,?2

RQCAS FRAME HOR. POSITION COUNTER <(*=* C(AC)
RQCA6 C(AC) (== FRAME HCR. POSITION COUNTER
RQCA6 FRAME ¥YQR, SIZE COUNTER (== C(AC)
RQCAG C(AC) <{== FRAME HOR, SIZE COUNTER
RQCA10 SKIP IF INDEX 10~«bit§ = ZERO,

LCAD CORE LINE BUFFER ADDRESS LOW 12-BITS
LOAD CORE LINEF PUFFER ADDRESS HIGH 3=-BITS
LCAD CCRE LINE BUFFER CONTROL PEGISTEW

LOAD LINE CORE BUFF, X,Y VAR, PTR EXTD ADDR,

START CORE LINE RBUFFER TRANSFER
SKIP WHEN LINE CORE EUFFER XFFR DONE.
LOAD LINE BUFFER SIZE REGISTER

LOAD X LINE CORE RUFF VAR PIR REG,

LOAD Y LINE CORE EUFF VAR PTR REG,
RQCA14 X COCRDINATE CURSOR REG, {== C(AC)
RQCA14 Y COORDINATE CURSOR REG, (== C(AC)
RQCAZ2 CONTROL DESK SWITCH LIGHTS (== C(AC)
RQCHS MIRRCR SCANNER X COORDINATE (== C(AC)
RQCBS8 MIRROR SCANNER Y COORLINATE (== C(AC)
RQCA14 MASK ENTRANCE REG, (== C(AC)
RQCA14 MASK EXIT REG, <{== C(AC)

"RQCAl16 LIGHT PEN X COCRDINATE (== C(AC)

RQCA16 LIGHT PEN Y COORDINATE (== C(AC)
RQCA4 OMT RIGHT DISPLAY LSW (== C(AC)

RQCA4 QMT RIGHT DISPLAY MIDILE WORD (== C(Ar)

ROCA4 OMT RIGHT DISPLAY MSW (== C(AC)
RQCA10 SHIFT PEG. LOADING REG, (== C(AC)
LOAD uP ATDREESS REGISTER LOW [2«BITS
LOAD uP ADDRESS REGISTER HIGH 12-BITS
LOAD uP STATUS REGISTER 12-BITS
LOAD uP MEMOGRY LOW 12-BITS
LOAD uP MEMORY HRIGH 12~BITS
RQCAl14 MASK ADDRESS REG. (== C(AC)
RQCBIO STAGE DIRECTION REG. ¢**= C(AC)
Co?

PDPB8e I/C transfer instructions for the RTP® 147

POATRS - - disable the PC address trap

PCTR® - - load FXDMAL :EXDMAZ into the GPP PC trap

PENST 6447 RQCAl16 LIGRT PEN STIATUS REG, (== C{AC)

POSTA 6520 BMD29 post selected group A BMs

POSTHR 6521 BYD27 post selected group B BMs

QNATI1 6324 RQCA4 C(AC) (== OMT BCD DATA LSW

QDA™ 2 6325 RQCA4 C(AC)} (== OMT BCD TATA MIDDLE WOPD

QDAT3 6326 RQTA4 ClAC) (== QMT BCD DATA MSW

QMEKP 6301 RQCA4L SKIP WHEN QMT DATA SCAN DONE

QP ROG1 6370 RQCA4 OMT YROGRAM WORD 1 (== C(Ar)

QP ROG?2 6371 RQCA4 QMT PROGRAM WORD 2 {== C{(AT)

QP ROG3 6372 RQCA4 OMT PROGRAM WORD 3 (== C(ArC)

QP ROG4 6373 RQCA4 OMT PROGRAM WORD 4 {== C(AC)

QP ROGS 6431 RQCAZ22 QYT PROGRAM WOQORD 5 (== C{AC)

QP POGH 6432 RQCAZ2Z OQMT PROGRAM WORD £ (== C(AC)

QU EOGGT 6433 RQCAZ22 OMT PROGRAM WORD 7 (== C(AC)

grRrROGR €434 RQCAZ22 QMT PROGRAM WORD 8 <{== C(AC)

QSTAT 6374 ROCA4 RQC PROGRAM WORD (== C(AC)

RAMEP] 6543 - spare input (nct laplemented)

RBMSPZ 6544 - spare input (not inxplemented)

RBMSP3 6545 - spare input (not implemented)

RBMSP4 6546 - spare input (not implemented)

RBMSPS 6547 - gpare input (not irplemented)

RFCLY 6334 RQCAL 2 C{AC) {== FUNCTION COMPUTER 1 MSW

REMLL 6335 RQrCAl12 C(AC) {== FUNCTION COMPUTER 1 L&W

RFC2H 6336 RQCAlZ2 C(AC) {== PFUNCTION COMPUTER 2 MSW

RFC2L 6337 RQCAL12 C(AC) {== FUNCTICN COMPUTER 2 LSW

RGAL 6410 wmmmaw C{AC) (== integrated galvanometer
scanner data,

RGETA 6540 BMDZ29 Read the status of done bhits for BM GETA

RGETHB 6541 BMD27 Read the status of done hits for BM GETH

RGPPCYH - - read GPP PC high

RGPRCY, =~ = read GFPR P low

REKY?PDY 6340 RQCB6 C(AC) (f' CONTROL DESK EKEY PAD MSW

REY?DL 6353 ROCH6 r{(AC) {== CONTROL DESEK EKEY PAD LSW

RMASXE 6354 RQCAl 4 C{(AC) {== MASK ENTRANCE DATA
AS F(MSKADR)

RMASYXX 6355 RQCA1l1L4 C(AC) (== MASK EXIT DATA AS

’ . F(MSXADR)

RPENX 6356 RQCAl16 C(AC) <{== LIGHT °PFEN X COORDINATE

RPENY 6357 RQCA1H C(AC) (== LIGHT PEN Y COORDINATE

ROSTAT 6327 RQCA4 CAC) (== QSTAT

RUCR 6672 READ uP STATUS 12=-BITS

RUMEML 6670 READ uP MEMORY LOW 12-BITS

RUMEMHA 6671 READ uP MEMORY HIGH 12-EITS

RSRGI 6332 RQCA10 C(AC) (== SHIFT REG., INILEX REG,

RS RGX 6330 ROCA10 C(AC) {== Y CORDINATE SHIFT REG. DATA

RERGY 6331 RQCA10Q C{(AC) (== Y CORDINATE SHIFT REG. DATA

SIZEA 6425 RQCAS AMENDER SIZE REG., (== (AC) BCD

SIZEC 6426 FQCAB CLASS/COLLEC SIZE REG, <== C(AC) BCD

SI7EWM 6427 RQCAS8 MS32 COMPUTER SIZE REG, <¢== CQ(AC) BPOD

SI?ES 6430 RQCA22 STD COMP, SIZE REG. (== C(AC) BCD

SKPKPD 6313 RQCHB6 SKIP CON CONTROL DESK XEYPAD, CLEAR
FLAG ON SXIP ’

SMACP 6310 RQCA10 SIMULATE QMT ACP AS F(QSTAT BIT 5)

SMOLE 6311 RQCA10 SIMULATE OMT CLOCK AS F(QSTAT RIT 5)

SMHALD 6307 RQTC A4 SIMULATE QMT BOLD AS F(QSTAT BIT S5)

C.7

148 PDPBe 1/0 transfer instructions for the RTP®

SNOTR &£36S ROCB10 EPARE MOTOR REGISTER(==C(AC)
SMSYN 6312 RQCA1lO SIMULATF QMT SYNC AS F(QSTAT BIT S)
SMVT 6306 RQCA4 SIMULATE OMT VERT, TRIG AS

F(OSTAT FIT S)
STEP €305 RQCB10 MOVE STAGF AS F(MSTAG)
STQMT 6300 ROCA4 ETART QUT DATA ECAN
VP L 6362 RQCA6 FRAME VERT, POSITION CCUNTER (== C(AC)
VPR 6322 RQCAG6 Cl{AC) {== FRAMF VERT. POSITION CCUNTER
VEL £363 RQCAG6 FRAME VERT. SIZE CCUNTER (== C{AC)
VER 6323 RQCAS C(AC) (== FRAME VERTI, SIZE COUNTER
X8ECA - - LOAD XBE CURRENT ADLDRESS
XereTL - - LCAD X8E CCNTROL REGISTER
ZISRGY 6316 ROQCA10 SEND SWIFT REG., DATA TO FRONT OF SYIFT RES,

