MICROPROGRAM CONTROL
ARCHITECTURE FOR THE
GENERAL PICTURE PROCESSOR

NCI/IP Technical Report #22
April 22, 1977

George Carman, * Peter Lemkin,
Morton Schultz, Lewis Lipkin,
Bruce Shapiro

NCI/IP=77/0%

Microprogram Control Architecture for the

e M A S TN W N WD YN W MR R W W U W A G S e el ke e A e SR D A A R

General Picture Processor

T T Y T T T T T A T

NCI/IP Technical Report No, 22

George Carman#, Peter Lemkin, Morton Schultz,
Lewis Lipkin, Bruce Shapiro

Image Processing Unit
Division of Cancer "iology and Diagnosis
National Cancer Institute
National Institutes of Health
Be thesda, Maryland 20014

#Carman FElectronics, Inc.
Corvallis, Oregon

April 22, 1977

Abstract

The General Plicture Processor, running on the
Processing Units” Real Time Picture Processor, will
microprogrammable control structrue, The ha rdwa re
specifications for this control is presented.

Image
use a
design

TABLE QF CONTENTS

Introduc tion

Microprogram structure
2a! Program memory

2.2 Microprogram memory
2.3 Data memory

2.4 ALUs

2.5 GPP==PDPSe interface

Description of microcommands

Microorogramming examples

4,1 Example 1
4.2 Example 2
4,3 Example 3
4,4 Example 4
4,5 Example S
4,6 Example 6

p—

15

23
23
24
25
26
28
29

SECTION 1

Introduction

The General Picture Processor, GPP, is an integral part of
the Real Time ™Picture Processor (RTPP) ([Carm74], [Lem74],
[Lem76a], [Lem76b5]) at the National Cancer Institute. This
document explains the microprogrammable control structure of the
GPP, The reader is expected to be fimiliar with the GPP from the
mentioned references, most important of which is [Lem76a].

The GPP i=s bagsically a register +to register transfer
machine, Because the GPP 1is also an experimental laboratory
picture processing computer, which requires a dynamic machine
instruction set, a microprogrammable control structure was
selected, The microprogram commands are sufficiently powerful
to allow the microprogamming of detalled high level picture
processing instructions,

With reference to figure 1, the GPP contains a mic roprogram
memory, MPM, & reentrant GPP instruction program memory, PM, a
date memory, DM, and a set of arithmet ic logic units, ALUs, The
PDP8e omay read or write each of the memories, The dynamic
microprogram memory controls the GPP while the program memory
contains the GPP machine instructions., The data memory addresses
most GPP special registers and cashe irage line buffers which
are interfaced directly +to the RT"P huffer memories [Lem76a
section 4]. Two 16=bit address and two 16~-bjit data buses plus
microcommand signals are routed via the G-bus, Most data
commun jcations between GPP modules is done via the G=bus,

This document will present the GPP microprogram control
Btructure, description of wmicrocommands, and examples of
microprograms, :

P L L L L L L L L DT T B T T W R L R R R R R T R R

E LR T)

{ i
| PDPsSe |

ANNY

\\\ - R SRR R SE e am el WS A
| MICROPROGRAM |
| MEMORY i

G N SN SR GRS SR A GE ER W AW AR AR

/ | \
/ 1 N\

| PROGRAM 1 I ¢ 1 | DATA |
| MEMNORY |rerewae] BUS |==r==e==] MEMO RY 1

N\ | / | VAN
N\ | / 1 |

. A T R wR e e A W l I

i ALUs ! | i

A V4 |

L LY E T W R R]

i IMAGE §
| BUFFER |
| MEMORY |

LR L LY L L T L L]

Figure 1: General Picture Processor,
The miéroprogram memory, MPM, program memory, PM, and data
memory, DM, are all read/write via the PDP8e, Most
communications between GPP modules is done via the G-bus.
The image buffer memory, BM, is interfaced directly to the

de.ta memory space cashe Iimage line buffers for fast data
transtfers,

[ppe—————— e L L L X T TR R R K R LR K R R L R R R R R R R K

SECTION 2

Microprogram structure

O e S s W e e e WS en e e e am e

The GPP microprogeram control structure uses a single phase
¢clock to execute the microcommands, The microprogram commands
are first decoded from the microprogram memory as a function of
the microprogram address register, MPAR[0:12], and then
distributed throughout the GPP (as required) to be executed on
the next clock cycle, While the present microcommand is being
executted the next microcommand is being decoded, This
look~ahead decoding is interrupted only when a conditional
micro=-jump occurs,

The microprogram address register, YPAR[0:12], is loaded as
a result of the contents of the program memory OPRgroup{ 0:8)
datum, As seen in figure 2, the GPP instruction addressed by
the program counter 1is first decoded from the program memory,
The OPFgroup{0:8] is usmed to select the microprogram which will
execute this instruction,. The nine hits of the OPRgroup may
address 512 individual microprograms., The starting address for
these microprograms in the microprogram memory is stored in the
mapping memory, MM, The OPRgroup 18 used as the address to the
mapping wmemory. The decoded data from the mapping memory is
stored in the microprogram address register to be used as the
starting address of the microprogram which executes the GPP
instruction in the program memory, PM (see figure 2).

R A W W A AP Sty M A o T R AN SR NN R R S N s s e e e e w s NS TP AS TN A R A S an e emom e T R W

- - - 32=hHits A L W e s M mw e R R M U R R AR A W

| PROGRAM |{(rvwmemmmccccacs | PROGRAM COUNTER AND |

t MEMORY | Address | PROGRAM FIELD REG., |
| Output
6a-bits | OPRgroup{0:8]
|-n-----_---—-—- G=hits
N/ N1/ Address
I ¢ 1 MAPPING {[<¢=)> PDPBe
i BUS | | MEMORY | read/wri te
I 13-bits

N1/ Input data
| MICROPROGRAM t
| ADDRESS REGISTER |
| 13-bits
\1/ Address
! MICROPROGREAM | <{==> PDPBe
L MEMORY 1 read/wri te
| 128~bits max,
A V4
MICRCCOMMANDS

'Figure 2t Petching the microcommands.
The output of the program memory subfield OPRgroup[0:8] is
used to fetch the starting address from the mapping memory
of the microprogram which will execute the GPP instruction
addressed by the prdgram counter,

