| REAL TIME
PICTURE PROCESSOR:
‘ DESCRIPTION AND SPECIFICATION

NCI/IP Technrical Report #7

March 31, 1976

S POY Peter Lemkin, George Carman, *
4 Lewis Lipkin, Bruce Shapiro,
Morton Schuitz

NCI/IP-76/03

REAL TIME
PICTURE PROCESSCR:
DESCRIPTION AND SPECIFICATION

NCI/IP Technical Report #7

March 31, 1976

Peter Lemkin, George Carman, *
Lewis Lipkin, Bruce Shapiro,
Morton Schultz

Image Processing

Division of Cancer Biology and Diagnosis
National Cancer Institute

National Institutes of Health

Bethesda, Maryland 20014

*Carman Ejectronics, Inc.
Corvallis, Oregon 97330

"We here highly resoive . . ."

1

5

Introduction e s+ 5 2 e & & o+ a4 e e a
1.1 Overview of this paper
1.2 RTPP design goals e+ e 2 s e w

1.2.1 Picture operations . . SSa
1.2.2 Picture operations as blnary operations
1.2.3 A level IV gray scale machine - 3
address machine 5 o o o o ¢
1.3 The configuration of the RTPP IR S
1.3.1 Axiomat microscope . . .+ . . .
1.3.2 Video input and ocutput devices . . .
1.3.3 Buffer memories -~ BM « » & s+ & a
1.3.4 Triple line buffers for image addressin
1.3.5 General Picture Processor « . .+ o«
1.3.6 Quantimet controller a © 6
1.3.7 Control of the RTPP by the PDPSe o .
1.4 The RTPP as a picture processing peripheral
1.5 Cell Modeling System - CELMOD a e e =
1.6 DDTG - the RTPP debugger/monitor . .
1.7 RTPP Compiler/Assembler - MAINSAIL/GPPASH .
1.8 GPP Microprogram Assembler - MICROP a

Quantimet subsysten e« s s s e s e e e e e

2.1 Quantimet modules . s e e O g e
2.1.1 Scanner - System Control module g o ¢
2.1.2 System display module
2.1.3 vVvariable Frame and Scale module . . .
2.1.4 Detector modules
2.1.5 Light pen+
2.1.6 Digitizer/densitometer . . ., . . .
2.1.7 M53 Computer . . S T R S S
2.1.8 Function Computer module « e e w© a
2.1.9 Classifier Collector module
2.1.1 Standard Computer module

2,2 Microprogramming QMT modules . .+ . o .

2.3 PDP8e control of the Quantimet . . ., .
2.3.1 Quantimet status register - QSTAT . .

2. 4 The mask register module

2.5 QMT CULSOT &« & o 2« « o o =« « o

Buffer memory

3.1 Physical BM memory addressing e . e
3.1.1 BM controller accessing priorities .
Triple line buffering . . A v . « e
4.1 Programming the Trlple line Buffer 5 o

4.2 Alternate Neighborhood Accessing Methods

TABLE OF CONTENTS

SECTION

- - L] - - - - - - L]

GPP - general picture processor

5.1

Operation of the GPP SRS

» ¢ ¥ K & & ¢ 3 & & B®

. s & 2 B2 » 5 4 " @

L] L] - L3 L] L L] L ” Ll - a

» L] L] L] L] L] L]] » L] [] [} L]

PAGE

¥ 8 a
~o B W

« 10
- 10
« 10
- 11
12
19
20
20
21
21
24
24
25

26
26
27
27
28
28
28
28
29
25
29
29
29
30
30
30
32

33
35
36

37
37
38

41
45

General register address space
GR Address Allocation . . .+ .+ .« .
Addressing sequence . . .« e« o+ . s
Aunto-index addressing . . +« .+ « .

GPP input/output . 5 O . . .
Line buffer dynamic addresq vector
registers 5 + o+ e s+ a

PDPBe/GPP-BM DHMA lnterface « e s =

5.4 PDP8e/GPP synchronization« .
Software synchronizing system for

general I/0 . .+ +« + « + e

5.5 Running the GPP . . .« .+ =« « o «

Implementation of the RTPP 5 o o5 a o ¢ 5 o ¢

6.1 The GPP control - microprogram control .

Microprogram instruction BNF granmar .

6.2 Internal Control Logic Design e e« .

6.3 Physical construction of the RTPP . . .

6.4 Buffer memory implementation

Eeferences « e 2 s s = s e e e = =

GPP instruction set T - - - T =

A.1 GPP operators . . S -

A.2 Effective address notatlon 5 o o o ¢

A.3 Instruction lookahead - two types . . .

A. 4 Operator groups . . e e e e e .

B.5 List of GPP operators by type .+« . .

GPP I/0 registers and control panel lights/switches . .

B.1 Status registers addressed by the GPP . .

B.2 GPP line buffer and BM I/0 registers o O

B.3 GPP front panel controls . . s = s

Lights on the GPP front panal 5 o ¢
Switches on the GPP front panel . . .

PpP8e I/C transfer instructions for the RTPP 5 a o ¢

c.1

PDPBe I0Ts for RQC - QMT -~ stage - control
desk « « &« & e e e 2 s e
Allocation of Quantimet program QPROG
WOLAS v + = o o = o & o
Quantimet shift register control . »
The QMT shift reqgister commands . .+ =
Quantimet control signals
Shift register simulated operation . .
Reading and loading the SRG . . .
Allocation of status register QSTAT .
PDP8e IOT Instructions for RTPP~-PDPBe DMA
PDP8Be IOT Instructions for BM controller .
PDP8e IOT Instructions for GPP controller
PDP8e IOT Instructions for X8FE controllier
Allocation of PDP8e IOTs for the RTPP . .
Alphabetic listing of PDPBe IOTs S
PDP8e Device code allocation by decade -
Numerical listing of PDP8e IOTs . . .

Examples of programming the GPP . . .+« .+ =+ + « «

47
47
48
49
49

50
50
51

51
51

53
53
53
54
54
55

56

58
58
59
59
61
15

78
78
79
80
80
81

83

83

90
93
94
95
97
38
100
102
103
105
106
167
107
110
111

115

B

GPPASM BNF Grammar Specification 5 5 5 5 ¢

D.1 Gradient used in Kirsch algorithm . .
D.2 Eight neighbor direction list processing
D.3 Edge and curve detection
D.4 Histogram computation
D.5 Haltpoint I/0 example . . . e e
D.6 Random Neighborhood Acce551ng . v e
D.7 Area and perimeter computation . ., .
D.8 Run length code of detected object . .

L[] - L] L L] - - L]

* & a 3 8 @

L] - L] ¥ . L]

iii

115
117
1i8
121
122
123
124
126

127

iv

Figure
Fiqure
Figure
Figure
Figure
Figure

LIST

GPP triple line buffer addressing
Block diagram of RTPP
Interactive control desk
CELMOD system block diagram
GPP line neighborhood addressing.
GPP bus structure

& & & 0
LI S | * » L)
] L[]] *] L]
* L] - 1] L] L]
a s & 4 @
4w . . & L]

[= AN S LB RN VI (N R

14
15
i6
23
40
42

. LIsrT CF TABULES

Table 1. Examples of some RTPP instructions
Table 2. GPP Instruction Group Selection .

o] - -

58
60

NCI/IP-76/03

Real Time Picture Processor - Description and Specification

Al SR A AR T T N G U e - b T bob W Y A oo A o i . o T A —— —

RCI/IP Technical Report #7

Peter Lemkin, George Carman*, Lewis Lipkin,
Bruce Shapiro, Morton Schultz

Image Processing Unit
Division of Cancer Biology and Diagnosis
National Cancer Institute
National Institutes of Health
Bethesda, Md4. 20014

*Carman Electronics, Inc.
Corvallis, Oregon

March 31, 1976

ABSTRACT

The concepts and general design specifications of a new
hardware picture processor are presented. The design was
strongly influenced by the characteristics of bioclogical images.
This device, now in the early stages of construction at the
Fational Institutes of Health, will meet some of the
requirements for interactive design, specification and testing
by biologists of algorithms for cell classification,
description and measurement. The RTPP is but one component,
albeit a major one, of our entire system which is intended to
permit on-line description construction by the cytologist.

SECTION 1

Introduction

i ———— v —— ity

This paper discusses the functional hardware design
specification of a Real Time Picture Processor (RTPP) ([Lem74],
[Carm74) for use in designing image processing systems for
biological materials., Real time, as is used here, denotes tine
proportional to that required for comfortable human
interaction. :

The concepts and general design specifications of a new
hardware picture processor are presented. The design was
strongly influenced by the characteristics of biological images
[Lem74 3. This device, now in the early stages of
construction at the National Institutes of Health, will neet
some of the requirements for interactive design, specification
and testing by biologists of algorithms for cell
classification, description and measurement. Additional
detailed hardware specifications of the Real Time Picture
Processsor, RTPP, are documented [Carm76]. The RTPP is but one
component, albeit a major one, of our entire system which is
intended to permit on-line description construction by the
cytologist. The overall discussion of the system components is
in [Lem76c].

The Real Time Picture Processor in its role as a
microscope controller is designed to perform at least the set
of operations performed by the NCI Grain Counter~1.1 [LipL74].
These operations include Jjoystick control of an optical
microscope stage in X, Y, and focus. The RTPP, in addition,
allows stepping motor contrel of a U4:1 ricroscope zoom, a
rotary monochromator, and a rotary neutral demnsity filter.

The system is designed for extremly rapid serial
digital processing of digitized images to be carried out in
what for the user, seems 1like, real time. Special purpose
hardware makes this speed possible. Output from the RTPP is in
the form of images to be displayed, lists of properties of
objects in the image, or processed images. Because of powerful
gray scale manipulation instructions, computations are not
limited to processing planes of binary valued images.

These capabilities allow flexible experimentation with
an on-line microscope image picture processing facility.
Employing this facility, users have the ability to generate
precise definitions of biological cell classifications using
the RTPP as input for an interactive relational data model
residing on a remote PDP10 computer. Purtherrore, the system
will allow the user to make measurements of cell parts and to
develop heuristic measures for cell characterization.

Because processing is fast (on the order of tenths to a
few seconds), the interaction between user and the systenm is
1

& Introduction

well matched to allow for experimentation with more complex
algorithms than usually attempted with serial systems. Several
papers {[Lem74] and [Lem75)) give reviews of some recent
special purpose image processing hardware.

1.1 Overview of this paper

. L A — - ——

Section 1 introduces the rationale on which the
structure of +the RTPP is based. Sections 2 through 5
discuss components: i.e. the Quantimet (QMT), buffer memories
(BMs), triple line buffers, and General Picture Processor (GPP)
respectively in nmore detail. Section & discusses the
physical implementation of the RTPP while Section 7 comprises
references. Appendix A details the GPP instruction set while
Appendix B 1lists the GPP I/0 registers and GPP I/O lights and
switches. Appendix C presents the PDP8e Input Output Transfer
instructions wused in the RTPP. Appendix D gives several
examples, including estimated running tinmes, of several
algorithms programmed for the RTPP. :

1.2 RTPP design goals

e —— i —————

There were several (sometimes conflicting) design goals
used in defining what should go into a picture processing
facility such as the RTPP. Long experience in picture
processing on general purpose serial machines has resulted in
the production of picture processing packages such as PAX
f JohnE70 J. Some of these operations consist of simple pixel
boolean binary planar operations, 4 and 8 neighbor operations,
and then more complex operations such as blob finding, etc.
Obviously, as the complexity of an operation increases, so does
the complexity of 1its hardware implementation. We
decided that neighborhood processing was the upper 1limit of
complexity +that the resources availiable to our group would
allow us to undertake. Several years of biological experience
posed another requirement: i.e,. that dgrayscale texture
measure algorithms be easy to implement. This means doing
integer arithmetic on gray scales images rather than boolean
arithmetic on planes of binary images.

A general qray scale parallel ©processor is an
unrealistic goal. The complexity of such a device, (at the
current state of the hardware art and occasioned by the
combinatorics of the required hardware interconnections) place
it well beyond the construction abilities of a small group. The
cost of such a device also would make it difficult to Jjustify
if it were to be dedicated rather than a shared resource.

As will be seen we have drawn often from the good
efforts of other computer and picture processing system
designs, (especially [Dec71], [Dec72al], {[Dec72b], [Dec67],

1.1 - 1.2

Introduction 5

{Thor70]) as well as many other influences. It was hoped that
some of the best (and not necessarily the most complex or
costly) features of some of the above machines could be
incorporated into our design.

Before going into the design of the RTPP the
definitions of some of the terms used in the rest of this paper
are given.

Picture - set of gray values

A image part of a picture is a square array
approximation of the corresponding real image. Each element in
this sampling array is said +to have an integer gray value
called a pixel. This gray value is a measure of the darkness or
whiteness of that pixel. In our discussion, white will be zero
and black 255. This representation is said@ to have 256
linearly resolvable gray levels or values. The gray value is
generaly given in the range of the powers of a binary namber as
it is usually derived from the output of an analogue to digital
converter, i.e. 8, 18, 32, 64, 128, 256 etc. An
alternative view {(which lies at the basis of such
implementations as PAX) of an image is as a set of overlying
binary arrays more commonly called binary planes. Thus 256 gray
values is represented by 8-bits or 8 binary planes.

Neighborhood

Within a image, one usually deals with the concept of
neighborhood. A neighborhood is a set of pixels close to
{usually touching) a given pixel. An example of this is all
pixels touching a given pixel in a array. For a sgquare array
there are 8 such pixels and consequently this 3x3 set of pixels
is called the 8 neighborhood or 8 nearest neighbors. In this
paper and in the RTPP the labeling of the 3x3 neighborhood is
as follows:

V& W
[+ e -]
-~ ol

This choice of neighborhocod labeling facilitates chain
coding as the pixel index corresponds to its angle with the
central pixel divided by 45 degrees.

Current pixel \

The current pirxel is the central pixel {8) in this 3x3
array. The current neighborhood is the 3x3 array surrounding
the current pixel.

Neighborhood operation
A neighborhood operator is a unary or binary operator
vhich maps neighborhoods into pixels. One of the ways the
neighborhood operator works is to do various operations on
parts of the neighborhood array as specified by an ordered list
1.2

6 Introduction

of pixels to be operated on. When this list is ordered in terms
of the orientation of neighborhood elements, it is called a
direction list.

Pixel operator
A pixel operator is a unary or binary operator which
raps pixels into pixels in a 1 to 1 (X,y) mapping.

The RTPP performs neighborhood operations by executing
a program on a neighborhood for each neighborhood in the plane.
This is actually done using special purpose hardware called the
General Picture Processor {GPP) which will be discussed below.
The GPP 1is designed to allow pixel operations to be performed
on all pixels of a 3x3 neighborhood within a single I/0 access,
thus allowing 3 lines to be processed at a time.

1.2.7 Picture operations

e —— A W e oy AR o e v

Image data processing in particular consists of doing
mostly binary argument algebraic operations. These can he
enumerated in an interesting way as shown below. The
following are binary algebraic picture operations where "o" is
a general operator. Let I1, I2 and I3 be images. Then,

IM" o I2 -=> I3

I1 o -=>I3

I1 o I2 --> a property list -

I1 o I2 --> a relational data structure.

The operation I1 o -->I3 may be thought of as either a
unary operation or a binary operation with a null second
operand. ;

These picture operations might include such operations
as boolean: bit set, bit clear, bit complement, and, or,
exclusive or, equivalence; direction list processing; maxima;
minima; Fourier transforas; threshold slicing; scaling;
compohent labeling; propagation of edges; edge finding:
"pixel-wise addition, subtraction, multiplication, division;
rotation and shifting of 1images; gradient; gray leval
histogram. Run-length/gray-scale texture histograms should also
be computable by the GPP as well a large class of other picture
operations., The PAX functions mentioned above are described
by Johnson [LipB70].

In Appendix D sample GPP programs are shown, which
compute some of the above mentioned operatioms and for which
timing estimates are given.

Introduction 7

1.2.2 Picture operations as binary operations

TR N NI AL v A e e e A . e e el el Y W A - - . A

These basic binary arqument relations on picture data
are typical of picture processing in systenms. What varies is
the complexity of the operation "o¥, The increasing complexity
of operations in the binary image plane is shown below in five
increasingly complex levels I to V. Let "x" below be a pixel
in a NxN neighborhood., As will be shown, an analogous hierarchy
also exists for gray scale machines.

Let Ij{k) be the k'th pixel in picture 5.
{I) pPizxel (picture element) operations:
I1(k) o I2(k)~->I3(k).
(II) Neighborhood operations around a pixel into a pixel:
XXX
XXx o I2(k) --> I13(k}.
XXX

I1

(III) Neighborhood contextual operations into a pixel:

XXX Xxx
XXX O XXX -=> I3{k).
XXX XXX

I 12

" {IV) Neighborhood operations into a neighborhooed:

XXX XXX XXX

IXX O XXX -=> XXX

XXX XIx XXX
I1 12 I3

(V) special high level functions:
edge detection, differentiation, smoothing,
propagation, etc.

With progress from level I to IV and V, the increasing
complexity (number of connections, number of nodes, number of
modules) for a hardware circuit to perform such an operation
increases. We use this wiring complexity as an estimate of the
"complexity" of the operation and thus +to characterize the
complexity of a given level of operation.

Most small neighborhcod parallel binary machines
exhibit maximum complexity of levels IT or III. For an Nx¥N
2 4
binary plane image these have complexity levels hetween N and W
{(e.g. for a 3x3 array this is 9 to 81)., The TLLIAC IIT is an
1.2

8 Introduction
example of a level IV binary machine.

The same five levels of operations could be applied to
the c¢lass of gray scale image machines. There is only one
known existing gray scale processor, .the ILLIAC IV.

Tt is interesting to examine the complexity of gray
scale parallel ©processing operations. Assume a K bit gray
scale {for binary images K is 1) and an NxN image. A binary
machine having 1level II complexity would be interconnected on
the order of NxNx1. Then a gray scale machine {having K bits
of gray scale) of level II complexity would be KxNxN
interconnected. The complexity of level III operation is on the

2 5
order of (KxNxN)x({(KxNxN}xN or (K)(N). For 1level IV the
complexity is of the order of (KxNxN}x (KxNx¥N)x(ExHxN) or
3 6

(K Y{N). OCbviously, the costs of implementing a machine rise
with its complexity. The cost of debugging, documentation, and
maintenance follow a similar increase with increasing
complexity.

1.2.3 A level IV gray scale machine -~ 3 address machine

- Y T —— . i — o A ———— o " — . b o — i

A gray scale picture processor of at least level IV
complexity is needed to meet the requirements of tha Real Tinme
Picture Processor delineated above. This is the least complex
machine that permits full generality. The use of such a level
iv machine as a design tool will, we believe, allow the proper
selection of some level V functions.

ilthough a K bit gray scale machine can be simulated
nsing K binary planes, the expression of algorithms is awkward
and usually inefficient.

Not surprisingly, a parallel gray scale wmachine of
level IV 1is beyond the resources of our laboratory. our
solution to the design/maintenance dilemma has been to design a
-fast serial machine which operates on neighborhoods of
rectangularliy tessellated gray scale picture arrays. The
machine's speed and a felicity in expressing algorithnms is
achieved partly through the use of triple operand instructions.
In this machine a neighborhood has a serial representation.

The following example illustrates serial
representation. Let us consider the images I1 and IZ2 (one of
which may be the temporal successor of the other, or they may
represent members of a set of serial sections etc). It is
desired to find a measure of pattern similarity (in order to
spatially or temporally align +the images). The problem is
solved by finding a measure of pattern similarity between
neighborhoods I and I2 by computing their product and summing
this product into the central pixel of 13. All neighborhoods
are 3x3. VNeighborhood 11, for example, comprises pixels I1(8)
(its central pixel) and boundary pixels I1(0) through I1(7).

-

Introduction 9

8
The operation to be performed is 13(8) = SUN TI1(ij12(i).
i=0
The neighborhood processor could perform the following segquence
of operations:

Form the products array I3 from I and I2.:
I3{0)<--I1(0) MUL 12(0}
I3 <--TI1¢1) MUL 12{1)
I3(2)<~-I1(2) MUL I2(2}
I3(3)<~-I1(3) MUL I2(3)
I3(4)<--I1(8) MUL I2(4)
I3{5)<~=I1(5) MUL I2(5)
T3(6)<~-=-I1(6) KUL I2(6)
I3(7)<--I1({7} MUL I2(7)
I3(8)<~--11(8) MUL T2{8)

etc.

naturally there is a way
to do this with a loop
structure

Sé Bs Do WO Hb S0

Form the sum of the pixels in the I3 neighborhood.

product of IT{0), I2(0) into I3 ()
IT(h, I2(1) into I3(1)

I3{8)<--I3{8) ADD I3¢0} ; sum the pixel product into I3(8)

I3({8)<--I3(8) ADD I3{1)
I3(8)<~-I3(8) ADD I3{2)
I3{8)<--I3(8) ADD I3(3)
I3 {8)<~-I3(8) ADD I3{4)
I3(8)<--I3(8) ADD I3(5)
I3({8)<--I3{8) ADD I3(6)
I3 (8)<~--I3(8) ADD I3{7)

we wd

product is now in I3(8)

These operations, performed over the entire set of
corresponding neighborhoods amd resulting in the construction
of a third image, where the gray value at the point is a
neasure of the local simillarity of the anticedent images,
constitutes a solution to the problem.

These iterative neighborhood operations, prohibitively
expensive in time and computer cost on standard machines are to
be implemented on the General Picture Processor (GPP). This is
the fast serial 3-address compoment of the RTPP. As will be
further detained below, the 3-address machine is closest to the
triple operand concept at the base of the mapping: IJoI2-->I3,

1.2

The sum of the entire neighborhood

i0 Introduction

1.3 The confiquration of the RTPP

R A AR N Al w W N R M A W e e Ay e W W e

The real time picture processor hardware shown in
Figure 2 consists of an Imanco Quantimet 720 (QMT); a Zeiss
Axiomat microscope with stepping stage, focus and light source;
a galvanometer mirror precision scanner; a Dicomed model 31
64-gray level storage display; up to eight 256x256 16-bit gray
level buffer memories (BM); a general picture processor (GPP);
a PDP8Be computer with 32K core; a four 1.5 million word disk
cartridge drives; an interactive control desk shown in ~Figqure
3, and a high speed connection to a PDP10 computer on which the
modelling programs are run.