Ca7

PDP8e I/0 transfer instructions for the RTPP

C.8 PDPB8e Device code allocation bty decade

TR D VS e S R SR S D S s S O SR A WE W e e o o

The actual devic

00 - PDPRe CPU

01 - paper tape reader

02 - paper tape punch

03 = Decwriter Keyktoard (or PDP11/20 emulator)

04 = Decwriter printer (or PDP11/20 emulator)

07 = RTPP DMA I/0 channel

10 = Dicomed

11:12 -~ free

12 = DCO2 serial interface printer

14 - Graf=-Pen

16 - HSP: input channel {PDP11/20 emulator)

17 = HSP: output channel (PDP1:/20 emulator)

20:27 - PDP8e extended wemory contral

30:37 = RQC -~ EERBUS #1

40:45 - RQC = ERUS #1

503852 - EBUS #2

53 - PDPBe A/D multiplexor AL8e/AM8e

54 - EBUS #2

55:56 « PDP8e Floating point processor FPP

57 = EBUS #»2

6062 - EBUS #2

63 - (DecwriterIKBD - not used since PTR used as

64365 = EBUS #2

&6 - PDPBe line printer LPOS (Decwriter PTR) or
PPP11/20 emulator

&7 - ERUS #2

70:72 - PNPBe TCS8 magtape control

74 -~ PDPBe RKBe disk control

76277 - PDPBe TC0O8 Dectape control

e coders for particular LEC devices may be found
in the various versions of the "Small fomputer Handbook"

LPT)

149

150 PDPBe I/0 transfer instructions for the RTPT

Ce841 Numerical listing of PDP8e I0OTs

RDMA "OUTPUT" NEVICE CODES - C(FDP8e ACC)<{==C(channel)

DFVICE CODE CARD FUNCT ION

EFWMEERESNEREXEERERRS - EEMW LE R B & BB § 3 .

€073 DMACA RDMA load RTPP DMA current address register
6074 DMACLR RDMA,BME31 clear the RTPP DMA interface _

6070 DMAGO RDMA,DBMR31 start the RTPP DMA PDP8e {==)DMA

6071 DMASEP RDMA skip on RTIPP DMA done

6072 DUAWT RDMA load the DMA word count register

PDPBe auxlllary devices

DEVICE CODE CART FUNCTION (on DEC 1709 card)

6101 DICSKP PFL1 skin on Dicomed ready for next command
6102 DICLR PFL1 . set Dicomed ready "

61 06 PICO PFL1 send Dicomed command <==Ac[0,3:t1]

ROC "PULSE"™ DEVICE CODES - note: does not affect the PDP8e ACC

DEVICE CODR CARD FUNCTION
A ESEExxrxxA RS MEER®E mEEREEESS S
6300 STQMT RQCA4 START OMT DATA SCAN
&£301 QMSEP RQCA4 SKI® WHEN QMT DATA SCAN NONE
63 02 CLEKACK RQCA4 CLFAR 200 BZ CLOCX FLAG
6303 CLESKY PQCA4 SEI¥® CN 200, HZ CLOCK. FLAG SET
63 04 GETMSK RQCA14 LOAD MASX REG FRON QMT ON NEXT STQMT
6305 STEP ROCHBIO0 MCOVE STAGE AS F(MSTAG)
63 06 SMVTG RQCA4 SIMULATFEF QMT VERT, TRIG AS
: : F(QSIAT RIT S5)
6307 SMHLD ROQCA4 SIMULATE QMT YO0LD AS F(QSTAT BIT 5)
6310 SMACP RQCA10 SIMULATE OMT ACP_AS F(QSTAT BIT 5)
6311 SMCLK RQCA10 SIMULATE QMT CLCCEK AS F(QSTAT BIT S)
6312 SMSYN RQCA10Q0 SYMULATE QMT SYNC AS F(QSTAT BIT 5)
6313 SKPKPD RQCESE SKIP CN CCNIRCL DEESEK KEYPAD,
CLEAR FLAG ON SKIP
6314 ADVSR RQCA10 ADVANCE SWIFT REG, ONE
6315 CSRGI RQCA10 CLEAR SWIFT REG., INDEX REG.
6316 ZSRGI RQCA10 SEND S®WIFT REG, DATA IC FRONT OF SVWIFT REG,
6317 IZSKP RQCA10 SKI®™ IF INDEY 10=-hit8S = ZERO,
&£400 GALSEP —wwm-= skip when the galvanometer scanner is
ready.
&401
64 02
€403
64 04
€405
64 06
6407

PDF8e I/0 trangfer instructions for the RTPP 151

RQC "INPUT"™ DEVICE CCDES - C{channel)==)C(PDP8e ACC)

—— - R R R R R

DEVICE CODE CARYD FUNCTION

mat R N NEIENIENRE mEEE EEEASESS®

6320 HPR RQCA®6 C{AC) {== FRAME HOR, POSITICN COUNTER

6321 HSR RQCA6 C{AC) (== FRAME HOR. SIZE COUNTER

6322 VPR RQCAS6 C(AC}) (== FRAME VERT,., POSITION COUNTER

6323 VSR RQCA®6 C{AC) (== ¥RAME VERT, SIZE COUNTFR

6324 QDATI1 RQCA4 C{AC) {== OMT BCD DLATA LSW

6€32% QDATZ2 RQCA4 C(AC) (== QMT BCD DATA MIDDLF WORD

6326 QDAT3 ROCAA4 C(AC) {== QMT BCD DATA MSW

6327 RQSTAT ROCA4 COAC) (== QSTAT

A3 30 RSRGX RQTA1O0 C(AC) (== X CORDINATE SHIFT REG, DATA

6331 RSRGY RQCA1 O C(AC) == Y CORDINATE SHIFT REG, DATA

6332 RSRGI RQCA1l0 C{AC) ¢(== SHIFT REG. INDEX REG,

63323 EXIN RQCB/EXIN C(C{(XADR)*=> C(AC)

6334 RFC1H RQCAL12 C{AC) (== FUNCTION COMPUTER 1 MSW

63 3% RFCL L RQCAl2 C(AC) (== PUNCTION COMPUTER 1 LSW

6336 RFCZH RQCAL12 C(AC) <== FUNCTICN COMPUTER Z MSW

6337 RFECZL RQCA1l1Z2 C{AC) {== PUNCTION COMPUTER 2 LSW

6340 RKYPDH RQCB& C{AC) (== CCNTRCL DESEK KFY FAD MSW

6341 FBW1 RQCR2 C{AC) (== CONTROL TESEK TATA WORD 1

6342 FRW2 ROQCR2 C(AC) (== CCNTROL DESK DATA WORD 2

6343 FBW3 ~ RQCB2 C(ACY) {== CONTRQL IESK DATA WOFD 3

6344 FBwW4 RQCB2 C(AC) (== CONTROL DFESK DATA WORD 4

£345 FBWS RQCHB?2 C(AC) {== CONTRCL DESK DATA WORD 5

6346 FBW6& RQCR2 C(AC) {== CCNTROL DESK DATA WORM™ &

6347 FBwW? RQCB2 C(AC) {== CONTROL DESK DATA WORD 7

6350 FBW1Q RQCR4A C(AC) (== CONTROL DESK DATA WORD 10

6351 FBW1t RQCBA C(AC) ¢== CONIROL DESEK DATA WORD t1

6352 FBWL 2 RQCBA C{(ACQC) {== CONTROL DESK DATA WORD 12

6353 RKYPDL RQCBé& C(AC) (== CONTROL DESK KEY PAD LSW

6354 RMASKE RQCA14 C(ArT) (== MASK ENTRANCE DATA AS
F(MSEADR)

6355 FMASKX RQCAl14 C(AC) {== MASE EXIT DATA AS F(MSEKADR)

6356 RPENX RQCAle C(AC)Y (== LIGHT PEN X CCQORDINATE

6357 RPENY ROCA16 C{AC) (== LIGHT PEN Y COORDINATE

6410 RGAL —mwwenuw C(AC) {*= integrated galvanometer
scanner data,

6411

6412

65413

6414

6415

6416

€64 17

RQC "OUTPUT"™ DEVICE CODES = C({PDP8e ACC)I{("=C(channel)