A WS oy s i wmk e e S N D gl G G M S G A W R I N A N E R WL W U e S e W S G W R O A P W WS AR AR U R A O e e ale e N O GE e e E

2.1 Program memory

A YW W EE WP AR YR R SR WSRO

Becaues the GPP is pipelined and may fetch several PM
arguments while processing one GPP instruction several program
memory buffering registers are required. Figure 3 depicts the
program memory and the required reglsters and logic needed to
interface with +the mapping memory and GPP address, data, and
control buses (all labheled the G=bus)., When the program counter
is loaded by a microcommand, a program memory fetch secquence is
started, The program memory will then supply 64=bits of data to
the program memory interface. 7This data is stored in either the
program memory reglster, PMR[0:63], or the program memory huffer
register, PMBR[0:63], The program memory data segment,
OPRgroup[O:B], may be used as an address by the mapping memory.
The first 64k field (fileld 0) is connected to one of two memory
ports on the prograc memory interface, The second memory port

5

i8 made available for additional memory which may vary in access
time from field 0. The program memory interface also confains
four 16=bhit registers (PMWRi, i=0,1,2,3) addressed in the data
memory sSpace, These registers are used when writing on the
program memory with data from the PDPRe.

The program memory registera’, PMR, contents is distributed
to the GPP as PM arguments via the G~bus, When the PM data is
stored in this register, the program memory is free +to fetch
another PM word, This second PM word may be saved in the
program memory buffer register, PMBR, to be used by the PMR it
required, A third PM word may then bhe fetched which could bhe
stored in either the PMR or PMBR., Using the PMBR, two PM words
can be made available to the PMR. This double buffering of the
M arguments enables the two PM datums {incremented address and
branched address) 1In a conditional branch instruction to be
immediately available to the program memory register, PMR. As
can also be seen in figure 3, both the PM OPR[0:8] datum from
the PM or PMBR can be used by the mapping memory to obtain the
starting address af the next microprogram,

In ornder to fetch several PM arguments and choose which
will be used as the next GPP instruction, the program counter,
P, must be double buffered, Figure 4 depicts the program
counter loglc and buffers, The 16=bit program counter can
directly address any PVM argument in a PM 64k field., The program
counter buffer register, PCBR, is used to save the present PC
data plus one for restoring +the program counter during a
conditional hranch where the condition fails.,

The program field register, PFR, is used to select which PM
field the PC will address, The program field buffer register,
PFBR, 18 used to gave the future program field register data
until it is required. For example, when a GPP Jjump instruction
s executed the PFBR is loaded into the PFR and the next GPP
ingtruction is fetched from that field, The PFBR is addressed
in the data memory space and therefore may be loaded by a MOVE
instruction prior to the JUMP instruction.

A last in first out push down list for the PC and PFR is
used to implement the GPP PUSHJ and POPJ instructions (see
figure 4). The push down list, PDL, is 32-bits by 1K words deep
and is built with 1k RAMs. The push down list counter, PDLCTR,
is used as the address to these RANMs, Microcommands are
available to increment and decrement this counter as well as
vush and pop the PC and PFR into and from the PDL. The PC and
PFBFR are able to be read/written by the PDPBe, but +the PFR is
read only by the PDP8e. The PC and PFR are addressed in the
date memory space for read only. The PFBR is addressed for both
read and write in the GPP date memory space,

A ek e em Y A N D R R G GRS N SH SN S S G R MR T S N N R e s e e S G A U D D SN M B WS S N WA R R M A W A W TN A

LES TR T T - e o e - -

}] PM MENMORY | I PM MEMORY |}
| FIELD 0 { t FIELD 1-N |}

- - - o e -

Wy e Y R M WD S R W M e g G A A A AR U T AR R R W W e ew e

| €a=bits
| PROGRAM MEMORY INTERFACE |
| (program counter, PMWR 0=3, all read/write logic) |
| OPR, P1, P2, P3
{

| 6a~-bits
1 Pv¥ BUFFER REGISTER |
| PMER l
e e e e S e e e [e |
[64-bits { | 9-bits
NI/ ! \{/ PMopr{0:8]
| [—— | - -
---—---_) I O'R | -—---—-) | OR 'l
64 =bits =wee=me-a PMERopr[0:8] ————————
1 |
N1/ 64a-hits N1/ 9«bits
IO OO OO To mapping memory
I PM REGISTER | address input
| PMR |
!
N1/ 64-bits

- A A W

I G BUS |

- MR A G aml = .
- amm emm

Figure 3: Program memory logic,
Data stored in the program memory may be saved in one of two
registers, The PMBR 18 used as a buffer register to the
PMR., The OPRgroup{0:87 which 1is used as the address for the
mapping memory may be obtained by either the program memory
or the PMBR,

DR G D TR S NI WD SO M m e T SR U G D SN WD W M RN W A D N ks s e N A W G WD WS M A A W s oW R D N N AR WS AP R W aw

P Y L T L ey e e T T R R R L R R R R R R R R

PDPBe G BUS
/N /7N
N/ N1/

! PROGRAM FIELD BUFFER |
| REGISTER, PFBR[0:15] I

PDPSe G BUS ! PDPSe
| | T 16=bita \1/ P4 AN
| PROGRAM COUNTER,PC{O:15] 1 | PROCGRAM FIELD |
- rm ML E s ——————- - | REGISTER, PFR{ 0:1F] 1
| VAR { -
NI/ | | 1
o l e s e —————— |
|+ | | { |
.- t 16=bits | |
{ i : | I 16=bits
NL/ | 16=-hits NI/ N/
{ PROGRAM COUNTER RUFFER | | 1X PUSH DOWN LIST |
i REGISTER, PrBR | 1 FIRST IN FIRST OUT {

/N 10=-bits.
|
! " PUSH DOWN LIST |
[ADDRESS COUNTER |

U W N WD W WP A W TR GS A e em b A

Figure 4: Program counter logic.