1.3.17 Axiomat microscope

e i ———————— -

A Zeiss Axiomat wmicroscope is used to supply images to
the RTPP systen. It has been modified so that the focus and
4:1 zoom knob controls are under computer actuated stepping
motor control. 1In addition, the stage X and Y positions of the
slide are moved by computer driven stepping motors. The 1light
illumination subsysten contains variable wavelength
interference and variable neutral density filters. These tvwo
functions are implemented by use of continuous rotary wedge
filters which are controlled by the computer via high speed
stepping motors. Currently, a Quantimet plumbicon or vidicon
scanner and a precision galvahometer mirror scanner are
interfaced to output ports of the Axiomat. There is an
additilonal viewing port within the viewer's reach. Thus there
are three image planes accessable simultaneously.

1.3.2 Video input and output devices

T —————— . A v b b il e

The video input, display, and certain image processing
functions can be performed by various I/0 devices connected to
.the multiple output ports of a Zeiss Axiomat Microscope.

A Quantimet 720 image analyzer has been incorporated
into the RTPP. The plumbicon camera video is digitized to
B-bits for sampling by the system {at a 8 MHz rate) and is then
reccnverted to an analogue signal for reinsertion into the
Quantimet video input chain. The Quantimet includes a 10.1
frame/second television display and some minimal feature
extraction and measurement hardware to bhe discussed below.

A4 precision galvanometer nmirror scanher with a
1024x1024 pixel random access window anrd 256 gray level video
output can also be used as a digitizing input device ¢to the
RTPP from the microscope. The PDPBe may route mirror scanner
data to a buffer memory for display on the Quantimet or further
procesing by the RTPP. In addition, a Dicomed model 31

1.3

Introduction 11

1024x1024 picture point 64-gray level precision storage display
may also be used as a storage output device in the RTPP.
Presently, hardcopy images from the system are produced by
photographing the Dicomed display.

The Quantimet is the preferred I/0 device for real tinme
interaction because of its rapid frame rate. The digitized
picture from the plumbicon scanner video is a 256 (64 usable)
gray level digitized image within a 880x680 pixel window. The
QMT display may also be used to post images from buffer nemory
windows inserted within original scanner image data. There are
tvo types of cameras: a plumbicon and a vidicon. The plumbicon
gives better linearity for use with densitometry while the
vidicon has a larger dynamic light input range. When one of
these cameras is used on the Axiomat at the same time the
galvanometer scanner is used the difference in dynamic range of
light intensities required is a problem. This is solved by
putting N.D. filters in front of the TV camera. In addition, a
shutter protection «circuit is used to turn off the image when
no TV scanning is being done or if the 1l1light level into the
camera is too great.

1.3.3 Buffer memories - BHM

. ———— i -

Although a histologic slide can be used as a random
access read only memory, it is inadequate for use in processing
the information it contains. It is necessary to retain images
and their transforms in buffer memories, and to be able to
access them and display them rapidly. In order to do this our
Real Time Picture Processor needs facilities to store at least
four entire images or transforms at once (e.g. to store a
Fourier transform and a Fourier filter takes 4 images - 2 real
and 2 imaginary), and the ability to access part of them very
quickly. This rapid pixel accessing is the primary reason for
the use of buffer memories. ’

our approach has been to design buffer memories each of
which can contain a reasonable size of working image (256x256
pixels). At a nominal maximum optical resolution of about 0.25
microns, a biologically usable picture window is approximately
50 microns or more corresponding to about 200 pixels. The RTPP
uses a 256x256 pixel window.

Eight 256x256-word 16-bit/word gray scale buffer
memories are being built which may be accessed by either the
Quantimet video scanner/display, the GPP (general picture
processor), or the PDP8e computer. Each buffer memory holds two
8-bit gray scale images, one in the low and one in the high
half of +the 16~bit BM word. When a BM is not reading or
writing data to the GPP, it can be used to continuously recycle
a picture for posting on the Quantimet display and/or as input
to the Quantimet video-input chain using a fast 8-bit digital
to analog converter. The PDP8e controls the scanning (into)
and the ©posting of images (from) the buffer memories. In
addition, the PDPBe computer can read/write data from/to buffer

1.3

12 Introduction

memorjies using rapid direct memory access (DMA) techniques. The
BM can also be used as a binary data mask for Quantimet or
other BM data.

A BM can acquire a selected 256x256 window of a QMT
scanner image or an image loaded from the PDPBe. This image can
then be accessed pixel by pixel or line by line from the GPP or
PDPBe. Its contents may also' be posted on the Quantimet
display {using a fast D/A and digitized video multiplexing).
When used in this mode, the QMT is able to process synthesized
video. Using a direct memory access {(DMA) channel, the PDP8e
can then access the buffer memories. The GPP also can directly
access the buffer memories for performing transformations on
the image.

The buffer memories are organized =so that it is most
economical to transfer entire horizontal lines of data between
them and the GPP processing unit, Vertical 1lines or randomly
accessed pixels can also be transferred but at oanly 1/4 the
data rate,

1. 3.4 Triple line buffers for image addressing

A —— i ————_ —— " M e e i A R o mm ae ma e

Given +the basic architecture of the GPP, an addressing
mode to implement the fast triple operand processing is needed.
It was decided that the NxN neighborhood should be directly
addressable for all IT1(i), I2(3) and I3(k) in the three current
NxN neighborhoeds (i,3j,k), letting the neighborhood be
tessilated through the entire image.

The NxN selected is a 3x3 neighborhood because of the
combinatorial constraints which increase intolerably rapidly
for any larger neighborhood. Three NxN neighborhoods are
required for +the images I1, I2 and I3; therefore 27 directly
addressable pixels are needed for ¥N=3. Forty-eight and 75
directly addressable pixels would be needed for N=4 and N=5
respectively. For any size N one c¢ould argue that some
algorithm would need N+1. Since a 3x3 neighborhood is the
minimum size that intrinsically handles 4 and 8 neighborhood
_processing (a symmetrical central pixel), at least a minimum of
processing power exists with this size. If necessary N+1 can
be wsimulated in software for any N. Therefore, it was decided
to hold down the complexity of the hardware and let N=3.

Finally, to make an entire neighborhood directly
addressable, the processor has three line~buffers, each capable
of holding N entire 1lines of image data (¥N=3). Figure 1
iliustrates an N-line buffer with K-bits/pixel and M
pixels/line. 1In this design (N,K,M) = {3,16,256). Three triple
line buffers are implemented.

The processor can transfer an entire line at a time
either between a buffer memory and the 1line buffer or vice
versa., The 1line buffers, being implemented with fast
registers, constitute a kind of cache memory {a special type of

Introduction 13

hardware used +to optimize data rates between a processor and
its main data memory).

The problem of addressing a neighborhood is reduced to
the problem of addressing the line-huffers. Thus,
neighborhood processing of an entire image can be acconplished
by a sequence of actions: first, processing is done on each
3-pixel-wide current neighborhood of an 3~line-deep
line-buffer. Then a processed line (usually the oldest) is
moved out of the line-buffer to a buffer memory and a new line,
usually the next line in the raster source image, replaces it.
The processing loop is then repeated, until the entire image
has been processed. Three line buffers, providing 8 neighbor
processing, maintain +the full generality of level Iv
operations. A more complete description of the hardware is
given later in this document.

1.3

14 | Introduction

Dynomic X Address Vectors

X-i] | x] [x+h
\ .
¥ +1]
Ll or 1)] .
Tricke Line Buffer Dynamic Y Address Vectors
¥
0l2 ess Ln’l n n+!) YY) 255
‘Current Neighborhood
X~ X XH
viilg |2]}
viale]|o
B |6 |7

GPP Neighborhood Addressing Map

Figure 1. GPP triple line buffer addressing

Associated with each line buffer is a set of three X and one Y dynamic
address vectors. These dynamic address vectors define the current
3x3 neighborhood pixels in +the 1line buffer. Therefore tessellation
through different neighborhoods is easily performed by changing these
address vectors, An instruction is available to selectively
increment or decrement (X-1,X,X+1) in I1, I2, and I3 at one time thus
effectively moving the current neighborhood to the 1left or right
respectively.

1.3

Introduction 15

———=»| Dicorned 3| Display
1024 X 1024
64 Grey Lovels
Galvanometer Scanner
s 1024 X 1024 CRT Grey Level Display
256 Gray Levels BEOX 720
Video
Computer Controiled |Image Plumbicon/Scanner |Video & Controi | Up To Eight 16-Bit X
e e ——————
Microscope ‘Quantimet 720 256° Bufter Memories
) . h
Control Data
i3 Data 8 Control . GPP
. 32K Core ~=»{ Ganeral Picture
6M Disk Processor
1 Ernutator Channels Control Desk
~ PDPt1720 g e
Messoge Switcher , N Vsér laletypes
§lﬂ¢1&ned€hmmd

PDP-10 Al System

Figure 2. Block diagram of RTPP

The PDPBe computer directs the microscope stage to positions determined
either manually by the operator or automatically by the PDP10° system.
Images may be acquired by the buffer memories for processing by the GPP,
Rav images as well as processed images may be displayed on the Quantimet
720. Precision scanning and display are implemented by the galvanometer
mirror scanner and Dicomed display respectively. The user wmay interact
with the system either through a control desk or a telstype.

1.3

16 Introduction

Figure 3. Interactive control desk

The BRTPP interactive control desk is situated next to the RTPP with the
Quantimet video display to the rear of the control desk and the Axiomat
microscope off to the side. A Graf-Pen spark tablet is 1located
immediately in front of the operator with the pushbuttons and lights
mounted in two large boxes to the left and right. The remote Quantimet
variable frame and scale keys are located in a small box with a movable
cable as is joystick for the Zeiss axiomat {x,Y) stepping stage. The
latter has a long cable and may be used at the microscope for control of
the stage while viewing thru the eyepiece of the microscope. The
control desk controls are listed as follows going from left to right and
top to bottom (for the left box first): the QSTAT lights indicate the
status of the Quantimet interface: the pots are connected to A/D
channels in both the PDP8e and the GPP; the GPP switches are read by the
SWITCHA rTegister; FBW2 are lighted Mcommand® keys for +the PDPBe;
DISPLA/B are GPP display registers. the remove frame switch enables the
remove frame and scale switches even when the PDP8e has not enabled
them; the frame size switch freezes the frame and scale sizes so that a
frame of fixed size may be moved around; the standby switch places the
Quantimet display and system control in standby mode; the motors enable
switch (also in joystick box) enables the stepping motors when the light
above it is on; the scan simulation switch moves the galvanometer
scanner independently of the PDP8e so that the gain/baseline controls
may be setup with using the PDP8e. For the right <control box, the
controls are: keypad display of keypad input for the PDP8e; FBW3
"classification" keys for the PDPBe; DISP1/2 PDPS8e display lights which
are decoded as BCD in the top lights and as octal in the bottom lights;
FBW4 PDPBe toggle switches; keypad to input 6 BCD digits to the PDPBe:
FBRS/6/7 PDP8e octal digiswitches; Execute key used to execute
(interpretively by the PDP8e) instructions given in the digiswitches;
eight 5-position spring loaded toggle switches control various stepping
motors with a fast and slov speed in both forward and reverse
directions.

1.3

LEFT \
QSTAT

nuwyerofero e
B OFOrOZ Q) R R

FBw2 @@@
caee

Y o o o

GPP Switches

h Acﬂve&gﬂ
i o d @ O

RIGHT \

Keypad Display

FBW3

Lodoogouoong

‘ ‘ Keypad
i o QARIRVARRWA (q@e
mn \ |\ Octal S N
3 AUR AR
I M \ S

nonnnsnn
O 2

Motors
Enabl

‘w— Focus

Remote Variable Frame and Scole Keys

Spare 2

L Spare |
Neutrdl Density
Wavelength
Zoom
Thrashold 2

Threshold |

Zelss Stage X, Y Joystick Control

Introduction 19

1.3.5 General Picture Processor

L T R O e D N e A D v

The General Picture Processor {GPP) is a stored progranm
very fast serial processor which can rapidly access and process
image data through current picture neighborhoods. It uses the
concept of triple operand instructions on up to 3 different
current neighborhoods. These current neighborhoods may be taken
from three diffent triple line cache memory buffers which in
turn are backed by the slower buffer memories.

The programs which the GPP executes are loaded into a
GPP program memory (PM) by the PDP8e which controls the GPP as
a peripheral device. The GPP programs will be written and
compiled on the the PDP10 system and assembled on the PDPBe.
The PDP8e interacting with the PBDP10 will be able to 1load the
binary compilation files 4into the GPP or to save {get) these
files on its own local disk for later use.

The PDP10 system, which is described subsequently in
other documents ([Lem76b], [Lem76c], [Lem76d]), and in sections
{(1.4-1.5,1.7) is written 4is PDP10 SAIL [VanLl73] language. It
consists of a high level procedural description language PRDL
[Len76b] which will be used interactively to build
morphological descriptions of biological images. PRDL will
cause the 1low 1level picture processing functions to be
evaluated on the RTPP rather +than on the PDP10. An image
processing program PROC10 [Lem76d] is currently being used on
the PDP10 to emulate various image processing procedures which
could run on the RTPP. Various often called procedures such
as fetching a picture neighborhood have been shown (using
PROC10) to be useful image processing primitive operations
which are time consuming using normal PDP10 instructions. Thus
such operations are committed to GPP hardware instructions
(both through actual hardwvare and through microprogran
implementation).

Running RTPP programs will be accomplished by having
PRDL functions for the RTPP be compiled by the MAINSAIL
cross-compiler [Wil75] on the PDP10. The output of MAINSAIL is
then sent to the PDP8e where it is assembled by the RTPP
assembler GPPASM [Gros76a] on the PDP8e. Thus PRDL functions
which run on the RTPP can be constructed and later be called by
PRDL through the RTPP monitor DDTG [Lem76a] (see section 1.6).
The communication between these various processors must be
intimate and the ultimate responsibility for insuring this lies
with the PRDL systen.

1.3

20 Introduction

1.3.6 Quantimet controller

S e ——— a3 - Ty T ————— o ——

The interface between the Quantimet and the PDP8e
consists of an interface to "program" the Quantimet (e.g. use
thresholded video (by some criteria} to measure the total
area); acquire OQMT data; display numbers on the right QMT
nunber display; load various QMT detector threshold and sizing
limit registers and "live frame" frame and scale window
coordinates.

In addition, special hardware is used to acquire a set
of 2-~properties/object for all objects in the scene (up to 1024
objects) . The properties are taken from the set of object
features computed by the intrinsic Quantimet Function Computer

modules. These properties include: integrated density, area,
perimeter, horizontal and vertial projections, and horizontal
and vertical ferets. This acquisition is accomplished

during a single scan of 0.1 second. The additional hardware
constructed by us includes, a 1024 datum deep stack of the
bottom most end points of blobs called Anti-Cooincidence-Points
{X-ACP, VY-ACP)}; a stack of 1 bit/word detector-bit of the
associated detected level: and a associated dual data stack
which accepts two QMT data words from the function computers of
6 BCD digits each.

At the occurence of each ACP {which corresponds to the
recognition of a discrete blob) all the above stacks have data
pushed into them. The PDPB8e can unload the data after it has
been acguired by the Quantimet. In addition, data can be
pushed on matching the (X,Y) coordinates of the QMT with those
of the front of the (X-ACP, Y-ACP) stack. Since the ACP stack
may be loaded by the PDP8e, this offers further possibilities
for data acquisition by measuring +the detection at the
coordinates of the synthetic ACPs.

Other Quantimet related hardware includes a specially
constructed Mask register for acguiring and, storing and using
arbitrary convex shapes and a programmable display cursor.
Both of these devices are described in more detail in Section
2e

1.3.7 Control of the RTPP by the PDP8e

s R S T W A ——————— -t e W e

The RTPP complex, (Figure 2), under <control from the
PDP8e minicomputer, may position the active microscope elements
{feg. focus, stage, zoom, etc) and adjust the live frame image
of the Quantimet according to program requirements or in
response to the operator's directions at the control desk.
The PDP8e has full control over the Quantimet to program it and
acquire single data scans. Live frame video {within specified
256x256 windows) may be stored in any or all eight buffer
memories, and displayed on the Quantimet at the direction of
the PDP8e. To process image data in the buffer memories, the

1.3

Introduction 21

PDP8e 1loads a specific program into the instruction memory of
the GPP and initiates execution. Results may be passed back to
the PDP8e for storage or transfer to other computers, or
displayed on the Quantimet, or both.

1.4 The RTPP as a picture processing peripheral

TSR W R o R WO L Lt e e s N ey = o e

The RTPP is really a specialized peripheral processor,
a level of complexity beyond the now accepted class of display
controllers. The latter usually consists of a programmable
special purpose computer with a moderate amount of memory and a
digital image display. The display controller is intended
to remove from its large general purpose host computer a large
portion of the burden of interactive display programs. In
terms of the host computer and its associated facilities there
can be little doubt that such a solution to the display problem
is usually economically and computationally justified.

It 'may be noted that the RTPP, as a picture processing
peripheral, removes a proportionately greater burden from the
host computer's CPU and core memory than does the display
controller. There is no need now to devote as much channel
capacity for the +transmission of raw picture data and their
transforms. Instead, a system of distributed computing, made
possible by the RTPP, allows the exchange of higher level data
such as property lists, effectively resulting in marked
information compression. This in turn allows more effective use
of a wide range of facilities available on the general purpose
host computer. o

RTPP output would usually be images andsor 1lists of
properties of objects contained in the images. The major
component of the RTPP real time interaction is +the General
Picture Processor (GPP). This hardware processor allows
extremely rapid serial digital processing of digitizead gray
scale 1images using special purpose hardware including image
buffer memories and fast addressing schemes. Because the
GPP/image buffer memories handle gray scale data {not merely
binary black and white images) a larger set of useful picture
functions can be quickly designed and executed than with a
strictly binary image processor,

1.5 Cell Modeling System - CELMOD

A S e P e W —— D . e -

A biological cell relational data modeling system will
analyze the scene using RTPP generated picture primitives as in
{({Lem72], [ShapB74]) and involves the use of procedural
definition on a semantic data base. This modelling system is
called CELMOD [Lem76c]. It consists of the three PDP1Q prograns
(PRDL [Lem76b], PROC10 [Lem76c] and MAINSAIL [Wil757) and the
RTPP. A block diagram of CELMOD is given in Figure 4,

This model will be interactive to allow a bieclogist to
1.4 - 1.5

22 Introduction

define what he means by a particular class of cells and
manipulate properties and relations of objects irn the images.
The biologist by means of iterative composition of processes
can build up explicit connections between his semantic
information and the image information represented at the
individual pixel level. Being an interactive system, it will
be easier for him to elicit the subconscious clues that he uses
in making these decisions.

The decription langunage is «c¢alled the Procedural
Description Lanquage (PRDL}) which runs on a PDP10 and is
described in [Lem76b]. The RTPP will +thus also serve as a
feature extractor for PRDL. Figure 4 shows a block diagram
of the CELMOD system. The overall connection between the RTPP
and PRDL is described in more detail in [Lem76b].

The CELMOD system will be able to perform image

processing operations on the PDP10 using PROC10 while the RTPP
is being constructed.

1-5

Introduction 23

PROL
PROCIO = Procedural Description MAINSALL,
PDP-I0 Picturs Language ™ Compller for RTPP PDP-10
Processing System -
Modaling System
Funetion : Proparty
Requasts Lists

L Message Swlicher ‘, PDP-11

----- --.--..-..--,-..-------.-

e e T T R T T

]

DDTG

Controf GPPASM
Coneois RTPP Monitor Asssmbler for RTPP RTPP -

FDPB/s

General Piciure Processor
Buffer Memory

image Anaiyzer

Pigure 4, CELMOD System block diagram

CELMQOD ig composed of two Bajor software Systens running onp different
rachineg, The PRDL Program runs op a DECSYSTEM-10 ang is used to model
cell images assuming the features are extracted. The RTPP has a resident
monitor calieg DDTG which eéxecutes functions Fequested by the PRpI
System and returns feature lists, The user gits at the Ryrpp control
desk communicates with PRpL through a gTyoQ line graphics-teletype video
terminal, The microscope data are visible on the RTPP display, The
connection between the tvo systens is made vyia a PDP11,/20 message

S¥itcher which is an Operationally invisible high speeg link between the
two systenms,

1.5

24 ‘ Introduction

1.6 DDTG - the RTPP debugger/monitor

Al it~ e i wm mm -

DDTG [Lem76a], a monitor/debugger is constructed for
user and/or computer control of the RTPP. Functionally, DDTG is
more than a simple <combination of monitor and debugging
facilities. As the RTPP operating system, it is required to
interpret direct (i.e. via control console) user commands, or
a string of commands generated by user-PDP10 interaction. In
addition, it is required to provide access and control (at
machine language word level) of major memory structures (PDP8e
core, GPP program memory, GPP general register memory (GR) and
buffer memories). It provides full control for a variety of
image acquisition and low level analytic peripheral devices
{e.g. Axiomat microscope stage, focus, etc. the Quantimet
720 and a variety of its plug in modules, a special mirror
scanner, a sonic tablet, and a rapid scan spectrometer).
bisplay control functions of DDTG also include the Dicomed and
Quantimet displays.

DDTG has the ability to store, retrieve and execute
(from PDP8e disks) PDP8e and/or GPP programs (user or PDP10
generated) {cf, Figure #). Since in stand alone mode, DDTG is
to be used as much by biologists as by computer scientists, the
user interface allows many high 1level and seeming English
command constructs. This in turn permits easy construction of
understandable control programs for stand alone use,
exploration and debugging at a very high level.

DDTG, written in standard PDPBe FortranII-Sabr consists
of 4 major parts: an interpreter, parser, symbol table, and a
large set of worker routines. The last include such features
as loaders for the various component computers of the RTPP, as
well as extensive and flexible disk I/0 routines, a wide
variety of stylized data structures.

DDTG has capabilities which allow it to 1load and run
programs in the RTPP and to monitor their activity. An
extensive set of commands are implemented to facilitate image
data acquisition and display, and the running of small picture
operation programs called "special segments?, The General
Picture Processor (GPP) portion of the RTPP will, in performing
picture operations, require special segment support from DDTG.
In addition, mechanisms are available for RTPP progran
interaction with 0S/8 in order to facilitate the implementation
of 1image processing programs (exclusive of DDTG) to process
DDTG produced data. ' '

1.7 RTPP Compiler/Assembler - MAINSAIL/GPPASM

. S T — i il Al Vot A S — .

The RTPP will have access to a very powerful
cross-compiler MAINSAIL [Wil75] and a low leve assembler GPPASM
[Gros76]. MAINSAIL will run on the PDP10 and compile a dialect
of PDP10 SAIL which includes teletype I/0 and records but not
LEAP or file structured I/0. As the initial RTPP has no

1.6 - 1.7

Introduction 25

floating point hardware, the initial MAINSAIL to be uased has
no real arithmetic constructs. Registers (such as line buffers
Ij{k)) will be represented as reserved symbols (Ijk). MAINSAIL
will output assembly language source code for GPPASM.

