N\ ;‘

DDTG:

FUNCTIONAL SPECIFICATION
FOR THE RTPP
MONITOR/DEBUGGER

NCI/IP Technical Report #2

February 5, 1976

Peter Lemkin

NCI/IP-76/02

DDTG:

FUNCTIONAL SPECIFICATION
FOR THE RTPP
MONITOR/DEBUGGER

NCI/IP Technical Report #2

February 5, 1976

Peter Lemkin

Image Processing

Division of Cancer Biology and Diagnosis
National Cancer Institute

National Institutes of Health

Bethesda, Maryland 20014

"We here highly resolve . . .*"

TABLE OF

DDTG operations

1.1
1. 1.1
1.1,2
1.1.3
1.2
1.'3
1.3.1
1‘

&=

1.5
1.6

«10.1

CONTENTS

SECTION

Data spaces « s & e e s s e
Opening and modifying data spaces
Temporary data space specification
PDPBe special segment

DDTG command input« .« .

Breakpoints s 4 4 s = s s =
Continuing from breakpoints . .

Starting the GPP and PDP8e special

Seg ment L) [] - . - .

Data space memory searches .

DDTG symbols .+ « =+ « o« =
Adding new symbols . . .

] " " s e "

Deleting symbols . . .
Listing the symbol table
Dollar *'3* operators 50
Symbolic expressions for addresses
and computations . . SR
Expression assignment and evaluat;on
statements . .« 2 s 4 e e
Subscripts « +« o s =2 e s e
PDPBe Input Output Transfer Instruction
- I0T execution s 8+ e »
Polling loop execution of read/write
I0T pairs e e o+ s e e s
Microstate stage contrel . . .+ . .
Control desk keys - detector
assignment
Sampling the 16 channel
analogue/digital converter ., .
Standard Quantimet configuration .
GET/PUT data file space - data
acquisition
DDTG data file spaces
DDTG data file switches . . .
The Logical Coordinate System - LCS
Examples of the use of GET/PUT on
various data types s e s »
Indirect DDTG command execution S$SEXECUTE
DDTG functions definition and editing

[3 L] . L] L] 1]

L] » L] L » [] .

" 4 8 & % 2 ¥ s

« 8 ¥ & []

PAGE

4 = &« & 8 %

NN

18

19
21

21

22
23

24
25
26
33

34
36
3o

fad

s EEe

1.10.2
1.11

DDTG function control statements
Chaining to/from 0S/8 programs . .

1.12 Messages s ¢ s+ s s e e s s
1.13 Construction of mini-RTPP monitors .
1.13.1 DDTG user service routines - DUSR's
1. 14 The RTPP loader - GPPLDR . . - .
1.148.,1 Relocatable code
Loader File FPormat 9 "6 "o 9 -
2.1 load flle header T
2.2 :

Loader data segments PM/GR/PDPBe . .

GET/PUT data file space format . .« .+ & & o .

3.1 Data file space header
implementation . . 4.
.1 ' Arguments for Special Segments .
.1 BNF grammar for DDTG
.2 Iogical ‘structure of DDTG . . .
.3 Literal structure of DDIG.FT . .
. Use of symbols in DDTG
4.4,1 The symbol table ITYPE field .
4,0,2 The symbol table IVAL[1 2] fie
4.5 Internal subroutines He e .

O T Y
. o 2 B

EFEeEEpEEREREREEEEE
L
NG ML A g Jgru
L]

-tk b od O OO] U EWN -

L] . L] L L -
« 48 * & 3 » L]

4.6

u.?

4.8
4.8.1

5.1

W ad

Internal DDTG:subroutines .
Internal DINTRP subroutines
Internal I0 subroutines’ 5
Internal ODTSIM subroutines
Internal GETPUT subroutines
Internal SYMTAB subroutines
Internal IDTYPE subroutines
Internal DICMED subroutines
Internal DOAUX subroutines
Internal DUSR subroutines .
Internal MANDAL subroutines
Internal MOVESTATE subroutines
Internal GPPLDR subroutines .
External FORTRAN suhroutlne files i
DDTG « & o & &« o
DDTG I/O] 5 ;_'- . - - .
Compiling DDTG & . &+ o+ . .
Building a DDTG.SV core image

" & & 3 3 ¢ 3 3 ® 5 s mn { [Y
* ﬂd

I T T S S

=

PR R

Creating 0S/8 Fortran II special segments A S

Creating internal subroutines for
" special segménts
Fetching arguments from the DDTG stack

L] L] . - L] L] L] L L] - L) L] '] L] * L} L]

[I B L T D Y T R S R R R T T

L] L] L *

& » 2 8 & & [« 4 8 3 & 3 ¥

& & % » a2 & * F

1] [] L . L]) [] .

37
38
40
40
40
42
43

45
45
46

48
48

52
54
55
58
58
59
60
61
62
62
63
63
63
64
64
64
64
64
65
65
66
656

67
67
68
69

71

72
72

References . a g = a o 0

List of error numbers . 5 o o0 o . e e

Table of PDP8e IO0T's used in DDTG . . « s
B. 1 Iist of PDP8e YOTs for the GPP s .
B.2 List of PDP8e IOTs for the QNT/control

desx RQC - - - . »

Alphabetic list of DDTG commands T

C.1 List of $operator commands 55
C.2 List of unary operators ¢« e = s
C.3 List of data spaces - file data spaces

and switches g o o

DMA data transfers between the PDP8e and GPP/BM

T4
75

78
78

79
82
84
86
88

NCI/TP-76/02

Functional Spec1f1cat10n for the RTPP monitor - debugger

DD TG

NCT/IP Technical Report #2

Peter Lemkin

Image Processing Unit
National Cancer Institute, DCBD
National Institutes of Health
Bethesda, Md 20014

February 5, 1976
Abstract

LDTG, a monitor/debugger is constructed for user and/or
computer control of +the Real Time Pigture Processor (RTPP).
The latter, a multiprocessor image acguisition/analysis system
functions under DDYG in either stand alone mode (direct user
control} or is driven by one of several complex
interpreter/nodel structures existing on a remote time shared
PDP1" computer. In the latter case the overall system, 1i.e.
DDTG running on the RTPP, and driven by PDP10 structures,
congtitutes the CELMOD system, '

 SECTION 1

DDTG operations

—— o ——————— - —

DDTG, a monitor/debugger is constructed for user and/or
computer control of the Real Time Picture Processor (RTPP)
([Carm74], [Lem74], [Lem76b]) {Figure 1). The 1latter, a
maltiprocessor image acguisition/analysis system functions
under DDTG in either stand alone mode (direct user control) or
is driven by one of several complex interpreter/model
structures existing on:a remote time -shared PDP10 computer. In
the latter case ‘the overall system, i.e. DDTG running on the
RTPP, and driven by PDP10 'structures, <constitutes the CELNOD
system. This is illustrated in a block diagram in Pigure 2.

Functionally, DDTG is more tham a simple combination of
monitor and debugging facilities.- ‘As- the RTPP operating system,
it is reqguired to interpret direct (i.e. via control console)
user commands, or a string of commands generdted by user-PDP10
interaction. In addition, it is required to provide access and
control (at machine ‘langihage word ‘level) 'of major "~ memory
structures (PDPBe core, General Picture Processor (GPP) ‘program
memory {Lem76b], GPP general register memory {GR) [Lem76b] and
buffer memories [Lem76b]). It provides full control for a
variety of image acquisition and low level analytic peripheral
devices {e.g. Axiomat microscope stage, focus, etc. the
Quantimet 720 and a variety of its plug in modules, a special
mirror scanner, a sonic tablet, and a rapid scan spectrometer).
Display control functions of DDTG also include the Dicomed and
Quantimet displays.

DDTG has the ability to store, retrieve and execute
(from PDPBe disks) PDP8e and/or GPP programs {user or PDP1D
generated) {cf. TFigure 2). Since in stand alone mode, DDTG is
to be used as much by biologists as by computer scientists, the
user interface allows many high level and seeming English
command constructs. This in turn permits easy construction of
understandable control programs for stand alone use,
exploration and debugging at a very high level.

DDTG, written in standard PDP8e Fortran-Sabr consists
of 4 major parts: an interpreter, parser, symbol table, and a
large set of worker routines. The last include such features as
loaders for the various component computers of the RTPP, as
well as extensive and flexible disk I/0 routines, a wide

1

variety of stylized data structures, S

DDTG has capabilities which allow it to 1load and run
programs in +the RTPP and t¢ monitor their activity. An
extensive set of commands are implemented to facilitate image
data acgquisition and display, and the running of small picture
operation programs called “special segments™". The General
Picture Processor (GPP) portion of the RTPP will, in performing
picture operations, regquire special segment support from DDTG.
In addition, mechanisms are available for RTPP progranm
interaction with 0S/8 in order to facilitate the implementation
of image processing programs (exclusive of DDTG) to process
DLTG produced data.