DEVICE CODE CARD FUNCTION |

ELE R BB BB B & B N J LB B R EEESERERS

6360 APL RQCA6 FRAME HOR, POSITION CCUNTER (== C(AC)

C.8

152

6361

6362
6363
6364
6365
6366
6367

6370
6371
6372
6373
6374
6375
6276
6377

6420
6421
6422

6423

6424

6425
6426
€427

6430
. 6431
64 32
6433
64 34
€435
6436
6437

€440
6441
6442
6443
6444
6445
64 46
6447

6450
6451
6452
6453
6455
6456
6457

HSL
VPL
VSL

SMOTR
MSTAG
LSRGB

QPROG 1
QPROG2
QPROG3
QPROG4
QSTAT
LQDT1
LQDT2
LQDT3

DETB
DETC
DET1

DET2

DETDIG

S1ZEA
SIZEC
SIZEM

SIZES
QPROGS
QPROGE
QPROG7
QPROGSB
DISPI
pIsw2
LFBW2

MSKADR
LMASKE
LMASKX
LDXP
LDYP
LPENX
LPENY

PENST

EXADR
EXOUT

LGALX
LGALY

PDP8e TI/0 transfer instructions for the RTPP

RQCAG6 FRAME HCOR, SIZE COUNTER (== C(AC)
RQCAE& FRAME VERT. POSITION COUNTER (== C{AC)
RQCAG FRAME VERT., SIZE COUNTER (== C(AC)

RQCB10 SPARE MOTOER REGISTER{(==C(AC)
RQCB10 STAGE DIRECTION REG, (== C(AC)
RQCALO SWIFT REG, LOADING REG. (== C(AC)

RQCA4 OMT PRCOGRAM WORD 1 (== C(AC)
RQCA4 QMT PROGRAM WORD 2 (== C(AC)
RQCA4 OMT PROGRAM WORD 3 (== C(AC)
RQCAS4 QMT PROGRAM WORD 4 (== C(AC)

RQCA4 RQOC PROGRAM WCRD (== C(AC)

RQCA4 QMT RIGHT DISPLAY LSW (== C(AC)

RQCA4 OMT RIGRT DYSPYLAY MIDDLE WORD (== C(AD)
RQCAA QMT- RIGHT DISPLAY MSW (== C({AC)

RQCASB8 DETECTOR THERESHQLD B (== C(AC)

RQCAS8 PETECTOR THRESHOLD C (== C(AC)

RQCA8 © 1=D DETECTOR THRESHOLD 1 (== C(AC)
(#NCT USED) ‘

RQCAS 1=-D DETECTOR TARESYOLD 2 (== C(AC)
(#NOT USED)

RQCAS8 DENSITOMETER 6-=bit Tl AND T2
THRESHQOLDS (== C(AC)

RQCAS8 AMENDER STIZE REG, <== C(AC)

RQCAS CLASSIFIER COLLECTICR SIZE RFG, {== C[(AC)

RQCAB MS3 COMPUTER SIZE REG, (== C(AC)

RQCA22 STANDARD COMPUTER SIZE REG. <== C(AC)
RQCA22 -QMT PROGRAM WORD S (== C(AC)

RQCA22 QMT PROGRAM WORD & (== C(AC)

RQCA22 QMT PROGRAM WORD 7 (== C(AC)

RQCA22 QMT PROGRAM WORD B8 (== C(AC)

RQCAZ22 CCNTRCL DESK DIEPLAY 1 (== {AC)
RQCA22 CONTRCL DESK DISPLAY 2 (== C(AC)
RQCA22 CONTROL DESK SWITCH LIGHTS <== C(AC)

RQCA14 MASK ADDRESS REG, (== C(AC)
RQCA14 MASK ENTRANCE REG, (== C{AC)
RQCA14 MASE EXIT REG, (== C(AC)

RQCA14 X COORDINATE CURSOR REG., (== C(AC)
RQCAl14 Y COORDINATE CURSOR REG. <== C(AQ)
RQCA16 LIGHT PEN X COORDINATE (== C(AC)

"RQCA16& LIGHT PEN Y CQORDINATE (== C(AC)

RQCA16 LIGHT PEN STATUE REG., {*= C(AC)

RQCB/EXIN/EXCUT C(AC)I==>C(XAIR)
RQCB/EXOUT C(AC)==)>C{C(XADR))

RQCBS MIRROR SCANNER X COGRDINATE <== C(AC)
RQCBS8 MIRPRCR SCANNER Y COORDINATE (== C(AC)

BM "OUTPUT™ DEVICE CODES - C(PDP8e ACC)(*=C{channel)

C,8

DFVICE CODE

€500
6501
6502
65 03
6504
£505
6506
6507

£510
6511

6512
6513
6514
6515
6516
6517

£520
6521
6522
6523
6524

6525

6526

BMX0
BMX1
BMX2
BMX3
BMXO
BMY1
BMY2
BMY3

BMX4
BMXS
BMXé6
BMX7
BMY4
BMYS
BMYS&
BMY7

PQOSTA
POSTB
GETA
GETB
EXDMA1

EXDMA2

BMOUT

PDP8e I/0 transfer

CARD

BMD29
BMD29
BMD29
BMD29
BMD29
BMD29

BMD27
BMD27
BMD27
BMD27
BMD27
BMD27
BMD27
BMD27

BMD29
BMD27
BND2S
BMD27
EBUS?2
(also

EBUS2

BMD2S

FUNCTION
ERmEEREERE
load BMO
load
load
load
load
load
load
load

EM2
BM3
BMO
BM1
BM2
B3

load
lLoad
load
load
load
load
load
load

BM4
BMS
BM6
BM7
Bma
BMS
BM6
BM7

post
post

BM1.

coord
coord
coord
coord
coord
coord
caoord
coord

o d g 24 3¢ b

coord
coord
coord
coord
coord
coord
coord
coord

v o Hd e G e

reg {("=8e
reg(*=8e
reg {(==8¢
reg (==Be
reg{==8e
reg {==ge
reg{==8e
reg {*=8e¢

reg{==8e
reg {==8e
reg{(==8e¢
reg {==8e
reg {*= 8e
reg {(="=8e¢
reg{*~*ge
reg{==8eg

selected group A BMs
selected group B BMs

ACC,
ACC,
ACC,
AcC,
ACC,
ACe,
ACC,
ACC,

AcCC,
ACC,
ACC,
ACC,
ACC,
AcC,
ACC,
ACC,

instructions for the RTPF

GROUP
GROQUP
GROUP
GROUP
GROUP
GROUP
GROUP
GRO U™

R S

GrROUP
GRO UL
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP

o> =< e > Bl s s - - B B

enable acquiring group A BM pix or
binary masks
enable acqguiring group B B¥ pix or
binary masks

load high RTPP DMA address bus
BMD31, EMD25, BMB31)

load low RTPP DMA address bus
(also EMT31, BMD25, BMB31)
PM maintenance output (spare)

BM "INPUT"™ DEVICE CODES - C(channel}==> C{PDP8e ACC)

DEVICE CODE

EM IEEEXEREEERE

6540
6541
6542
6543
6544
6545
6546
6547

RGETA
RGETH
BMIN
RBMSP1
RBMSP2
RBMSP3
RBMSP4
RBMSPS

CARD

BMD29
BMD27
BMD25S

spare

FUNCTION

Read the
Read the

status of done hits for BM GETA
status of done bits for BM GETB

BM maintenance input (spare)
irplemented)
implemented)

spare
spare

spare
spare

input
input
input
input
input

(not
(not
(not
{not
(not

‘implemented)

implemented)
implemented)

LINE BUFFER "OUTPUT" DEVICE CODES - C(channel }{*=C(PDP8e ACC)

DEVICE CODE

6600
66 01
6602
66 03
6604
6605
6606
66 Q7

LBSZ®R
LBBAR
LBBXAR
LBXPR
LBYPR
LBEXPR
LBCTLR
LUADRL

CARD

FUNCTION
LOAD
LOAD
LOAD

LCAD
LOAD

LINE BUFFER SIZE
CORE LINE BUFFER
CORE LINE EUFFER
LLOAD X LINE CORE BUFF
LCAD ¥ LINE CORE RUFF
LCAD LINE CORE BUFF,

CORE LINE EUFFER CONTROL
u? ADDRESS REGISTER LOW 12=-BITS

c.8

VAR

PTR

X,Y VAR,

REGISTER
ALDRESS
ALDRESS
VAR PTR

1OwW 12~BITS
HIGH 3=-BITS

REG,
REG.