GPPASH is a low 1level assembler which produces
non-relocatable load modules. It has labels and limited
arithmetic capabilities as it was designed to run efficiently
on a PDP8e. This last aspect is important for the debugging and
maintenance of the RTPP. The GPPLDR which loads the absolute
binary files produced by GPPASM is part of DDTIG. GPPASHM
permits the use of REQUIRE <file> LOAD or SOURCE statements and
thus a run time library can be assembled or loaded with main
programs.

The GPPASM grammar was desigred to be easily parsed by
a simple finite state acceptor with a small auxillary stack.
The assembler has either 2 or 3 passes depending on whether an
assembly listing file is to be generated. The first pass
incorporates declaration, PM and GR label resolution; the 2nd
pass generates the PM and GR output code segments while the 3rd
pass optionally generates an assembly listing. The PDP8e
special (PAL8B) segment is stripped out during the 1ist pass and
is later assembled by a modified version of PAL8 and
concatinated with the PM and GR segments. The GPPLDR in DDTG is
able to analyze and load such GPP binary load files. The BNF
grammar for the GPPASM assembly language is given in Appendix
E.

1.8 GPP Microprogram Assembler - MICROP

o e . e o - e -

The actual GPP implementation enmploys microprogram
control. The microprogram is stored in a 60-bitx4K RAM by the
PDP8e, Microprograms are assembled on the PDP8e using the
MICROP assembler [Gros76b]. The microassembler is discussed in
more detail in Section 6.1.1.

1.8

26

SECTION 2

Quantimet subsystenm

el e e T S p———

The Quantimet 720 [Fish71] is a modular low level image
processor which is used primarily as an I/0 device rather than
as an stand alone image processor. In addition to the basic
scanner and display modules of the QMT, other hardware modules
are used to accomplish elementary functions such as object area
as determined by thresholded detected video: perimeter, number
of objects in a field, integrated density under a mask, and
several intercept properties. The Quantimet functions are
controlled and programmed by the PDP8e minicomputer or may be
used as a stand alone device.

The Quantimet part of the Real Time Picture Processor
consists of the following Imanco Quantimet 720 modules:

Plumbicon (or vidicon) non-interlaced TV raster scanner
System Control module

System Display module

Variable Frame and Scale module

Standard Detector module

Digitizer /Densitometer module

1-Dimensional detector module

Amender module

Standard Computer module

¥S3 Computer module

2 Function Computer modules {with Density option)
Light pen module

Classifier Collector module

The Classifier Collector module is added primarily for
maintenance of the Function Computer modules.

2.1 Quantimet modules

The basic functions of these modules are enumerated
here as an aid in understanding the design of the real time
2.1

Quantimet subsysten 27

picture processor systenm. For further details see [Fish71].
The basic design for some of the Quantimet modifications was
done initially for the NCI Grain Counter-I [LipL74].

2.1.1 Scanner - System Control module

R e e i i W cdan — N — - = P =

The TV scanner (either a Plumbicon or vidicon camara)
and system control produce a 10.1/second 880x720 digitally
derived TV image. Actually, a smaller window is used which is
called the big frame consisting of 860x680 lines. Inside the
big frame is still a smaller frame called the live frame. Data
inside the live frame is the data which is used by the rest of
the Quantimet, The live frame is derived from nmany sources,
some of which are the variable frame and scale, detected video,
light pen mask output, buffer memory derived detected video and
computed video of the various modules.

The TV camera is physically connected to the Zeiss
Axiomat microscope through an IPU designed and constructed
mechanical interface. This interface includes a Zeiss
electromechanical shutter which is closed either by the
computer (which can also open it) or by an automatic shut-off
circuit which senses too much 1light entering the Quantimet
camera. This Jlatter feature prevents camera damage with too
much light. The interface also has room for several neutral
density filters so that the light levels can be balanced for
running both the galvanometer scanner and the Quantimet camera
at the same time. .

2. 1.2 System display module

TV e i w— . — A e Wl

The system display module is used to mix the system
input video with the output display signals from the Standard
computer, #S53 computer, Amender, Frame and Scale, 1-D detector,
Digitizing detector, Function computers, Classifier Collector,
and light pen modules. These display signals will either
fully intensify or partially blank the systenm display. This
mixed video signal is then displayed on a 10.1 rasters/second
crange phosphor TV monitor. This phosphor is designed for
slow decay times to reduce flicker. However, it does =0 at
cost to the gray scale resolution.

The RTPP will be able to blank out the scanner video
and substitute synthesized video in its place inside of buffer
memory 256x256 pixel windows. This is discussed in more detail
in Section 3 on the buffer memories. The Quantimet display
cursor and mask register displays are added to the Quantimet
display inputs (Scale mixer knob and Guard wmixer knobs
respectively).

2.1

28 Quantimet subsystem

2.1.3 Variable Frame and Scale module

T —— A S AT UER R AR AR A —— - m y ———

The Variable Frame and Scale module generates a live
Variakle Frame by generating a rectangular computing window
specified by {hor-position, hor-size, vert-position,
vert-size). When in variable frame mode, any data inside this
window will be enabled for detection by the Quantimet hardware;
otherwise detection takes place within the standard live franme.

2.1.4 Detector modules

There are three detector nodules: the
Digitizer/Densitometer, the 1-D detector and the Standard
detector modules. The Digitizer can be used as a detector (high
speed comparator) to transform +the analog video into a
detected/not~detected digital signal according to the selected
threshold values., The 1-D detector performs auto thresholding
in 1 dimension (X-axis) to detect objects in a background
phase. The Standard detector performs simple thresholding. The
Digitizer and 1D detectors have a 64 gray level range while the
Standard Detector maps up the white to black range into 4096
divisions. The thresholds in the Digitizer/detector and
Standard Detector have been modified so as to bhe able to be
loaded by the PDPB8e.

2.1.5 Light pen

——

The light pen module will generate a .mask of a detected
object selected with the light pen. There is a restriction that
the obiject be vertically convex so as to generate the complete
mask.

2.17.6 Digitizer/densitometer

The Digitizer/densitometer also functions as a
densitometer. It integrates detected gray scale data in the
range of [0:63]. It does this by using a fast 125 nanosecond
A/D converter and taking an optional log of the signal. It
gives relative density directly. Using this module one can
perform densitometry when suitably calibrated.

2.1

Quantimet subsystemn 29

2.1.7 MS3 Computer

- — T —

The MS3 computer modnle uses the detected video from
the detector modules to compute global area, perimeter,
intercept and count. The "pattern recognition® mode of
operation activates two Function comnputer modules for acquiring
object specific data.

2.17.8 Function Computer module

D e el i T — A VI e veh W W — .

_ The Function computer computes for each detected object
area, 1integrated gray-value or log-gray-value, perimeter,
vertical projection, horizontal projection, horizontal feret,
and vertical feret. An object is marked by the occurance of
its anti-coincidence point (ACP). Data is not acguired for
partially represented objects (in which the ACP falls outside
of the live frame).

2.1.9 Classifier Collector module

- N i ———————— W = ——

A Classifier Collector module may be used to accept 2
Function Computer module outputs for stand alone operation. It
is also able to compare function values from the function
computer output against a range of values to determine whether
the ACP (object label) should be used.

2.%.10 Standard Computer module

D A O s W W ——— 7o A W —

The Standard Computer module is similar to the Ms3
Computer except that it does not compute perimeter and has no
pattern recognition mode.

2.2 Microprogramming QMT modules

— S W TP A Swh ke ek e D . M S MM SO N s -

Many of the OQMT modules mentioned above may be
microprogrammed to select either modes of operation for
functions to compute. This is done by enabling a rear status
register on each of the modules called the "programmer"® input.
On the RTPP this is done by loading, for each QMT scan, a
program word which consists of eight 12-bit status words called
the Quantimet Program registers denoted QPROG1 through QPROGS.
These reglsters and their allocation in the Quantimet subsystenm
is discussed in Appendix C.3.

2.2

30 Quantimet subsystenm

2.3 PDPBe control of the Quantimet

el kR i et Rl e ——

The Quantimet may be controlled by the PDP8e in a
single step data acquistion mode. When the System Control
module *'Continuous/Auto! switch is put in 'Auto', it is placed
under control of the PDPSe. Essentially, PDP8e control is
effected by manipulation of the eight 12-bit static programming
words and +the (QSTAT status register. The PDP8e STQMT
instruction will start the Quantimet data acquistion when the
Quantimet scanner reaches the start (top) of the next scan
frame. ‘The QMSKP skip instruction can be used to test when the
data acquisition is done. At this time, the whole field
Quantimet data is available to the PDP8e in the QDAT1, QDAT2,
and QDAT3 input instructions which will read 7 BCD digits (LSD
to MSD) 1into +the PDPBe accumulator. This whole field data is
displayed automatically in the left Quantimet display. The
right Quantimet display may be loaded by the PDP8e load
instructions LQDT?, LQDT2 and LQDT1 (MSD to LSD).

Function computer data as well as ACP (x,y) coordinates
may be acquired in a single Quantimet scan through a 1024 word
(69-bits/word) shift register. This is described in more detail
in Appendix C.1.2. '

2.3.1 Quantimet status register - QSTAT

b e e o il T - —— -

A status register (QSTAT contreols operation of the
Quantimet/PDPBe interface and various options on the Quantinmet.
This control includes enabling the Frame and Scale control desk
switches, shift register data acquistion system for Function
Computer data, standby and camera shutter activation. These are
discussed in Appendix C.1.7.

2.4 The mask register module

Detected video is used to generate a 720 picture 1line
Quantimet mask of entry and exit line intercept positions
stored in a hardware Mask register. This Mask register can be
used to supply the QMT with a detection region mask by reading
the mask as the QMT goes through a scan. The mask register
is a (1024 word) RAM which is loaded either from with the QMT
detected video on a command from the PDP8e (GETMSK) or from the
PDPBe directly. On the PDPBe issuing the GETMSK instructiocn,
detected video is used to determine “DET-ENTRY" and "DET~EXIT"
for the entire (QMT live frame.

When the mask register is not being loaded, it cycles
with the QMT and outputs a (QPROG selected) mask of either
variable frame, mask or various logical <comginatiosns of
variable frame and mask (see QPRDOG2[(0:37). The QPRDOG2 selected
mask display intensity is controlled by the display ‘"guard"
knob. A display of the Mask register output alone (without the

2.3 - 2.4

Quantimet subsysten 31

frame and scale) 4is also available and is selected by
QPROS7{0:1]7. The display intensity for this display 1is
controlled by the display "scale and figures" knob.

The addressing in the mask register is the same as that
of the frame and scale window . The QMT VTRIG, SINC, (HTRIG).
and Clock signals are used to generate the actual addresses.
The entrance/exit acguisition algorithm works as follows. When
detected video first goes true (enter a solid blob) the MX"
coordinate at the Y'th line inside the frame 4is entered into
the ¥Y'th (0 to 719) "DET-ENTER"™ of the mask register. When the
detected video first goes false again (leaving a blob), the

WDET-EXIT" "X" coordinate is entered for the Y'th line. By
default a line's "DET-ENTER" when "getting"™ a mask is assumed
to , be 1023 before a line is processed. This takes care

of the case where no data or only entry data is present. Note
that only the first object 1in a line is detected and that
objects with concave inward tops or bottoms will not be
acquired properly because horizontal slices of such objects
have multiple entrance/exit points.

The mask register can be loaded or read from the PDP8e.
The main use of the mask register would be in masking QMT data
with synthesized masks or in accessing actual perimeter X-Y
coordirates.

Control of the mask register from the PDPBe is done
with +the GETMSK, WMSKADR, RHASKE, RMASKX, LMASKE, and LMASKX
PbP8e instructions. GETMSK enables the acguiring the next (QMT
detected video mask into the mask register. Now doing a STQMT
command starts the actual mask acquisition from the input
detected video. ¥SKADR loads the liné number for subsequent
I/0. Then RMASK- and LMASK~- do I/0 on that MSKADR's
entrance/exit pixels.

Note that RMUASK~- and LMASK- are aliowed at any time
except during mask acgusition. the mask generated for an
object will be a fairly good approximation to its boundry given
that the object has no concave upward or downward reqgicns. The
following 0S8 Fortran II progranm will get a mask from the
detected video inside the current frame and save it in the
PDP8e memory.

DIMENSION IENTER({720),IEXIT(720)

GETMSK /enable a mask to be accessed

STQMT /start mask acquisition
NOTDOWE, QMSKP

JMP NOTDCNE

Do 100 I=1,720

TAD I

MSKADR

RMASKE

DCA JENTER

RMASKX

pCAa JEXIT

IENTER (I)=JENTER
100 IRXIT(I)=JEXIT

nwnnin

wnw e nin

2.4

32 Quantimet subsystem

2.5 QMT cursor

T A ke cinf it AP e W ke -

An X-Y cursor is available which can be loaded from the
PDP8e using the same coordinate system as the Frame and Scale
and mask register devices. It appears as a 10 pixels 1line
segment to the right on the actwal (x,y) position on the
"scale" display control. It is programmed in DDTG software to
be used with the Graf-Pen to track the pen on the QMT screen
whether the pen is actually using the data or not. To make the
cursor disappear, load XP or YP. The PDPBe commands LDXP and
LDYP load a binary coordinate pair into the cursor controller.
The cursor display intensity on the Quantimet display is
controlied by the "scale and figures® knoch.

33

SECTION 3

Buffer memory

. — e —

The RTPP is designad to use up to eight gray scale
buffer remories (BM}. The memories may be simultanecusly
selected by the PDP8e for posting of images (displaying on the
Quantimet display) or acquiring QMT scanner data. However,
there is a restriction that no two active BM windows can
intersect during display or scanning as data will be lost from
one of the memoriss.

A BY consists of 65K (256x256 pixels) 16-bit/words with
gray scale data being storsd in both the high and low B8-bit
bytes of a 16-bit word. Binary detected video images are stored
as signed 8-bit bytes. Since each BM is syncarconized with
the QMT independently, up +to 512 X 1024 pixels "“could" be
posted in real-time (if the Quantimet display were large
enough}). Osually, a 256x256 window will be displayed and the
other BMs may contain variants of that displayed window. One
ray select the high or low B8-bit bytes irn a given buffer
merory. Each B8-bit slice may then be used to store separate
images or alternatively, for example the high and low 8-bit
fields may be used to store the real and immaginary portions of
a Fourier transform. '

Svynthesized Quantimet video

: The QMT video (level adjusted by .the system control
module) is digitized using the fast A/D.converter to 8 ‘bits
(using 8-bits of the 9-bit Computer Labs model 7910 . 10MHZ A/D).
This digitized image is them multiplexed digitally with the
buffer memory data to be synthesized as Quantimet input video -
that 1s substituting buffer memory data <for Cuantimet TV
scanner data. The digitized video is then resynthesized using
a fast D/2 converter (Computer Labs RDA-0815a, 15 MRBZ).

Synthesized video, selected for display pesting, is
substituted in the window . [Quantimet active frame)
[TXB:XB+255],[¥B:¥B+255]] for the QMT scanner video input to
the rest of the CMT. This results from our modifica*ion of the
video train which allows the QMT to process synthesized video!

In order to synthesize QMT videc, the BM first
synchronizes with the DMT. That is, it waits until +he OMT
reaches the (XB,Y¥B}) ©pixel and then starts dumping 256 pixels
into the digital video multiplexer. This digitized video is

then converted with a fast D/A to analogue video for Quantimet
video input. Successive lines are then synchronized similarly.

GPP use of BM¥s

The GPP can perform I/0 with the BHNs. That is, BMs
are uased for storing and retrieving intermediate pictures while
3

34 Buffer memory

doirg picture processing. This is done synchronously by line
after the line's row or column address is specified by the GPP
LINE instruction, The GPP canr also random access ths BM in
single word or neighborhood mode.

It is possible for two different devices to access two
different BM's simultaneously under certain conditions. The
eight BMs are divided into parallel memory systems (group & ~
Bds 0 to 3, and group B - BMs 4 to 7). Provided each device
access is to a different group of 4 memories then parallel
access 1is possible. The BM access priorities from highest to
lowest are: BM input from QMT scanner, GPP Is/¢, PDPBe I/C, BX
posting on the QMT display.

If twWwo devices require I/0 or +the same BM group
memories simultaneously, ¢then the highest priority device
obtains access. For example, if the GPP requests I/0 during a
posting on the QMT seguence, then +the "would be” 23M posted data
becomes the actual QMT scanner data. If the scanner data were a
dark object then the resulting posted image would have light
holes in it representing a higher priority access conflict.

BM scan and display selection

Two types of images may be acguired: 8-bit grayscale
and binary images. Binary images are stored in the buffer
memnories as signed 8-bit bytes. Images are stored and used by
selecting a high or low byte to be accessed. ©DDP8e commands
GETA, GETB, PCSTA, and POSTB perform these control functions.

They all load 12-bit command registers (fronm the PDP8e
AC) which selects which byte to use, which buffer memories to
enable, =and whether +to perform gray scale or binary {(leading
bit of a byte) /0. The actual scan is started with the STQOMT
operation. The command register format (the same for all four
GET-/PCST- instructions) is as follows:

[0:3] - (0) use low byte for pix, high byte for binary mask
{1) use high byte for pix, low hyte for binary mask

[827] - (0) use gray scale data
(1) use binary mask data

{8:117 - {0) don't select a EY
{1} select a BHM

84 window and scan acquisition
A buffer memory can accept a 256 X 256 x B-bit gray
scale image from the Quantimet video (digitized via Computer
Labs 8-bit A/D) starting at the upper left hand corner
coordinates denoted (XB,YRB). This is done in 1less than
one QMT scan cycle of 0.1 second. During this time the BN
group is unavailiable to both the GPP and the synthesized video
gererator But other BM I/0 operations, GPP or PDP8e I/0, may
take place. The lesser priority operation will be disconnected
3

Buffer memory 35

only during the part of the horizontal scan line that the BM
recieves data from the QMT. A1l other lines in +hat BM group
during this 'GET' function are available for lower priority I/O
except posting.

At the end of acguiring the OQMT image, the BY Iis
disconnected from the digitizing video channel. During a
scan, the BM accepts 256 sequential pixels/line starting at the
X coordinate XB of each line for each of 256 lines beginning
with line YB. The BM window so defined is determined by
comparing (X8,¥B) with the real-time {xreal,yreal) coordinates.
Fach BM has a pair of window coordinates (XB(i), YB(i)) which
ray be 1loaded by the PDPBe. The eight window coordinate pairs
are loaded from the PDP8Be by the commands (BMXi,BMYi) where
i={0:77.

In addition, the detected Quantimet video may bLe
acquired as a binary mask into buffer memories using the GETA/ER
comzand ¥With the appropriate bits [4:7] set. It may be inserted
into the Quantimet frame input using the POSTA/B instruction
witk the appropriate bits [4:7] set. The resulting mask may be
used for further Quantimet data acquistion.

I+ should be noted to avoid confusion that BM window
positions are independent of the frame and scale window
gosition.

PUPBe accessing of BM data

The PDPBe car transfer up to 4K PDP3e 12-pit words
using direct nmeaory¥ accessing (DMA} to/from a BM. Thus the
transfer of a complete BMs contents would take several DMA
transfers. Four PDP8e/BM DMA packing modes are availatkle,
all of which optimize the 12/16 bit word size differential., The
first 2 nodes +transfer three 8-bit bytes (either high or low
byte) in *hree BN words into two (0S8 packed format) PDP8e
words. The third mode *ransfers three 16-bit 3K words in four
(058 packed format) PDPBe words, The fourth mode transfers
16-bit BM data in two PDP8e 12-bit words in packed
sigr-extended EARE {extended arithmetic element of the PDPSe)
double precision format so that the PDPBe can do arithmetic on
full BM words without extensive packing and unpacking.

3.1 Physical BM memory addressing

- W W R AR AR W AR R D WS W W R e R A A abn R Ak mm o W e -

Although i%t is unnecessary to understanrd the physical
implementation of the BMs to use them, the underlying structure
is presented here for those who are interested. The 19-hit BY
address specifies a buffer memory location and may be broken
doun into the concatination (&) of subaddresses:
UBM[0:2]5YXADDR[0:15].

UBM[0:2] selects a BM unit.

Within a BHM, YXADDR selects the data:
' 3.1

36 Buffer memory
YXADDR[0:15]=YADDR[{ 0:7 16XADDR{0:7].
Then the

ro¥ address = YADDR[{0:7],
Column address = XADDR[(0:71.

Each buffer memory is divided into four physical Eeaory cards.

YADDR[0:1] selects +the wmemory carad, The BM word size is
16-bits. The memory cards are four way interlesaved so that
€4-bits of data may be transfered in one 530 nsec nemory

cycle., The buffer memory is constructed in such a wayv that only
data addressed modulo XADDR[6:7]=00 are obtained irn one menory
cycle. Therefore, random adédressing of 3M words reguires 500
nsec/word minimum; wherea horizontal raster or line by lina
transfer {i.e . continuous incrementing of YXADDR) will result
in an effective 125 nsec./word transfer rate.

3.1.1 BM controller accessing priorities

e h . e AR e o s —

During a BM-CMT scan acguisition, the posting of data
to the QMT is discontinued during that entire scan for that
raspective BM group. For example, posting of BM d4ata from one
BY group may take place during the same scan that acquisition
of QMT video data by the other 3M group. Ir fact, video data
being posted by on2 BM group may be loaded into the second 3K
group during the acquisition scan.

Tha (XB(i), ¥B{(i)) position for each buffer pemory is
used to select where the data shall be taken and the image
posted on the display. This allows the operator “o position the
transform window exactly where it is needed to operate on data.
The hardware priority networks resolves conflicts if two or
more BM windows 1intersect {in <case the software does not
prevent their intersection).

If while posting BM video data on the ¢MT a conflict
occurs with BM I/O other than acquiring QMT video, then during
the duration of the conflict +the origonal scanner video is
posted rather than the BM video.

3.1

37
SECTICN &

Triple line buffering

As was discussed in the introduction, it is iamportant
that current neighborhood addressing be fast and efficient. To
make maximal use of the triple operand instruction scheme 1in
processing current neighborhoods, data frem the image buffer
memories is transfered to a cache line-buffer showrn in figures
T and 5. The GPP contains three cache lire~-buffers named 11,
I2 and I3 respectively.