Section 1 describes the operation of DDTG while
sections 2 through 3 describe loader and data acquisition file
formats respectively. Section 4 discusses the implementation of
DDTG. Section S5 discusses the creation of RTPP. special segment
program functions. Section 6 lists references used in this
paper. The Appendices list various tables (DDTG error messages,
PDPBe I0T's used in the RTPP, alphabetic list of DDTG commands)
in Appendices 3, B and C respectively. Appendix D discusses the
direct memory access (DMA) channel operation in the RTPP.

To run DDTG, type “.R DDTG"™ at the 0S5/8 monitor level.
DDIG responds with a “*", Commands are entered at DDTG monitor
wxw level, generally followed by a "carriage return®"., To exit
DDTG, type Control/C. This saves the state of DDTG and the
sc-called Special Segment (cf. 1.1.3). Typing ".R DDTG" will
reenter DDTG with the previous state of the system (at the time
the Control/C was typed) intact.

it the DDTG monitor ("*v) level, a basic clock polling
loop is active. This loop checks the control desk stepping
motor and threshold c¢omntrol keys and moves the corresponding
devices accordingly while also checking for DDT6 command to
execute,

i Dicormed 3 Display
1024 X 1024
64 Grey Leveis
_— 1024 X 1024 CRT Gray Lovel Display|
256 Grey Leves 860X 720
Video
Computer Controlied | imoge Plumnbicon/Sconner [Video & Control | Up To Eight 16-Bit X
Microscope Quantimet 720 256" Butter Memaries
\
Control Data
POPB/E Data Control GPP
= 32K Core > General Pichore
€M Disk) i Processor
Emuiat E'l/®l Control Desk
PDPII/20)
Message Switcher ; 1 User Teletypes
% High Speed Chonnel
PDP~10 Al System

BLOCK DIAGRAM OF RTFP

Figure 1. Real Time Picture Processor

A block diagram of the real +time picture processor is
illustrated. The PDP8e¢ computer directs the microscope stage to
positions determined either manually by the operator or
automatically by the PDP10 system through DDIG. Images may be
acguired by the buffer memories for processing by the GPP. Raw
images as well as processed images may be displayed on the
Quantimet 720 display. Precision scanning and display are
implemented by the galvanometer mirror scanner and Dicomed
display. The user may interact with the system either through a
control desk or a teletype.

PRDL

PROCIO Procedural Description) MAINSAIL

PDP-10 Picture Language Comgpiler for RTPP FDP-10
Processing System

Modeling System

Function | Property
Requests Lists

DOTE

GPPASM
RTPP Monitor Assembler for RTPP | RTRP -

Control
Console

PDP8/e

Buffer Memory
Image Analyzer

Figqure 2. CELMOD system

Software structures are on the left while hardare is to the
right. The relationship of DDTG to the other software
components of the overall cell modeling analysis system is
shown. DDTG resides on the RTPP hardware system, It may recieve
direct console input, but in full system operation it
communicates with PRDL especially sending property lists of
analyzed images and receiving command strings of various
functions. It also recieves assembled code from GPPASM loading
for loading into the RTPP. The PDPI11 and its resident message
switches aare essentially user and computer transparent.

General Piciure Processor

1.1 Data spaces

i ———

A data space is a contiguous region of memory in a
particular hardware processor. This section discusses the
accessing and modification of data spaces for the parpose of
debugging and monitoring. There are seven data spaces in the
RTPP, The program memoxry PM, the general registers GR, the
three tripie line buffers I1, I2, I3, the buffer memories BHM,
and the PDP8e special segment. The data space mode may be set
by any of the following:

$DSPACE_$PDPSE
$DSPACE_$PH
$DSPACE_S$GR
$DSPACE_$11
$DSPACE_S$I2
$DSPACE_S$I3
$DSPACE_$BM

Typing
$DSPACE=

($ is dollar sign - not escape character) will give the current
data space mode. The PM and GR address 000000:177777 octal
(65K) . The 8e addresses 00000:77777 (32K) while I1, I2, and I3
address 0:377 (y-1), 400:777 (y) and 1000:1377 (y+1). The BM
addresses 0000000:1777777 (8 buffer memories) (8 x 65K).

1.1.1 Opening and modifying data spaces

- —— . A R D e W i) e —— W ==

DDTG may open, modify, and close all GPP memory and
registers (including the special registers) which are normally
accessible 1in the GPP address space. These include the PM, GR,
special registers, I1, I2, and I3, BN memory, and 4K locations
of PDP8e memory (field 7) called the "8e special segment®. The
concept of "opening”, "closing" etc. memory spaces is explained
in [DEC73] and {DEC74] under sections on the operation of DDT
and ODT (debugging languages for the PDP10 and the PDPS8e
respectively).

DDT (ODT) is a symbolic (octal)debugger program for
debugging assembly language core image programs. ODT and to a
lesser extent DDT are "invisible" in that they may reside in
the system memory but take up almost no space in and thus

1.1

interfere minimally with the program under test. DDTG is
designed with similar goals in mind, that is to allow complete
interrogation of the underlying hardware/software machine with
minimum constraints imposed by the debugger/monitor.

The PM, GR and BM memories are ‘"opened"® and "closed"
via Direct Memory Access (DMA)} from the PDP8e. In the case of
the three triple line buffers I1, I2, and I3, a program is
swapped into the PM from the PDPBe to copy the line buffer line
to the PDP8Be via GR DMA. After modification, the GPP PM and GR
are restored. In general, memory, modulo the current data
space, may be opened in the current data space by typing (using
the 0S/8 ODT conventions)

nnnn/ XXXX yyyy (carriage return)

where the XXXX was typed in response by the system and the
lower case characters by the user. The user may respond by
typing an expression yyyy (carriage return) to replace the
contents of nnnn (i.e. XXXX) with yyyy. By responding with
just a carriage return, the contents remains unchanged.

For example:

400 s CLA tad+.+1
401 7 JMP 403 dispt

To replace the contents of a location with 6-bit Ascii
string data, the Ascii string should be enclosed in the
delimiter ! (e.g. !ABCD!). Up to four characters may be coded
this way since the maximum variable size is 24-bits. Six-bit
conversion is done right justified (left filled with =zeros).
For example:

200/nnnh !AB! (load 6-bit "AB" into loc 200)

Ascii string data occurs in I/0 statements and in string data
used in interpreters such as DDTG.

1.1.2 Temporary data space specification

O - ———— - —————— = =

A temporary access to a data space mode different from
the current mode may be made by using the construct "&<data
space>" following the address but before the "/", For example,

1.1

nann&PM/

nnnn&GR/

nnn&I1/

nnng§Il2/

nnn§l3/

mannnnn&BN/ (m is memory nnnnnn is yxaddr)

mnnn&PLPSE/ {m is field, nnnn is address., m is
. ignored when in $PROTECT mode

and field 7 special segment is assumed.)

1.1.3 PDP8e special segment

A A P R A e DG ey S A e — -

In general, in the RTPP, the PDP8e plays the role of a
sequencer for the GPP. In order to cotrol specific GPP
programs, 4K of PDP8e memory is allocated. This memory space is
called the PDP8e special segment. It is possible to load PDPS8e
programs (specifically absolute binary files) intoc the special
segment (see sections 2 and 8) using the LOAD command (see
section 1.14),

As the user is able to modify the PDP8e memory space it
is possible to destroy DDTG. Two commands to DDTG allow the
user to protect the PDP8e DDTG memory outside of the special
segment, and to unprotect it.

$PROTECT (the 4K field 7 data space is the special
segment and all 8e addresses map into
field 7.)

SUNPROTECTV(the 32K absolute 8e address needs to
be specified in this mode.)

The default on entering DDTG is PROTECT mode.

1.2 DDTG command input

T — T ———— ————

Input is taken from the teletype (or from a disk file--
see BEXECUTE command) and is accepted until a break character
(line feed, carriage return, /, <, >, =) is typed. Up to that
point, various editing characters may be used to facilitate
command input. These are as follows:

1.2

BEdit commands
"Rubout" will erase the last DDTG teletype input
character.

Control/R will print out the cleaned up teletype input
entered so far (cf. line feed in 0S/8 monitor level).

Control/C will save the state of DDTG on the SYS:.and
exit to 05/8.

Control/U will erase the current DDTG teletype line.

Control/T will print out the status of DDTG (CE.
DDTCHN.PT for discussion om DDTGSTATUS).

Control/E is only operative during the reediting of a
DDTG function (cf. 1.10.1) and is used to terminate
additional input text.

Control/Z is only operative during the reediting of a
DDTG function (¢f. 1.10.1) and is used to terminate
text input.

Break characters

"/" opens the specified (or current if not specified)
location in specified (or current if not specified)
data space.