PTR EXTD ADDR,

REGISTER

2

153

154 PDPBe 1I/0 +transfer instructions for the RIPP

6610 LUADRW LCAD uP ADPDRESS REGISTER HIGH 12-BITS
6611 LUMEML LOAD uP MEMORY LOW 12-BITS

6612 LUVWEMH LOAD uP MEMORY HIGH 12-BITS

66132 LUCR LOAD uP STATUS REGISTER 12=-BITS

LINE RBUFFER "PULSE"™ DEVICF CCDES

S e SR e e e e dE ED ER GD N W Y O Y TR 4R W W

DEVICE CODE CARD FONCTION
BE EX ENXEZX X LR B & J LR B B 8 8 ¥ N
66520 LBGO START CORE LINE BUFFER TRANSFER

6621 LBSKP SKIP WHEN LINE CCRE BUFFER XFER DONE.

LINE BUFFER "INPUT" DEVICE CODES - C{channel)==>C(PDPSe ACC)

AR e NGB M D N S SR SR S ey WS T R e S W G GRS WY WP AN M W N WD WD M A A W DR MR AN W AN D AR M AN N N o R e e D G Gm SR WP W e W N E

DEVICE CODE CARD FUNCTICON

EE IS EERSEERN L R B B 1 ®EEEEERIEN

6670 RUMEML READ uP MEMORY LOW 12-BITS
6671 RUMEMH READ uP MEMORY BIGH 12-BITS
6672 RUCR READ uP STATUS 12-BITS

APPENDIX D

Examples of programring the GPP

Ll e .

Several examples of programming the GPP are given there in
order to impart the flavor of the type of assembly lanuuage code
which would typically he used on the GPP, Note tha t the MAINSATL
compiler would nroduce GP® assembly souce code to be assembled hy the
PDPRe using GPPASM,

A "communications" assembly language is used in the
following examples. It mimics the GPTASM assembly language hut
is easier to read since the code is in infix notation rather
than prefix, That is sink and source operands are denoted here
by being on the left and right side of an arrow "(==",

Let comments be denoted by text enclosed in quotes
M eee™, Let an instruction consist of 4 fields: the ™3 <field
followed by "<(==", followed by the P1 field, followed hy the
opr code,'tollowed by the P2 field. Non-existant fields may be
ignored. Thus,

(P3> (== (P1> <OPR) (P2):
aor
(P3I> (== (OPR} <(P1>:

D.1 Gradient used in Kirsch algorithm

- e e e D I AR MR e S WD S R W WE SR OED U e EE OR U G TR TR WS O W em

The following <gradient algorithm is given by Kirsch
[Kir69]. Given a 3x3 Il subarray, the following GPP oprogram
will compute the 2~D gradient by the formula "MAX [(3#8UM a(i -
(s#sU0v b(i)]". This PM program is written by repeating the
code instead of using loaops. It could be written with loops

instead, The 8 permutations of the 8 nelghbors are:
al a2 a3 b5 al a2 a2z a3 bl

hS . hl ha a3 al . b2

b4 b3 b2 b3 b2 b1 bS5 h4 13
Permutation 1 permutation 2 ,,. Permuytation 8

The following GPP program will compute the gradient at
the current pixel, The neightorhood indexing sScheme 1is
restated for clarity,

P W
6 30/ I Y
- O =

let P1 be (3#8SUM a(i)-53SUM b[1]);
R2 be MAX variahle?
D.l

156 Examples of programming the GPP
R10 to R17 the local permutation values:

The computatinn for permutation 1 is given and the
other 7 permutations are similar,

Step Instruction

(1] ALUA ¢== TI1(0) ADD I1{1)
{2] R1 <== ADDSB I1(2)

[31] R1 <¢== %3 MUL R1

[a] ALUA (== I1{3) ADD T1(4)
[5] ALUA (== ADDSB I1(5)

[&] ALUA (== ADDSH I1(6)

[7] ALUA (== ADDSB I1(7)

[8] DRB (== MULST #%

[9] R10 (== R1 SUB DRE

-

These 9 steps give the value for 1 permxutation. The 8
peroutations +take 72 eteps, The code for the 8 permutations is
Just concatinated, Although it is not elegant, repeated code is
obviously faster, We are able to aveid 1loops and increase
processing speed at the expense of program memory.

To compute the maximum in RZ the fallowing algorithm is
. used, Again, the PM implementation is repeated code.

max {==03
offset{(==G}
FOR 14<{=t TO 8
DO IF R(jitoffaset).Gl.max .
THEN max (*=R(itoffset);

Step Instruction

1] ALUA (== MOVE R10
(2] ALUA (== MAXSB R10
[3] ALUA (== MAXSB R12
[4] ALUA (== MAXSB R1i3
(5] ALUA (== MAXSB R14
fe] ALUA (== MAXSE R1S
[7] ALUA (== MAXSEB R1€
(8] ALUA <== MAXSB R17
[91 R2 (== MOVE ALUA
f10] Haltpoint,

Therefore, it takes 72+10*82 instructions/pp to compute
the gradient related function, At approximately 300 nsec/GPP
instruction, it would "take about 30 usec/pp or 256 X 256 x
30usec. or 1,9 seconds to do the entire mnicture exclus ive of
1/0. A 128 X 128 plicture would +take on the order of .3
seconds., '

D.1

Examples of programming the GFP 157

D.2 Eight neighbor filter processing - example

AR i W D N R W WD N W e S S W VM NN N DR S S e S SN W S A A s shn e W Y D A

This {s an example of 8 neighbor direction list
processing. Since all g+ {9) neighbora are directly
addressable, various functions may be computed by iterating in
a FOR 1loop construction wusing a filter 1in the general purpose
registers R(i),

For example a sinmple angle finder might consist of the
following algorithm:

I3(8)¢(==0}
For i{(*=0 Step 1 Until 8 Do
If [SUM a(1)#R(1)] > threshold
Then I3(8)<(==t
Else I3(8)(=»0;

This will give a first order approXimation to a 135
degree line finder.

A neighborhood filter R(1) might look like

*1 =1 =2
-1 +1 «1
-2 =1 +1,

Let R1 through RS be the filter in the GR using
The same addressing sScheme as the current
Neighborhood,

Let R10 be a 9 counter and pointer to R1:R9,

Let A0 auto~index register point to Il,

Let R12Z be a temporary register

Let R13 be the threshold,

Step Instruction

[1] I13(8) (== MOVE #0

[21] R10 (== MOVE #9 "form the filter list pointer”
f 3] R12 (== MOVE #0

{2 A0 == INC #I1(8) "form the Il list pointer"
{5] ALUA (== “R10 MUL “AO0D "process the lists"
{61 R12 ¢== ADDS® R12 "sum the result”

[71 R10 {== R10 DECB 9 "test if done"

(81 [5] <== JUmP

[9] f11] <*= R12 EQB R13

[10] I3(8) {== MOVE #1

[t1] Raltpoint,

158 Examples of programming the GPP

D.3 Edge and curve detection - exanple

The following is an example of edge and curve detection
using the algorithm in Rosenfeld, Lee and Thomas [JohnF70]. In
their article, differences of averages are used as measures of
texture differences, They discuss a 2=D - texture measure
n{rs,hk),

D(re hk)=ABS(.
[alhe+r,k*s)*, .. *alh*r,k-8)¢,,.*
alh*l,k*s8)*,..*a(h*1), k=)]
"'[ﬂ(h k*s)+, ,.*al h,k-S)’ooo.
a(h=r+l,k*s)+,.,*al h=r+l k-s)])/(r*(Zs*l.