Each of +the 1line Dbuffers stores <hree 1lines (256
picture pixels/each) of dimage data usually derived £from a
buffer =nmemory. In order to facilitate local 3x3 neighborhood
processing, each line buffer has its own dynamic address
vectors (¥-1,%X,%X+1) which are simply a set of three B8-bit
address vector registers as shown in figure 5. The current
neighberhood is the 3x3 neighborhood currently accessed threouch
the dynamic addresg vectors. The dynamic address vectors are
(Z3Y,I49XP,IS¥,IiXK) for line buffers.

4,71 Programming the Triple Line Buffer

For example, . if the leftmost neighborhood of a

cripie-line-buffer were to be accessed, the dynamic address
yo2ctors would be appropriately set to (-1,0,+1), therehy
directly addressing each current 3x3 neighborhood pixel around
the pixel ¥=0. This 1is done automatically wusing the
instruction:

XRST (<X-1,X,X+1>,<11,12,13>);
which also resets a 256 pixel counter.

Fach of the line buffers have associated with them nine

direct addresses which are remapped by the appropriate dynanic
address vectors to allow the instructior field to directly
addrese zach of the nine current neighborhocd picture pixels.
Instructions are availiable +to selectively increment or
decrement (X-1,%X,%X+1) of T1, I2, and I} at one time thus mowving
the current neighborhoods right or left respectively.
XCLEX (<up/down>, <¥X-1,X,X+1>,<I1,12,23>);
oT
"jone labzl® (== XCLXB{(<up/down>,<X-1,X%X,¥+1>,<11,12,1I3>};
Similar instructions selectively advances the Y dynaaic
address vector in I1, I2 and I3 so that nevw lines may be easily
added replacing the oldest lines with wminimum progranm
hookkesping.

4.1

38 Triple line buffering
YRST (<I1,I2,1I3>);

resets the 256 line counter and ring (3-line} counter. Lines
are advanced in the triple line buffer by the YCLX instruction:

YCLK (<I1,I2,13>);
or
"256 line done label" <== YCLKB {(<11,12,13>):

A 1line L of BMj data is transfered to or from a triple
line buffer Ik line Yl using the LINE instructiocn as follows:

LINE (<high/low>,<in/out>,<hor/vert>,BM9j,Ik,Y1), L;

The triple address instruction might address two of the
triple line huffers as sources, (i.e. I1 and I2) and after the
operation deposit the result in third line buffer, I3. After
this operation is iterated for all the local neighborhoods in a
line, the 13 line buffer data might be returned to one of the
2ight buffer memories. For example, consecutive lines of
images from two different buffer memories may be 1loaded into
the I1 and I2 line buffers and the picture processing algorithm
repeats itself until all local neighborhoods of a line are
processed. Then the resultant line in I3 is stored in onhe of
the image buffer memories. Note that accessing horizontal
lines is 4 times faster than accessing vertical lines.

This line by line processing continues until all lines
have been processed. Then the buffer memory data resulting from
the computations on I3 are available for display and futher
processing by the GPP or QMT if desired.

4.2 Alternate Neighborhood Accessing Methods

T M S e e e SR e e - e e R W W e —— T e R

In addition to accessing the line buffers through the
current neighborhoods, the 9 lines in the 3 triple line buffers
may be directly addressed as 16-bit addresses in the top 2304
decimal (9x256) addresses in the GPP general register (GR)
address space. These addresses are given in Appendix B.

Alternatively, when random neighborhood accessing is
required, it is possible to fetch 9 current neighborhkood pixels
into either I1, I2 or I3 using the GETI1, GETI2 or GETI3
instructions. The cost of fetching a randon neighborhood is
that each pixel is accessed at 500 nsec./pixel rather than the
effective 125 nsec./pixel in the LINE raster I/0 mode. The
random neighborhood fetch is more efficient than the LINE when
fewer neighborhoods are required and their relative locations
are random {such as with a bhoundary follower). For example:

GETYI1 (<high/low>,<BMj>),YXADDR;
The instruction MAKYXADDR may be used to pack two 8-bit x and ¥

BM address pointers into an effective 16-bit YXADDR necessary
4,2

Triple line buffering 39

for GETIi instructions (as well as for the indirect BM pointers
PENMi) .

YXADDR <== x MAKYXADDR y:

There are other ways than of wusing line buffers of

accessing data in the BM for use by the GPP. In computing
Fourier and other global transforas, it is necessary to operate
on picture lines located far apart. This facility is

implemented by the ability to random access and copy one or
more random BM lines into the general registers, GR, and then
operate from there. Random BH picture pixel words may be
addressed by the indirect BM addresses PBH0O through PBM7 given
in Appendix B.

40 ‘ Triple line buffering

X Reoet o -1 | o o | s +1 i
i I g B Tl
X-1 X Xt
Clock
X ——1 >——{j Dynomic Vactor »|§ Dynamic Vector B3 Dynamic Vector
X Clock Bronch Addrass Register Address Raglster Address Register
8- 8 8-Bifs (Carry. a-Bits
|
i s 8 8 |
¢ 2 Jv 3
. X Nsighborhood .
Buffered Data Address Bus Select Addrass %D_.g
{DAB) 3 X Clock Branch &
Select Bits X-1, X, X! Multiploxar a
&
lra
8 Y. m}m i 3 A‘éﬁ 13 Common Inputs
I L 7 ‘
carry 2 a he b |Line - Y. ‘tline le————rcm Dota Bus
Y Resst - o1 B 1 Bufter I Bufter I Butfer |
Branch & ~ : 16 Commor Qutputs
% I6 X 256 RAM i6 X 256 RAM I6 X 256 RAM J—/—"ro Dofa Bus
Setect Setect Selact]
Medulo 3
Y Ci Q i P N
ocl Y Dynamic Address Line o Se ect— Line b L Line ¢
Y Clock
Counter Enable Encoder Enabie Encoder Enable Encoder
] 1) [+ b [2] L
Y ; |. & 3 3 3 7y
H]
¥-| Yl YH
Y Neighborhood
e o s Line Select X1 X Xtl
Seiact Bits Y-, Y, Y+ Dacoder
Yti|3 (2 ||
GPP Neaighborhood
Y 4 8 0 Address Map
_ Y-1i5 | 6
Figure 5. GPP line neighborhood addressing.
Line buffer addressing in the GPP. Associated with the three lines is

an effective Y dynamic address used to order the three 1lines asz +to
(T-T1,¥,¥+1). In reading a raster line pattern into the triple line
buffer, the oldest line must be replaced with the newest line.
Similarly, the other two lines need to be ad-justed as (Y-1,Y,¥+1) ==

(Y,¥+1,Y+2). By selecting the effective line address with a modanlo
3 dynamic Y address counter, a dynamic Y address vector can be
implemented. This is similar to the concept of ring buffer. The +three
X dynanic address vectors point to a 3x3 neighborhood array in the line
buffer, This neighborhood is called the current neighborhood. A1l of
the dynamic address vectors are easily and efficiently programmed in the
GPP to tessellate the current neighhborhood alonc the three lines in the
line buffer.

41

SECTICN 5

GPP - general picture processor

el e e e T P

The general picture processor, GPP, is primarily used
to perform serially rapid neighborhood processing on image data
stored irn the buffer memories. The basic GPP structure is
illustrated in Fiqure 6. The GPP is fully controlled by the
PCP8e DDTG monitor system discussed in Section 1.6, GPP progranm
memory (PM} is distinct from its data memory (general registers
- GR) s0 as to more easily implement reentrant software.

The program counter (PC) bus is 16-bits wide which
allows directly addressing 65K words of program memory. Thus
a program address can address all of the program memory ({via
branch or Jjump instruction). Data addresses are also 16-bhits
wide so that all of the 65K word data address space may be
directly addressed. A 60-bit GPP instruction (stored in the PM)
is organized into 3 data address fields (P1, P2, and P3) and a
12-bit operation field.

Because of the problem of packaging the high-speed BPM
60-bit memory close enough so that the cable delays are not
appreciable, the full 65K memory will not be built at this time
without slowing down the basic cycle time of the GPP.
Therefore, a 32K PM will be constructed in the initial
implementation., A full 65K machine could be built as higher bit
packing densty RAMs are introduced by +the industry or by
slowing down the cycle time of the machine.

The triple-address instruction format .allows the GPP to
rapidly access two sources operands in parallel, operate on
them, and deposit the result in a sink operand with a single
instruction. Parallel data fetches are performed when no data
space addressing conflict is found. This conflict analysis is
perforred during instruction lookahead. An address field may bhe
used to specify an immediate, direct, or indirect effective
address depending on its associated addressing mode bits in the
operator field. :

This section defines the GPP architecture while
Appendix A gives the detailed instruction set.

42 GPP - general picture processor

Figure 6. GPP bus structure

- Em R R R R A e A W R R EE R ER R A W W e e A

General picture processor bus structure. The instruction addressinag
sequence is done serially. That is, P11 is addressed, then P2, then P3.
Let M"c(.})" denote "contents of v,'n If any address is immediate no
memory fetch is done, Rather, the PM data, c{(P), is enabled onto the
data bus DB, If direct addressing mode c{c(P)) is used, the P¥ data
c{P) is enabled onto the data address bus, DAB, and then loaded intc the
approriate data field address register. The mewmory then enables its

data, c(c{P)), onto the data bus, DB. If indirect mode is used then the
same sequence 1is repeated as for direct mode, but c{c{P)) is enabled
back onto the DAB instead of the DB. Then the data address fielgd
register addressed is 1loaded and the c(c{c{P))) from that memory is
enabled onto the DB. A conflict may occur in the use of +the indirect
mode with the W"HOVE" instruction. This is resolved by storing the
source data in the data bus register, DBR, temporarily. Various devices
and memories are connected to the bus structure and interact when the
control section activates them. The average GPP instruction tims is
designed to be on the order of 250 nanoseconds.

43

L] | | L | [emam ke | [remome dey | [rmame i |
Enable Enable Enable Enable Enable Enable Enabie T Enable Enable m Enable Enable T Enable : e T...T
I;li; DAB DB DAB . [v]:] DAB 0B DaB oB DaB Din DAB) Mi‘g:'l;m;::‘
Eno:[Enfible E/l:bleq Enlt[\ble En/]!:le E:Lle EnTble IEEMQ :n:ble Enable
! i , il 1y
P2 ALU g.(_ GE;:“' R::m Bk 8 Auto '"d:TRR"'““’g(. 'F::' D‘:T:)L"' Zlel Specid /O Regsters Ele| ——j: ngmsccmm -,'éiDB Bu":;:eq'mr ' Mot e
5| P g:f:'" A Deta RD;";M Bld|l] R adaress Regster > AIR Address Register Ly S,'é PDL Index Cwme/rrj > Mﬁ:’;;‘“;,;‘,’,,,
Load L:[d l.oad Load Lood L:[d

GPP - general picture processor 45

5.1 Operation of the GPP

ey b b o —

The operation of the GPP is similar to that of a four
field - three address machine. The three address fields are
called P1,P2,P3. An instruction is a 4-tuple (o,P1,P2,P3),
where "%o" is the operator. Note that P1, P2, and P3 are
effective address fields of the instruction while I1, I2 and I3
refer to specific I/0 deviges (the three triple line buffers).
Any address field may address any image line buffer, auto-index
registers, status registers, 1/0 registers, and general
registers (GR) etc.

P1 o P2=>P3,

An execute-only program memory, PM, is used to store
the ordered set of 4-tuples which constitute a program. ali
three address fields have an indirect bit (denoted "'") which
causes a defered addressing mode to be entered. P1 (P2) have
an immediate mode bit ("#") which specifies the P1 (P2)
contents be used as data rather than as an address. The PHM is
loaded from the PDPS8e.

In order to implement the various arithmetic
operations, several different 16-bit and 32-bi%¥ "Avrithmetic
"L%ogic "U"nits use two directly addressable registers: data
register A {DRA) and data register B (DRB). For example, during
an "ADD®" operation, data effectively addressed by P1 of the
instruction field 1is deposited in DRA, data effectively
addressed by P2 of the instruction field is deposited in DRB.
DEA and DBB are summed togesther to obtain the result, which is
deposited in a data register effectively addressed by P3.

A bus structure is used to control and implement data
transfers between sections of the GPP. The program counter bus
is used to point to the present instruction in the PM under
execution. The operation bus (OPRB) contains the specific code
for an instruction. The data address bus (DAB) passes an
address from the instruction, or an indirect address from the
data field, to one of the data field's memory units such as the
line buffers or general registers. The data bus (DB) passes
data to and from various sections of the GPP. Actually there
are three DAB/DB bus pairs: which may be used in parallel for
P1, P2 and P3 {(as was mentioned before) if the addresses do not
conflict (i.e. access the same memory device).

The individual bus transfers are driven by a
microprogrammable control processor which is itself driven by
the operation bus (OPRB}. The microprogram memory which defines
the GPP instruction set is loaded from the PDP8e into RAMs when
the GPP is first powered on each day. The microprogranm
instuction word is 60-bits and the nicroprogram memory is 4K.

Since the GPP program counter register (PC) may be
loaded under program control, the machine can execute branches.
The GPP also has a 16-bit X 1024 word push down list (PDL) for
use in procedure calls, Arguments for these procedure calls

5.1

46 GPP - general picture processor

are not passed through the PDL (used here only to return from
procedure calls) but by various other standard methods such as
an auxillary stack specifically used for passing arquments.

A GPP operation consists of reading P1, P2 data as
specified by the addressing conventions and performing the
operation "o", then storing the result in P3 according to 1its
address conventions.

Instructions are divided into two types. Typs 1
instructions are the class of instructions such as Jumps and
branches which may change the ©PC by more than +1. Type 2
instructions are the class of instructions which do not modify
the PC by more than +1 such as ADD, SUB, MOVE, etc. When a
type 2 instruction is being executed, a lookahead of the PM is
made to fetch +the next instruction as it is known what its
address will be. Instructions are further classified into
groups which have similar control sequences. This is discussed
in appendix A.

The use of the triple DAB/DB bus pairs depends on the
early recognition of P1/P2/P3 data address space conflicts.
These potential conflicts are analyzed during the lookahead
rhase. If there is no lookahead phase (such as with type 1
branch instructions) or +the binary instruction (i.e. P10oP2)
which is 1looked ahead <contains either (normal, indirect},
findirect, normal), or (indirect, indirect) (P11, P2) address
then parallel (P1, P2) fetching is not performed. To do so
would slow the machine down while further conflict analysis is
performed after the indirect address was fetched. Additional
conflict analysis 1is performed on Pi1/P3 and PZ/P3 to see
whether the effective P3 address may be set up on the 3rd
DAB/DB bus pair. Since all bus use 1is controlled by the
microprogram controller, it is possible o run the machine with
1, 2 or 3 DAB/DB bus pairs. This is useful both for bypassing
bad huses as well as for faster implementaion of the GPP
microcode for easier debugging.

GPP - general picture processor 47

5.2 General register address space

TR e ek R W W W A A A W ke S D e e A e e owm e A mm

A general register (GR) memory consisting of up to 65K
of 16-bit words is used in the GPP for intermediate results and
vorking data. The high 4K words of this are used for special
registers such as the GPP data registers, neighborhood
addresses, control desk switches, I/0 addresses, etc. All
registers are directly addressable by the instruction data
address fields since the group of 4K words is in the address
range (1700003177777].

The registers may also contain indirect addresses used
by the instruction field; this addressing facility is extended
further by the eight aunto-index registers which may increment
or decrement automatically when used as indirect address
registers depending on their address.

The source operand data address fields P1 and P2 may
each hold one immediate, direct (normal), or indirect address.
The sink operand data address field P3 may hold either a direct
or indirect address. All registers, including the special
registers mentioned above, are directly addressable as seen in
figure 6. These include the current neighborhood pixels of the
line buffers, the dynamic address vector registers, general
registers, auto-index registers, input-output, and internal GPP
status, data, and control registers.

5.2.1 GR address Allocation

A e S R S ek VI e e e D

The 16-bit operand addressing specified in P1, P2, P3
is'allocated as follows.

1. 000000 to 167777 denotes the 16-bit general
registers which are simply high speed memory.

2. 170000 to 170077 denotes internal status
registers, including the auto increment/decrement
registers at

170000-170007 called AQOD to A7D. -~ Autodec., On ', -1 before use
170010-170017 called A0 to A7. - Unmodified on ?
170020-170027 called AOI to A7I. - Autoinc. On ', +1 After use

3. 170030-170077 GPP control panel I/0 (lights,
switches, knobs) see Appendix B.

4, 170100 to 170110 denotes I1 16-bit data {(reserve
170100-170177)

321 Maps to 170103 170102 170101
4 8 0 neigh. 170104 170110 170100
56 7. 170105 170106 170107

5. 170200 to 170210 denotes I2 16~bit data (reserve
5.2

48 GPP - general picture processor

170200~-170277)

321 Maps to 170203 170202 170201
4 8 0 neigh. 170204 170210 170200
586 7. 170205 170206 170207

6. 170300 to 170310 denotes I3 16-bit data (reserve
170300~170377)

2 1 Maps to 170303 170302 170301
8 0 neigh. 170304 170310 170300
& 7. 170305 170306 170307

3
4
5
T 170400 to 170777 denotes special registers
including all I/0 registers, triple line buffer dynanic

address vectors (IjY, IjXM, IjX, TIjXP) registers for
line buffers j (j=1,2,3), and other special registers.

8. 173400 to 177777 are allocated .for direct
addressing of triple line buffers.

1738002173777 T1{y-1)
174000:174377 T1(y)
174400: 174777 I1{y+ 1)
1750002175377 I2(y-1)
1754002175777 I2(y)
1760002175377 I2(y+1)
176400: 176777 I3 (y-1)
177000:177377 I3(y)
177400:177777 I3(y+1)

The internal status registers and the I/0 registers are
listed in Appendix B. 1.

5.2.2 Addressing segquence

—— . e

. Data is addressed by P1, P2, P3 operand fields either
as immediate ("#7) i.e. C{p), or normal addressing i.e.
- C{C{p)), or indirect addressing ('} i.e. CT{C(C(p})). Note
that P3 does not have immediate mode addressing as an immediate
operand for the "sink® field makes no sense.

The addressing sequence (P1oP2==>P3) is done serially.
That 1is, P1 is addressed, then P2, then P3. 1If any address is
immediate (#), no memory fetch is done. Rather, the PH data,
Cip}, is enabled onto the data bus DB. If direct
addressing mode C{C{p)) is used, the PM data C{p} is enabled
onto the data address bus, DAB, and +then loaded into the

approriate data field address register. The memory then
enables its data, C(C{(p)), onto the data bus, DB. If indirect
mode 1is used, "'", then the same sequence is repeated as for

direct mode, but C(C{p)) is enabled back onto the DABR instead

of the DB. Then the data address field register addressed is

loaded and the C{(C{C(p))) from that memory is enabled onto the

DB. A conflict may occur in the use of the indirect mode with
5.2

GPP - general picture processor 49

the "MOVE" instruction. This 1is resolved by storing the
source data in the data bus register, DBR, temporarily.

5.2.3 Auto-index addressing

T W S m R R AR gl - A W

Eight 16-bit auto-index registers (20 through A7) are
availiable for use as autc-increment or auto-decrement memory
registers. Normal addressing is used to load an auto-index
register. After which, when it is referenced indirectly, its
contents 1is used as an indirect address and then its contents
is decremented, left unmodified, or incremented. The
auto-index contents modification is determined by how a0
through A7 are referenced. The same set of 8 registers may be
addressed by three different sets of addresses. These are
AOD to A7D (170000 to 170007), AC to A7 (170010 to 170017), and
AOT to ATI (170020 to 170027).

In normal mode addressing, all three sets of addresses
address the same 8 registers. In indirect mode, the zddress is
used to specify whether the register contents should be
nodified before (DECRement) or after (INCRement) it is used.

A data push and pop instruction are easily implemented using
the auto index registers.

For example using auto index register AO:

"AQO<==PUSH P1" is equivalent to WIA0I <== MOVE P1v
“P3<==POP AO" is equivalent to "P3 <== KOVE 'AQD"%,

o . In order to perform addressing as gquickly as possible,
high speed random access memories (RAMs) are used for both the
PM, the three triple line memories I1, I2, I3, and the genersgl
registers.

5.3 GPP input/output

The GPP can transfer data from either the PDP8e or
buffer memories. The GPP has access to the three line buffers.
Each line buffer itself consists of three 256 pixel 1lines of
16-bit gray scale. These line buffers are usually used as two
input picture lines and one output picture line. I1 and I2 are
usually denoted as input line buffers while I3 is denoted as an
output line buffer. Because 16-bit arithmetic is used, the
line buffers hold 16-bit dJdata. However, 8-bit data could be
used or generated for interaction with the Quantimet., These I/0
line buffers are illustrated in Fiqures 1 and 5.

The boundry handling problem is not in hardware, but is
left to be handled in software by various commonly used schemes
such as filling the boundry with a specific value or computing
inside of the 256 square region.

5.3

50 GPP - general picture processor

5.3.1 Line buffer dynamic address vector registers

Y tem e W s W N R ey S W e W e e o -

As discussed in Section 4, lines of picture data may be
noved between buffer memories and faster +triple 1line buffers
which are directly addressable by the GPP. The 3x3 neighborhood
which is directly addressable in 2ach of the three triple 1line
buffers is called the current neighhorhood.

The current pixel in a line is determined by a set of
three X dynamic address vector registers for each line buffer.
That is (X-1, X, X+1) must be specified. These X dyranmic
address vector registers are called (I1XM, I1X, I1XP) through
{(¥3xm, 13X, I3XP).

Program I/0 consists of incrementing the line dynamic
address vectors registers after the "main" pregram is finished
executing for the current pixel. This is what is meant by the
"haltpoint® subroutine.

The Y dynamic address vectors I1Y through I3Y (also
called the line select registers) are modulo 3 counters which
with +the Y dynanmic address vector logic allows dynamic "ring
buffer® type addressing of the 3-line buffers. Thus to read in
the ¥+2 1line when (¥-1,Y,Y+1) lines are already in the huffer
the Y dynamic address vector advances the pointers to the lines
so that Y+2 is put into the o0ld Y-1, <then the o0ld Y is
addressed as Y-1 and the o0l1ld Y+1 as Y while the Y+2 |is
addressed as Y+1. That is, the newest line and the most recent
2 of the 51ld 3 lines addresses are automatically adjusted.

The current neighborhood may be loaded directly with a
3x3 neighborhoold from a selected buffer memory using the
GETI1, GETI2 or GETI3 instructions. Thus loading only the
actual neighborhoods required saves the overhead of 1loading 3
lines if only a few neighborhoods (or random access of
neighborhoods) is desired. The current neighborhood used is the
leftmost neighborhood {(i.e. I4jXM=1, IjX=2, Ii¥P=3).