">" or line feed will open .+1 location in the current
data space. Line feed is added for symmetry with ODT.
It does not close or change the current location.

"<" will open .-1 location in the current data space.
It does not close or change the current location.

Carriage return will either store the value of an
expression, close the current opened location if it was
open or execute the given DDTG command. If on closing a
location, no expression is given, then the contents of
the location remains unchanged. Note that during the
reediting of a function (cf. 1.10.1) only the carriage
return break character is operative.

“=" will cause the printing of the value of the
specified expression.

1.2

10

-

Various modes of operation are available in DDTG.

Typing $MODE or $MODES will type out the current state of the
DETG mode switches,

$ECHO will cause the‘input command stream to be echoed
on the TTY:.

$NOECHO will cause the input command stream to not be
echoed on the TTY:.

$5PO0L causes the teletype output to be written onto
MTAT1: in addition to being typed on the teletype. On
entry to DDTG, the magtape is rewound and on exit, the
spooled file is closed. This is one aspect of the
automatic "note taking" capability.

$NOSPOOL turns off the spooling but does not close
the spooler file. This allows selected output to be

~spooled. On entry, DDTG is set to NOSPOOL.

. $PROTECT (the UK data space is the special segment)

(cf. Section 1.1.3). (The default option.)

$UNPROTECT (the 32K address needs to be ,specified in
this mode.} (cf. Section 1.1.3).

$0CTAL sets the TTY I/0 to octal. (The defanlt option).
$DECINAL sets the TTY I/0 to decimal,

$BCD sets the internal number conversion I/0 to BCD and
TTY I/0 to decimal. This mode is useful for looking at
Qunatimet data whick is usually in BCD. It effectively
performs BCD conversion on all register I/0 transfers.

$SIXBIT toggles {alternates the on/off value of) a
printout on/off switch which will cause the contents of
locations which are opened to be printed in 6-bit
Ascii. It overides the effect of the $0CTAL, - $DECIMAL,
$BCD switches and erases the effect of the $SYMBOLIC
switch., This switch is similar to ™nT® printout in
PDPI10 DDT. .

$SYMBOLIC toggles a printout on/off éﬁitch which will
cause the contents of locations which are opened to be
printed in as op-codes associated with that. address

1.2

11

space. It overides the effect of the $OCTAL, $DECIMAL,
£BCD switches and erases the effect of the $SIXBIT
switch., This switch is similar to nT printout in PDP10
DDT. An alternate form of the $SYMBOLIC command is $S.

$COMMENT toggles on/off a printout switch which will
cause a request for comment to be issued wvwhen a data
file is created and the switch is on. If a data file is
being read by DDTG and the comment switch is on, then
the comment is printed on the teletype before the
operation proceeds.

$STDDET assigns the control desk switches thresholds 1
and 2 to control the Quantimet Standard detector
thresholds B and C. $STDDET is the default mode.

$DIGDET assigns the control desk switches thresholds 1
and 2 to control the Quantimet Digitizer detector
thresholds A and B.

$MANUAL enables the manual control of the mechanical
state of the RTPP from the control desk keys. This
includes the control of the Axiomat x and y stage,
Axiomat focus and zoom, the 1light source variable
wavelength and neutral density rotary filters and the
Quantimet thresholds 1 and 2.

$NOMANUAL disables the manual control of the state
described above.

$SETQMT resets the Quantimet program words (QPROGn),

status register, Frame and scale positions and sizes,
clears the Mask register to the standard configuration.

1.2

12

1.3 Breakpoints : e b . - o

-

special

e ——

Breakpoihts may be inserted in the GPP PM or PDP8e
segment . If PDP8e is in S$UNPROTECT mode then

breakpoints may be put in DDTG itself! The concept and use of
breakpoints is explained in detail in [DEC73)] and [DEC74].
Eight breakpoints are available in DDTG.

GPP PM breakpoints are impleﬁented bf swépping a PM

“HLT" instruction and comparing the GPP PC on detecting a

status

(data address bus trap) register "run" off. The DABTRP

(data address bus trap) register could also be. used for
detecting particular data patterns occuring on the DAB. The
PCTRP (program counter trap} register is more useful in console
debugging than in DDTG. Details on the trap registers is given
in [Lem76b]. : _ .

FbhPBe special segment breakpoints. are implemented by

breakpoint processing code to be inserted into locations
[70024:70027] which are therefore mnot to be used by the
programmer.

ar

or

. The format is:

nnnn$BREAK m - mis 1 to 7 and is the breakpoint number
in the current data space (PDP8e or PHN)
and -nann is the address to put the break.

nnnn$BREAK m&6PM - force the break to be in the
PM data space.

: nnnnSBREAK'mSPDPBE - force the break to be in . the PDP8e

data space.

" $BREAK m - remove breakpoint number m wherever
it is.
$BREAK m~ - prints the address nnnn of breakpoint m.
$BREAK= - prints the addresses of all breakpoints

1.3.1 Continuing from breakpoints

nn

e et e e el L R ———

A command is available to continue from a breakpoint

times. This is implemented by DDTG successively testing a

1.3

13

counter each time +the breakpoint is encountered until the
counter counts down %o €. If the counter is not 0, then the
breakpoint is automatically continued. The format is:

nnnn$CONT m = - continue from breakpoint m, nnnn times
or
$CONT m - continue from breakpoint m once.

1.4 Starting the GPP and PDP8e¢ special segment

N i i O - ————

The GPP or PDPBe special segment may be started at any
location by either of two methods. The $START <command
(discussed in section 1.14) and the $G0 command. The $GO
command has the following syntax and semantics.

nnnn$Go. - start the current GPP or PDPBe special

segment data space at nnnn.
nnnn$GOEPH - to start the PM while in another data
space.
or
nnnn$GOEPDPAE - to start the PDP8E while in another

data space.

The special segment (GPP) is started if the current data space
is the PDPBe (PM).

1.5 Data space'memory searches

o o W rre W e U e e e e A

A data space memory search is a sequential checking of
the «contents of sucessive data space locations for a match
against a search value nnnn. The format is

nnnn$ SEARCH - search in the <current data

space.
or
nnnn$ SEARCHEPNE : - search in the PM data space.
or
<value>$SEARCH - where <value> is either a

PDP8e IOT or a variable in which
case the value of the variable is

1.“‘" 105

14

used.
CLA $SEARCH - search for CLA in the PDPS8e
VAR1$SEARCH - search for the contents of

the variable VARt.

The addresses of all locations in the specified data space
which match the search variable are printed. Typing control/o
during a search will terminate the search.

1.6 DDTG symbols

- ——— v — -

DDTG recognizes gymbolic equivalents for GPP operators,
special registers, GR "Ri", PDP8e operators etc. DDTG has the
facility to add GEEPER compiled program symbols as well as DDTG
user generated symbols to its symbolic memory. These symbolic
equivalents may be used instead of numbers wherever desired.
The exact interpretation of these symbols depend on their usage
in the current data space.

€.9G. 12347 ADD,'IN[5],%6,1I3[5]
would be used to enter "I3[5]<=='I1[5] ADD #6".

Where ' denotes an 1indirect address specification and #
denotes an immediate address specification.

A+ 1=

will print the value of the contents of variable A plus 1.

1.6.1 Adding new symbols

i o v N o o e e S v ol sl

New symbols are entered by using the backslash (\ not
/) using the syntax

<ival[1P ,<ival[2P ,<symbol type>\<symbol name>

where the three fields ivalf1], ival[2] and itype are discussed
in more detail in section 4.4,

15

For example:

0, 1234, PU\NEWPMSYN - (new symbol at address 1234 in the PHN)
or

0000, 1600, PDPMRINTADI - (define Be memory ref. instruction)
or

0000,0146,GPPOPR\XOR - (define GPP operator)

1.6.2 Deleting symbols

—— e T s

Symbols may be deleted by +the $DELETE command which
deletes the list of symbols which preceed it. Only the symbolic
equivalent of a symbol is deleted, not its usage (i.e. value)
in its related data space, e,d.

<list of symbols>$DELETE

1.6.3 Listing the symbol table

T M i -

The symbol table‘maj be listed Selecti#ely by data
space by typing the following (with controel/0 to stop the
listing): »

<list of data spaces>$LISTSYN
or
<list of examples of other data types>$LISTSYM

The examples include numbers, variables, function names, file
names and extensions, I/0 devices, PDPBe I0T's etc,

For example, to look at PDPS8e load IOT's use an example of one
such as:

MOL$LISTSYM
e.g.
PMPLISTSYM (te 1ist all PM symbols)

A -4
ASLISTSYM (te list all DDTG variables since A
is a variabkle)

Specific information on the value and type fields of

1.6

16

one or more symbols may be obtained by typing:

<list of symbols to print>$SYMPRINT

1. 6.4 Dollar '$' operators’

i el et e e T R —

DDT6 multi-character operators and PDP8e Input Output
Transfer instructions (I0T's are discussed in [DEC74]) may be
used with or without a "$® prefix. The "$" prefix is useful as
a delimiter but a space or comma may be used as well. For
example,

$READSTATE
and
READSTATE

are equivalent.