The program counter contents plus one can be stored in the
program counter buffer register, PCER, to be later loaded
into the preogram counter. Under microprogram control the
program field buffer register, PFBR, is loaded into the
program field register, PFR, Both the program counter and
program field register may be pushed and popped from the
push down list.

e P L L L L E L E L A L L R Rl Rl I L R] e R T)

2e2 Microprogram memory

B A R L X Y]

A microinstruction is the total of all the microcommands
stored in the microprogram memory addressed by the microprogram
address register, MPAR[O:212], These microcommands are active
when there respective addressed memory location is a logical
true, A complete discription ¢f the microcommands may be found
in section 3. 1In order for the microcontrol logiec te address
data space arguments, 32 microcommands are assigned to two
microcommand fields called the MFA and MFE, Both these 16«bit
microcommand fields may be used as addresses or arguments in the
data memory space. The MFB[9-15] field may also be used to

drive the OPRalu[9-15] bus. This allows the microcontrol logic
to address or supply arguments to the ALU A or B registers and
then select the ALU used for the required operation, These
features enable high level GPP machine instructions, which use a
combination of ALUs, t0 be microprogrammed,

The microprogram address register, PMAR, can he set
directly to zero (see figure 5), The zero address is used as
the starting address for the initial start up microprograms,

The PDPBe may start and stop the microprogram clock which
allows the PDPBe to load the miroprogram and mapping memories. A
monitor microprogram may then be started at MPAR address zero,.
This monitor microprogram may walt for instructions from the
PDREe to load the progranr or data memory or execute GPP
programs,

The mic roprogram starting address +to execute a GPP
ingtruction is fetched from the wmapping nmemory (addressed by
elther the program memory huffer register OPR field,
PYRRopr{ 0:8], or the output of the program memory OPR field,
PMopr{ 0:8},) and loaded directly into the microprogram address
regigter,

Recause the mapping memory contains 1k 12=-hit words and the
PMARapr[0:8] or PMopr[0:8] are both only 9«bit addresses used by
the mapping memory a third 10=bhit mapping memory address is
provided via the data bus, D1[6:15] (see figure 5), This allows
for the program memory to supply or address the argument which
will provide the starting addresses of a special instruction
other than the 512 defined in the program memory OPR, The GPP
APPLY instruction 12 implemented with this feature,

A microprogram direct Jump is implemented via the
microcommand field MFA[3:15] loaded into +the mic roprogram
address register, A microprogram relative Jjump is implemented
using the present contents of the microprogram address register
added to the microcommand field MFA[3:15] and loaded into the
microprogram address register,

The microprogram address register is incremented by adding
one +to +the present contents of the MPAR and then loading the
result into the MPAR, '

Microprogram push and pop microcommands are implemented
using a four word last in first out push down stack as shown in
figure S5, To execute a microprogram push~-jump the present
contenta of the MPAR plus one is stored in the push down stack
while the microcommand field MFA[3:15] are loaded into the MPAR,
To execute a microprogram pop+-jump the contents of the top of
the push down stack is8 loaded into the MPAR,

Any data memory addressed device or ALU addressed device
may disable or stall the microprogram clock, This allows slower
devices to comple te their respective functions hefore the
beginning of a new cycle, For example, the divide ALU may
require part of several cycle times to complete its function.

9

The divide ALU simply asserts the MHOLD signal bus, which is
distributed throughout the GPP, and the microprogram control
togic disables the microcycle clock, When the divide is
complete the ALU releases +the MBOLDT signal bus whereby the
microcycle ias restarted. This feature not only allows ALUs to
take some extra needed processing time, but also allows special
slower data and program space memories time to- complete - their
read or write function before the next cycle occurs. :

10

LR R T RF YL AT L R R R LR E LR L L R L R R R T P R L T L N L LR T N g

! PMBRopr[0:8] | | PMopr[o0:81 1 | pif{6:15] |

N1/ 9=bits NI/ 9=hits 10=bits \1/

L L X O R TR B P L L LY L Ll LN T R T L L R

(MAPPING MEMORY, MM (3 address sources) !

YR WS N AN R SR W RS D WD I W W AR A ARG UM W A W AN G VAR A W e M Y A M A e R GNE SN R R ST S R AW W NN G R D A I AR A R R

N1/ 12-bits

I OR (===~ MFA[3:15]

12=~bits N1/ 12=-nwits

-—— - - LR L E L B F L Y E P 3 2 B L I R L L X R N T R N X NN

N/ 8 NI/ A

O R e R WP e W W sy ek oy e M e sk) e W S v W AT

i MICROPROGRAM ADDRESS ADDER: |
| C =B ¢+ 1, or C* A +* B |

12=bits | ©

|

1

t

|

|

i

i e el L Lt ket f Sadadndeck
1 | - i {

1 \1/ V4 MY 12-bita \I/ Nt/ N/

| = o - o —— - — -
| 1 4 WORD | i MULTIPLEXER 1
t | PUSH DOWN ESTACK | o
t

|

|

[

|

|

LR R Y L R L L. X l 12=bi ts

Nt/
ZERQ ==-=>1 MICROPROGRAM ADDRESS |
! REGISTER, MPAR !

—*n—-w——w—n—n—m—--vm--num----—w—wﬁﬂt-----ﬂ-I 12-b1ts
AN V4
1 MICEOPROGRAM |
| MEMORY, MPM 1
| Output (128-bits max.)
N/
MICROCOMMANDS =
GPP control, MFA, and MFB,

Figure 5: Microprogram memory logic,
The micraprogram address register, MPAR[0:12], may be loaded
from several sources, Data addressed by one of three
address sources tc the mapping memory or the MFA register
may be loaded directly into +the MPAR, The MPAR may be
incremented or lcocaded by the output of the four word push
down stack. The output of the microprogram memory addressed
by the microprogram address register is used as the
microcommands to control the execution of a GPP instruction,

Y S S R D G A I U U W B MY M A SR D W O W O O R AR AU W TS S o e e D R N S D s SR B GRS R D R R O D R AR R A R R e W

11

2e3 Data memory

The data memory space is divided into the I/O data memory
space and the general registers, GR, data memory space, The I/0
data space contains addresses for most special control registers
and is addressed in the top 2k of the 64k of the data memory
space, The GR is a fast (100 nsec,) interleaved memory
addressed in the first 62k of the data space,

Fegister to register data transfer in the data memory space
is accomplished using a separate read and write microcommand
function, An address and a microcommand to read are used to
address and decode an argument to be read in the data memory
space, The argument is then temporarily stored in a read data
register, FDR, one of which is present on most data memory
modules (see flgure 6), This intermediate storage register is
necessary especially when data is being moved from within the
same data memory module, Data may be stored in the data memory
space by supplying an address, data, and the wmicrocommand +to
write on the data memory sSpace. Therefore, to transfer data
from one data memory register to another, the argument is first
decoded and stored in its RDR during the first clock cycle and
then is used as data with a supplied address and stored in a
data memeory location during the second clock cycle,