"5.3.2 PDP8e/GPP-BM DMA interface

- e e e wie Y W e W W W e e e e R e W e AR

There are up to eight bidirectional DMA I/0 channels
between +the PDP8e and the rest of the RTPP. These include the
PM, BM, general register, and X8e (auxillary PDP8e) channels.
The ©PDP8s DMA I/0 commands are given in appendix C. These DMA
channels are set up by the PDP8e as to word count (DMAWC) and
current address (DMACA). The peripheral device starting
address is specified by a 2u4-bit address word broadcast to all
of +he devices from the PDPBe (EXDMA1,EXDMA2). WNote that only
1 DMA hardware channel is actually . used since the other
channels are multiplexed over this single channel. There is no
synchronizing conflict created since single string processing
is performed by the PDP8e and all bookeeping for the DHNA
channels is done in the PDPBe,

5.3

GPP - general picture processor 51

The GPP I/0 instructions (see Appendix A) are used in
two different ways. Data may be forced by the PDP8e to/from the
GR or used with H“programmed"™ GPP I,/0 GIN/GOUT instructions
which force a program synchronization between the two machines.
Therefore in the latter mode, the PDP8e must have previously
set up the (WC,CA) and an GR DMA enable. It is thought that
since single thread processing is to be used, that the use of
interrupts is an unnecessary evil and will be avoided.

The DMA status word loaded through the PDP8e AC using
the DMAGO command has various I/0 options which are 1listed 1in
the table in appendix C. This status word also selects which
BM packing mode that is to be used in the case of BM/PDPB8e DMA.

5.4 PDP8e/GPP synchronization

bl R R et g ———

The GPP behaves as a PDP8e peripheral device which the
PDP8e programs, starts (GPPCLR, GPPCONT), interrogates (STATG1,
STATG2), and stops (GPPHLT) without assistance from residaal
programs or bootstraps in the GPP. At all times, the PDP8e has
complete control of the GPP run flip flop (FF} and can thus
stop the GPP at the end of the GPP's current instruction.

While the GPP run FF is off, the «contents of +the PHM
and/or GR may be transfered from the PDP8e through the PDPBe
GPP DMA interface to the PM. The GPP PC is loaded by an PDPS8e
instruction GPPLAD which loads EXDMA1, EXDMA2 into the GPP PC
to tell the GPP where to start its progranm. The run FF is
turned on by doing a GPP continue (GPPCONT). To pover clear
the GPP, a GPP clear (GPPCLR) is issued.

5.4.1 Software synchronizing system for general I/0

—— B L i i A —— A . b A -

To +transfer data between the GPP's general (GR) I,/0
channel and the PDP8e memory, both processors must be in phase
and synchronize with their respective software. A PDP8e DMA
interface provides the logic for the transfers. The PDP8e
loads +the PDP8e current address and word count (DMACA, DMANCD)
registers for each block transfer that will be requested by the
GPP {general I/0 channel) and starts the GR channel with a
DMAGO command. Once this is done, the GPP starts and stops the
DMA under GPP program request (GIN, GOUT). When all of the DHMA
transfers are complete, PDP8e DMASKP instruction detects this
condition,

5.5 Running the GPP

e L L Sy e ——

A typical RTPP picture operation to operate on one or
more BM's data would proceed as follows.

[1] Direct DMA I/O is performed from the PDP8e to the GR and PM
5.4 - 5,5

52 GPP - general picture processor

memories of the GPP to set up the program and data
memories.

£2] The PDP8e starts the GPP by loading the GPP PC starting
address using the GPPLAD instruction, then doing a
GPPCLR, GPPCONT to start the GPP.

[37 If PDP8e/GR I/0 is required, the PDP8e starts the general
I/0 {GR) <channel for each interaction with ths GPP
GIN/GOUT instructions.

[4] The GPP PM program is exectuted on the current neighborhood
picture pixel for the current line, advancing the I1,
I2 and I3 current neighborhood dynamic ©pointers as
required. {See example of I/0 - Appendix D.5). This
changing of the current neighborhood may be done by a
GPP subroutine in which case it 1is called the
Phaltpoint® subroutine.

{5] When the end of a line is reached, output the I3 1line is
output to the destination BH.

[6] When the GPP is at the end of a picture or subpicture (i.e.
256 X m lines) then halt the GPP, {Then notify the
PDP8e through the status register STATG1/2 otherwise
continue processing by going to [41].)

{71 If necessary, the PDPBe transfers BY images by DMA to the
PDPB8e backing disk for later retreival. The PDP8e may
also transfer general DMA data to other devices such as
the PDP8e disk or the PDP10.

This scheme of operation 1lets the user do picture
operations with easy access to GR storage as is necessary for
communication with external processors.

53
SECTION 6

Inplementation of the RTPP

A A Al v I S B VS i -

This section discusses the construction of the various
electronic and mechanical components of the RTPP.

6.1 The GPP control - microprogram control

—_————--—_—---«--———-—.u-————4‘-———-—“-———————

The GPP control logic is implemented as a
microprogrammable controller. The microprogram is loaded into
the microprogram memory by the PDP8e. The various bus and
register enables, function enables etc. are driven by the
microprogram controller output bus. This bus is 60-bits wide so
that all necessary enables may be performed in paraliel. The
microprogram control store is a maximum of UK ¥ords. Note that
the microprogram memory (MCPM) is distinct from the GPP program
nemory {PHM) although both are 60-bits wide. Thase
microprograms are loaded into the microprogram control store
RAMs through +the PDP8e DMA. Thus experimentation with new
instruction sets is easily performed as is debugging of the
initial instruction set, A microprogram assembler MICROP
will assemble microprograms on the RTPP PDP8e to facilitate
rapid instruction set debugging. The grammar for MICROP is
given here: ‘ '

6.1.1 Microprogram instruction BNF grammar

T SR U v e A e —— - " - A -

A BNF grammar specification is given for +the GDP
microprogram control programs. As can be seen from the MICROP
grammar, assembly consists of doing the inclusive-or of all <M>
symbols in a statement up to the ";", Thus each <M> symbol has
an associated bit in the microprogram controller output bus.

<microprogram>;:=<microprogram><microstatement> |
<microstatament> | <microprogram>$

<microstatement>::=<lahel)(ﬂ*list)(addtess); i
/<comment>; | <M>=<number>; | <origin def>:

<origin def>::=0RIGIN <number>

<address>::= GOTOC <label symbol> | <label symbol>
<label>: :=<label symbol>: | <null>

<label symbol>::=new symbol | <number>

M-list>::=<delim><M-1ist> | <K-list><delim><HD> |
6.1

54 Implementation of the RTPP
<M-list><delin>
<delim>::= space | ,

<{M>::=P1DABE | P1DBE | P2DABE | P2DBE { P3DABE | P3DBE |
PCDBE | DRADBE | DRBDBE | ALUDBE | DRCDBE |
DRCDAB | READ | WRITE | LODCTR | INCCTR |
DECCTR | FCO000 } ... | FC1111 | BROVF | BRUDF |
BRGT | BRLT | BREQ | BRLE { BRGE | JUMP | PUSHJ |
PORJ | ... '

The microprogram instruction will have a right dustified
12-bit address field which is used for -jumps (JUMP, PUSHJ,
POPJ) and manipulating counters (LODCTR, INCCTR, DECCTR).
Microprogram subroutines are performed using a 64 word 12-bit
address stack.

6.2 Internal Control Logic Design

e R L Ll kL Iy R ——

The method of Richards [Rich73] for designing conrplex
controllers is usad in various parts of the system including
the Quantimet controller, BM controller, GPP microprogran
controller, DMA controllers, etc. Richards employs a method
of automatically defining sequential logical states such that a
sequential ’'synchronous counter implementation is easily
realized. It is thus possible to easily and raticnally
construct finite state machine (FSM) <controllers. To ease
hardware d2bugging and maintenance of the RTPP, the "new! state
is displayed in octal LED's on the cards where the FSMs reside.

6.3 Physical construction 2f the RTPP

. - m Em W M EE W Em R M A R P M A e e A R W e b

The RTPP consists of several subsections as mentioned
in section 1.3. Much of the system can be bought ready made off
the shelf. Other parts such as the GPP, buffer memory, control
desk and QMT I/0 to the PDP8e are specially built. We would
like to minimize the amount of special purpose mounting
"hardware needed and thus are led -to the implementation of the
basic RTPP control and computational hardware as a set of rack
mounted card files each 19 by 10.5 inches. These card files
hold 16 double height (140 pin) high density wire-wrap cards
made by Cambion. The wire-wrap cards plug into a
semi-automatic wire-wrapable power back plane which holds two
70-pin s=mi-automatic wire-wrappable card sockets for each
card.

The various buses can then be implemented by
wire-wraping twisted pairs on these power back planes.
Interconnection between card files is by plug connection with
Scotchflex (3-M Corp.) <cables directly to the 70 pin card
sockets. Any cabling between wire-wrap cards is avoided by
all connections being done through the backplanes. The
wire-wrap cards and power back planes are being constructed

6.2 - 6.3

Inplementation of the RTPP 55

outside of NIH already wire-wrapped with by pass capacitors
mounted.

The Quantimet and control desk logic (RQC) is housed in
one standard 19" wide, 6' high cabinet, the buffer memories in
another and the GPP in a third cabinet. These cabinets
are located bhetween the control-desk/Quantimet-display and the
PDP8e cabinets.

6.4 Buffer memory implementation

e it e e L i P

The hardware of the BM is divided into three sections:
1} memory cards; 2) dual memory card controller; and 3) BM
interfaces,

The menories use Cambion specially constructed
semi-automatic wire-wrap cards. The Texas Instruments TMS4030
(N channel MOS U4096x1 bit 22 pin dynamic BAM) is used as the
main memory element. Fach card contains a total of 68 TMS4030
memory chips and locations for 35 16~pin TTL support chips.
Four memory cards make up one memory and four memories are
housed in one 16 slot Cambion card enclosure. There are a total
of two card enclosures used to house the eight BMs.

The dual memory controller logic is contained on one
Cambion wirewrap card. Both controllers are totally independent
and may operate in parallel. The dual contoller contains the
refresh logic for the dynamic RAMs and the priority logic to
service a total of five I/0 requests from various BM
interfaces.

BEach BM interface requires a mninimum of three card
slots to communicate with the dual BM address, data and control
buses. Five separate interface locations or a total of 15 card
slots plus the dual memory controller card make up the third 16
slot Cambion card enclosure. A fourth Cambion card enclosure is
used for additional BM interface logic. A1l I/0 on the buffer
memories may be in 16-bit word or 8-bit byte modes.

56

SECTION 7

References
Carm74. Carman G, Lemkin P, Lipkin L, Shapiro B, Schultz N,
Kaiser P:A real time picture processor for use in biological
cell identification - II hardware implementation. J. Hist.
Cyto. Vol 22, 1974, 732:740.
Carm76. Carman G, Lemkin P, Schultz MN:RTPP -~ Systen

Documentation, Vel TI: Microscope, sScahner and Quantimet
Controller. WCI/IP Technical Report #13. In prep.

Dec67. Digital Equipment coproration:LINC8 small computer
handbook. Maynard, ¥ass, 1967.

Dac71. Digital ©Equipment Corporation:PDP11/20 processor
handbook. Maynard, Mass, 1271.

Dec72a. Digital Equipment Corporation:PDP8e and PDP8m small
computer handbook. Maynard, Mass. 1972,

Dec72b. Digital Equipment Corporation:DEC system 10 assenmbly
language handbook. Maynard, Mass. 1972.

Fish71. Fisher C:The new QUANTIMET 720. The Microscope Vol 18
No 1, 1971, 1:20.

GrosT6a. Grosfeld G, Lemkin P, Shapiro B:GPPASM -~ assembler
for the GPP.NCI/IP Technical Report #16. In prep.

Gros76b. Grosfeld 5, Lemkin P:MICROP - HMicroprogran
Assembler for the GPP.NCI/IP Technical Report #19., In prep.

JohnET70. Johnston E:The PAY II picture processing system. In
{LipB707].

kir69. Kirsch R:Computer determination of +the constituent
structure of biological images part I. NBS report 10 173,
DEC, 1969.

Lem72. Lemkin P:A simplified biological cell world model for
question answering using functional dJescription. Univ. of
Maryland, Scholarly Paper #75, May, 1972,

Lem74, Lemkin P, Carman G, Lipkin L, Shapireo B, Schultz ¥,
Kaiser P:A real time picture processor for use in biological
cell identification - I systems design. J. Hist. Cyto,
22, 1974, 725:731.

Lem75. Lemkin P:A Literature Survey of the Technological Basis
for Automated Cytology. Univ. M4, TR-386, June, 1975.

7

References 57

Lem76a. Lemkin P:Functional specifications for the RTPP
monitor - debugger DDTG. NCI/IP Technical Report #2, Feb 1976.

lem76b. Lemkin P, Shapiro B:PRDL -~ Procedural Description
Language. NCI/IP Technical Report #13. In prep.

Lem76c. Lemkin P, Shapiro B, Lipkin L:The CELMOD Biological
Image Modelling System. NCI/IP Technical Report #14. In prep.

Lem764d. Lemkin P, Gordon R, ShapiroB:;PROC10 - 'PROCES? image
processing system for the PDP10. NCI/IP Technical Report #20.
In prep.

LipB70. Lipkin B, Rosenfeld & (Eds):Picture processing and
Psychopictorics, Academic Press, 1970.

LipL74. Lipkin L, Lemkin P, <Carman G:Automated Grain
Counting in Human Determined Context., J. Hist. Cyto. Vol 22,
1974, 755.

Rich73. Richards C:an easy way to design complex program
controllers. Electronics, Feb 1, 1973, 107:113.

ShapB74. Shapiro B, Lemkin P, Lipkin L:The application of
artificial intelligence techniques to hiological cell
identification. J. Hist. Cyto. Vol 22, 1974, 741:750.

Thor70. Thorton J E:The control data 6600 - design of a
computer., Scott, Foresman and Co, 1970,

VanlL73. VYanLehn K:S5ail User Manual, Stanford Artifical
Intelligence Laboratory memo AIN-204, July 1973.

Wil75. Wilcox C:MAINSAIL - MAchine INdependent SATL. DECUS
meeting, Languages in Review Session, 1975.

58

SECTION A {

GPP instruction set {

A. 1 GPP operators |

e S SR gk e wm . ———

The instruction set of the GPP allows for not only the
useal set of operators needed in a triple address type machine,
but also specific operators oriented toward neighborhood
processing and I/0 image. These include the following five
classes of instructions for which examples are given in table 1.

Table 1. Examples of some RTPP instructions

1) Register-to-register transfers,
P3<==MOVE P1 ;i P1 to P3
P3<==INC P} ; increment P1 by 1 into P3 r
P3<==ADDST P1 ; add P1 and DRA register, store in P3 |
P3<==GESTA P1 7y if P1 > DRA store P11 in P23

2) P1 operated on by P2 to be deposited in P3,

P3<==P1 ADD P2 ; sum of P1 and P2 stored in P3
P3<==P1 MUL P2 ; product of P1 and P2 stored in B3
P3<==P1 AND P2 ; Logical AND of P1 and P2 stored in P3

P3<==P1 KOVBIT P2 ; bitset P3 from P%1 under mask P2
3) Conditional branch instructions

P3<==P1 BEQ P2 : if P1=P2 then goto P3 else do next instr.

P3<==P1 BGT P2 ;7 1f P1>P2 then goto P3 else do next instr.
4) Control instructions

P3<==PUSHJ procedure entry, stack return address

’

POBJ ; procedure exit to stacked return address
P3<L==JUNP ; unconditional GOTO

5} I/0 instructions.
XRST (<X=1,X,X+1>,<I1,,>) ; reset I1 X dynam. vectors
XCLK {<right>,<X-1,X,X+1>,<,I2,I3>) ; incr. X dynam. vec. of I2, 13
YCLK {£I1,1I2,>) ; advance Y lines in 11, I2 ,
LINE (lowbyte,read,hor,BM3,I1,Y+1),lineaddress ; read a line
LINE (16bit,write,vert,BM2,1I3,Y),lineaddress : write a line
GETI2 {lowbyte,BN3) ,YXADDR ; Fetch a neighborhood into

I2 line buffer

read BM2 datum into P3

write P1 into BM2

read word from PDPB8e channel

write word to PDP8e channel

read GPP teletype input channel

P3<==KOVE *PBMN2
'PBM2<==MOVE P1
P3<==MOVE GIN
GOUT<==M0OVE P 1
P3<{==HOVE KRB

.t wd WE WS B

Among the I/0 instructions are whole 1line and single
pixel +transfers from/to the buffer memories. The latter type
of instruction allows random access of the buffer memories.
The 1line transfer allows entire horizontal or vertical 256
(16-bit) pixel lines to be transfered. The PDP8e can access the

A.1

GPP instruction set 59

GPP through direct memory access to the GPP program memory,

line buffers (I1, I2, and T3), and data field {through data
field address).

A GPP instruction cycle consists of fetching an
instruction from the PK, incrementing the PC instruction
program counter, and then executing that instruction. The
contents of <the PC is the index of the next instruction to be
executed in the PH. The instruction is executed by fetching
the two input operands, performing the operation, and then
storing the result in the output operand if so directed.

1.2 Effective address notation

L L e e e T A ——

The following notation is used in the description of
the GPP instructions. If p is an address field of the PM
instruction register, then C(p) is the contents ({immediate
address "#%) of this field. Any immediate data have the 4 most
significant bits equal to =zero. Therefore, there are no
negative immediate data. C(C(p)) is the (normal addressing)
contents of the location pointed +to by the address field,
C{C{C{(p))) is the (indirect address "'") contents of the
address vwhich is pointed to by the contents which is pointed to
by the contents of the address field p. Because all 3 types of
address are generally legal, the effective address (or
effective contents) is wused in the following instruction
descriptions and is denoted as P1, P2 or ?P3. The C(...}
Notation is used where appropriate.

The following prefixes define the addressing mode for
various instructions.

No prefix does normal addressing.
Does immedjiate addressing on P1, and P2 (but not P3).
' Does indirect addressing on P1, P2, and P3.

A.3 Instruction lookahead - two types

g S G 1 — - —————

There are two types of basic instructions. Type 1 and
type 2. Type 1 is an instruction such as a jump or branch where
the PC changes by more than +1 at the end of the instruction.
Type 2 instructions are used when the PC is advanced by only +1
(automatically) at +the end of the instruction. Type 2 is
exemplified by ADD, SUB, etc. During the execution of type 2
instructions, the PM is accessed to lookahead for the next
instruction, {which is the motivation for the distinction).
Input/output instructions may be of either type.

The two types of instructions are composed of 13 groups
of operators, each with specific properties. These properties
are dictated by the control logic. In the following 1lists of

A.2 - A.3

60 GPP instruction set

instructions, the group each instruction belongs to is
specified by a number within "< >w,

The 12~bit PH "operator" field is assigned as follows:
where bit 0 = msb, bit 11 = lsb, In the group table below, X
denotes instruction address wmode while Y denotes operator
subgroup. Bits [0:4] are used for the address mode bits {note
that P3 does not have immediate addressing as it does not make
sense).
Bit O -=-> P3 normal addressing,
--> P3 indirect addressing.
-=> P1 normal addressing,
~~> P71 immediate addressing,
P1 indirect addressing,
—-— illegal - trapped,
~=-> P2 normal addressing,
--> P2 immediate addressing,
--> P2 indirect addrssing,
--> 1illegal - trapped.

Bits 1,2

Bits 3,4

oo B wononu
2 D ad Y A D ek D i O
|
1
A\

b b (LD b b OO

Table 2, GPP Instruction Group Selection

- ETR AR B s e et ke mie e e e e W

Instruction group Opr code Max instr. Basic opcode
0 11

o000

0002
6 0120
0010
0020
0030
0049
004y
0050
0100
0140
0144
0159

O -IDHEFEWN -2

=Y
<
(=3}

Y
—,
BB b Db B b bd PP B MO

b g g b B b b B B P
P P P b b b B b PR B PERO
PG bd P DA B bl PG b P 2 P PR W
P Pt PG DD g DY D P B B PG
S ed e D OOQOOOOMOOWU
- eh ed Dk 2 OO OO0
OO0 O0 A= Q 00O~
SOOI SO 30 g
OO OO OW
FE G e PG e] b b G g O s
g rS e e e g g b el P G e
F s a0 mo.abdd

Y
w N

The following sequence descriptions of the instruction
groups are given to aid in understanding the structure of the
GPP control system. Using Figure 6 while reading these
descriptions is. useful.

Additional instruction groups may be added later in the
opr c¢ode range of 154 to 177. Thesa instructions might include
floating point and trigonometric functions.

L

A. 4 Operator groups

Ll e e L S ———

Group 1 (0000)

_—— i — -

P3<==Pp1,

Description:

Data in P1 or
addressed by P3,
space.

Instruction:

- - ——

0 MOVE -~ P3<==P1.
MOVE uses the
i.e. if P1 is

GPP instruction set 61

addressed by P71 is moved +to location
P1 and P3 may address all of data address

DBR register when P3 is in indirect node.
"' then DBRK=='P1, P3<==DBR.
else PIK==p1;

62 GPP instruction set

Group 2 (0002)

bRA<==P1, DRB<==P2, DBR<==pP3,
If P1.AND.[P2/256].KE. 0
then P3<{==DHRB*DBR.
*=0ne of GPP arithmetic unit (ALU) operations.

Description:

Data from or addressed™ by P1 is deposited in DRA. Data
from or addressed" by P2 is deposited in DRB. Data from or
addressed by P3 is deposited in the DBR. DRA, DRB and DBR are
the inputs to the selected arithmetic unit of the GPP called
for as a function of the operation. The output of the ALU is
deposited in the data register addressed by P3. The
instructions MOVBIT and #OVBS are bit-set operations for
copying 8-bit PAX type image planes. Note that C(P2) is used in
an unusual way. The high order 8-bits of the 16-bit P2 mask are
used to select (via a logical 'AND') the low order 8-bits of P1
to be tested. If any bit is on, MOVBIT loads the low 8-bits of
P2 into P3 (zeroing the high B8-bits of P3). Similarly, if any
bit is on, MOVBS (bitset) will logically OR the low order P2
B-bits with the low order P3 B8-bits (destroying the high order
P3 8-bits). MOVBIT will also store P3<==0 and MOVBS will store
P3<==P3 if the test condition is NGT met.