They suggest using the measure
D23, hk)I#D(43, hkInD{ 83 ,hk)

fo separate regions by horizontal edges, For edges in other
orientations, analogous operationa would bhe optained by
rotating D(ra,hk), : :

For use as an example to measure the complexity of
coding these functions in the GPP, Let uys look at D(23,hk). For
each (h,k) in the picture, transform its position to (0,0).
Then D(23,hk) reduces +to D(23,00). :

D(23,00)=ABS(

[a(2,3)+a(2,2)+a(2,1)*a(2,0)+
a(Z2,«1)*a(2,~2)*a(2,=3)+ _
al(1,3Y*a(1,2)+a(1,1)+a(1,0)*
all,~1)+ta(1,~-2)+a(1,=3)]

~{a(0,3)*a(0,2)%a(0,1)*%a(0,0)*
a(0,=1)*a(0,«2)+a(0,=3)+
a(~1,3)va(~1,2)*a(~1,1)*a(~-1,0)+
a(-1,=1)*a(=1,-2)*a(=-1,=-3)])/C(2(243 +1,

This corresponds to the 4x7 array:

- - +* . R
-1,3 0,3 1,3 2,3
-1,2 0,2 1,2 2,2
-1,1 0,1 1,1 2,1
-1,0 0,0 1,0 2,0
-1, =1 0,-1 1,-1 2,-1
-1,-2 0,=2 1,-2 2,-2
-1,=-3 0,-3 1,~3 2,-3

The program to compute N23 is given in terms of macros
which the compiler/assembler for the RTPP might have
implemented.

Define D23 = { RY (== MOVE #256;
Az DOLINE (y)i
RY <{(*=RY DECB B3
D.3

Examples of programming the GPP 159

A (== JUMP;
Bz HLTS>

Define DOLINE (y) = ("get data®™:
GETLINE(y, #3,R0);
GETLINE(y, #2 ,R258)3
GETLINE(y, #1,R516);
GETLINE(y, #0 ,R774)}
GETLINE(y, #-1,R1032);
GETLINE(y, #-2,R1290)3
GETLINE(y, #-3,R15458);

"Set up line pocinters ~ note buffers are 258"
Al (== MOVE #tables;
AT {== MCVE #PO:
“A1Y (== MOVE #R258%
“A1T (== MCVE #R5163
“ALT (== MOVE #R774%;
“A1T (== MCVE #R1032;
“A1T {== MOVE #R1290%
TAIT (== WOVE #R1548%
"Set up output buffer”
: A1 (== VNVFE #R18063
™Mo 256 direction list operations/line"
rcount (== MOVE #2563}
As TXTa7(table)
rcount <{(*= rcount DECE E;
A (== JUMP;
"B SAVELINE(y,R1807);>

Define SAVELINE (sline,r} = < "copy line butfer "v" in gr to line
“Line” in buffer memory BM3" '
JOCLR;
XRST (== MOVE #({I3>, (x>)3
Al (== MOQVE #Rj; ’ '
A I3(5) <== MOVE “Al1I3
MOVEB #({I3>, <X>), A, YCLKRB;
BMIC #(256~lines,16~hit,out,horiz,BM3, 13),vsline ,LINES
>

Define GETLINE (sline,cffset,r) = ("copy BMl line “line’ into gr
Buffer at “r”,
Gline <(=line ADD offset:
TOCLR;
XRST (== MOVE #{ <{I1)>, {X~-1,X,X+1)>);
BMIO #(256-lines,low, in,horiz,BM1,I1,y), sline, LINF;
Al1T {== MOVE W¥R;
" Get the x=~-1 boundrypolnt "
“A1I (== MOVE I1(4)3
A “AlT (== MOVE I11(0);
MOVEB #(<I1), (X=1,X,X+1>), A, XCLER;
" Get pixels x=256,257 boundries "
“A1TI {*= MOVE I1(4);
“A1I (== MOVE I1(0); >

Define TXT47 (table) = ¢ "do a 4 ¥ 7 local texture operation” :
rcount (== MOVE #7;
A2 (== MOVFE #table; "buffer pointer"
D.3

160 Exanples of programming the GPP

rsum <*= MOVE #03 _

A A3 {(*= MOVE “A2I; "butfer data"”
ALUA (== MOVEN “A313
ALUA (== SUBST " A3l
ALUA (== ADDSB “A31:
ALUA ¢== ADDSB “A3I3
raum (== ADDSHE rsum?’
rcount {(*= reount DECH B3
A {== JUMP;

B: A3 (== INC “A2I%
TA3I {=* MOVE rsum})

The timing for the complete algorithm may be determined
as follows: each output line has 7 inputs or a total of 8 RWM
random I/ accesses/line, Since the total maximum 1 wav access
and transfer time for a BM is 147 msec, the ¥/0 time is 8%0.,147
secondis = 1.2 seconds, Assumins an average instruction time of
300 nsec/ingtruction, exclusive of I/0, the following times for
the above macraos are computed:

Macro #1lnstr, Execs,/Call #Times called Total # instr
TXT47 5 ¢« g7 = 61 2Eex256 »&5536 4, 00xE+S
GETLINF 8 + 28256 = 520 Ta25€ = 1792 9,31 xE+*S
SAVELINE 4 + 282856 = 516 256 : 1.32%xE+*S

T INE 10 + 2#2856=522 2EE 1.22xXE*S

ne 3 1 &+ 2#256 = 513 1 513

The total number of instructions 18 on +the order of
1.59 million and takes (at 300 nsec/inatruction) about 0,47
seconds. Therefore, the total D23 macro execution takes on the
order of 1,7 seconds it should be noted that the D23 algorithm
could re done more directly from the line buffers for any size
d{ rs,00) and would run faster because data would not have to be
copies into the GFR,

Examples of programming the GPP 161

D,4 Histogram computation - example

- m R RN R TN SR P N W W AU A A NS o S Wi Ey R SR R W WA N R S A

The following program will compute the gray scale
histogqram of the Il picture and leave the results in general
registers RO (address 0) to R63 (address 62), It is assunmed
that R[0:63] are initialized to 0 by the PDPS8e. After the GPP
is finished, the PDP8e¢ may read the general registers to
access the resultant histogram, The algorithm ieg as follows:

For ail picture pixels
DO R{I1(8) J<==RIT1(8)]*1;

step "Inatruction
1 “I1(8) <*= INC “T11(8)
2 Hal tpoint,

162 Examples of programming the GPP

D.5 Haltpoint 1/0 = example

This example shaws roughly how "haltpeint”™ 1/0 would be.
done for 1Il1==>13, The "haltpoint" . procedure first obtains
buffer memory data line by line and computes some function on a
3x3 neighborhood, It then outputs line I3 into EM3,

Raster 1/0 algorithm.

[1.0] Load I1 paffer Y-1, Y, and Y+1 with the first 3 lines
of BM datsa. - ’ e . '

IOCLR;

ycounter (== MOVE #03

vyeounter (== INC wycounter;

[2.1] <== ycounter NEB #2563 .

YRST (== MOVE <(I1,1I3)>; .

BMIO #(256-lines,low, in, horiz, BM1,11,Y+1),ycounter LINE;

YCLK (== MOVE <113
BMIO #(256-lines,low, in, horiz, BM1,I1,Y+1), ycounter, LINE;

YCLK <== MOVE <ID ;
BMIO #(256-1lines,low, in, horiz, BM1,11,Y*1), ycounter LINE;
{1.1] Reset the X counters to the front of the line.