1.6.5 Symbolic expressions for addresses and computations

- S i o S i - —— A P i WP il e . e W i A —

Arithmetic expressions using +, -, *, % (integer add,
subtract, multiply and divide) may be used in all symbolic
address specifications. No parentheses are allowed. Operator
precedence (({*,%) over (+,-)) is governed by a 1left to right
scan. The data space mode used is that of the last symbol
scanned before the. "/" or the current mode if arithmetic
without symbols is performed.

€e G GC+o/
or '
LIST+OQOFFSET-5/
oI
S+6%y/
or
o+6/

Expressions may be evaluated on the terminal by typing
an expression followed by an equal sign "=,

GO +6=

1. 6

17

1.6.6 Expression assignment and evaluation statements

R ok e S e A ——— . S ———— A T T D W A e e e e M b i

The value of an expression may be stored in the value
part of a variable symbol using an assignment statement. The
assignment operator is the backarrow "_n, '

A_B+C*D
or
A_$HPR (reads the BCD frame and scale position and stores
it in A.)

The value of the variable may then be used in an expression.
For example , ‘

A+1=

1.6.7 Subscripts

T . —

Single index subscripts are allowed on data spaces and
address symbols as a means of accessing elements of the data
space when the data space is treated as'a 1-dimensional atray
with subscript value 1 corresponding to the address of the
array name variable. The expression inside of " ...]J]" must
evaluate to a number in the legal range of the data space or
address. ‘ ’

A line buffer current neighborhood is addressed by
omitting the square brackets as in I12 (which is just an
address looked up in the symbol table). That is, I<line buffer
name 1, 2 or 3><current neighborhood pixel name>. Note: the
line buffers consist of 3 lines: the first (y-1) ranges from
0:377, the y 1line from u400:777, and the (y+1}) 1line from
1600:1377.

For example, to access e€lement "12345v of the buffer
memory BHM2.

A_BM2[12345]
To access the 3rd point in line buffer I1 in 1line Y+1 first
define the line offset YPLUS1.
Then

YPLOS1_1000

1.6

18

B_I1[3+YPLUS1]

For example, to access an array in the PDP8e such as the
polling loop read IOT's array POLLR.

POLLR[4)/
The write IOT would be similarly used:

POLLW[4)/

1.7 PDP8e Input Output Transfer Instruction - IOT execation

A A AL S i Al iy P . . W R S AL WP S e e kWl e ———

A set of PDP8e 1Input Output Transfer instructions
{IGTs) are used to control the GPP, the Quantimet and control
desk. The RTPP specification [Lem76b] for more details on these
IOT's. Appendix B lists the PDP3e IOT's used in DDTG. This
list 1is broken up into GPP (General Picture Processor) related
IOT's and Quantimet control desk related IOT's.

The I0Ts may be evaluated at DDTG comtrol:
teletype level. The contents of the PDPBe accumulator (AC) at
the time of the IOT evaluation may be specified by an optional
left argument. If no number is specified, c(AC)=0000 before
execution of the instruction. - Por those instructions which
read the AC, the value of the AC is printed after their
execution if the read IOT is given by itself.

In addition, the IOT may be used in arithmetic
expressions taking its argument (if a LOAD IOT) or returning a
value ({if a READ JOT) from/to the expression evaluation. For
example:

$BCD

$STOMT

$OMSKP
ODAT1%*1000+3QDAT2=

will run the QMT and then compute the double precision BCD QMT
data.

$BCD

HORPOSVAR_$HPR+10.
HORPO SVARSHPL

1.7

19

will read the frame and scale horizontal postlon, add 10 to it
and move the frame right to this new position by loadlng the
value into the horizontal frame and scale position reglster.
Registers which use BCD inpat and output should be used only in
BCL mode and v1ce versa as the BCD conver51on 1s done during
the actual register 1,0, ;

If the symbol is used as the contents in the response
for a PDPBe opened 1location, it is not evaluated and its
correspending 12-bit "value™ will be used.

e.g. 2005PDP8E/ 0000 $STQMT

will insert the opcode for STQMT in special 8e segment location
200,

1.7.1 Polling loop execution of read/write IOT pairs

S R R e S W D AT i R S ———— o i T S e i i e S ———— - ——

At the leve of user interaction, DDTG is in a polling
loop. This 1loop polls the clock, manual state control desk
switches, and teletype at 200 Hz. In addtion, it evaluates up
to 16 ordered [0:15] read/write IOT pairs. This facilitates the
building of simple minded monitors for debugging the hardware
and other types of control functions. The syntax is as follows
(where """ js an uparrow character and index is a number in the
range {0:15]):

<write IOT> = <read IOT>,<index>

For example, a polling loop monitor could be built to load
QPROG3, DETC and DISPT1 from ¥BWS, PB¥N7 and RKYPDL control desk
switch I0OTs respectively.

$QPROG3 = $FBWS, 1
$DETC ~ $F¥BRW7, 2
$DISP1 = $RKYPDL, 3

This would have the effect of loading part of the Quantimet
program word from switches on the control desk, loading the
Quantimet threshold C detector level from control desk switches
and loading one of the displays on the control desk from the
control desk keypad.

Initially, the read/write polling loop is cleared. 1t
may easily be setup by using a set of polling loop triples in a

1.7

20

$EXECUTE function. As the polling loop is part of COMMON it
will be restored whenever DDTG 1is exited and reloaded. The
polling loop is initially null whemn a system is built (.R
INISYM.S5V). It may also be cleared by entering (0°0,i) to clear
entry i. The $ZEROSTATE command will -also clear all entries.

1.7

21

1.8 Microstate stage control

. A W S T e e —— A T D e R AN W AN

The state of the auxillary microscope stage (x,y,focus),
light source intensity and wavelength, and Quantimet detector
threshold values is controlled directly by the command

" $MOVESTATE (Th-2,Th-1,x,y,focus,zoom,intens ,wavelth,<switch>)

This command uses the MOTORS/NVMTR subroutines modified
by Gerson Grosfeld from the NCI GRain Counter 1.1 [LipL74] to
move the selected motors. The 8 arquments
(Th-2,Th-1,x, y, focus, zoom,freq, dens) specify the change in the
position of the respective state while <switch> is the symbol
REL or ABS. If the motion is absolute, the symbol P is used to
denote no <change in the corresponding microstate motor
position. For example: '

$MCVESTATE (0,0,+3,0,0,0,0,0,REL)
or _ .
$MOVESTATE (P,P, 100,-34, +2,P,P,P,ABS)
will move the stage in the first'dase +3‘RELative in x. In the
second case (x,y,focus) will change +to the ABSolute state
position of (P,P,100,-34,+2,P,P,P,P) where P means the previous
position. Variables can also be used as well as numbers to
specify a change in state. The command

SREADSTATE
prints the 8 state vectors.

If 8 variable arguments are specifiéd for $READSTATE (like in
$MOVESTATE) then the values are saved in the variables instead
of being printed. '

The microstate is set to a zero vector when the DDTG
symbol table is compiled. It is possible to zero it at any time
using the $ZEROSTATE command. The manual state control default
is normally disabled. It is toggled on and off by the switches
$MANUAL and $NOMANURAL respectively.

1.8.1 Control desk keys - detector assignment

—— R e W R S e G R M e S S R A G A WAm e a w W

The control desk keys Threshold-1 and Threshold-2 are
assignable by DDTG to either of the two externally programmable

1.8

22

QMT detector modules. This key correspondance assignment is
performed by giving one of the follewing commands.

$STDDET - assign the Standard Detector with a range of
[0:4095] (0 is white and 4095 black).:

$DIGDET - assign the Digitizer Detector with a raﬁge of
[0:63] (0 is white and: 63 black).

The threshold keys are not activated unless the system is put
into MANUAL mode by the $MANUAL command. :

1.8.2 Sampling the 16 channel analogue/digital converter

S i ———————— .~ — - —— i — i ———— v —— . —————

A 16 channel multiplexing analogue to digital converter
is avalable on the PDP8e with channels 0 and 1 assigned to the
galvanometer scanner and control desk knobs[{0:77] assigned to
channels [8:15]. The A/D (DEC AMBe/AD8SBe) has a 10-bit
resolution on -1 to +1 volt input. The $SAMPLE (channel number)
function is available which returns the value of the sampled
channel, $SAMPLE may be used in any arithmetic expression that
numbers or variables may be used in. For example:

(3) $SAMPLE=
will sample A/D channel 3
or
VALUE_100+ (FBW4) $SAMPLE

sample channel selected by control desk register 4.