Instructions:

0 MCVBIT - if P1.AND. [P2/256 7 .NE.O
then P3<==255,AND.P2
else P3<==0,
1 MOVBS - if P1.AND.[P2/256] .NE.O
then P3<==(255.AND.P2).0R.P3
else PI<==p 3.,

A.4

GPP instruction set 63

Group 3 {0120)

—— s e

DRA<==P1, DRB<==P2, P3<==DRA*DRB.
*=0One of GPP arithmetic unit (ALU) operations.

Description:

Data from or addressed" by P1 1is deposited in DRA.
Data from or addressed" by P2 is deposited in DRB. DRA and DRB
are the inputs to the selacted arithmetic unit of ¢the GPP
called for as a function of the operation. The output of the
ALU is deposited in th2 data register addressed by P3.

Instructions:

For arithmetic, a 16 bit result is derived from the
computation for the eoffective P31 address by truncation to
16-bits. The high order part (or remainder) is stored in the
EXAR. ADD and SUB are 16-bit adders. MUL is carried to 32 bits
(16x16) but only the bottom 16 bits of .result are used. DIV is
32-bits (EXAR!c(P)) divided by 16-bits with the remainder going
into the EXAR. The high order 16-bits are stored in the
extended arithmetic register WEXAR®.

0 ADD - P3<==P1+P2, {(EXAR<==overflow).

1 SUB - P3<==P1-P2, (EXAR<==underflow).

P MUL - (EXARIP3)<==P1*p2, (EXAR<==hi order, 32 bit product).

3 DIV - P3<==(EXAR!P1)/P2, (32-bit dividend, EXAR<==remainder).

In the following instructions, bit selection ragister,
BSR[0:15] is AND'ed with the logical result before it is output
into P3. The BSR is a special status register in upper address
space and may be loaded directly (with a move etc.).

4 AND - P3<== P1.AND.P2.

5 NAND - P3<== P1.NAND.P2.

6 XOR - P3<== P1.XOR.P2.

7 IMPLIES - P3<== P1.INPLIES.F2.
10 OR - P3<== P1.0R.P2.

11 HNOR - P3<== P1.NOR. P2,

12 EQV - P3<== P1.EQV.P2.

13 SHIFTR - P3<== rightshift P1 by P2 MOD 16-bits: 0 fill.
14 SHIFTL « P3<== leftshift P1 by P2 MOD 16-bits; 0 fill.
15 ROTR - P3<== P1 rotate 16-bits right P2 bits .

16 ROTL - P3<== P1 rotate 16~bits left P2 bits .

64 GPP instruction set

Group 4 (0010)

DRA<==P1, P3<==DRA*DRB.
*=0One of GPP ALU operations.

Description:

Data from or addressed by P1 is deposited in DRA. DRA
and DRB are the inputs to the selected logic unit called for by
the instruction. The output of the logic unit is deposited in
the data register addressed by P3. Note that the ALU is not
symmetric and that only DRA is loaded.

Instructions:
Opcode
0 MOVEN - 2's conmnplement P3i<==p1.
1 HOVEC - 1's complement of P3<¢==P1,
2 IRC - P3<==P1+1,
3 DEC - P3K==p1-1.
) MAKYXADDR -~ P3<== (P1 AND #377) OR {(P2 AND #377) SHIFTL 8)

A.u

GPP instruction set 65

Group 5 (0020)

oy - —

DRB<==P1, P3<==DRA*DRB.
*=0ne of GPP ALU operations.

Description:

Data from or addressed by P1 is deposited in DRB. DRA
and DRB are the inputs to the selected logic unit called for by
the instruction. The ocutput of the logic unit is deposited in
the data register addressed by P3. Note that +the ALU is not
symmetric and that only DRB is loaded. These instructions are
the arithmetic list processing instructions and take the form
of Moperator 'ST'ore", It is useful when a previous result can
be left in the DRA.

Instructions:

- ot - —

0 APDST -~ DRB<==P1%, P3<==DRA+DRB, (EXAR<==overflow).
1 SUBST - DRB<==P1, P3<==DRA~DRE, (EXAR<==underflow).
2 MULST - DRB<==P1, P3<==DRA*DRB, {EXAR ==hjorder).

66 GPP instruction set

Group 6 (0030)

—— - -

DRB<==P1, condition<==DRA*DRRB
If condition is true then P3<==DRB.
*=0ne of GPP ALU compare operations.

bescription:

bata from or addressed by P1 is deposited in DRB. DRA
and DRB are the inputs to the selected logic unit called for by
the instruction. If the condition is true, the DRB is deposited
in the data register addressed by P3.

Instructions:
Opcode
0 GTST - (find max) DRB<==P1, if DRB .GT. DRA
then P3<==DRB
else continue.
1 LTST - (find min) DEB<==P1, if DRB .LT. DRA

thaen P3<==DRB
else continue.
2 GEST - (max partial) DRB<==P1, if DRB .GE. DRA
then P3<==DRB
else continue.
3 LEST - (min partial) DRB<==P1, if DRB .LE. DRA
then P3<==DRB
else continue.

PDP8e I/0 transfer instructions for the RTPP 103

AC, i.e. address of first transfer.

DMACLR clear the DMA channels. Note that a PDPBe CLF
(6007) or PDP8e front panel lear also causes a DMACLR.

Each DMA peripheral device (BM, GR, etc.) reguires an
additional address at which to perform the DMA in the
peripheral device address space.

EXDMA1 - loads the high 12-bits of I/0 device address.
EXDMA2 ~ loads low 12=-bits of I/0 device address.

C.3 PDP8Be IOQT Instructions for BM controller

S U S A A S A W —— v

Eight pairs of BM (XB({i),¥B(i)) coordinate registers
{0:11 bit BCD each).

BBX0 - load the BMNO
BMY) - load the BMD
BMX1 - load the BN1
B¥Y1 - load the BNM1
BMX2 - load the BM2Z
BMY2 ~ load the BM2
BMX3 - load the BM3
BMY¥3 - load the BNM3
BMX4 - load the BM4
BMY4&% -~ load the BMU
BMXS5 - load the BNS
BMY5 - load +he BMS
BMX6 - load the BM6
BMY6 ~ load the BM6
BMX7 - load the BN7
BMY7 - load the BM7

coord. Reg<==8e acc.
coord. Reg<==8e acc.
coord. Reg<==8e acc.
coord. Reg<==Be acc.
coord. Reg<==8e acc.
coord. Reg<==8e acc.
coord, Reg<==8e acc.
coord. Reg<==8e acc.
coord. Reg<==8e acc.
coord. Reg<==8e acc.
coord. Reg<==8e acc.
coord. Reg<{==8e acc.
coord. Reg<==8e acc.
coord. Reg<==8e acc.
coord. Reg<{==8e acc.
coord. Reg<==8e acc.

P g B e DO D rg D RS D] P B

Two commands (GETA, GETB) are required +to enable the
acquiring of gray scale or detected (binary mask) video
data into buffer memories. Issuing a STQMT instruction
after one of these commands will cause video scan data
to be acquired on the next scan. The BMs are divided
into two groups (& and B) each with their own
sub-controller. Thus one group can be posting or
acquiring data while the other is being used by the GPP
or PDP8e to compute in. Group A includes BMs {0,1,2,3)
and group B includes (4,5,6,7). A status word is loaded
by the PDPBe from the AC to specify these enables.

104 PDP8e I/0U transfer instructions for the RTPP

Bit Function : BMi
0 1 ==>sel. high byte pix/low byte bin mask 0 (), & (B)
0 ==>sel. low byte pix/high byte bin mask 0 (4}, 4 (B)
1 1T (8, 5 (B)
2 2 (d), 6 (B)
3 3 (28), 7 (3)
U 1 ==>enab. bin mask acquisiton in BN 0 (A, 4 (B)
0 ==>disable bin mask acquisiton in BM 0 (a)y, 4 (B
5 : 1T (A), 5 (B)
) 2 (A), 6 (B)
7 3 {3), 7 (B)
8 1 ==> select BM 0 (a), 4 (B)
0 ==> deselect BH 0 (A, 4 (B}
9 1 (&), 5 (B)
10 2 (a), 6 (B)
11 3 (&}, 7 (B)

Note that one may acquire the mask byte of a BM while storing
the gray scale data in the other byte. The status of +the two
gets may be tested by reading in the GET-DONE bits for the two
groups

RGETA - read done bits for 0,1,2,3 into [0:3].
RGETB - read done bits for 4,5,6,7 into [0:3].

3. Two conmands POSTA and POSTB are used to specify which
BMs to post on the Quantimet display {at the
corresponding coordinate register specified windows).
Either the high or 1low BM byte may be displayed
according to Dbits [0:3]. In addition the BM binary
mask may be generated if the correspond bits are set
[4:77. The BMs to be displayed are selected from bits
[8:11]. So the table given for GETA/GETB also applies
to POSTR/POSTB.

PDP8e I/0 transfer instructions for the RTPP 105

C.4 PDP8e IOT Instructions for GPP controller

T e 0 L S s i S e o . . —— . A o -

1. GPP STATUS[0:157 is read/write by the PDPBe.

STATG2{8:11] - read GPP status register bits 0:3.
STATG1[0:11] - read GPP status register bits 4:15

2. GPPCLR - does a GPP clear to clear GPP registers
including all those done by a GPP TOCLR and alsoc clears
the GPP PDLCNT, PC and DAB trap enables.

3. GPPCONT - does a GPP continue to turmn on the GPP run
flip flop.

4, GPPHLT -~ does a GPP halt to turn off the GPP run flip
flop.

4, Load the PC trap register. The trap will halt the GPP

if the trap address appears in the GPP PC with the trap
found bit set in the GPP status register. The panel
switch must be up to enable.

PCTRP - load EXDMA1:EXDMA2 into the GPP PC trap
register and enable the trap.
PCTDS - disable PC trap.

5. Load the GPP PC register.

GPPLAD - load EXDMA1:EXDMA2 into the GPP PC register.
RGPPCH[8:11] - read GPP PC high
BGPPCL{0:11] - read GPP PC low.

6. Load the DAB trap register. The trap will halt the gPP
if the <trap address appears in the GPP DAB with the
trap found bit set in the GPP status register., The
panel switch must be up to enable.

DABTRP - load EXDMA1:EXDMA2 into the GPP DAB trap
register and enable the trap.
DABTDS ~ disable DAB trap.

106 PDPBe I/0 transfer instructions for the RTPP

.C.5 PDPBe IOT Instructions for X8E controller

- D e W ——— - —— - - i - ——

In controlling the X8E auxillary PDP8e proéessor, two
output words are used by the X8e Controller.

1. X8ECTL - load the X8e control word from the PDPBe AC.
When a bit is on in any one of these control
functions the function will be executed. There
is no need to clear the bit.

Bits function

0 Halt XBe

1 Clear X8e

2 Cont XBe

3 addr load X8e

4 Extd addr load X8e

5 Dep X8e

9-11 Fxtended current address for X8e.

2. ¥BECA - X8e current address and switch register. Used
for X8e current address on DMA and the X8e
switch register when the X8ECTL instruction is
used.

PDP8e I/0 transfer instructions for the RTPP 1p7

C.6 Allocation of PDP8e IQTs for the RTPP

e e T W S AE e A Y o — W

The following 1lists are the PDPBe device codes
allocated for the (QMT, control desk, GPP, BM, parts of the
RTPP.

C.6.1 Alphabetic listing of PDP8e IOTs

L e Sur i e e — A A S WD A S Al i R S Y T ek A -

DEVICE CODE CARD FUNCTION

ADVSR 6314 RQCA10 ADVANCE SHIFT REG. OKE

BMIN 6542 BMD25 BM maintenance (spare input)

BMOUT 6526 BMD25 BM maintenance {spare output)

BMXO 6500 BMD29 load the BMO X coord reg<==8e Acc.
BMX1 6501 BMD29 load the BM1 X coord reg<==8e Acc.
BMX2 6502 BMD29 load the BM2 X coord reg<==8e Acc.
BMX3 6503 BMD29 load the BM3 X coord reg<==Be Acc.
BMX4§ 6510 BMD27 load the BM4 X coord reg<==8e Acc.
BMX5 6511 BMD27 load the BMS X coord reg<==8e Acc.
BMX6 6512 BMD27 load the BMH6 X coord reg<==8e Acc.
BMX7 6513 BMD27 load the BM7 X coord reg<==8e Acc.
BMYOD 6504 BMD29 load the BMO Y coord reg<==8e Acc.
BMY1 6505 BMD29 load the BM1 Y coord reg<==8e Acc.
BMY2 6506 BMD29 load the BM2 Y coord reg<==8e Acc.
BMY3 6507 BMD29 load the BM3 Y coord reg<==8e Acc.
BMYY4 6514 BMD27 load the BM4 Y coord reg<==8e Acc.
BHMY5 6515 BMD27 load the BM5 Y coord reg<==8e Acc.
BMY§ 6516 BMD27 load the BM6 Y coord reg<==8e Acc.
BMY7 6517 BMD27 lcad the BM7 Y coord reg<==8e Acc.
CLKACK 6302 RQCAY CLEAR 200 HZ CLOCK FLAG

CLKESKP 6303 RQCAL SKIP ON 200 HZ CLOCK FLAG SET
C3RGI 6315 BQCA10 CLEAR SHIFT REG. INDEX REG.

DABTDS - - disable GPP DAB trap.

DABTRP - - load EXDMA1:EXDMAZ into the GPP DAB trap
DETA 6422 RQCASB 1-D DETECTOR THRESHOLD 1 <== C(AC)
(*NOT USED)

DET2 6423 RQCAS 1-D DETECTOR THRESHOLD 2 <== C{AQ)
{(¥*NOT USED)

PETDIG 6424 RQCAS DENSITOMETER 6-bit T1 (LEFT BYTE)
AND T2 ({RIGHT BYTE) THRESH <== C(AC)

DETB 6420 RQCAS DETECTOR THRESHOLD B <== C[(AC)

DETC 6421 RQCASB DETECTOR THRESHOLD C <== LC{AC)

DISP1 6435 RQCA22 CONTROL DESK DISPLAY 1 <== C(&C)

DISP2 6436 RQCA22 CONTROL DESK DISPLAY 2 <== C(AC)

DMACA 6073 BRDMA load RTPP DMA current address register

DMACLE 6074 RDXA,BMB31 clear the RTPP DMA interface

DMAGO 6070 RDMA, B¥MB31 start the RTPP DMA PDPBe<==>DMA

DMASKP 6071 RDHEA skip on RTPP DMA done

DMANC 6072 RDMA load the DMA word count register

EXADR 6US0 RQCB/EXIN/EXOUT C (AC) ==>C {XADR)
EXDMA1 6524 EBUS2 load high RTPP DMA address bus
{also BMD31,BMD25,BMB31)
EXDMAZ 6525 EBUS2 load low RTPP DMA address bus
(also BMD3%,BMD25,BMB31)
C.6

108

‘EXIN
EX0O0T
FBH1
FB®W2
FBW3
FBWU
FBW5
FBWS
FBW7
FBW10
FBH 11
FBH12
GETA

GETB

GETMSK
GPPCLR
GPPCONT
GPPHLT
GPPLAD
HPL
HPR
HSL
HSR
IZ3KP
LbXp
iLpyp
LFBH2
LGALX
LGALY
LMASKE
LMASKYX
LPENX
LPENY
LQODTT
LODT2
LQDT3
LSRGB
MSKADR
MSTAG
BCTDS
PCTRP
PENST
POSTA
POSTB
QDATT
QDAT2
ODAT3
QMSKP
QPRGG 1
QPROG2
QPROG3
QPROGY
QPROGS
QPROGS
QPROGY

6333
6u451
6341
6342
6343
6344
6345
6346
6347
6350
6351
6352
6522

6523

6304

H

6360
6320
6361
6321
6317
6043
sy
6437
6456
6457
6441
6442
6445
6uup
6375
6376
6377
6367
6440
6366

6447
6520
6521
6324
6325
6326
6301
6370
6371
6372
6373
6431
6432
6433

BDP8e I/0 transfer instructions for the RTPP

RQCB/EXIN C(AC) <==C({C{XADER))

RQCB/EXOUT C (AC) ==>C (C {XADR})

RQCR2 C{AC) <== CONTROL DESK DATA WORD 1

RQCB2 C{AC) <== CONTROIL DESK DATA WORD 2

RQCB2 C{AC) <== CONTROL DESK DATA WORD 3

RQCB2 C{AC) <== CONTRCL DESK DATA WORD 4

RQCB2 C{AC) <== CONTROL DESK DATA WORD 5

RQCB2 C(AC) <«== CONTROL DESK DATA WORD 6

RQCB2 C{AC) <== CONTROL DESK DATA WORD 7

ROCBY4 C{AC) <== CONTROL DESK DATA WORD 10

RQCBY C{AC) <== CONTROL DESK DATA WORD 11

RQCB4Y C{ACY <== CONTROL DESK DATA WORD 12

BMD27 enable acquiring group A BM pix or
binary masks

- enable acquiring group B BM pix or
binary masks

ROQCA14 LOAD MASK REG FROM QMT ON NEXT STQMT

= clear the GPP registers

- continue the GPP

= HLT the GPP

- load GPP PC from EXDMA1,2

RQCAB FRAME HOR. POSITION COUNTER <== C{AC)

RQCAS C{AC) <== FRAME HOR. POSITION COUNTER

RQCAB FRAME HOR. SIZE COUNTER <== C {AC)

RQCA6 C{iAC) == FRAME HOR. SIZE COUNTER

RQCA10 SKIP IF INDEX 10-bits = ZERO.

ROQCA14 X COORDINATE CUORSOR REG. <== C{AC)

RQCA14 Y COORDINATE CHRSOR REG. <== C(AC)

RQCA22 CONTROL DESK SWITCH LIGHTS <== C(AC)

RQCBS8 MIRROR SCANNER X COORDINATE <== C(AC)

RQCBS8 MIRROR SCANNER Y COORDINATE <== C{AC)

RQCAT4 MASK ENTRANCE REG. <== C{AC)

RQCA1Y4 MASK EXIT REG. <== C(AC)

RQCA16 TLIGHT PEN X COORDINATE <== C{AC)

RQCA16 LIGHT PEN Y COORDINATE <== C (AC)

RQCAL QMT RIGHT DISPLAY LSW <== C(AC)

RQCRY QMT RIGHT DISPLAY MIDDLE WORD <== C(AC)

ROQCAU QNT RIGHT DISPLAY MSW <== C{AC)

RQCA10 SHIFT REG. LOADING REG. <== C (AC)

RQCATYU MASK ADDRESS REG. <== C (AC)

RQCB10 STAGE DIRECTION REG. <== C(AC)

- disable the PC address trap

- load EXDMA1:EXDMA2 into the GPP PC trap

RQCA16 LIGHT PEN STATUS REG. <== C (AC)

BMD29 post selected group A BMs

BMD27 post selected group B BHs

RQCAY C(AC) == QMN?T BCD DATA LSW

RQCAY C{aAl) == QMT BCD DATA MIDDLE WORD

RQCAY C{AC) == QMT BCD DATA MS#®

ROQCAY SKIP WHEN QMT DATA SCAN DONE

RQCA4 OMT PROGRAM WORD 1 <== C{AQ)

RQCAL OQMT PROGRAM WORD 2 <== C(AC)

RQCAU QMT PROGRAM WORD 3 <== C(AL)

RQCA4L QMT PROGRAM WORD 4 <== C({AC)

RQCA22 QMT PROGRAM WORD 5 == C{ACQ)

RQCAZZ QMT PROGRAM WORD 6 <== (C(AQ)

RQCAZ22 QMT PROGRAM WORD 7 <== C(AC)

C.b

PDPB8e 1/0 transfer instructions for the RTPP 109

QPROGB 6434 RQCA22 (QMT PROGRAM WORD B8 <== C{AC)

QSTAT 6374 RQCAY RQC PROGRAM WORD <== C (AC)

RBMSP1 6543 - spare input {not implemented)

RBMSP2 6544 - spare input (not implemented)

RBMSP3 6545 = spare input (not implemented)

RBMSP4 6546 = spare input (not implemented)

RBMSPS 6547 - spare input (not implemented)

RFC1H 6334 RQCA12 C(AC) <== FUNCTIOK COMPUTER 1 MSW

RFC1L 6335 °© RQCA12 C{AC) <== FUNCTION COMPUTER 1 LSW

RFC2H 6336 RQCA12 C{AC) <== FUNCTION COMPUTER 2 MSW

RFC2L 6337 RQCA12 C(AC} <== FUNCTION COMPUTER 2 LSW

RGETA 6540 BMD29 Read the status of done bits for BM GETA
RGETB 6541 BMD27 Read the status of done bits for BM GETR
RGPPCH - - read GPP PC high

RGPPCL - - read GPP PC low

REYPDH 8340 RQCB6 C(AC) <== CONTROL DESK KEY PAD MSW
RKYPDL 6353 RQCB6 C(AC) <== CONTROL DESK KEY PAD LSW
RMASKE &£354 RQCA14 C{AC) <== MASK ENTRANCE DATA

AS F(MSKADR)
REASKX 6355 RQCA14 C(AC) <== MASK EXIT DATA AS

F{M SKADR)
RPENY 6356 RQCA16 C(AC) <== LIGHT PEN X COORDINATE
RPENY 6357 RQCA16 C{AC) <== LIGHT PEN Y COORDINATE
ROSTAT 6327 RQCAG C(AC) <== QSTAT
RSRGI 6332 RQCA10 C{AC) <== SHIFT REG. INDEX REG.
RSRGX 6330 RQCAT0 C(AC) <== X CORDINATE SHIFT REG. DATA
BSRGY 6331 RQCA10 C(AC) <== Y CORDINATE SHIFT REG. DATA
SIZEA 6825 RQCA8 AMENDER SIZE REG. <== C(AC) BCD
SIZEC 6426 RQCA8 CLASS/COLLEC SIZE REG. <== C(AC) BCD
SIZEM 6427 RQCA8 MS3 COMPUTER SIZE REG. <== C (AC) BCD
SIZES 6430 RQCA22 STD COMP. SIZE REG. <== C(AC) BCD
SKPKED 6313 RQCB6 SKIP ON CONTROL DESK KEYPAD, CLEAR
FLAG ON SKIP
SMACP 6310 RQCA10 SIMULATE QOMT ACP AS F(QSTAT BIT 5)
SMCLX 6311 RQCA10 SIMULATE QMT CLOCK AS F (QSTAT BIT 5)
SMHLD 6307 BQCA4 SIMULATE OQNT HOLD AS F (QSTAT BIT 5)
SMOTR 6365 RQCB10 SPARE MOTOR REGISTER<==C (AC)

SMSYN 6312 RQCA10 SIMULATE QMT SYNC AS F(QSTAT BIT 5)
SMVTG 6306 RQCA4 STMULATE QMT VERT. TRIG AS '
F (QSTAT BIT 5)

STEP 6305 EQCBI10 MOVE STAGE AS F(MSTAG)

STOMT 6300 EQCA4 START QMT DATA SCAN

VPL 6362 BRQCASG FRAME VERT. POSITION COUNTER <== C (AC)
VPR 6322 RQCA6 C{AC) <== FRAME VERT. POSITION COUNTER
VSL 6363 RQCA6 FRAME VERT. SIZE COUNTER <== C(AC)

VSR 6323 RQCA® C{AC) <== FRAME VERT. SIZE COUNTER
X8ECA - = LOAD X8E CURRENT ADDRESS

I

XBECTL = LOAD X8E CONTROL REGISTER
Z5RGI 6316 RQCA10 SEND SHIFT REG. DATA TO FRONT OF SHIFT REG.