XRST (== MOVE #(<I1,I3>,<X=1,X,X*1))3

[1.2] Process first line eand store in I3 buffer, That |is
Perform It#==>13,

[Nelghborhood procedure 3
MOVEB #(<I1,I3>,<X~-1,X,X+1>), {1.2], XCLEB;

[2.0] Write out the I3 buffer and then load next BM line in 1I1
bufter,

BMIO #(256=1lines,low,cut,horiz, BN3,1I3,Y),ycounter, LINE;
YCLK (== MOVE #(<I1_,I3>)3
[3.0] (== JUMP;

[2.1] BMIO #(256-lines,low,in,horiz,BM1,I3,Y),ycounter, LINE;
[1.1] <== JUMP; '

[3.0) End, Stop GPP and notify PDPB8e.
ALT

Fxamples c¢f programming the GPP 163

D.6 Random Neighborhood Acceasing - exarmple

D R S AT S A U S Sy e T s Wm P N WS N OGN G N S D W O AR W AN W AR M

In the case whe re one whishes +to random access a
neighborhood, quite a savings may be realized by using the
nelghborhood fetch instructien to fetch UM data into the current
neighborhood of line buffer j. The following sequence will process
neighborhood (x,y) of BMZ and store it inta pixel (x,y) of RW7.

yxaddress {(=* x MAKYXADDR vy; :
BMIC #(8low ! $BM7), yxaddress, GETI1:

[Process the current Il neighbbhorhood==> I3(8)]

PBM7 <{*= MOVE yxaddress;
‘PHMT7 (== MOVE I3(8);

164 Examples of programming the GPP

D.7 Area and perimeter computation - example

----- N R R G mm WE A SR S G R U AW AR D R AR SR W W U EF AN AR MR D D WD D TR D WD AR TR W

Example 7 shows how one might compute total area (sum
af pixela of an okject > threstold) and total perimeter (total
count of entrance and exit pixels of detected regions) of all
chjects in the scene,

Compute area
START: area (== MCVE #03

A C {== Y1(8) GEB th}
j: Hal tpoint;

A (= JUMP;
Cs: area <= INC area}

B (== JUMP;

"Compute perimeter of EMi under mask EMJj.

note that switch is true inside of a blob",
Define TRUE=1, FALSE*03

Variable MASKEDI1, perimeter, INBLOE, THRESHOLD,

perimeter (**MQVE #03
IQCLR3
ycounter (== MCVE #03}

"Get the next line for the irage and fte ma=mk®
GETLINE: BMIO #(256-lines,low,in,horiz, BMi,11,Y),sline, LINE;
BYIO #(256-1ines,low,in horiz,BMj,I2,Y), I2Y,LINE;
switch (== M(QVE FALSE;

"Pogsition the line butfers” dynamic addreses vectors at left"
XRST <{== MQVE #({I1,I2>,)3
TEST: MASKEDI1 <(==I1(8) AND 12(8);

"Test if in a blob"
INBLORB (== MASKEDI1 GEB THRESHOLID;

"Test if leaving a blob"

YES (== gwitch BNE #0;
NEXTX: MOVEBR #(<I1,I2>, <X>), TEST, XCLKBE;
"Reset switch after each line"
switch (== MCVE FALSES .
YCLK (== NOVE <I1,I2>;
veounteyr {(*=INC ycounter;
GETLINE <= ycounter NEB #¥256;

"Send data back to PDPBe which sends it to PRDL"
GOUT (== MOVE perimeter;

"gignal DDTG that the function is done”
WAL TS

"Test 1f Just entered an object"”
INBLOB: YES (== gwitch EQB #0;3
P.7

Examples of programming the GPP
NEXTX (== JUMP:

"Yes, a perimeter point, increment perimeter
and reverse the awitch®

YES: perimeter {(*=INC perimeter;
gwl tch (== MQVE TRUE:
NEXTX (== JUMP;

Each pixel in computing the perimeter takes at most 8
instructiong 1Iin addition to 256 input instructions at 300
nsec/avg-instruction (exclusive of I/0). This gives a
computation time of about 0.15 peconds and 0.147 seconds 1/0,.
The total time is about 0,3 seconds. As the I/0 cost in time is
comparable to the computation time, 1t would be more economical
to combine several simple primitives together such as area,
perimeter, etc, while doing a single I/0 traversal through the
BvW,

165

166
APPENDIX E

GPPASM BENF Grammar Speclfication

L I R P ys i ——

The BNF grammar sgspecification ie given for the GPPASM
assembler [Lem76b] to be used to assemble RIPP programs. Note
that MAINSAIL will generate GPPASM assemhbly language output,
The MICROMODE source programs on the other hand are coded
manaally, - :

Note that ID 1is any identifier which is not a keyword 1iIin the
Krammar , INT is any. Iinteger, and {text) isg any text not
including the symbols \\, ", or 3, EPSILON ia the null string.

_ Various terminal symhole whose meaning 18 not apparent
are defined (including the semantice) in [Lem76al.

{Pprogram?::* {GPPepegmentd ~Z

GPPsegment) ::= (GPPsegment) <{(statement) | {(atatement) |
EPSILON

statement)::* <{compiler-mode-statement) crlf 1}
{sec tion-atatement) crift |
{expunge-statement) crlf |
{number-mode? crlt |
{comment) |
{require-statement) crlf |
{(PM~label) <{(PM-statement) crilf |
GR=label) <{GR-gtatement) crlf |
MCPM=labeld) <dmicroinstructiond |
MM =gtatement)

{compiller-mode-statement) 1 := GPFMODE | MICROMODE
ection-statement) : := SECTION <{(file)

expunge-statement) ;:= EXPUNGE ID | EXPUNGE <{class type)
lass typed::* {(PM=clase) | {(GR-class} | {(MCPM=claas)
PM-classd::= 1

{GR-clamsg)zs= 2

MCPM~clags) :2= 3

{number-mode?::= DECIMAL | OCTAL

{require~-statement)::= REQUIRE <{(file> SOURCETIME |
REQUIRE <{(file> LOADTIME |
REQUIRE <(filted RUNTIME

PH~atatementd) ::* (PM=instr,> |
PMDEF ID = <{value> |
PHORIGIN <valued |
GPPSTART <{(oM=label) 1
EPSILON
E

GPPASM BNF Grammar Specification 167
(PM=ingtr.>1:= (GPFP-opcode’ (P1) <{delim) <(P2) <Ldelimd 3

GR-atatement?::* GRBLOCE <{GR=lList)
GRDEF ID = <{value) crlt |
GRORIGIN <value) crlt |
EPSILCN

macroinst.def,)::* <{macroinst.def,) {microinstruction) |
{micreoinstruction) crlf

(microinstruction) ::= / (MCPM-statement) N\ |
MCPM=-gtatement) !
MCPM+gtatementd crlf

MCPM=-statementd ;1= MCPM=~instr.) |
MCPMDEF ID = <(valued |
MCPMCRIGIN <{value) |
EPSILON

MCPM~instr.>::* MCPM=instr,) <{delimd MCPM=opcode) |
MCPM=apcode)

MM-atatement) ::* OPRMAP {GPP-opcade~value) = (MCPM-label)
GPP-opcode~value)::* <(value (i.e. base value*instance value))

{(filed::= <{device) <{ftnamed , <{enamed
{deviced::= 8YS: | DSK: | DSKR: | DSEC:; | DSKD: | DSER: |
DSKF; | DEEG: | DSEH: | DTAO:z | LTA1l:

- I 4
1= I

{fname) D
<ename? 3]
{comment)::* Comment text 5 | " text "

®1>::= 7 (GR~address) | {(GR~addressd | # <{value) .
(P2)::~ 7 (GR-address)> | (GR-addressd® | # <valued | <I/0 List)
(P3>::= ‘. (GRwaddress) | (GR-address) | (PM-address)

tvalue>z:* {(land> I_{value) ! <valueld> | <{ae)
- vralueld::=* <aed | {(land)
land): 1= {value) & <valuel)

aed::* {(gaed : .
saed::* (term) | <(mae? + (term) | {(sned =~ {(termd
(term>: := <(factor)> | <{term) * <{factor) | <(termd> % <{(factor)
factord::* <{primary’ : '
Primary’::= (PM~label) | <(GR-label) | <MCPM~lahel)d |

(<value>) | ¢« (primaryd | ~ {(primaryd

PM=labeld>::= <(labeld | EPSILON
GR~lTabel)::= (label> 1 EPSILON
MOPM~Tabel) 2= {(label> | EPSILON
{Label) :2= ID 12 ’

(PU-addresg):1:= {(PM=labhel)

GFP-opcode> ::= | BMOVES | BAND | BOR t BREV | BMOVLL | BMOVHHE | -
BMOVLHE | BMOVEL | BGET1 { BGET2 | BPUT ! BSETL | BSETW
| BSTLSA { BSTHSA | BSTLS® | BSTHSE | MOVE | MOVER |
E