1-8

23

1.8.3 Standard Quantimet configuration

e e el L L T

As the Quantimet program words (described in [Lem76b]),
status register, frame and scale, and other related control
registers constitute a rather large number of conditions to be
concerned ‘with, it was felt that a standard state condition
would be helpful.

Because of the great complexity and the large number of
possible Quantimet configurations, we have specified a standard
configuration for the Quantimet subsystem of the RTPP. As as
result of some simple hardware it is possible to reconfigure
the Quantimet configuration under program control (Program
control is effected by changing ‘various hardware rTegisters
cailed QPROGi which are listed in [Lem76b]. This is, of course,
without the necessity of the user changing front panel
controls. The standard (uantimet configuration does assume
certain front panel switch settings such as all programable
modules being in the AUTO position.

Cne would start from this state modifying it as
regquired for the particular experiment being performed through
incremental <changes +to the QPROGn words. The $STDOMT command
will set up the standard state as follows:

1. Set the Frame and Scale to a 256x256 frame at (384,384) the
standard central frame for doinyg galvanometer scans.

2, Set the QSTAT status register to 4000 to enable the Prame
and Scale remote controls.

3. Set the MS3 computer to area, the Digitizer/Detector to off,
the Amender to unmodifier, the Function computer # 1 to
area, % 2 to Volume.

4. Clear the mask register.

5. Zero the remote chord sizer registers SIZEA, SIZEC, SIZEH,
SIZES.

The $35TDQMT command also has the effect of moving the
galvanometer scanner to (0,0) physical position.

1.8

24

1.2 GET/PUT data file space - data acquisition.

e W —— o —— A ——— ———— . T A e Ak i] ——————

In addition to serving as a debugger and minitor for
the RTPP, DDTG also has some image acquisition and display I/0
facilities. These facilities allow the use of parts of the
initial ETPP system to be used for image processing
experiments. The Philosophy is that all I/0 dome. in .this mode
will be between a file structured device such as a disk and the
actual image acquisition or display device. Thus one 'gets!®
data from a scanner or Grafpen and 'puts' data into a display
or mask register, .The commands to implement this idea are $GET
and $PUT. '

Before going into the details of $GET/$PUT operation,
some terms will be defined., A picture or 1image is a square
array of gray (darkness) values. In the RTPP images may be
either 256%256 or 1024x1024. The density values range from 0
(white) to 255 (black) for the galvanometer scanner (to be
discussed) . The Quantimet video system has 64 gray values
ranging from 0 to 63, A mask is a binary array or of the same
size as pictures. It is used to denote whether one will use
gray scale data in an associated image. Maks may be stored in
several ways: outlines of delimited regions (such as in the
MASK register) or as full pixel representation (as in buffer
memory masks). Each data file generated by DDTIG and read by
DPTG uses a file header which contains information about the
type of data file being used as well as historical information.

Data may be acquired from the RTPP and stored in a
PDPB8e¢ file using a $GET construction. Similarly, data may be
loaded into the RTPP from PDP8Be disk files using the $PUT
constuction. These are given as follows:

$GET

o $GET <file spec.>,<data type>,<optional switches>
o <file spec.>_<data type>,<s¥itches>

$pu?

S $PUT <data type>,<file Spec.>;<optiona1 switches>
or

<data type>_<file spec>,<optional switches>

where <file spec> is a complete 0S/8 file specification such as
"DSK:F.DA"Y.

1.9

25

The file specification includes a device name such as
SYs:, DSK:, DSKG:, DTAt: etc. A file name is a 6 character
alphemeric file name followed by an optional "“." (period) and 2
character alphemeric file extension.

If the special symbol "FILEGEN" is used for a filename
in the specification then a unique filename is generated. The
generated name then consists of the first ‘two letters YFKN"
followed by a sequentially derived four digit octal number in
the range of [0:7777] which is also the value of PILEGEN if
used as & variable. The file extension is that specified by
the user.

If the $COMMENT mode is active, the a comment will be
requested on each $GET and the comment associated with the file
printed on each $PUT. If the USECLASS switch is used on a $GET,
the system waits for the user to press a class key on the
control desk before proceeding with the $GET. The command
lights are lighted before the key is pushed and go out when the
key 1is pressed as visual feedback. The class number is then
stored in the file header as explained in section 3,

1.9.1 DDTG data file spaces

- — A - —ias b i -

There are seven types of DDTG data file spaces
available. These data file types correspond to physical
devices. The physical characteristics of these I/0 devices are
discussed in [Lem76b]. Data sub-types are specified using the
switches to be discussed. The data types are:

BMO through BM7 {(buffer memories)

MASK {mask register)

QMT (Quantimet function computer and ACP data)
GRAFPEN {Graf-Pen)

GALSCAX (galvanometer scanner)

DICMED (Dicomed gray scale display).

STATE (B8-tuple RTPP mechanical stepping motor state)

1.9

26

1.9.2 DDTG data file switches

- . P SR RN AR A e W me W e

Switches are used to modify the basic data file space
types listed above. Their effect is to create data file space
submodes. :

ALLBM - transfer both high and low byte of BM
FILL - fill in a line drawing boundry image
with constant gray value
FULLRASTER - perform 1024x1024 1mage transfer
HGHBYT =~ use the high byte image in the BM transfer
NOVECTOR ~ don't generate interpolated line drawings
USECLASS -~ wait for Class key to be entered on $GET
USEDIC =~ use the dicomed to display during transfer
USEFILEXY - use the {x,y) window position in the file
to specify the window instead of the
Frame and Scale on 3PUT.
USEFRM - accept line data inside of FRAME AKD SCALE
USEMSK - use the mask register to mask GALSCAN
Or GRAFPPEN input.

1.9

27

The above data file types and switches may be
represented in the following table which specifies 1legal
combinations with a Y and illegal combinations with a "-m,

1 1 F | I I I | I i
| 10 1 0] | |] i i ! |
| ¥ 1 L] 51 i I I | l |1 U1
10 tL 1 E| I ! | ! I I S 1
P VIR {F| 101 0LA]H]U]E,]
i E{ 2 I ISt S1 LG s |cCi
¢ 1 S+L | FJE}E}JLIHIERE]|L]
DATA | I TI T|JE}] I M) D]|L]|BIF]| A
FILF | IO JE}XFLISII|B]|]Y{RI]S,|
TYPE | $GET | $2UT | R I R { Y { L | K1 C{ ¥ | T | M |S|
BMO-EM7 | Y j Y | -} -} -1 =-1-1Y)Yy Y] -]¥
MASK Py 9 Y -4 Y 1YY} - Y g -1 -0Y |y
QNI YooY i-1-d4-1-1-4t-1-1-1-1%
GRAFPEN | Y | - Y1l -1 -1 -1-1Yi-1-1Y1¢X
GALSCAN + Y | - | -] Y} -3 -1 ¥ Y] ~-1~-1°Y)¢
DICMED 1 - 1+ Y {t-(1Y¥Y Y1 Y| ~-t~|-1-1¢Y]-
STAT Py Y J4-1-i-1-4 -1 -4 -1-1-1YX

T W M A S e e W e i e ——— . A e e b T . S N - e e

The $GET and $PUT operations are legal only where
appropriate (where the data types are compatible). For
example, the Dicomed can display data files generated on the
buffer memories, galvanometer scanner, Graf-Pen, and Mask
register. The mask register may be loaded with a file generated
by the Graf-Pen or thresholded BM or galvanometer scanner
images. It is impossible to get an image from the Dicomed ~ so
that 3GET DICMED would be meaningless.

The $PUT command is very useful for manipulating BM
windows where more than 8 images are involved., Notice that no
<data type> specification is needed as this information is
carried along with the file.

1.9

28

BMO-BM7
Pata in the eight picture buffer memories (called BMO,

through BN7}) 1is 16~bit data with a high and a low 8-bit byte.
Normally, only the low order byté is transfered ‘unless the
HGHBYTE or ALLBM switches are used. A BM {non~ALLBM switch)
windov is equivalent to a 256x256 pixel galvanometer scanner
vwindow and has the same format.

3-bytes/2-words.

MASK

4 convex non-reentrant perimeter mask may be used (and
generated from the Quantimet detected video. A mask may be
acquired by doing the sequence (GETMSK, STQMT). The hardware
stores the first detected 1line intercept and the next
undetected detected 1line intercept as entrance and exit
x-coordinates. The mask register is then available to be read
by the PDP8e (MASK $GET) or loaded by the PDP8e (MASK S$PUT
operations). The mask register may then be used to supply a
detection frame for the Quantimet in a manner similar to that
of the frame and scale. This is discussed in more detail in
[Lem76b].