110 PDP8e I/0 transfer instructions for the RTPP

. C.7 PDPBe Device code allocation by decade

T W Y A o) —— v ———— T —— o T =kl

The actual device codes for particular DEC devices may be found
in the various versions of the "Small Computer Handbook™.

00 - PDPBe CPU

01 - paper tape reader

02 - paper tape punch

03 - Decwriter keyboard (or PDP11,/20 emulator)
04 - Decwriter printer (or PDP11/20 emulator)
07 - RTPP DMA I/0 channel

10 - Dicomed

11 - DCO2 serial interface keyboard

12 - DCO2 serial interface printer

14 - Graf-Pen

16 - HSP: input channel (PDP11/20 emulator)
17 - HS5P: output channel (PDP11/20 emulator)

e A A . A S S R AP A P ANk M e v o

. —— R —] T o e W =

30:37 - RQC - EBUS #1

— —— o o —— T ——— - —— — —— T A e —

42:45 - RQC - EBUS #1

50:52 - EBUS #2

53 ~ PDP8e A/D multiplexor ADSe/AHKBe
54:57 - EBUS #2

e v T ——— Tl ——— o —) — T —— - —

60:62 - EBUS #2

63 - (Decwriter KBD - not used since PTR usad as LPT)

65 - PDP8e Floating point processor FPP

66 - PbPB8e line printer LP08 (Decwriter PTR) or
PDP11/20 emulator

67 - EBUS #2

T0:72 - PDPS8e TCS58 magtape control

74 - PDP8e RKBe disk control

76:77 - PDP8e TCO08 Dectape control

PDP8e I/0 transfer instructions for the RTPP 111

C.7.1 Numerical listing of PpPBe IOTs

T AR g M AR e e L R e e W A e s s o

RDMA "OUTPUT" DEVICE CODES - C{PDPBe ACC) <==C (channel)
DEVICE CODE CARD FUNCTION

6073 DMACA RDMA load RTPP DMA current address register
6074 DMACLR RDMA,BMB31 clear the RTPP DMA interface

6070 DMAGO RDMA,BMB31 start the RTPP DMA PDPB8e<==>DHMA

6071 DMASKP RDMA skip on RTPP DMA done

6072 DMAWC RDMA load the DMA word count register

PDPBe auxillary devices

- ————

DEVICE CODE CARD FUNCTION {on DEC 1709 card)

6101 DICSKP PFL1 skip on Dicomed ready for next command
6102 DICLR PFL1 set Dicomed ready

6106 DICO PFL1 send Dicomed command <==AC[0,3:11)

RQC YPULSEY™ DEVICE CODES - note: does not affect the PDPSe ACC

R R R R e S iy ———

DEVICE CODE CARD FUNCTION
6300 STQMT RQCA4 START QMT DATA SCAN
6301 QMSKP RQCA4 SKIP WHEN QMT DATA SCAN DONE
6302 CLKACK RQCR4 CLEAR 200 HZ CLOCK FLAG
6303 CLKSKP RQCA4 SKIP ON 200 HZ CLOCK FLAG SET
6308 GETMSK RQCA14 LOAD MASK REG FROM QMT ON NEXT STQMT
6305 = STEP RQCB10 MOVE STAGE AS F (MSTAG)
6306 SMVTG RQCA4 SIMULATE QMT VERT. TRIG AS

F(QSTAT BIT 5)
6307 SMHLD RQCAY SINULATE QMT HOLD AS F (QSTAT BIT 5)
6310 SMACP RQCA10 SIMULATE QMT ACP AS P (QSTAT BIT 5)
6311 SMCLK RQCA10 SIMULATE QMT CLOCK AS F(QSTAT BIT 5)
6312 SHSYN RQCA10 SIMULATE QMT SYNC AS F(QSTAT BIT 5)
6313 SKPKPD RQCB6 SKIP ON CONTROL DESK KEYPAD,

CLEAR FLAG ON SKIP
6314 ADVSR RQCA10 ADVANCE SHIFT REG. ONE
6315 CSRGI RQCA10 CLEAR SHIFT REG. INDEX REG.
6316 ZSRGI RQCA10 SEND SHIFT REG. DATA TO FRONT OF SHIFT REG.
6317 IZSKP RQCA10 SKIP IFP INDEX 10-bitS = ZERO.

RQC "INPUT"™ DEVICE CODES - C{channel)==>C (PDP8e ACC)

- ——— - ——

DEVICE CODE CARD FUNCTION

6320 HPR RQCAS6 C{AC) <== FRAME HOR. POSITION COUNTER
6321 HSR RQCA6 C{AC) <== FRAME HOR. SIZE COUNTER

6322 VPR RQCAS C(AC} <== FRBAME VERT. POSITION COUNTER
6323 V5R RQCAG C(AC} <== FRAME VERT. SIZE COUNTER
6324 QDAT1 RQCA4 C{AC) <== QMT BCD DATA LSW

C.7

112

: 6325
6326
6327

6330
6331
6332
6333
6334
6335
6336
6337

6340
6341
6342
6343
6344
6345
6346
6347

6350
6351
6352
6353
6354

6355
6356
6357

PDPB8e I/0O transfer instructions for the RTPP

ODAT2 RQCAY C(AC} <== QHNT BCD DATA MIDDLE WORD
QDAT3 RQCAY C{AC) <== QMT BCD DATA MSW
==

ROSTAT RQCA4 C{AC) QSTAT
RSRGX RQCA10 C{AC) <== X CORDINATE SHIFT REG. DATA
RSRGY RQCA10 C(AC) <== Y CORDINATE SHIFT REG. DATA
RSRGI RQCA10 C(AC) <== SHIFT REG. INDEX REG.
EXIN RQCB/EXIN C (C(XADR) ==>C (AC)
RFC1H RQCA12 C(AC}) <== FUNCTION COMPUTER 1 MSW
RFCIL RQCA12 C(AC) <== FOUNCTION COMPUTER 1 LSW
RFC2H RQCA12 C{AC) <== FUNCTION COMPBUTER 2 MSW
RFC2L RQCA12 C(AC) <== FUNCTION COMPUTER 2 LSH
RKYPDH RQCB6 C{AC) <== CONTROL DESK KEY PAD MSW
FBW 1 RQCB2 C(AC) <== CONTROL DESK DATA WORD 1
FBW2 RQCB2 C(AC) <== CONTROL DESK DATA WORD 2
FBW3 RQCB2 C{AC) <== CONTROL DESK DATA WORD 3
FBWY RQCB2 C(AC) <== CONTROL DESK DATA RORD 4
FBW5S RQCB2 C{AC) <== CONTROL DESK DATA WORD 5
PBW6 ROQCB2 C({AC) <== CONTROL DESK DATA WORD 6
FBW7 RQCB2 C({AC) <== CONTROL DESK DATA WORD 7
FBW10 RQCB4 C{AC) <== CONTROL DESK DATA WORD 10
FBK11 RQCB4 C{AC) <== CONTROL DESK DATA WORD 11
FB¥12 RQCB4 C{AC) <== CONTROL DESK DATA WORD 12
REYPDL RQCB6 C(AC) <== CONTROL DESK KEY PAD LSW
RMASKE RQCA14 C(AC) <== MASK ENTRANCE DATA AS

F (MSKADR)

RMASKX ROQOCA14 C{AC) <== MASK EXIT DATA AS P (MSKADR)
RPENX RQCA16 C(ACy <== LIGHT PEN X COORDINATE
RPENY BRQCA16 C(AC) <== LIGHT PEN Y COORDINATE

RQC "OUTPUTY DEVICE CODES - C{PDP8e ACC)<==C(channel)

-y D — 0

DEVICE CODE CARD FUNCTION

6360 HPL RQCAG FRAKE HOBR. POSITION COUNTER <== C{AC)
6361 HSL RQCAB FRAME HOR. SIZE COUNTER <== C{AC)

6362 VPL ROCAS FRAME VERT. POSITION COUNTER <== C {AC)
6363 ¥SL RQCASb FRAME VERT. SIZE COUNTER <== C(AC)
6364

6365 SHOTR RQCB10 SPARE MOTOR REGISTER<==C(AC)

6366 MSTAG RQCB10 STAGE DIRECTION REG. <== C{AC)

6367 LSRGB RQCA10 SHIFT REG. LOADING REG. <== C{AC)

6370 QPRUGT RQCAU OMT PROGRAM WORD 1 <== C(AC)

6371 QPROG2 RQCAYU QMT PROGRAM WORD 2 <== C{AC)

6372 QPROG3 RQCAY QXT PROGRAM WORD 3 <== C(AC)

6373 QPROGY RQCAY QNT PROGRAM WORD 4 <== C{AC)

6374 QSTAT RQCAY RQC PROGRAM WORD <== C (AC)

6375 LoDT RQCAY O¥T RIGHT DISPLAY LSW <== C(AC)

6376 LQDT2 RQCAY OMT RIGHT DISPLAY MIDDLE WORD <== C{AC)
6377 LODT3 RQCRY QMT RIGHT DISPLAY MSW <== C{AQC)

6420 GETB RQCASB DET ECTOR THRESHOLD B <== C(AC)

6421 DETC RQCASB DETECTOR THRESHOLD C <== C{AC)

6422 DET1I RQCAS 1-D DETECTOR THRESHOLD 1 <== C(AC)

c.7

6423
6424

6425
6426
6427

6430
6431
6432
6L33
6434
6435
6436
6437

6440
ca41
6442
6443
6uLy
6445
6446
6u47

6450
6451
6452
6453
6455
6U56
6457

DET2
DETDIG

SIZEA
SIZEC
SIZEN

SIZES
QPROGS
QPROGS6
QPROG7
QPROGS
DISP1
DISP2
LFBW2

MSKADR
LMASKE
LMASKX
1Lbxe
LDYP
LEPENX
LPENY
PENST

EXADR
EXOUT

LGALX
LGALY

PDPBe I/0 transfer instructions for the RTPP 113

RQCAS8
RQCASB

RQCASB
RQCAR
RQCA8

RQCA22
RQCA22
RQCA22
RQCA22
RQCA22
RQCA22
RQCAZ22
RQCAZ2

RQCA14
RQCA1 Y
RQCATY
RQCA1Y
RQCA14
ROCA16
RQCA16
RQCA16

{(*NOT USED)

1-D DETECTOR THRESHOLD 2 <== C([AC)

(*NOT USED)

DENSITOMETER 6-bit T71 AND T2

THRESHOLDS <== C (AC)

AMENDER SIZE REG. <== C (AC)

CLASSIFIER COLLECTOR SIZE REG., <== C{AC)
MS3 COMPUTER SIZE REG. <== C (AC)

STANDARD COMPUTER SIZE REG. <== C(AC)
OMT PROGRAM WORD 5 <== C(AC)

QMT PROGRAM WORD 6 <== C(AC)

QMT PROGRAM WORD 7 <== C(AC)

OMT PROGRAM WORD 8 <== C(AC)

CONTROL DESK DISPLAY 1 <== C (AC)
CONTROL DESK DISPLAY 2 <== C (AC)

CONTROL DESK SWITCH LIGHTS <== C (AC)
MASK ADDRESS REG. <== C (&C)

MASK ENTRANCE REG. <== C{AC)

MASK EXIT REG. <== C(AC)

X COORDINATE CURSOR REG. <== C{AC)

Y COORDINATE CURSOR REG. <== C(AC)

LIGHT PEN X COORDINATE <== C (AC)
LIGHT PEN Y COORDINATE <== C(AC)
LIGHT PER STATUS REG. <== C{AC)

RQCB/EXIN/EXOUT C (AC)==>C(XADR)
RQCB/EXOUT_C(AC)==>C(C(KADR))

RQCBS8
RQCBS

MIRROR SCANNER X COORDINATE <== C (AC)
MIRROR SCANNER Y COORDINATE <== C (AC)

BM "OUTPUT™ DEVICE CODES - C(PDEPSe ACC) <==C (channel)

R S e B G W G A b W ——

BMD27
BMD27
BMD27
BMD27
BMD27
BMD27
BMD27
BMD27

FUNCTION

load BMQ X coord reg<==8e ACC.
load BMO X coord reqg<==8e ACC.
load BMO X coord reg<==8e ACC.
load BMO X coord reg<==8e ACC.
load BMO Y coord reg<==8e ACC.
load BMO Y coord reg<==8e ACC.
load BMO Y coord reg<==8e ACC.
load BMO Y coord reg<==8e ACC.
load BMO X coord reg<==8e ACC.
load BEO X coord reg<==8e ACC.
load BMO X coord reg<==8e ACC.
load BMO X coord reg<==8e ACC,
load BMO Y coord reg<==8e ACC.
load BMO Y coord reg<==8e ACC.
load BMO Y coord reg<==8e ACC.
load BMO Y coord reg<==8e ACC.

C.7

114

- 6520
6521
6522
6523
6524
6525

6526

POSTA
POSTSH
GETA
GETB
EXDMA1
EXDMAZ

B¥OUT

PDPBe I/0 transfer instructions for the RTPP

BMD29
BMD27
BMD29

BMD27

EBUS2
{also
EB(S2
{alsec
BHMD25

post selected group A BHMs
post selected group B BHMs
enable acquiring group A BM pix or
binary masks
enable acguiring group B BM pix or
binary masks
load high RTPP DMA address bus
BMD31,BMD25,BMB31)
load low RTPP DMA address bus
BMD31,BMD25,BMB31)
BM maintenance output (spara)

BM "INPUT" DEVICE CODES - C(channel)==>C{PDPBe ACC)

A b e . ———— Yo . . - -

BMIN

RBHESP1
RBMSP2
EBMSP3
RBHSP4
RBMSPS

BMD29
BMD27
BMD25

-

FUNCTION

Read the status of done bits for BM GETA
Read the status of done bits for BM GETB
BY maintenance input (spare)
spare input (not implemented)
spare inpunt (not implemented)
spare input (fiot implemented)
spare input (not implemented)
spare input (not implemented)

115

SECTION D

Examples of programming the GPP

T WD S AP e W PR A A o

Several examples of programming the GPP are given here
as justification that a minimal set of GPP operators can be
used to compute a fairly broad class of picture neighborhood
functions.

A "communications" assembly language is used in the
following examples. It mimics the GPPASM assembly language but
is easier to read since the code is in infix notation rather
than prefix. That is sink and source operands are denoted here
by being on the left and right side of an arrow "<==",

let comments be denoted by text enclosed in quotes
LIS Let an instruction consist of 4 fields: the P3 field
followed by ¥"<==%", followed by the P1 field, followed by the
opr code, followed by the P2 field. Non-existant fields ray be
ignored. Thus,

<P3> <== <P1> <OPR> <P2>;
or
<P3> <== <OPR> <P1>;

D.1 Gradient used in Kirsch algorithm

s S M S A A TR e w G D A —— i ——

The following gradient algorithm is given by Kirsch
[Kir69]. Given a 3x3 I1 subarray, the following GPP program
will compute the 2~D gradient by the formnla "HAX [(3*%5UM a(i -
(5%S0UM b {i) . This PM program is writtenm by repeating the
code instead of using loops. It could be written with lo0ps

instead. The 8 permutations of the 8 neighbors are:
al a2 a3 b5 at1 a2 a2 a3 b1

b5 . b1 b4 . a3 al . b2

b4 b3 b2 b3 b2 b1 b5 bd b3
Permutation 1 permutation 2 ... Permutation 8

r

The following GPP program will compute the gradient at
the current pixel. The neighborhood indexing scheme is
restated for clarity.

1
0
7

wmE W
DO N

let R1 be (3*SUM a (i) ~5*%SUM blidh;
R2 be MAX variable:;
R10 to R17 the local permutation values;
D.1

116 Examples of programming the GPP

The computation for permutation 1 is given and the
other 7 permutations are similar.

Step Instruction

{1 DRA <== IT({0) ADD I1(1)
[2] R1 <== ADDST I1{2)

[3] R1 <== #3 MUL R1

(4] DRA <== I1(3) ADD I (4)
[5] DRA <== ADDST I1(5)

[6] DRA <== ADDST I1(5)

[7] DRA <== ADDST I1(7)

(8] DRB <== MULST #5

[9] R10 <== R1 SUB DRB

These 9 steps give the value for 1 permutation. The 8
permutations take 72 steps. The code for the 8 permutations is
just concatinated. Although it is not elegant, repeated code is
obviously faster. We are able +to avoid loops and increase
processing speed at the expense of program mermory.

To compute the maximum in R2 the following algorithm is
used. Again, the PM implementation is repeated code.

nax<==0;
offsetd==9;
FOR i<=1T0O 8
DO IF R{itoffset).GT.max
THEN max <==R{i+offset);

Step Instruction

113 DRA <== MOVE R10
{2] DRA <== GTST R10
[3] DRA <== GTST R12
[4] DRA <== GTST R13
[5] DRA <== GTST R14
[61 DRA <== GTST R15
{7] DRA <== GTST R16
[8] DRA <== GTST R17
[9] R2 <== MOVE DRA
[10}] Haltpoint.

Therefore, it takes 72+10=82 instructions/pp to compute
the gradient related function. At approximately 300 nsec/GPP
instruction, it would take about 30 usec/pp or 256 X 256 x
30usec. or 1.9 seconds to do the entire picture exclusive of
I1/0. A 128 X 128 picture would take on the order of .3
seconds.

Examples of programming the GPP 117

D.2 Eight neighbor direction list processing

T S " i s —— T " —— i ———— Lt -}

This is an example of 8 neighbor direction 1list
processing. Since all 8+ (9) neighbors are directly
addressable, various functions may be computed by iterating in
a FOR 1loop construction using a direction list in the general
purpose registers R{i).

For example a simple angle finder might consist of the
following algorithm; -

I3(8) <==0;
For i<==0 Step 1 Until 8 Do
If [SUM a(i})*R{i)] > thresholad
Then I3(8)<==1;

This will give a first order approximation +o a 135
degree line finder.

A neighborhood direction list R (i) might look like

+1 -1 -2
-1 +1 -1
-2 -1 +1.

Let R1 through R9 be the direction list in the GR using
The same addressing scheme as the current
Neighborhood.

Let B10 be a 9 counter and pointer to R1:R9. -

Let A0 auto-index register point to I1. - :

let R12 be a temporary register

Let R13 be the thrsshold.

Step Instruction

A D

I3(8) <== MOVE #0

~t
—
R

[2] R10 <== MOVE #9 “"form the filter list pointer™
[3] R12 <== MOVE #0 :

[4] R0 <== INC #I1(8) "form the I1 list pointer"®
{51 DRA <== 'R10 MUL 'AOD “process the lists®

[6] R12 <== ADDST R12 1"sum the result®

[7] - R10 <== R10 DECB 9 ‘"test if done"

(8] [5] <== Jump

[9)] [11] <== R12 BLE R13

[10] I3(8) <== MOVE #1

[11] Haltpoint.

118 Examples of programming the GPP

D.3 Edge and curve detection

———— D . — A T kb NP G we AR wlomm e e wm d m

The following is an example of edge and curve detection
using the algorithm in Rosenfeld, Lee and Thomas [JohnE70]. In
their article, differences of averages are used as measures of
texture differences. They discuss a 2-D texture npeasure
D{rs,hk) .

D(rs,hk) =ABS {
[a({h+r k¥s)+. .. +ta(h+r,k-s)+...+
af{h+i,k+s)+. .. +ath+1) ,k-8)]
-fath,k+=sy+, .. +a(h, k-sj +...+
alh-c+1,k+s) . .. ta (h-Cc+1,k-s) N /{r* (2s+1.

They sueggest using the measure
D{23,hk) *D (43,hk} *D ({83, kk)

to separate regions by horizontal edges. For edges in other
orientations, analogous operations would be optained by
- rotating D{rs,hk).

Por use as an example to measure the conplexity of
coding these functions in the GPP. Let us look at D(23,hk). For
each (h,k) in the picture, transform its position to {0,0}.
Then D{(23,hk) reduces to D{23,00).

D(23,00) =AB5 {

[a{2,3)+a (2,2)+a (2, 1} +a{2,0)+
a(zt"g) "‘3.(2,'2)"’&(2,‘3,"’
a(1l,N+a{1,2)+a (1, 1) +a (1,0)+
a(l,~N+a(i,-2)+a(1,-3)]

-{a(0,3}+a{0,2)+a (0, 1) +a {0,0) +
a(0,~-1y+a(0,-2)+a (0,~3)+
a{=1s3Y+a(-1,2)+a(-1,1)+a(-1,0)+
af=-1,~1+al-1,-2)+a(-1,-3) N/{2(2%3+1,

This corresponds to the 4x7 array:

o A A D A AND

The program to compute D23 is given in terms of macros
which the compiler/assembler for the RTPP might have
implemented.