168 GPFASM BNF Grammar Specification

ADD | SUB t MUL | DIV | MAX | MIN | MOVRBIT | AND

I XOR | EQV | NOR | NAND | IMPLIES | BUTNOT | SWFTR
SHFTL | ASR | ASL | ROTR | ROTL | REV | MAKXYA

LT 1 GE | LE ¢ EQ | NE | BMIO | INC | DEC | NMINUS
BSWAP | ADDSA | SUBSA | NULSA | DIVSA | MAXSA

| MVBTSA | ANDSA | ORSA | XORSA | EQVSA | NORSA
NANDSA | IMPLSA | BUINSA | SFTRSA | SFTLSA | ASRSA
ASLSA | RCTRSA | ROTLSA | MEYXSA | GTSA | LTSA |

| LESA | RQSA | NESA | ADDSH | SUBSE | MULSB | DIVSH
MAXSB | MINSB | NVBISB | ANDSE | CRSH | XORSB

! NORSR | NANDSB | IMPLSE | BUTINSP | SPTRSR | SPTLSB
ASRSB | ASLSB | ROTRSE | ROTLSB ! MEYXSB | GTSPR

| GESB | LESB | EQSB | NESB | INCB | DECH
| GEB | LER | HOB | NEP | DARD | DSUB | DMUL { DDIV
DMAX | DMIN | DGT | DLT | DGE | PLE | DPEQ | DNE | DAND
| DOR | DXOR | DEQV | DNOR | DNAND | DIMPLIY
DMINUS { DINC | DDEC | DEWAP | DCOMP | DREV

DSHFTL | DASR | DASL | BDROTR | DROTL | DINCB |

DGTB | DLTB | DGEB | DLEB | DEQB | TNEB |
I FMUL { FDIV | FNINUE | FINC.| FDEC | FGT

| FLE | FEQ | FNE | FMAX | FNMIN | FLOAT

FADD
| FLT |

| MINSA

| GTB

1 DBUTNO
! DSHFTR |
DDECB

I DFLOAT
| DFIX | FINCB | FDECE | FGTR ! FLTB | FGEB |
FEQB | FNEB | JUMPY | PUSHJ | POPJ | APPLY

FLER

G R-addressd ::= <valued | (GR~I/O-addreas)
GR-I/0~address)::* <{neighborhood=pixels)> | {anto~index)> |
{indirect-B¥-addressesy | {(TTY-I/0)> |
¢byte=-pointer? | {control-desk> !} '
{(status~-regigters) | {dynamic-address~vectaors)}
{GR-I/C=registers)
eighborhood=pixelsd 3= I10 | T11 { T12 1 I13 | Y14 | I1I1S |}
I1é¢ t 117 1 118 1 120 1:121 1 IP2 1} I23 | 124 '
125 P 126 + X227 | I28 | I30 1 I3t } 132 | 133 |
I34 1 135 | 136 | I37 | I3B {auto-index)::* AOD
| AO 1 AOT | A1D: | A1 1 A1X | A2D | A2 | A21 1
A3D | A3 | A3T | AaD | A4 | A4T | ASD | AS | ASI
! ASD i) t A1 ! ATD | A7 t A7 X

(indirect-BM-addresaes>::* PEMO I PEM1 | PEM2 | PBEM3 | PRM4 |
PBMS | PBMé | PEM7 |

SITY=-1/0)::= KRR | KSTATUS | TLS | TSTATUS

<byte-pointer})::= PPOINT | GPNT!1 | GPNTZ2

{control~-desk}::~ SW1 1 sw2 | sW3 | SWA | DSPLYA | DSPLYB |

DSPLYC | ENOBO1T | ENOB23 | ENOB4S | EKNOB67 1

@tatus~regists>;:= PDLCNT | PDL | FXAR | DRA | DRB |
EEXAR | EDRB | STATUS

{dynamic-address-vectors)z:= I1XN | XiX { IiXP | I1Y |

EXAR

I2XM

I2X | T2XP [I2Y | I3XM | I3X [I13XP | I3Y

GR~I/O=regletera)d ::" GIN | GOUT

/0 Listdz:= ((listd) | <I/0 listd ! <I/0 symbhol) |
{I/0 symbol)

Aistdez= (list? ! (O/C symbold | (listd ! INT | <(I/0 symhol)
INT

aO/0 aymboldsz= €11 | 812 | <I3 | #XP | $X | XM | sYP | =Y |
$YM | SRIGHT ISLEFT | SVERTICAL | SHORIZONTAL
®*BMO | $BM1 | SBEM2 | SHM3 | S$EM4 | ¢BMS |
£BM6e | $BM7 | $DOUBRLEBUFFER

GR-1List)z:= {GR-allocation~suized | 0 <preloadd

GR=-allocation-sized :1:= INT

(preloadd::= {list=of~valuesd | S\ <{textd\\

list-ot~valuesdz2:= (list-of-values) , <(valued | <valued |
[(repeat-times) <(delim.> <(list-of-values)]

{repeat-timesd 1:= <{valuye) ‘

{text)::* text string containing no \\, ", or ;

MCPM~-opcode) ::= {Mregl | {Oreg)d | MCPM~ALUS) | {HCPM«hits)

Mregds = {16-bit valued]

Oregdr:® (7=bit valued)

MOCPM=ALUs>s = ALLI® <(ALU~value}) | AL2% (ALU-valued

ALUwvaluedzz= 00] 0f 1 02 Y 03 ft 04 | 05 106 L 07 1 10 1 11 1

121 t3 {1 14 V15 | 16 | 17

MCPM-bits) s = PL>AL | P23>A1 | PDAL | CAL>AL I ALA>AL

ALBY A1l f ALC)Y Al 1 PDAY AL | PA2X>AL | MRIAL

|
I

GTCYAL | P1XA2 | P2>A2 | P3>A2 | CA2>A2 | ALADAZ

I ALBYAZ | ALCYAZ | PDADAZ2 | NRIXA2 | A1PYAP

P1>D1 | P2)»D1 | P3>D1 | CAI>D1 | ALA>D1 1| ALBYD}
| ALCOD1 | PCd»D1 | NRXDI | P1>D2 | P2)>D2 | P3»D2

I CA2>D2 | ALA»D2 { AL®XD2 | ALC>D2 | ©edp2
MR>D2 | WIRDIT | WILDIT | WIWDIF | WILMF
W2AD2T | W2LD2T | W2HD2F | W2LD2F | READAL
READAZ | DI1>ALA | DI>ALB | DI1>PCT | DI}PrE
D2>ALA | D2>ALB | D2>PCT | D2>PCF | ALUSET
ALUCLR | ALU10 | ALUL11 | ALU12 | ALU1I3 | ALU20
ALU21 | ALU22 | ALU23 | MRO | MR1 | MR2 { MR3

MR4 | MRS | MR6 | MR7 | MRB.1 MR9 | MR10O | wm
| MR12 | MR13 | MR14 | MR1S | MOPO | MOP1 | MOR2

| MOP3 | MOP4 | MOPS | MOPS | MOP7 | MOP)MOP
MROMC | DECMC | JMPNCQG | JMPT | JMPF | PUSHJT
PUSEJF 1| POPJT | POPJF { INCPDL | DECPDL
SAVEPT | SAVEFF | ISALDT | ISALDF | INCGTC |
INCPCT | INCPCF | MBALT | TEST | SET

Welim):::= , | space | tah

169

170

INDFX

Al bhus a8

AZ bus 8

ACP - anti cnincidence point 1R

Addressing - BM 33

Altloncation =~ PNDP8e device code hy decade 149
Allocation of PDPRe 1I0Ts for the RTPP 145
Allocation of status register OSTAT 136

Al phahetic listing of PDPRe TNTs 145

AL U bus a8

AT.U registers ~ ALUA 0-1% and ALUB 0-15 50
Architecture - microprggram control of the RTRP
Area and perimeter computation - example 164
Arithmetic logic units = ALUs a7

Asseohler 22, 73

Auto address registers = A0 through A7 50
Axlomat microscope a8

Alock diagram of RTPP 12

BM 8, 9, 31

RY addressing 323

B control - by PDPRe TCTe 139

RM controller accessing prlorities 34
PM design 33 .