MASK register data is 1024 pairs of 10-bit words
consisting of line 1ntercept pairs of x-coordinates (entrance,
exit) pixels starting line 0 and going to line 719, Lines 720
to 1023 only may sense when loaded from the PDP8e (such as from
the GRAFPEN etc.) and will contain random values after a GETMSK
operation,

Another way of loading the mask register is via the
GRAFPEN when doing a $GET with +the USEMSK switch. This is
discussed below.

QMT

The Quantimet (QMT) interface is capable of acqulrlng
specific features for all detected objects (up to a maximum of
1024 objects) in a simgle Quantimet scan. This is done by
setting the MS3 computer module in the Quantimet to T"pattern
recognition” mode. The assumption is made that the program for
the Quantimet and thresholds have been previously selected and
that a STQOMT command has been issued. The control of the
Quantimet is discussed in more detail in [Lem76b].

The RTPP provides special purpose hardware for on line
data acquisition and storage from individual Quantimet scans.

1.9

29

Such data concerning as many as 1024 separate objects may be
stored in this special shift register hardware. In addition to
the x~y coordinates of each object (Anti-cooincidence point),
the 5-tuple may contain feature data such as area, perimeter,
density, and various +types of projections. The nature of the
data stored is of course dependent on/ the state of the
Quantimet as determined by tlhe set of QPROGi.

GRAFPEN

The Graf-Pen 1is used only with a $GET as it does not
make sense to load the pen with a $PUT. Pen data acquisition
starts when the pen is put down and stops (with the file being
closed) when the pen is positioned in the region at (2000, 2000)
on the tablet. The QONT cursor is constantly loaded with the
current pen position even wkhen pen data is not being saved.
Data 1is acquired for use by DDTG when the Graf-Pen microswitch
at the tip of the pen is pressed.

The Graf-pen data acguisition presents a further
difficulty. It samples at a maximum rate of 200 X~y
pairs/second. Consequently if the pen is moved too fast then
data will not necessarily be taken from adjacent pixels (which
would be necessary for a contiguous boundary to be acquired).
Therefore, an automatic point generation mode (default VECTOR)
is used to fill in missing points by doing a linear (Y=MX+B)
approximation between sample points. The vector generator part
of the system wvas written by Bruce Shapiro using the PDP8e
flocating point processor hardware. ITf the 1line 1length is
greater than 30 pixels, then a new line vector is started. This
allows the painting and editing of different unconnected line
segments.

This latter mode of operation is necessary in order
that Graf-pen data be usable by the mask register. Vector mode
may be bypassed by specifying the NOVECTOR switch d&uring
Graf-pen data acquisition. B.g., :

SYS:A.DA_GRAFPEN,NOVECTOR

In either case, all Graf-pen data taken is checked to
see if it is within an equivalence (currently being used)
region so as to prevent excessive data from being taken when
the pen is stopped. The smallest equivalence region 1is the
pixel which was last acguired,

A Frame and Scale window less than or equal to 256x256
pixel size may be used to mask acceptable Graf-Pen data by

1.9

30

use of the USEFEM switch. Data outside of this window is
ignored. As the window requires 8-bits of dinformation, (x,yY)
data is mapped to [0:255] within the window region. The actual
window horizontal and vertical positions are stored in the file
header so no actual information is lost. '

Note that without USEFRM, it is possible to enter (x,y)
data with a range of [0:1999]. The representation of using this
data on the Dicomed or Mask register 1is to have wraparound.
Normally, the cursor provides visual feedback to the user via
the COMT display so that the wraparound would be detected and
avoided if desired. This 11-bit data is permitted so that
Graf-pen applications where more than 10-bit resolution is
required could be performed.

Graph~-pen data may be constantly loaded intoc the mask
register as it 1is acguired by using the USENSK switch. This
mode of operation lets one create and edit masks using the
Graph-pen with the intention of ignoring the resultant GRAFPEN
data file. Moving the pen downward defines the entrance
perimeter points while moving it upward defines the exit
perimeter points on the mask. To clear the mask inside of the
frame at any time while using the USEMSK switch, press the red
"erase" control desk command key. ‘

Graf-pen data may be displayed during acquisition by
use of the USEDIC switch. This causes the (x,y) data to be
display at gray level 63 on the Dicomed display.

GALSCAN
The galvanometer scanner (avalilable with a $GET) is an
8-bit gray level 1024x1024 pixel mirror-photomultiplier scanner
mounted on the microscope. It may operate in two modes. The
nortmal mode is that of a 256x256 raster scanner.

A full 1024x1024 raster scan window will also become
available and 1is invoked by the use of the FULLRASTER switch.
Alternatively, the scan may be directed to scan a set of points
inside of the mask register (USEMSK switch) and/or the Frame
and Scale (USEFRM switch). That 1is, g(x,y) outside of the
specified mask will be set to 0 otherwise it will be the actual
gray value at that peoint. The result of running the scanner in
any case is a raster file of 8-bit gray scale data.

The position of the 256x256 scan window is specified by
the wvalue of the (HPR,VPR) £frame and scale upper left-hand
corner coordinate pair.

1.9

3

Currently, in order to be congruent with the Quantimet
(to within 2 pixels) only the central 256x256 raster window is
usable, Eventually, a dual resolution scanner drive will be
added so that full raster windows will be available. The
central raster is located at (384,384). The $SETQMT command
(amoung other methods) will reset the Prame and Scale to the
standard galvanometer scan windw (384,384) and 256x256.

To display the scan while is is being acquired, the
USEDIC swith is used. The galvanometer scanner function is
documented in [Lem76b].

If a non~zero number or variable is included in the
specification, then each point sampled in the scan will be
averaged over that number of samples, The maximum number of
sarples in each average is 16.

DICMED
The Dicomed 31 storage display {(available with a $PUT)
is a 1024x1024 6-bit gray scale display which may operate in
three modes. The first is 256x256 or 1024x102% raster mode
where the input data file contains 8-bit gray scale data. The
top 6-bits of the 8-bit byte is used as data. The 2nd mode
is point mode where (x,y) pairs are specified as from Graf-pen
data. The third mode generates filled single gray scale
images from mask register (run-end type data) or raster images.
The gray scale is black if it is not specified as a number in
the $PUT command or is specified from the file if a number wvas
specified with the file when it was generated with a $PUT.

The system makes use of the file header information and
determines what type of source device generated the data and
displays the appropriate image accordingly.

The position of the 256x256 window is specified by the
value of (HPR,VPR) frame and scale upper left-hand corner
coordinate pair., The Dicomed display may be controlled to some
extent by DDTG. If the USEFILEXY switch is specified (x,y) are
gotton from the window position associated with the file rather
than the current (HPR,VPR).

- The $ERASE command erases the Dicomed and waits 20
seconds for the erase to finish, The $VIEW and $NOVIEW commands
turn the picture viewing light on and off respectively.

The FILL switch 1is used with the display of MASK
register data to generate a filled in area image. Otherwise

1.9

32

just the perimeter is displayed.

Data may be displayed while a $GET operation 1is in
progress by using the USEDIC switch where appropriate. This is
valid for GRAFPEN and GALSCAN modes.

- i

As was discussed in Section 1.8 the STATE of the RTEP
electromechanical hardware may be controled through DDTG. This
control may be performed either through the use of keys on the
control desk (while in MANUAL mode) or via the $SMOVESTATE
command. In addition, +the state may be associated with data
files and may be saved and restored as such.

The 8-tuple RIPP state consists of the current
positions of the mechanical stepping motors to control the
microscope and the two threshold keys. The 8-tuple is described
in microstate stage control. The state may be changed using the
SMOVESTATE command. It may be read with $READSTATE and cleared
with $ZEROSTATE. The use of the STATE data file space with
$GET/3PUT allows entire states to be saved and restored easily
by name. As the actual state information 1is stored in the
header of the file, any other data file space file may be used
to restore the state with a $PUT command.

33

1.9.3 The Logical Coordinate System - LCS

W D W e A —— A e e —

The Logical Coordinate System (LCS) used is that which
is common to most of the physical devices Dicomed, (QMT, BHM,
frame and scale, mask register, X-y-ACP's, Cursor). LCS has
(C,0) as the upper left-hand coordinate and ({1023,1023) as the
lower right-hand coordinate. Positive X is to the right and
positive Y is down. There are no negative coordinates. 1In
order for the LCS concept to be operational, all devices must
he aligned and calibrated to be congruent.

Several of the physical I/0 devices are not in the LCS
and must be mapped by DDTG into the LCS. This mapping is done

automatically by DDTG. The physical galvanometer scanner
ranges over (+512 to -512) by (#5112 +to -512) in the
corresponding mapping to the LCS. The physical - Graf-pen

ranges over the positive quadrant Cartesian coordinates with
(C,0) at the lower left-hand corner and (4095,4095) at the
upper right-hand corner. Both the galvanometer scanner and
the Graf-pen may be used in the LCS with no user concern
what-so-ever as the LCS coordinate values are mapped to/from
these physical devices internally by DDTG.