Logic is provided on each data memory module to sence that
its respective RDR was Loaded, for exanple, on the opresent
cycle. This information is then used on the next microcycle,
with the appropriate microcommands, to load the respective ‘RDR
data onto one of the required address or data buses. -

To address GR double precisicon operands, which use
consecutive addresses, the first address is placed on address
bus Al and the second address (Al data plus 1) is placed on
address bus A2 durlng the same read cycle, (Consecutive
addressed GR data memory locations are interleaved.) Therefore,
each data mewmory GR module (and some I/0 registers 1like auto
index reglisters) must provide an adder for the plus one function
(see figure 6),

In order to address floating point arguments (three words)
a gpecial register, A2Pl, is used to store the previous contents
of the AZ bus plus one for use as an address during the next
microcycle, This register is not addressed in the data memory
Space,

Besides random access memory the data memory 1/0 space may
address "active"™ memory locations, These active memory
locations, when addressed, may initlate a GPP I/0 funetion or
drive the conditional bhus, CB, for ane microcycle thereby’
informing the GPP of a flip flop (flag) set, For example, +the
GPP MOVEB instruction uses this feature when it moves a datum’
into the addressed active register and branches if the CB bus is
asserted, The microprogram logic saves the CER bus if asserted

12

and will keep the CR +true until the CLRCR microcommand is
executed,

-——-_.-----—---——---—----—-—‘——--——q--———--t—--——----—---—-—-‘—o-n-

TR R A N e e e o bt di e L I T i —.

| J+«BUS | i G=-BUS !
1 (Al or AZ) 1 i1 (Dl or D2 {
N1/ 1é=bits ' N1/ 16=-hits
| address data input |

1 DATA MENORY ARRAY !

\l/ 16«-pits
| READ DATA REGISTEER, RDR 1
! (plus logic to sence being loaded by the present 1
} microcycle in order to drive the respective ¢ hus ¥
i line on the next microcycle,) !
\l/ 16~bite

---q—qq--q”q--q--u--t----n.—.--—-——.----------—-—n-o----—n-—-

| N1/ | { ' |

1 mmmem— ! i)

l I *1 =) =em | I
N/ ——mm——— N V4 N/ N/
Al A2 D1 . b2

Figure 6: Data memory logic.
The data memory array ies addressed by the Al or A2 address
buses, "ata 18 stored or read via the D1l or D2 data buses,
The present read function is used to enable the RDR to drive
one of the address or data buses during the next microcycle.,

Ll el B R R I T — S L L R e . e = S — bt e i bR T e —

2% ALUs

bl BTN)

Two sets of 16 16=hbit registers are used as inputs to the
ALUs, These registers, ALUA(0-15) and ALUB(O=-15), are
read/written and addressed in the data memory I/0 space. These
ALU registers are duplicated on each ALU logic card as required,
The w@microcommands can load them directly thereby freeing an
address bus for multiple or double precision data fetches and
stores, One of a maximum 128 AlLUs is selected by the OPRalu bus
(part of the G-bus), As many as 16 16-bit ALU output words may
be selected for storage in the data memory space (see figure 7).
Some ALUS have a conditional output which drives the conditional
bus, OB, for one cycle (after the ALU is started with a SETALU
microc ommand), The state of +the CB will be saved by the
microprogram logic until a CLRCE microcommand is executed,

13

G BUS G BUS
N1/ N1/
\ ALUA(O~15) | i ALUB(0-1%) 1
| {
N1/ Input NI/ Input
| { Conditional
OPRalu i ALUs | output
select ===w=)| ({subset of all GPP ALUs) |——rrem-
D SRR GER WS S AR AR AP W W EE W W W U WS N R W W W AT N S S R W W WS sl alie B wie W '
\|/ Data cutput N/

e e T) CB

| AQUT (0-15) 1
\i/
G BUS

Figure 7: Cne of several ALU logic cards,
The ALU logic cards each have a maximum of 32 duplicated
16=bit input words and can produce a maximum of 16 16=bit
output words., Thus, an ALU logic card could possibvly operate
on 32 input registers in parallel,

- G R W SR W AL R A AN SN R Y S M UR WD D A S0 W M A A A W W G S A G N D SN W I A G M A S W A mw s Al gE O Eem e e W e

2.5 GPP-«~PDPBe interface

LR R FE P L YT FEEYFEE TN

When the PDP8e wishes to transfer data to or from the GPP
program or data memories an address transfer counter must be
loaded by the PDP8e, This GP? +transfer counter, GTC, is
addressed in the data memory space but can only be read by the
GPP, Only the PDPS8e can write on the GTC, The GPP reads and
writes the mapping memory and microprogram memory using
programmed I/0, But the program and data memories are read/write
using PDP3e DMA, Once the PIDPB8e DMA has been set up and
initiated then a GPP input (GFPW) register and GPP ocutput (GPPR)
register are used to pass data to the PIP8Se DMA channel,
Because these two registers are addressed in the data memory
gepace the microinstructionse can control the data transfers, The
address 0of the deata transfers for the data memory comes from the
GTC being placed onto +the address bus, Al, The INCGTC
microcommand is provided to increment +the GTC after each
transfer,

If the transfer is to take place hetween the PDP8e and the
program memory then the GIC is first transferred to the program
counter via the data bus Di. Program memory data is then
trangferred to the program memory write registers, PMWR(0-4)
from the GPPW reglster and a PMW microcommand is executed which

14

writes the PMWR(0-4) registers onto the PM. To read the PN, a
PM tetch cycle is initiated by loading the PC and storing the
resul+ in the program memory register, PMR, where the results
are passed to the GPPR register to be read by the PDPSe DMA
channel, Both these function are fTully controlled by
microcommands (located in the micraoprogram monitor starting at
microprogram address zero),

15

SECTION 3

Micracommand definitions

L R T P T T

The following section lists +the microcommands and their
definitions, Many ot the microcommands are distributed
throughout the CGPP via the G-bus, There are also several logic
cards which some of the microcommands are routed directly to.
The {] notation will contain the following symbols; GB for GPP
G~bus, MC for microcontrol logic card, 8e for PDPBe interface
card, "M for the program memory card, and MFA or MFB for the
microprogram field cards A or B respectively,

Al (group..]GBl..The following 8 commands with the prefix of Al ¢
are coded using 3 microcommands., The code is specified
by the () characters,

Al(Pl...[GB]..(O)..Load program memory Pl onto address bus
Al.