BY indirect address reglster 116

BRY acan acqguisition 32 o

BRM scan and display selection 32

RM eynthesized video 31

BY window 3t, 32 '

BM window selection 32 .
RMON? = wuffer memory menl tor system 16
AW XE 22 '

RWY1 32

BNF Grammar Spgclfication 166

Putfer memories 9, 31

Buffer memory laplementation 61

Buses: D1 DZ A1 A2 OB MWQLL ALU 38

Py te address registers - GBAL° GEAZ PRA 50

CB bus 38

Cell Modeling System - CELMOD 119
follectar module 27

Compiler 22

Computer module = OMT 27
Configuration of RTPP 8
Tfonstruction of the RTP® 60
Tontrol desk 14

Control Logic Design &0

Control of the QMT 27

23

INDEY

Control of the OQuantimet 28

Control of the RTPP by the PDPBe I8

Core line buffer contrel by PDPBe IOTs 143
Current pixel 3

Pl bus 38

N2 bus 38

Nata memory -~ DM 36

Data memory modules - DMM 40

DTG 22

PDTG = the RTPP dehugger/monitor 22
Debugger = DDTG 22

Petector modules - QMT 26
Digitizer/densitometer module ~ QMT 26
Display module - QMT 25

Display window selection - BM 32

DMA 138

Dvnamic address vector registers = line buffers

Edge and curve detection -~ example 158

Fdee and curve detection example 158

Eight neighbor filter processing - example 157
Extended data memory - XDM 37 ' '

Ex tended data memory interface registers 46

Frame and scale module - OMT 31
Frent panel - GPP 117
Function computer - QMT 18

General Picture Processor = GPP 16
General registers - GF 40 '
GETA 32

GETB 32

GETMSE 28

116

GLINE and PLINE execution registers - GLINER PLINER

GNBF and PNBY execution registers 48
GPP 4, 7, 8, 9, 16 :
GPP = General Picture Processor 35
GPP = PDP8S8e IOTs for 138

GPP analog to digital converter register - ADC 53

GPP control by PDP8e I0Ts 14}
GPP contrel - microprogram control 59
GPP front panel 117 : ’
GPP instruction group %1 69
GPP instruction sroup %10 90
GPP instruction group %11 ©1
GPP instruction group %12 93
GPP instruction group %13 94
GPP instruction group %14 96
GPP instruction group %5 97
GPP jinstruction group %16 99
GPP instruction group %17 102
GPP instruction group %18 103

47

171

i72 INDEX
GPP instruction group %19 104

GPP instruction group %2 71

GPP jinsetruction group %20 106

GPP instruction group %21 107

GPP instruction group %22 108

GPP instruction group %23 109

GPP instruction group %24 110

GPP instruction group %2% 111

GPP instruction group %26 112

GPP instruction group %27 113

GPP jnstruction group %3 73

GPP instruction agroup %4 75

GPP inatruction group %5 77

GPP instruction group %6 81

GPP jnstruction group %7 84

GPP instruction group %8 87

GPP instruction group %9 88

GPP instruction halt register = HALT G3
GPP instruction set 64

GPP line buffer and BM I/C registers 116
GPP Microprogram Assembler = GPRASN 23

GPP
GPP
GPrP
GPP
GrP

organijzation 325

parity error registers =~
ran time registers 54
ran time status registers =~
run time write protect registers 54
GPP terminel input output regigters - TIN
GPP to PDP8e 1input output registers - GIN
GPP use of BMs 31 o
GPPASY 22, 23
GPPASM BNF Grammar
GPPLDR 22
Gradient used in Kirsch algorithm examnle
Group suhsections 65

Specification 166

Haltpoint I/0 - example 162
Histosram computation = example
Histozram computation example

161
161

GSTAT1 GHTATRZ

PMPE GRPE NPMPE G&

g4

and TOUT &2
and GOUT &1

155

I-buffer control: XCLK XCLEB YCLEK YCLEB XRST 44

Il - I2 - I3 10

Image acquisition 32

Image triple line buffers ~ Il I2 13
Implementation of the RIPP 59
Indirect pointer registers into the XDM -
Ingtruc tion groups 65
Interactive - control deak 14
Internal Control Logic Design
Introduction 1

I0T allocation by decade
I0Ts - PDP8e used in RTPP
IOTs for GPP and DMA 138

41

60

149
119

PXDM 0-15

48

INDEX

LNnXP 20

Loy 320

Level IV gray scale machine - 3 address machine 6
Lights on the GPP front panel 118

Line buffer dynamic address vector registers 116
Line buffers 10

ILMASKE 28

LMASKX 28

Loading the GPP 6§

LQDT1 28
LQDT2Z 28
LQepT3 28

MAINSAIL 22

Vainsail 166

Mapping memory - MM 36

Mask displays on QMT 28

Mask register module 28

MHOLD bus 38

MICROP = microprogram assembler 5@
Microprogram Assembler = GPRASM 23
Microprogram control architecture 23
Microprogram implementation of the GPP &9
Microprogram memory - MPY 3§
Microprogramming QMT modules 27
Wicroscope 8

Modeling system ~ CELMQOD 19

Monitor - DDTG 22

MSEADR 28

Neighbkorhood - definition 3

Nelghborhood operation 32

Notation glossary for instruction groups 67
Numerical listing of PDP8e I0Ts 160 :
Numerical order of PDP8e TQOT8 150

PBM] - indirect address BM register 116

FDPBe 8 :

PDP8e accessing of BM data 33

PDPB8e core line buffer control hy PIPBe IOTs 143

PDP8e Device code allacation by decade 149

PDP8e I/0 transfer instructions for the RIPF 119

PDP8e 10T Instructions for BM controller 139

PDP8e IOT Instructions for GPP controller 141

PDP8e IOT Instructions for PDPSe core line tmffer controller
PDP8e IOQT Instructione for RTPP-FPDFSe DMA 138)
PDP8e ICT Instructions for XBE controller 142

PDP8e I0Ts for RQC = QMT -~ atage - control desk 119

Pen module - QMT 26

Physical Buffer Memory addressing 33

Physical construction of the RTPP 60

Picture - definiticon 3

Picture operations 4

Picture operations as binary operations 5

143

173

174 " INDEX

Plcture processing peripheral 19

Pixel -~ definition 3

Pixel operator = definition 4

POSTA 32

POSTHB 32 :

PRDL =~ PRocedure Description Language 19

Proeram counter and program field register - PC and PFR
Program memory - PM 36

Program memory address push down 'ist = PDL 37

Push down lisi address counter -~ PDLCTR 49

QDATI1 28
QDAT2 28
QLAT3 28
CH¥SKP 28

QMT cursor 20

QMT reconfiguration 27

VT shift register commands 130 .
QPRNG = Quantimet program word a1lo¢ution 126
QP RNG?2 28

QB ROGT 28

QPROGNn microprogram words 27

QSTAT 28

Crantimet @

Quantimet control signals 131

uentimet controller 18

Cuantimet program word allocation 126
Quantimet shift register control 12%
Cuantimet status register - QSTAT 28
Quantimet subsystem 24

Quantimet video 31

Random Neighhorhood Accessing -.example 163
Reading and loading the SRG ' 13a

References 62

RMASKXE 28

RMASKX 28

RTPP Compiler/Assembler = MAINSAIL/GPPASM b4
RTP® configuration 8 '
RTPP design goals 2

Running the GPP 58

Scan window selection - BM ‘32 L
Shift register simulated operntion 133
Special I/0 registers = GPP 114' o
Stacks - ACP hardware 18

Status registers addressed by the GPP 114
STQMT 28, 32 -
Summary of G2P 1nstructions 68
Synthesized video 9, 31

49

175

Table A,1 Examples of some RTPP ingtructions &4

Three address machine 6

Transfer hetween PDPBe and GPP» DY &7

Transfer between PDPBe and GPP MM 56

Transfer between PDPBe and GPP MPM S6

Transfer between PDPBe and GPP PM &7

Triple line buffers 10

Triple operand operations = binary algebraic operations

Variable Frame and Scale module - QMT 26
Video - synthesized 9, 31

Video A/D - D/A 31

Video input and output devices 8

¥2E control by PDP8e IOTs 142