A standard window of 256x256 pixels is used throughout
the RTPP and DDTG system. To load the LGS 256x256 window
position one loads the frame and scale position registers (HP
and VP). For example:

$BCD
100$HPL
100$VPL

sets the window at {100,100) upper left-hand coordinate. The
window size is set by:-

2563HSL
25638VSL

The $SETQMT command will set up a standard galvanometer
scann window at (384,384) and 256x256.

The USEFILEXY switch with $PUT commands substitutes the
(x,y} window position associated with the input file for the
normally used values of (HP,VP).

One should note also that within a 256 pixel line (such
as the triple line buffers I1, I2 and I3 one addresses a pixel

1.9

34

by an index in the range of.[0:255] rather than the range
(1:256]. .

1.9.4 Examples of the use of GET/PUT on various data types

e AL e e mm e S ——— Y S WY e . —— i ik o e e Gl W ——————— T —

Some examples of the GET/PUT syntax are given below
where NOVECTOR, FULLRASTER, USEFILEXY, FILL, USENSK, USEDIC,
and ALLBM are switches.

{a) FRASE (erase chomed)
SYS:A.DA_MASK (256X256 mask image at HPR,VPR)
DICMED_SYS:A.DA,FILL (display area mask data
at HPR,VPR)
DICMED_5YS:A.DR {dlsplay perimeter mask data)

{b) SYS:A.DA_MASK,FULLRASTER (1024X1024 rask image)
DICMED_ SYS:A. DA (display 1024X1024 perlmeter)

{c) SYS:A.DA_GRAFPEN (default generate vector line points)
DICMED_SYS:A.DA {(display Graph-pen boundary)
MASK_SYS:A.DA,FILL {put the boundary into the mask

and display in area mode)

(d) SY¥YS:A.DA_GRAFPEN, USEDIC,NOVECTOR (display data on
Dicomed and don'te generate the vector
line segments between points.)

(e) SYS:A.DA_GRAFPEN,USEFRM (accept only those points
- inside of the 256x256 frame and scale
window.)
(£) SYS:A.DA_GRAFPEN,USEMSK (load the mask register with

‘pen data as it is gacquired using
the convention that down is entrance
and up is exit line segments,)

{g) SYS:A.DA_Q&T (acquire function computer/ACP data)
OMT_SYS:A.DA {load only the X,Y ACP coords)

1.9

(h)

(1)

{1)

(k)

1)

{m)

(n)

(0)

{(p)

(q)

()

35

SYS:A.DA_GALSCAN (scan 256X 256 at HPR,VPR)

CICMED_SYS:A.DA (display at HPR, VPR)

MASK SYS A.D2,200 (load thresholded image into the

mask for G(X,Y) > 200)

108HPL {(change Frame and Scale position)

108VPL

DICMED_SYS:A.DA,USEFILEXY (display flle at its window
rather than current Frame&Scale)

SYS: A.DA_GALSCAN,FULLRASTER {scan 1024X1024)
DICMED_SYS:A.DA (display 1024X1024) '

SYS:A.DA_GALSCAN,USEMSK (scan 256X256 using the
mask register)

CICMED_SYS:A.DA (display on the Dicomed)

"MASK SYS A.DA (load the mask register using derived mask)

SYS:A,DA_GALSCAN,USEMSK,FULLRASTER (scan 1024X1024

using the mask register)
DICHED_SYS:A.DA (display on the Dicomed)
MASK_SYS:A.DA (load the mask register using derived mask)

SYS:A.DA_BM1 (get 8 bit low byte packeded data from BM 1)
DICMED_SYS:A.DA (display BM data on the Dicomed)

SYS:A.DA_BM1,ALLBM (get 16 bit packed data from
buffer memory 1)

BM2_SYS:A.DA,HGHBYT (put 8 bit ,high byte data into
buffer memory 2).

SYS:A.DA_STATE) (save the current RTPP state)
STATE_SY¥S:A.DA (restore the RTPP state)

SYS:A.DA_GRAFPEN,USECLASS (request Class key before
continuing with S$GET)

SAMPLES_10 (set to sample 10 times/pixel)
SYS:A.DA_GALSCAN,SAMPLES

1.9

36

1.10 Indirect LDTG command execution $EXECUTE

e AL e el - - G A A S S —— o ———— i an - — -

Commands may be composed into programs and stored in
files. A command file may be throught of as a indirectly
executed command. Executing a command £file changes the DDTG
command input device from +the teletype to that of the input
file. : -

$EXECUTE <opt. device name>:<file><opt. .DA extension>
oT _ S | o
$EXECUTE <function name which is really SYS:<name>.DA>

will open the file on the device specified and start
reading commands from <file>.DA. Thus "plans" consisting of
strings of DDTG commands may be saved for DDTG itself from the
PDP1G or locally. The default device is "SYS:" and default
extension is ".DA". The abreviated form of the - command is
"$EX®. Note that the line feed and carrage return commands are
ignored for $EXECUTE files.

Note that currently, ' special segments which require
file input-and use Fortran II will clobber the $EXECUTE input
pointer. Therefore, it . is recommended that IO.PT be used for
file input where possible in those special segments which are
to be embedded in DDTG functions,

1.10.1 DDTG functions definition and editing

e A e A s o — -

DDTG functions of more than 1 line may be defined and
edited while in DDTG. These function names are 6 character (or
less) symbols. They must be defined or exist on a device as
files with a ".DA" extension. They are defined by typing

$DEFINE Fi
at which point

NEW-IRPUT:

is typed. the function definition is terminated by entering a
control/Z character. A "#" is typed at the beginning of each
input line, with control/U, control/R, rubout edit characters
operative.

1.10

37

To edit an existing function Fi type
$PDIT Fi

at which point
REDEF-~INPUT:

is printed.

On "REDF-INPUT", the old lines are typed one at a time.
After each o0ld 1line is typed, "OK2?" is typed. If the user
types "Y", the old line is preserved., Otherwise a "N" must be
typed or the "OK?" question is repeated until this happens. If
the line is not to be preserved than a "#" is given reguesting
the user to enter replacement lines (terminated with a
control/E) . At this point, editing of the old text continues
until the control/Z of the source file (or one entered by the
user) is reached. To delete a line simply type control/E when
replacing a line.

To evaluate a function type:
$EXECUTE Fi

or
$EX Fi

To print a function, type:

$PRINT Fi

Often one wishes to add a function to DDTG which has been
defined with a 0S/8 text editor such as TECO or EDIT. To let
DDTG know about the function you must DDTG EDIT the function
thus instantiating the function in DDTG.

1. 10,2 DDTG functioﬁ control statements

e R R AR e e e e e A R

Two control statements, the IF and the GOTO are
available when $EXECUTEing a function.

IF <expression 1> <condition> <expression 2>
THEN <next DDTG statement>

where: <expression i> is a DDTG variable or constant,
<condition> is 6T, 1T, EQ, LE, GE,

1. 10

38

<next DDTG statement’d is evaluedted if the condition is true.
BOTe: IF statements may NOT be concatinated as follows:

IF A LE B
THEN IF C LE D

is illegal.
GCTO n
where: control passes to the n'th DDTG’command in the function.

As the GOTO is implemented by reopening the ~ file -and
reading past n-1 commands it is 'fairly slov and ' so should be
used with care. However, for such things as the creation of
successive data sets using FILEGEN, this should be no problem.
For example: S : ' -

ERASE
DSKG: FILEGEN.DA_GRAFPEN,USECLASS,USEDIC,USEMSK
GOTO 1 : '

used as a function will keep generating Graf-pen segment files
until the user Control/0's or Control/C's out.

1.11 Chaining to/from 0S/8 programs

e T e ————— - — - ———— % e wie

Other programs may be chained to from DDTG. Since DDTG
saves the status of DDTG in a ~ SVDDTG.DA file, restoring the
DDTG state is easily acheived. S

- $CHAIN <.SV file name><optional files and variables>

On restarting DDTG 'the SYDDTG.DA DDTG state file is
always loaded before standard initialization takes place. This
mechanism allows intermediate data reduction to take place
using stand alone software (which in turn might chain back to
DDTG) ‘ ' '

DDTG has 'a separate entry point (under the file
RDDTG.SV) to facilitate chaining from DDTG. ' Upon entering
RDDTG, it restores COMMON, the special segment and other
information from the SVDDTG.DA file. It then tests whether the
contents of location 17600 (0S8 command decoder 1location) is

1. 11

39

Ascii dollar sign ($). If it is not, then control passes to the
"*1 DDIG command loop. If it is, then the 8-bit Ascii command
in locations [17600:17642] is evaluated.