- Al 2, ,../6B]..(1),.Load program memory P2 onto address bus
Al,

Al (3, ,..[GB]l.e(2)yuload program memory P3 onto address bue
Al,

Al <CAt..[6Bl..(3)..l0oad the previous addressed data as a
function of address bus A1l onto the address bus Al,

Al (ALU,.[GBjee(4).aload the selected ALU output register
onto the address bus Al, Select. the ocutput register
from the ALU10-3 microcommands.,. The contents of the OPR
bus during the last SETALU microcommand determins the
ALU selec ted., :

A1 CPAZ2,.[GB).+(5)u.Load previous address bus A2 data plus 1
to the address hus Al,

Al MFA..[6Bl..(6)..Load the microcommand field, MFA, onto
the address bus Al,

Al OMFB.,[GBJl..(7)eeload +the wmicrocommand field, MFB, onto
the address bus Al.

A2 {groupe..[GB]l.. The following 8 commands with the prefix of A2(
are coded vusing 3 microcommands. The code 18 specified
by the () characters,

A2¢Plese[GBlee(0)esload program memory Pl onto address bus
A2.

A2 (P2ueee[GB)..(1)..Load program memory P2 onto address bus
A2. '

16

A2<P3...[GB]..(2)..Load progran memory P3 onto address bus
A2 .

A2¢A2,..[GBl..(3)..Load the previous addressed data as a
function ot address bus AZ onte the address bus A2,

A2 (ALUV,..[GBJee(4).,Load the selected ALU output register
onto the address bus A2, Select the output register
from the ALU20-3 microcommands, The cantents of the OPR
bus during the last SETALU microcommand determing the
ALU selec ted.

A2 OMFA..[GBJae(8),,Load the microcommand field, MFA, onto
the address bus AZ,

A2 MFB.+[GBlaa(6),sLoad the microconmand field, MFB, onto
‘the address bus AZ,

A2 A1 P,.[GBlee(7)eoLoad the address data now loaded on the
address bus Al plus one onto the address bus A2,

D1 {Eroupe. . GBJl..The following 8 commands with the prefix of D1 «
are coded using 3 microcommands., The code is specified
by the () characters,

D1{Pless{GBle.(0)ouload program memory Pl onto data bus Di,
D1¢P2,.,.[GBJes(1)e.Load program memory F2 onto data bus D1,
D1 {P3uyse[GBleel{2)seload program memory P3 onto data bus Dl.

D1¢CAl,..[GBlae(3).eload the previous addressed data as a
function of address bus Al onto the data bus DI,

Dl (ALU..[GBJee(4)..Load the selected ALU ocutput register
onto the data bus D1, Select the output register from
the ALU10-3 microcommands, The contents of the OFR bus
during the last SETALU mjcrocommand determins the ALU
selec ted. :

D1 MFA..{GBl..(5).,,Load the microcommand field, MFA, onto
the data bus D1.

D]l ¢(MFB..[GBl..(6)s,Load the microcommand field, MFB, onto
the data bus D1,

Dl(OPR..[GB]..(T)..Load the progranm memory register OPR onto
the data hus D1,

D2 {group..[(GBJ..The following 7 commande with the prefix of D2 <
are coded using 3 microcommands. The code is specified
hy the () characters.

D2¢Pluess[GBla.(0),.Load program memory Pl onto data bus D2,

D2¢P2,¢.[GBlee{1)e.Load program memory P2 onto data bus D2,

17

D2¢P3.2e[GBlae(2)osLoad program memory P3 onto data bus D2,

D2¢A2..[GB],.(3).,Load the previous addressed data as a
function of address bus A2 onto the data bus D2,

D2 (ALU..[GBl..(4), ., Load the selected ALU output register
onto the data bus D2, Select the output register from
the ALU20-=3 microcommands, The contents of the OPR thus
during the 1last SETALY microcommand determinsg the ALU
selec ted,

D2 MFA, . [GBloe(8),,Load the microcommand field, MFA, onto
the data hus D2,

D2 (MFB..[GBl..(6),,Load the wmicrocommand field, MFB, onto
the data bus D2,

WAILD1T..[GBle.Write the contents of the data bus Dl onto the
data memory space addressed by the contents of address
bue Al if the conditional bus, CB, is true,

WALDIF..[GB]..Write the contents of the data bus D1l onto the
data memory sSpace addresgsed by the contents of address
hus Al if the conditional bus, CB, ia false,

WA2D2T..[GBl..Write the contents of the data bus D2 onto the
data memory space addressed by the contents of address
bus A2 1f the conditional bus, CB, is true,

WA2D2F,.[GBl..Write the contents of the data bus D2 onto the
data memory space addressed by the contents of address
bus A2 if the conditional bus, CB, is false,

READAl,.[GB)l..Load the addressed data memory module read data
register, RDR, with data addressed by address bus Al,

READAZ..[GB]..Lond the addressed dJdata memory module read data
register, RDR, with data addressed by address bus A2,

ALACDY ,.[GBl..Loard the selected ALU "A"™ register from the
contents of the data bus D1, Select the "A" register
from the ALU10-3 and the Program memory OPR bus for the
ALU, .

ALB1..,[GB)..Load the selected ALU "B" register from the
contents of the data busm D1, Select the "B" register
from thie ALU10-3 and the Program memory OPR bus for the
ALTU,

ALA(D2..{GBJ..Load the selected ALU "A" register from the
contents of the data bus D2. Select the "A" register
from the ALU20-3 and the Program memory OPR bus for the
ALU,

18

ALB(D2,.[6Bl..Load the selected ALU "B" register from the
contents of the data bug D2, Select the "B" register
from the ALU20-3 and the Program memory OPR bus for the
ALU,

SFTALU..[GBJl..Start the ALU operation as a function of the
operation bus And also enable the selected ALU to drive
the condition bus, The conditional bus, CH, is asserter
for two (2) microcycles 1f the condition sutput of the
ALU is true, Select the ALU from the OPV bus,

ALU10,..[GB]..Bit 0 of the ALU address and data bus, ALU1,
select register.