Pefine D23 = ¢ RY <== HMOVE #256;
As DOLINE (¥);
RY <==RY DECB B;
D.3

Examples of programming the GPP 119

< JUMP;
T

vl

_ A <=
B: HLT;
Define DOLINE (y) = < "get data";
GETLIRE {y,#3,R0};
GETLINE (y,#2,R258);
GETLINE (y,#1,R516) ;
GETLINE {y,#0,R774);
GETLINE (y,#-1,R1032);
GETLINE (y,#-2,R1290);
GETLINE (y,#-3,R1548) ;
"Set up line pointers - note buffers are 258"
A1 <== MOVE #table;
TA1I <== MOVE #RO;

'A1I <== MOVE #R258;:
'A1I <== MOVE #R516:
YA1I <== MOVE #R774;
TR1I <== MOVE #R1032;
'A1I <== MOVE #R1290:
'R1I <== MOVE #R1548;

"Set up output bufferv
. "ATI <== MOVE #R1806;
"Do 256 direction list operations/line"®
RCOUNT <== MOVE #256;
Az TXT47 (table)
RCOUNT <== RCOUNT DECB B:
B <== JUMP;
B: SAVELINE(y,R1807) ;>

Define SAVELINE (sline,r) = < %copy line buffer Yr® in gr to line
fLline' in buffer memory BM3W®
IOCLR;
XRST #({<I3>,<x>);
AT <== MOVE #R;
A: I3(5) <== MOVE 'A1I;
A <== XCLEB # (<I3>,<x>};
{16-bit,out,hor,BM3,I3) LINE ysline; >

Define GETLINE (sline,offset,r) = < "copy BM1 line 'line! into gr
Buffer at *r?.
Gline <==line ADD offset:
IOCLR;
IRST #(<I1>,<X~-1,X,X+1>) ;
{low,in ,hor ,BM1,I1,y}) LINE sline:
A1I <== MOVE #R:
" Get the x=-1 boundrypoint »
A1 <== MOVE I1(Y4);
Az 'AIL <== MOVE I1(0);
A <== XCLKB #{<I1>,<X-1,X,X+1>)
" Get pixels x=256,257 boundries "
'"A1I <== MOVE I1(4);
"A1I <== MOVE I1(0); >

Define TXT47 (table) = < "do a 4 X 7 local texture operation®
RCOUNT <== MOVE #7;
A2 <== MOVE #table; "huffer pointer®
rsur <== MOVE #0;
D.3

120 Examples of programming the GPP

A: A3 <== MOVE 'A2I: "buffer data"
DRA <== MOVEN 'A3I;
DRAE <== SUBST 'A3TI:
DRA <== ADDST *A3I:
DRA <== ADDST YA3I:
rsum <==ADDST rsum;
RCOUNT <== RCOUNT DECB B;
A <== JUMP;
B: B3 <== INC YAZ2I;
"A3I <== MOVE rsum:>

The timing for the complete algorithm may be determined
as follows: each output line has 7 inputs or a total of 8 BM
random 1I/0 accesses/line. Since the total maximum 1 way access
and transfer time for a BM is 147 msec, the I/C time is 8%0. 147
seconds = 1.2 seconds. Assuming an average instruction time of
300 nsec/instruction, exclusive of I/0, the following times for
the above macros are computed:

Macro ¥Instr. Execs./Call #Times called Total # instr
TXTU7 5 + 8%7 = 61 256x256=65536 4.00xE+5
GETLINE 8 + 2%256 = 520 T*25%6 = 1792 9.31xE+5
SAVELINE 4 + 2%256 = 516 256 1.32xE+5
DOLINE 10 + 2%256=522 256 1.22XE+5

D23 1 + 2%256 = 513 1 513

The total number of instructions is on the order of
1.59 million and takes {at 300 nsec/instruction} about 0.47
seconds. Therefore, the total D23 macro execution takes on the
order of 1.7 seconds it should be noted that the D23 algorithnm
could be done more directly from the line buffers for any size
d{rs,00) and would run faster because data would not have to be
copies into the GR.

Examples of programming the GPP 121

D.4 Histogram computation

b R R I Qo —

The following program will compute +the gray scale
histogram of the I1 picture and leave the results in general
registers RO (address 0) to R63 (address 63) . It is assumed
that R[0:63] are initialized to 0 by the PDPBe. After the GPP
is finished, the PDPBe may read the general registers to
access the resultant histogram. The algorithm is as follows:

For all picture pixels
DO R[I1(8) }<==R[T1{B) J+1;

step Instruction
1 '"I1(8) <== INC 'I1(8)
2 Haltpoint.

122 Examples of programming the GPP

D.5 Haltpeint I/0 example

- ——— il i e e -

This example shows roughly how "haltpoint" I/0 would be
done for I1==>I3, First obtain buffer memory data line by line
and compute on a 3x3 neighborhood with some function. Then
output I3 into BM3.

Raster I/0 algorithm
{1.0] Load It buffer Y-1, ¥, and ¥+1 with the first 3 lines
of BM data.

TIOCLR:
YRST <I1,I3>;
{(low,in,hor,BM1,I1,¥+1) LINE IiY;

YCLK <I1>;
{low,in,hor,BH1,I1,¥+1) LINE I1Y;

YCLK <I1>;
(low,in, hor,BM1,I1,Y+1}) LINE I1Y;
[1.17 Reset the X counters to the front of the 1line.

YRST #(<I1,I3>,<X-1,X,X+1>);

[1.2] Process first line and store in I3 buffer. That is
Perform I1*==>13,

[Neighborhood procedure];
{1.2] <== XCLKB #({<I1,I3>,<X-1,%,X+1>);

[2.0] Write out the T3 buffer and then load next BM line in If
buffer.

{low,out, hor,BM3,I3,Y) LINE I3Y:
[2.1] <== YCLKB #(<I1,1I3>);
[3.0] <== JUMP;

[2.1] {low,in,hor,BM1,13,Y) LINE I1Y;
[1.1] <== JUMP;

{3.0] End. Stop GPP and notify PDP8e.
HLT

Examples of programming the GPP 123

D.6 Random Neighborhood Accessing

L e W —— i o it

In the case where one whishes to random access a
neighborhood, gquite a savings may be realized by using the
GETIj neighborhood fetch instruction to fetch BM data into the
current neighborhood of line buffer j. The following seguence
will process neighborhood {x,y) of BM3 and store it into pixel
{(x,y) of BM7.

yxaddress <== x MAKYXADDR y:
GETI1 (low,BM3), yxaddress;

[Process the current I1 neighborhood==> I3(8)]

PBM7 <== MOVE yxaddress;
"PBM7 <== MOVE I3(8):

124 Examples of programming the GPP

D.7 Area and perimeter computation

e e M D A A — " A e v an ——

Example & shows hovw one might compute total area ({sum
of pixels of an object > threshold) and total perimeter (total
count of entrance and exit pixels of detected regions) of all
objects in the scene.

" Compute area "
START: AREA <== MOVE #0;

&t - C <== I1(8) BGE th:
Bz Haltpoint;

A <== JUMP:
C3 AREA <== INC AREA;

B <== JUHP;

*Compute perimeter of BMi under mask BMj.
note that SWITCH is true inside of a blob™.
Define TRUE=1, FALSE=0:
Variable MASKEDI1, PERIMETER, INBLOB, THRESHOLD,

PERIMETER <==MQVE #0;
IOCLR;

"Get the next line for the image and its mask"
GETLINE: (low,in,hor,BMi,I1,Y) LINE ItY;
{low,in ,hor,BM4,I2,Y) LINE IZ2Y;
SWITCH <== MOVE FALSE;

"Position the line buffers' dynamic address vectors at leftw
XRST #(<I1,I1I2>,<X>);
TEST: -MASKEDIT 1 <==I1(8) AND I2{(8);

“Tegst if in a bloh"
INBLOB <== MASKEDI1 BGE THRESHOLD;

"Test if leaving a blob®
YES <== SWITCH BNE #0;
NEXTX: TEST <== XCLKB #({<I1,12>,<X>):

“Reset switch after each linen
SWITCH <== MOVE FALSE;
GETLINE <== YCLKB <I1,1I2>:

“Send data back to PDP8e which sends it to PRDLM
GOUT <== MOVE PERIMETER;

"Signal DDTG that the function is done
HALT;

"Test if just entered an obiject®
INBLOB: YES <== SHITCH BEQ #0;:
NEXTX <== JUMP;

“Yes, a perimeter point, increment perimeter
D.7

Examples of programming the GPP 125

and reverse the switch"

YES: PERIMNETER <==INC PERIMETER;
SWITCH <== MOVE TRUE;
NEXTX <== JUMP:

Each pixel in computing the perimeter takes at most 8
instructions in addition to 256 input instructions at 300
nsec/avg-instruction (exclusive of I/0). This gives a
computation time of about 0.15 seconds and 0.147 seconds I/0.
The total time is about 0,3 seconds. As the I/0 cost in time is
comparable to the computation time, it would be more economical
to combine several simple primitives together such as area,

perimeter, etc. while doing a single I/0 traversal through the
BH-

126 Examples of programming the GPP

D.8 Run length code of detected object

A D S W AR AT de S A LS P W ki v vk e

Example 7 computes the run length code of a single
object extracted from an isoclated gray scale image by
thresholding it similarly to the perimeter program and then
saving entrance and exit pixels {instead of incrementing the
perimeter primitive as in example 6).

"Compute run-end codes®
Define TRUE=1, FALSE=0;
Variable SWITCH,EN, EX,TH;
"Tnitial the stacks®
A1 <== MOVE #STACK:
A2 <== A1 ADD #256:
IOCLR:
GETLINE: {low,in hor ,BM1,I1,y}) LINE I1Y:
SWITCH <== KOVE FALSE:
XRST #(<I1>,<x>);
EN <== MOVE #256:;
EX <== MOVE #256;
TEST: JT¥BLOB <== I1{8) BGE TH;

®TEST if leaving a blob"™
YES <== SWITCH BGE #0;
NEXT: TEST <== XCLKB #(<I1>,<x>);

" Reset SWITCH after each line®
SWITCH <== MOVE FALSE;

" Push the entrance and exit pixels®
'"A1Y <== MOVE EN;
TA2T <{== MOVE EX;
GETLINE <==YCLKB <I1>:
HLT;:

» TEST if just entered obiject™®
INBLOB: YES <== SWITCH BE{ #0;
NEXTX <== JUMP;

"YES, save the run~end codes®
YES: ENTRY <==SWITCH BEQ #0;
EXIT: EX <== HMOVE I1X;
REVERSE <== JUMP:
ENTRY: EN <== MOVE I1X;
REVERSE: SWITCH <== MOVEC SWITCH:
NEXTX <== JUMP;

127
SECTICN E

GPPASM BNF Grammar Specification

T R M S A A e e A A e A e

The BNF grammar specification is given for +the GPPASM
assembler to be used +to assemble RTPP programs. Note that
MAINSAIL will generate GPPASM assembly language output. The
PDP8e segment will be assembled by the PAL8 assembler on the
PDP8e under control of GPPASH.

Note that ID is any identifier which is not a keyword in the
grammar, INT is any idinteger, and <text> is any text not
including the symbols e "y Or ;. EPSILON is the null string.

<program>::= <GPPsegment> <PDP8Esegment> END

<PDPBEsegment>::= BEGINPDPBE'<PALBprogram> ENDPDPBE | EPSILON
<PAL8program>::= PDP8e program - see PDP8e 05/8 handbook

<GPPsegment>::= <statement> (GPPsegment>! <statement> ENDGPP |
DECIMAL | OCTAL § EPSILON

<statement>::= <{PH-label> <PM-substatement> |
<GR-label><{GR-substatement> |
<statement> ; <text>

<PH-substatement>::= <comment> | REQUIRE <file> SOURCE i
REQUIRE <file> LCAD | DEFINE ID = <valued> i
PMORIGIN <value> } GRORIGIN <value> |
<opcode> <P1> , <P2> , <P3>

<GR-substatement>::= GRBLOCK <GR-list>

<file>::= <device> <fnamed> ., <ename> P

{device>::= SYS: | DSK: | DSKB: | DSKC: | DSKD: { DSKE: | DSKF:
DSKG: | DSEH: | DTAO: |} DTal:

<fname>::= ID ‘

<ename>::= ID

<comment>::= text 3 | " text "

<P1>::= ' <GR-address> | <GR-address>]| # <value> | <I/0 list>
<P2>::= ' <{GR-address> | <GR-address> | # <value>
<{P3I>:2:= ' <GR-address> | <GR-address> | <PM-address>

<value>::= <land> | <value> ! <valuel1> | <ae>
<valuel>::= <ae> | <land>
<land>::= <value> & <valuel>

{ae>::= <sae>
<(sae>::= <termn> | <sae> + <term> | <saed> - <term>
<term>::= <factor> | <term> * <factor> | <term> s/ <factor>
<factor>::= <primary>
<primary>::= <PM-label> | <GR~label> | (<value>) |
+ <primary> | - <primary>
B

128 GPPASM BNF Grammar Specification

<PM~-label>s:= <label> | EPSILON
<GR-label>::= <label> { EPSILON
<label>::= ID :

<PM-address>::= <PM-label>

<opcode>::= MOVE §j JUMP | PUSHJ { POPJ | INCB | DECB | BEQ | BGE |
BLT | BGT | BLE | BNE § HLT | AND | NAND { XOR |
IMPLIES | OR | NOR | EQV | MOVE | MOVBIT | MOVBS |
SHIFTR | SHIFTL { ROTR | ROTL | GTST | LTST }| GEST |
LEST { DMOVE | DSWP | ADD | SUB | MUL | DIV |
ADDST | SUBST § MULST | DADD | DSUB | DMUL |
INC { DEC | MOVEN | MOVEC | DMOVEC | IOCLR | YRST i
XRST |} XCLKB |} XCLK | YCLKB { YCLK | LINE |
MARKYXADDR | GETI?1 | GETI2 | GETI3

<GR-address>::= <value> } <GR-I/0O-address>

<GR-I/0-address>::= <neighborhood-pixels> | <auto-index> |
<indirect-BM-addresses> { <TTY-I/0> | <control-desk)> |
<status~registers> | <dynamic-address-vectors> |
<GR~I/O-registers>

<neighborhood~pixels>:z= IT10 § I11 | I12) I13 | I14 | I15 | I16 }
I17) I8 § I20 | I21 } I22 | I23 | I24 | I25 | I26 }
I27 | I28 § I30 | I31 | T32 | I33 § I34 { I35 { 136 |
I37 § 138
<auto-index>::= AOD | A0 | AOL | A1D | A1 |} A1I i A2D) A2 § A2I |
' A3D | A3 | A3I § A4D | A% | ALI { ASD | A5 | A5I |

A6D | A6 | ASY | A7D |} A7 § AII
<indirect-BH-&ddresses?::= PBMO | PBM1 | PBM2 | PBM3 | PBM4 | PBMS |
PBMG | PBMT 1§ :
<TTY-1I/0>::= KRB | KSTATUS }{ TLS | TSTATUS
{control~-desk>::= SW1 § SW2 | SW3 | SWA | DSPLYA | DSPLYB | DSPLYC |
KNOBGO1 § KNOB23 | KNOB4S | KNOBGE7 |
<{status-regists>::= PDLCHT | PDL { FXAR | DRA { DRB 'i EXAR | EFXAR |
EDRB { STATUS
<dynamic-address-vectors>::= T1XM § ITX | ITXP | I1Y | I2XM | I2X |
I2XP | I2Y § XI3XM | I3X | T3XP § I3Y
{GR-1/0-registers>::= GIN] GOUT

<I/0 list>::= { <leftbracket> <list> <rightbracket> } |
<I/0 l1ist> 1 <I/0 symbol> } <I/0 symbol>

<list>::= <1list> , <I/0 symbol> | <list> , IKT | <I/0 symbol> |

INT
<leftbhracket>sz= <
<rightbracket>::= > :
<I/0 symbol>::= M | YP | Y § YM § Tight |

11 } I2 § L3 ¢ XP | X |
left | BMO | BM1 | BM2 | BM3 | BM4 | BM5 | BMG& | BM7
<GR-list>::= <GR-allocation-size> | 0 <preload>
{GR-allocation-size>::= INT
<preload>::= <list-of-values> | TEXT <text>
<list-of-valuesd>::= <list-of-values> , <value> | <value> |

<repeat-times> [<list-of-values>]

E

GPPASM BNF Grammar Specification 129

<repeat-times>::= <valued>
<text>::= text string containing no + ", OT ;

130

ACP - anti coincidence point 20
Address space - GR 47
Addressing - BM 35

Addressing sequence 48

INDEX

Allocation -~ PDP8e device code by decade
Allocation of PDPBe IOTs for the RTPP
Allocation of status register QSTAT 100

Alphabetic listing of PDPBe IOTs

107

Area and perimeter of an object example

Assembler 24, 25
Auto-index addressing 49
Axiomat microscope 10

Block diagram of RTPP 15

BM 10, 11, 33

BH addressing 35

BY control by PDPB=2 T0Ts 103

BM controller accessing priorities
BM design 35

BM indirect address register 79
BM scan acquisition 34

BM scan and display selection 34
B¥ synthesized video 33

BY window 33, 34

BM window selection 34

BMXi 34

BEYL 34

BNF specification - GPPASM 127
BSR - bit select register 63
Buffer memories 11, 33

Buffer memory implementation 55
Bus structure 42

Cell Modeling System - CELMGD 21
Clear key - GPP 81
Collector module 29
Compiler 24
Computer module - QMT 29
Configuration of RTPP 10
Construction of the RTPP 54
Continue key ~ GPP 81
Control desk 16
Control Llogic Design 54
Control of the QMT 29
Control of the Quantimet 30
Control of the RTPP by the PDP8e
Current pixel 5

36

20

107

110

124

INDEX

DAB 48

DAB address trap key 82

bata address bus - DAB 48

Data bus - DB 48

DB 48

DDTG 24

DDTG -~ the RTPP debugger/monitor 24
Debugger - DDTG 24

Deposit key - GPP 81

Detector modules - QMT 28
Digitizer/densitometer module - QHMT 28
Display module - QMT 27

Display window selection - BM 34
DMA 102

DMA interface GPP~-PDP8e 50

DMACA 50

DMAGC 51

DMARC 50

Dynamic address vector registers - line buffers 50, 79

Edge and curve detection example 118
Effective address notation 59

Examine key - GPP 81

Examples of some RTPP instructions 58
FXDMAn 50

Execute key - GPP 82

Frame and scale module - QMT 33
Front panel - GPP . 80
Punction computer - QMT 20

General Picture Processor - GPP 19
General register address space 47
General register addressing 47

GETA 34

GETB 34

GETIj I/0 instruction 71

GETMSK 30

GPP 6, 9, 10, 11, 19, 41, 51

GPP - PDPBe IOTs for 102

GPP control by PDP8e IOTs 105

GPP control - microprogram control 53
GPP front panel 80

GPP I/C addresses 76

GPP I/0 instructions 71, 76

GPP input/output 49

GPP Instruction Group Selection 60
GPP instruction types 59

GPP line buffer and BM I/0 registers 79
GPP line buffers 49

GEFP Microprogram Assembler - MICROP 25
GPP coperands 45

GPP operators . 58

GPP program counter ~ PC 45

131

132 ' INDEX

GPP use of BMs 33

GPP/PDP8e synchronization 51

GPPASH 24

GPPASM BNF Grammar Specification 127

GPPCONT 51

GPPLDR 24

GR 47, 50

GR Address Allocation 47

Gradient used in Kirsch algorithm example 115
Groups - GPP operators 60

Halt key - GPP 81, .82
Histogram computation example 121

I/0 DMA 51

I/0 instructions 76

1 - 12 - 13 12, 37, 49

Irage acquisition 34
Implementation of the RTPP 53
Instruction lookahead 59
Instruction types 59
Interactive -~ control desk 16
Internal Control Logic Design 54
Introduction 3

IOT allocation by decade 110
I0Ts - PDPBe used in RTPP 83
I0Ts for GPP and DMA 102

LDXP 32

Lbyp 32

Level IV gray scale machine - 3 address machine 8
Lights on the GPP front panel 80

Line buffer dynamic address vector reglsters 50, 79
Line buffer I/0 with BMs 38

Line buffer neighborhood addressing 40

Line buffers 12

LINE I/0 instruction 71

LHASKE 30

LMASKX 30

Load address key - GPP 8l

LQDTAH 30

LgDpT2 30

LQDT3 30

MATINSAIL 24, 127

Mask displays on QMT 30

Mask register module 30

BEICROP 25

MICROP - microprogram asseémbler 53
Microprogram Assembler - MICROP 25
Microprogram implementation of the GPP 53
Microprogramming QMT modules 29
Microscope 10

INDEX 133

Modeling system - CELMOD 21
Monitor - DDTG 24
MSKADR 30

Neighborhood - defimition 5

Neighborhood addressing -line buffer 40
Neighborhood direction list processing example 117
Neighborhood operation 5

Numerical listing of PDP8e IOTs 11l

Numerical order of PDP8e IOTs 111

Operation of the GPP 45
Operator - GFP 60
Cperator groups 60, 61

P1 - P2 - P3 address fields 45, 47, 58

PBMj - indirect address BM register 79

PC address trap key 82

PDP8e 10

PDP8e acce551ng of BM data 35

PDP8e Device code allocation by decade 110
PDPBe I/0 transfer instructions for the RTPP 83
PDP8e IOT Instructions for BM controller 103
PDP8e IOT Instructions for GPP controller - 105
PDP8e IOT Instructions for RTPP-PDP8e DMA 102
PDP8e IOT Instructions for XY8E controller 106
PDPBe IOTs for RQC - QMT - stage - control desk 83
PDP8e segment - GPPASM 127 :
PDPBe/GPP synchronization 51

PDFBe/GPP~BM DMA interface 50

Pen module -~ QMT 28 :

Physical Buffer Memory addressing 35

Physical construction of the RTPP 54

Picture - definition 5

Picture operations 6

Picture operations as binary operations 7
Picture processing peripheral 21

Pixel - definition 5

Pixel operator - definition 6

FOSTA 34

POSTB 134

PRDL - PRocedure Descrlptlon Language 21
Program menory - PN 45

QDATT 30
QDAT2 30
QDAT3 30
QMSKP 30

QMT cursor 32

ONT reconfiguration 29

QMT shift register commands 94

QPROG - Quantimet program word allocation 90
QPROG2 30

134 ' INDEX

QPROG7 30

QPROGnR microprogram words 29

QSTAT 30

Quantimet 11

Quantimet control signals 95
Quantimet controller 20

Quantimet program word allocation 90
Quantimet shift register control 93
Quantimet status register -~ QSTAT 30
Quantimet subsystem 126

Quantimet videc 33

Random Neighborhood Accessing example 123
Reading and loading the SRG 98

References 56

RMASKE 30

RMASKX 30

RTPP Compiler/Assembler - MAINSAIL/GPPASH 24
RTPP configuration 10

RTPP design goals 4

Run length codes of an object example 126

Scan window selection - BH 34

Shift register simulated operation 97
Single instruction key - GPP 82

Single step key - GPP 82

Software synchronizing system for general I/0 51
Special I/0 registers - GPP 78

Stacks - ACP hardware 22

Status registers addressed by the GPP 78
STOMT 30, 34 .

Switches on the GPP front panel &8l
Synchronization - GPP and PDP8s 51
Synthesized video 11, 33

Three address machine 8

Triple line buffers 12, 37

Triple operand operations - binary algebraic cperations
Type 1 instruction 46, 58, 75

Type 2 instruction 46, 58, 75

Variable Frame and Scale module - QMT 28
Video - synthesized 11, 33°

Video A/D - D/A 33 ‘

Video input and output devices 10

¥8E control by PDPBe IOTs 106

6