ALUlI...[GB]..Bit 1 of the ALU address and data bus, ALUL,
: select register,

ALU12,.,..[GB]..Bit 2 of the ALU address and data bus, ALU},
select register,

ALUt3,,.[GBl..Bit 3 of the ALU address and data bus, ALU1,
select register,

ALU20...[GBl..Bit O of +the ALU address and data bus, ALU2,
select register.

ALU21.,.,[GBl..Bit 1 of the ALU address and data bus, ALU2,
select register, :

ALU22,..[GB]..Bit 2 of the ALU address and data bus, ALU2,
select register.

" ALU23,..[GB)..Bit 3 of the ALU address and data bus, ALU2,
select regilster,

MFA[0:15)...[MFA]..Microcommand field MFA bits O through 15,
MFB[0:15 Jue+[MFB ls.Microcommand field MFB bits 0 through 15,

OPMFB..[MFB and PM].,.Load the microcommand field, MFR, bits 8
through 1% onto the OPR bus bite 8 through 15. Disable
the program memory OPR data from driving the OPR bus
bits 8 through 15,

JMPTeaae{MCl..If the conditional bus, CE, is true then branch to
the next microinstruction addressed by the mic rocommand
field, MFA,

JMPF .eaefMC].. It the conditional bhus, CB, is false <then branch
to the next microinstruction addressed by the
microcommand field, MFA, y

PUSFJIT..[MC]..If the conditional bus, CB, is true then branch to
the next microinstruction addressed by the microcommand
field and lLoad the wicroprogram address plus one in the
microprogram push down stack.

19

PUSHJF..(¥C]..If the conditional bus, CB, is false then branch
to the next microinstruction addressed by the
microprogram data register and load the microprogram
address plus one in the microprogram push down stack,

POPITu.o[MCl.aIT the conditional bus, CB, ism true then branch to
the next microinstruction addressed by the microprogram
push down S tack,.

POPJF,,.[MC]..1f the conditional bus, CB, is false then branch
to the next microinstruction addressed by the
microprogram push down Stack,

MPCPMT..[MC]..If the conditional bus, CB, is true then load the
microprogram starting address fron the PM via the
mapping memory into the microprogram address register,
The microinstruction addressed by the MM datum will be
used after the next microcycle is executed. If the PM
fetch is not complete then the microcycle is stalled by
the PM interface,

MPCPMF, ,[MCJ]..1f the conditional bus, CB, is false then load the
microprogram starting address Zfron the PM wvia . the
mapping memory inte the microprogram address register,
The microinstruction addressed by the MM datum will be
used after the next microcycle is executed. If the PM
fetch is not complete then the microcycle is stalled by
the PM interface.

MPCPBT, . [MCJl.uIf the conditional bus, CB, is true then load the
nicroprogram sStarting address from the PM buffer
register wvia the wmapping memory into the microprogram
address register, The microinstruction addre ssed by the
MM datum will be used after +the next microcycle is
executed, i

MPCPBP, . [MC]..If the conditional bus, CB, is false then load the
microprogram starting address from the PM bpuffer
register via the nmapping memory into the _mfcroprogram
address register, The micrainstruction addreased by the
MM datum will be used after the next microcycle is
executed,

MPC (Di,.[MCl..Load +the microprogram etarting address from the
mapping memory addressed by data bus, D1, into the
microprogram address register, This microcommand will
add approximately 100 nsecond to the microcycle,

INCPDL, . [MC]..Add one to the push down list address counter,

NENPDL,.,[MC]..Subtract one <from +the push down 1list address
counter.

20

SCMIT.e[MCleslond the contents of the data bus DI into the
program counter {f <the conditional bus, CB, .is true,
Also update the program field register, PFR, with last
stored data by a GPP jinstruction, When the PM" is loaded
a program memory fTetch sequence is executed,

PC®1iF..[MC]..Load the contents of the data bus Di into +the
program counter 1if the conditional bus, CB, i= false,
Also update the program field register, PFR, with last
stored data by a GPP jinstruction, When the PC is loaded
a program memory Tetch seguence s executed,

INCPCT..[MCl..If the conditional bus, CE, is true then increment
the program counter, When the PC is Incremented a
program memory fTetch sequence is executed, '

INCPCF,.[MCl..If the conditional bus, CB, is false then
increment the program counter, When the PC 1is
incremented a program memory fetch sequence is executed,

PCBRPC,.[MC]l..Load +the program counter huffer register with the
program counter data plus 1.,

PCPCBT,.[MCl..If the CB 1is +true, Lload the contents of the
program counter buffer register, PCER, into the PC and
start a PM fetch sequence,

PCPCBF,,[MC]l..If the CB is false, load the contents of the
program counter btuffer register, PCBR, into the PC and
start a PM fetch sequence,

PDL {PC..[MCJl..Load the program counter, PC, and the program
field register, PFR, into the push down list addressed
by the push down list counter, PDLCTR,

PC(PDL..[MC]..Load the PC and the PFR from the PDL addressed by
the PDLCIR. When +the PC 1is loaded a program memory
fetch sequence 1Is executed, .

LPFR....{MC]..Load the program tield register, PFR, with the
' contents of <the progream field bufter register, PFBR,
When the PFR ise loaded, A PM fetch sequence is executed.

PMRPMT..[PM]..If +the conditional bus, CB, 18 true then save the
program memory data locations addressed by the program
counter intc the program menmory output registers. If
the PM fetch is not complete +then the microcycle |is
stalled by the PM interface.

PMRPMF ,.[PM]..If the conditional bus, CB, is false then save the
program memory data locatione addressed by the program
counter into the program memory output registera, If
the PM fetch or write {(see microcommand PMW) is not
complete then the microcycle is stalled by the PM
interface,

21

PMRPBT,..,[PM],.If <the conditional bus, CB, is true then load the
program memory buffer register, PMER, into the program
memory registers, PMR,

PMRPBF, ., [PM}..If the conditional bus, CE, is false then load the
program memory buffer register, PMBR, into the program
memory registers, PMR,

PMBRPM,.[PM]..Save the program memory data locations addressed
by the program counter into the program memory buffer
register, If the PM fetch is not complete then the
microcycle is stalled by the PM interface,

PMWeeseelPM],.Write the program memory write registers, PMWO-4,
onto the program memory, Test when done by executing the
PMRPMF which will gtall the microcycle until the write
operation 18 conplete,

INCGTC..[8E].eIncrement the GPP transfer counter.

CLRCB...,[MC].sClear the conditional bus, CE,.

23
SECTION 4

Microprogramming examples

The following sec tion will introduce exanmples ot
microprogramming GPP instructions, The purpose of these examples
is to agquaint the reader with the microceommands and there use,
The reader is advised to study the NCYI/IP Technical Report #16,
the GPPASM==A PDPBe Assembler For The General Picture Processor
[Lem?76p].

In writing microprograms, all comments are enclosed in
quotation marks ("), All microcommands embedded between "/...\"
are executed during the same clock cycle. All labhles are
terminated by a colon (:), The microcommands MFA[0:158] and
MFB{ 0:15] are represented by [MFA] and (MFE) respectively. For
example, if a [243] simbol is used it represents the value of
243 in the MFA[{0:15] microcommand field.,

4,1 Example 1

L B R TR

The first example executes a GPP instruction when the GPP
RUN-HALT flip flop is set to halt, The PDPRBe first loads the
program counter, PC, and the program field buffer register,
PFBR, with the deslred starting address of the GFP instruction
in the program memary,. The PDPS8e then sets the GPP RUN=HALT
f1lip flop to PRUN, The microprogram nmust sense that the RUN
condition exists and execute the GPP instruction addressed by
the PC, In order to do this & monitor microprogram sfarting at
microprogram address 2zero is executed. The PDPBe has complete
control of starting the microprogram monitor at address zero via
the GMELT (GPP microprogram halt) and GPPCLR {(GPP clear) PDPBe
opcodes, The following microinstructions form the microprogram
for example one, '

WPARORIGIN 0O _
"The assembler will set the origin to zero,"
/MONITCOR: Al {MFA
READA1L
[RHFF I\ _
Thilis microinstruction addresses the GPP RUN=-HALT flip flop.
IfT the run state is on, then the condition bus, CB, will be
aesserted until a CLRCPE microcommand is executed,

/JEX1L2: JMPT
fTeco N\
If the RUN~HALT flip flop was set to RUN then the CB bus
will be asserted and the next microinstruction will start
from the label "G¢c"., If the CB was false then the
microinstruction which follows is executed,

24

JEX1L3: JMPF
fvoNITOR I\
If the CB is false then the next microinstruction will come
from the origin labeled MONITOR, This loop, then, will keep
testing for the RUN-HALT flip flop.

/502 LPFR
CLRCB\
Once the RUN-HALT flip flor was set to RUN the microprogram
Jumped to the label GO, Here the preogram field regisater,
PFR, 1s 1loaded by the program field buffer register which
was inturn loaded by the PDP8e, A PM fetch sequence is
injtiated and the CB is cleared,

/EXLLA4: MPCPMF

PMBRPM

INCPOEN :
The microcycle will stall until the previous PM fetch is
complete. Then, the microprogram counter is loaded with the
mapping memory data addressed by +the PM OPRgroup, The
program memory data is saved in the program memory buffer
register, PMER, The program counter is incremented and a
new PM fetch is initiated.,

/EX1LS: PMRPEBF\
The saved program memory data in the PMBR is loaded into the
PMR to be wusBed during the next microprogram, The next
microprogram executes the GPP instruction addressed by the
program counter which the PDP8Be loaded.,)

4,2 Example 2

e SR S W e

The second example is the microprogram of the GPP
instruction;

MOVE pl,,p3.

The MOVE instruction is a transfer of +the datum in . the datea
space location, pl, to the data space location, p3., The
notation of no # or “ means normal addressing. It may be
helpful +to think of +this GPP instruction as the one being
addressed by the PC via the PDP8e in example 1. Therefore, the
next microinstruction is the result of the microcommand, MPCPNMF,

in example 1,

The first micreoinstruction of the MOVE instruction is as
follows,

25

/MOVENORMAL : Al (P11

READAL

MPCPMF

PMNBRPM

INCPCEN\
The datum addressed by Pl is read and stored in its read
data register, RDR, for use in the next microinstruction,
Becaug e the microprogram for this MOVE instruction 1is only
two wmicroinstructions long, the MPCPMF microcommand .is
executed, This walows the fetching of the next GoP
instruction microprogram during the completion of the MOVE
microprogram, The MPCPMF microcommand will cause the
microcycle to stall if the previous program memory fetch was
not complete, The program memory data i1is stored in the
program memory tuffer register, PMBR, sSc that the program
counter may be incremented and a new PM fetch started.

JEX2L2: D1{CA1l

: © At (P3

"WALDLF

PMRPBF\ :

The data stored in the RDR in the last microinstruetion 1is
placed onto the D1 bus by D1{CAl, Also the address of the
‘'sink location, P3, is placed onte the address bus, -Al, by
AL (P3, A write is executed resulting in the data on the D1
bus being stored at the location in the data memory space
addressed by the Al bus, The program memory register is
loaded with the saved program memcry data for the next
microprogram fram the program memory buffer register, PMBR,

4,3 Example 3

EX XF o R LN RN

The third example is' - the microprogram of the GPP
ingtructions ’

ADD pl,p2,p3.)
This GPP ilnstruction will add the two arguments addressed by pl
and p2., The reault will be deposited into the location addressed
by p3. This GPP inastruction can be. thought of as following the
last MOVE Iinstruction ot example 2, Theretfore, the next
microinstruction ie the result of the microcommand, MPCPMF, in
example 1.,

/ADD : Al (P}
READALN
The date addregsed by the contents of Pl is loaded into its
data read register, RDR,

26

SJEX3L2: A2 (P2

READA2

D1 {CA1l

ALA <DIN\
The data addressed by the contents of P2 is loaded into 1its
data read register, RIR, The data previocusly loaded into
P1°s RDR is loaded into the ALUA register Zzero. The ALUA(O)
was selected by default, Since none of the ALU1 0-3
microcommands are present they are considered to be zero
which selects ALUACO) reglieter in the ALA <D1
microinstruc tion,

SEX3L3: T D2 {CA2
"ALB (D2
SETALU
MPCPMF
PMBR PM
INCPCF\ .
The data addressged by the contents ot P2 is loaded into the
ALU register ALUB(O0), The SETALU microcommand starts the
ALU operation selected by the QOPRalu bue which contains the
- QPR[9:15]). The ADD alu will be selected by this bys, The
MPCPMF microcommand is executed to set up for the next GPP
inatruction, The contents of the PM used for the next
microprogram ieg stored in the program memo ry butfer
regiater, PMBR, sS80 the PC can be incremented and another PM
fetch initiated.

/EX3L4 Al {P3

D1 CALU

WAIDLF

PMRPBF\ .
The result of of the ALU add is placed ‘onto the D1 bus and
stored at addresa selected by the contents of P3. The next
program memory data ig stored iIin the program memory
register, PMR,

4,4 Example 4

-y .-
The next exanple is the microprogram of .the GP°P
instruction; :

DAND pl,p2,p3.

Thie double precision GPP instruction will compute the bilt AND
hetween the two double precision arguments addressed by pl and
P2, The result will he deposited into the location addressed by
p3. All double precision and floating point arguments are in
the GR data space only, Recause the GR is interleaved the
microinstructions can address bhoth the high and low order words
of the double precision argument in parallel,

27

/DAND: Al <{P1
READAIL
A2<{A1P
READAZN\
The data addressed by the contents of Pl and Pl*1l is loaded
into thejir respective data read registers.

JEXALZ D1 (CAl

ALA <D1

D2 {CA2

ALA {D2

ALU23

Al (P2

READAL

A2 <CALP

READAZ\
The data read registers’ data is placed on the D1 and D2
buses to be stored in the ALUA(O) and ALUA(1) ALU registers
respectively. The data addressed by the contents of P2 and
P2+1 is loaded into thelr respective data read registers,

/EXaL3: D1 {CA1l
ALB D1
D2 {CA2
ALB (D2
ALU23
SETALU
MPCPMF
PMBRPM
. 1INCPCF\
The data read registers” data addressed by P2 and P2¢1 is
stored into the ALUB(0) and ALUEB(1) registers respectively.
The wmicrocommand, SETALU, starts the double precision AND
(supplied by PMRalu[0:7}) and the MPCPMF microcommand . loads
the microprogram counter with the starting address of the

next microprogram @ to be executed atter the next
microinstruction. The contents of the PM used for the next
ricroprogram 1= stored 1n the program memory buffer

register, PMBR, sBo the PC can be incremented and another PM
fetch initiated.

/EXaLla: Al (P3

D1 CALU

WALIDIF

A2 {A1F

D2 {ALU

ALUZ23

WA2D2F

PMRPBF\
The result of the ALU function, AOUT(0)} and AOUT(1), are
placed onto the data buses D1 and D2 respectively, The
addresses of the sink locations for this data is placed on
the address buses, Al and A2, and the write function is

28

executed, The next program memory data is stored in the
program memory reglster, PMR,

4,5 Example 5

AR AN A e we w Sm e

The next example is a GPP contional hranch instructiong
GTB pl,p2,p3.

The GTB instruction takes the arguments, pl and p2, and places
them in +the ALUA(0) and ALUP(O) registers respectively, The
greater=than alu is used: if pl is greater +than p2 then the
program counter will be loaded with the contents of P3 causing a
G®"P instruction tranch, Ctherwise the next GPP instruction is
executed,

/GTRBNORMAL = Al (P11
READAIN
The CB is cleared and the argument addressed by the contents
of P1 is stored in its RDR.

/EXSL2: A2<(P2

READAZ

D1 <CAL

ALA (D!

PCBRPC

PMRRPM

D1 <P3

PC<{D1F\
The argumnent addressed by the contents of P2 is stored in
its RDR. Alsg the lagt argument addressed by Pl is stored
into ALUA(O) register, The program counter data plus 1 is
staored into the program counter buffer register, PCBER, and a
PM fetch of the hranch PM target data is initiated,

/JEXSL3: : D2<CAZ
ALB<LD2
SETALU
MPCPBF\
The ALUB{(0) register 13 loaded with the argument addressed
by P2 and the ALU function is started. The microprogram
counter is loaded with the data in the mapping memory
addressed by the saved PM OPRgroup Iin the program memory
buffer register, This microcommand 1s executed to start the
next microprogram microinstruction fetch in case the ALU
obtains a false conditional output.

29

/EX5L4: PMRPBF
PCPCBF
PMRPMT
MPCPMT
INCPCT
CLRCB\
If +the CB is false then the PM data stored in the PMBR is
loaded into the PMR and the program counter is restored for
the next seguential GFP instruction. But, if the CH is true
then the branch target GPP instruction will he executed, In
order to do this the PMR is loaded with the PYW data
addressed by the branch address in the PC, The mnmicroprogram
address ftor this instruction is loaded into the microprogram
counter and the next micrcinstruction is executed from that
address, The PC is also incremented to initiate the next PW
fetch, Finally the CEB bus is cleared.

4.5 Example &

The following microprogram example is the GPP push jump
instructionj;

PUSHJ ,,p3.

The PUSHJ instruction stores the present value of the program
counter, PC, and the program field register, PFR, in the push
down 1list, PDL, It also increments the push down list address
counter, PDLCTR, and loads the PC with the argument from P3,

/PUSHINORMAL : PDL (PC
: D1<LP3
PC{(D1F
LPFR\ :
First the present value of the PC and PFR are stored into
the PDL addressed by the PDLCTR, In the same
microinstruc tion the new contents of the PC is loaded fron
the contents of P3, The program field ragister, PFR, is
toaded from the program field buffer regiater, PFHR, If the
PFBR was previously loaded with a MOVE instruction (or any
other GPP instruction) then the new program filield will be
used for the execution of the next instruction. The loading
of the PC and PFR injitiates a PV fetch sequence,

/EX6L2: MPCMMF
PMRPMF
INCEBCF\
The microcycle will stall until the PM fetch is complete,
Then, the PM fetched date will be saved in the PMR and the
PC is incremented which starts another PN fetch cycle. The
microcommand, MPCMMF, is executed to load the microprogram
counter with the addregss of the next microprogram to be
executed after the next microins truction.

30

JEX6L3: INCPDLN\
The push down list address counter, PDLCTR, ia incremented
so that during another PUSHI instruction the counter would
address the next location in the PDL,