An alternative way to use RDDTG is to embed S$CHAIN
commands within $EXECUTE functions. Control returns to the line
after the $CHAIN command from DDTG if the program chained TO
exits by doing a chain back to RDDTG. This is the preferred
way to use DDTG in auxiliary operating systems. Arguments
including file specifications (must be conplete specification),
numbers and variables may be passed to the chained programs via
an argument stack in COMMON explained in Section 5.2.

1.11

40

1.12 Messages

- — . -

Messages or comments may be printed on the teletype by
enclosing them in sets of double quote marks as "....". This is
useful when printing messages in the middle of executing a
file. Messages are not interpretéed by DDTG. For example:

"This is a message :
and this is the rest of the message.”

1.13 Construction of mini-RTPP monitors

. A AR TS AR AR S A S S —————

Procedures to control the RTPP through the control
desk, Graf-Pen, etc., are usually run through the DDTG system as
pairs of [GPP,special segment] programs which may be prepared
via the GEEPER assembler/compiler using the PAL switch.
(Initially, mini-monitors will be prepared only for the PDP8e
special segment through the use of PALS8, PAL10, or PLAP which
generate absolute binary ".BN" files or FORTRAN II loaded into
f£ield 7 to generate ",SV" files,} Then they may be invoked via
DDTG $RUN ($LOAD, $START) commands.

it 1is possible to use Portran II programs for the
mini-monitors. This is discussed in more detail in section 6.

1.13.1 DDTG user service rcoutines - DUSR's

S T A Ty P T W —— - -

To facilitate the construction of mini-monitors,
several commonly used but complex functions have been made part
of ©DDTG and are callable from the special segment. These are
called DDTG user service routines or DUSR's through a special
calling sequence to DDTG.

The DUSR <c¢all to DDTG is stored by DDTG in field 7 of
the PDP8e page 0 locations 20-23 and whenever GPPLDR loads the
special segment. This overlay consists of the following code:

FIELD 7

*20

DU SR, 0 s/entry from special segment
CIF <to DLTG DUSR.PT subroutine>

1.12 - 1.13

41

JMP I .41
<DDTG'S entry for the "DUSR">

To <call a DUSR, one JMS's to location 20 in field 7
with the DUSR number as the first argument after the JMS. For
example, to write out two Fortran integers I and J on the
teletype one might do the following call,

JNS DUSRE
7 /DUSR for writing on the TTY:
2 /number of arguments
FORMPTR /pointer to the format statement
I /pointer to 1st variable
J /pointer to 2nd variable

NORMAL RETURN

/The format statement is set up with the text command in PAL.
JMP SKIPFORMAT

FORMPTR, TEXT /(*I=',I5,', J=',I5)/

SKIPFGRMAT, NOoP /continue ... :

The list of DUSR's is given in the following table:

DUSR # Function

- - —— -

number of args passed to DUSR

———— T —— S e e W

1 CTROTST none - if TTY: CTRL/O

then goto DDTG else return
2 MOTORS none - done through COMMON
3 MVMTR none - done through COMMON
4 MANTAL 0
5 CLOCK ‘ 0 _
6 10 (IDEVICE,FILE,EXT,I0PR) ;

WRITE(1,fmt) list
READ (1, fmt) list

value (1I0)==>C(AC)

.(size of list,fmt ptr, list)

(size of list,fmt ptr, list)

C (AC)==>spooler

7
8
9 SPOOL QUTPUT
0 pointer to string (6-bit)

EXECUTE DDTG
cmd string

11 SUBMIT a CCL pointer to string (6-bit)
cmd string to CCL.
12 RETURN TC O5/8 0
13 RETURN TO DDTG 0)
14 CONVERT BCD to integer ¢ {AC)<==B(CD-to~integer{c(AC))
15 CONVERT integer to BCD ¢ {AC)<==integer-to-BCD{c(AC))
14 CONVERT D.P. / float {integer-b.P?,, float var)
17 CONVERT float to D.P. {integer-D.P., float var)
18 CALL DOAUX (IOPR) I0PR<==c (AC) , arguments in COMMOK
19 CHAIN to SYS:FILE file-name pointer

1.13

42

1.14 The RTPP loader - GPPLDR

A GPP loader subroutine GPPLDR is used in DDTG to run
GPP programs. DDTG can then be used to access and modify them
using a loader input symbol table. This is similar in concept
to the use of the MIT "ITS" (Incompatible Time Sharing System)
[East69] in loading and running programs in a debugging
environment. Assume that a loader file is on the PDPBe disk
file system (generated on either the 8e (PALS8, FPLAP, FORTRAN
I1}) or by the PDP10 assembler (GEEPER) for the RTPP).

Until GEEPER is built, only ".BN" and ".S5V" files will
be used. Therefore, the PAL switch is the default. PDP8e ".SV"
files may be run in the special segment if they were prevously
loaded and saved in the field 7 special segment area. This is
discussed in more detail in section 6.

{a) $START (default GPP start address from Load file)
or
$START nnnnnn&PM, nnnnSPDP8E

switches ;NOBE (don't start 8E special segment)
;NOPM (don't start GPP special segment)
;PAL (start the 8e special segment)

(b) $LOAD DSK: A.<GP> (optional extension)
switches ;NEW <defines nev starting address>

; MERGE (symbol table with rest of DDTG)
;CLEAR (symbol table before adding)

s NOSE (don't load the 8e special segment)
;RELOCATE <relocation addr. for GPP PN code>

{for merging PM macros,
will also relocate symbols,
cf. section 1.14,1)
;PAL {load ".BN" or " _SVy" file
: into the special segment))

Note +that the A.GP type of file is a special load file %o be
discussed subsequently.

(c) $SAVE DSK:A.<GP>;<PM 1limits>;<GR limits>;<8e limits>;

;PAL (save ".BN" file <==special segment)
;:SAVSYM (symbol table to be saved)
:PM,<start address - PM>

;PDPBe ,<{start address - PDP8e>

1.14

43

where: if there are no limit switches save all.

<PM limits>

<GR limits>
note

<8e limits>

EPM, nl-mi,n2-m2, ,nk-mk
&GR, pl-q1,p2-92,...,pk~qk
a segment is an address range "n-m" or "p-q".

Note: if the PAL switch is wused and a ",BN" extension is
specified +then it will be save in a absolute binary formated
file. If the PAL switch is set and the *,"3SV" extension is
specified then it will be saved in 0SB SAVE file format.

{(d) $RUN DSK:A.<GP>
is equivalent to:

$LOAD DSK:A.<GP>
$START

The GPPLDR subroutine could be used in making other
special systems for the RTPP where programs are to be run on
the GPP from GPP disk loader files.

1.14,.1 Relocatable code

Once only GPP PM code can be used to set up indirect
"PUSHJ" procedure table in the GR. This can be used to effect
relocatable GPP code, A relocatable segment is assembled
starting at location 0000. Then, if there are n procedures,
the once only code sets up a transfer vector table in the GR as
foliows.

"OFFSET<==PC SUB #¥1;
RPROC 1<==PROC ADD OFFSET;
RPROC2<==PROC2 ADD OFFSET;

RPROCn<==PROCn ADD OFFSET:

To call a relocatable procedure is done by indirectly doing an
indirect push jump to general register location RPROC]T.

®PYSHJ 'RPROCH™

44

to call procedure PROCj. "Note that there must not be GR use
conflicts which implies the use of a dJdata stack to pass
arquments. This method is compatible with the planned GEEPER
compiler generated code.

1.1“

45

SECTION 2

Loader File Format

D A ke e e AR

: Programs for the RTPP are written and compiled on the
PDP1C using the GPP assembler [GrosG76]. The GPP assembler
produced loader file is discussed here.

The 12-bit binary file residing on the PDP8e disk
consists of 3 parts: a header, a data section, and a symbol
table area. The header is accessed by all users of the loader
file to ascertain the size and location of data and symbols.

The symbol table section is used only with DDTG. It
contains symbols which address the corresponding PM, GR, and
PDP8e data segments. Note that a PDP8e <file> block 1is 256
(decimal) 12-bit words while a GPP segment may be any number of
words (60~bit PM or 16-bit GR words) 1less than #4096. The
maximum size of the PM and GR memory spaces is 65K each.

. The PDPBe "special segment" is to be used to set up the
Quantimet and other hardware as well as to act as a
mini-monitor for +the GPP to post 4images, acquire images,
communicate with the PDP10, etc. This enables running the GPP
vithout a full blown PDP8e monitor for executing GPP
procedures. This code may be optionally started (at special
segment address 200) when the GPP is started. The PDP8e special
segment resides in the 4K field 7 of the PDP8e.

2.1 Load file header

- e e - e — i S ——

e A R W SR S A R M S . SN W e e e e N M MR WS M e A A R e s RN A W e W e

. e S R M S A A W M NN D A R M S M S R N -

1 block n blocks m blocks

(a) 0000 - denctes a loader file data file mode
{b) 0S8 6-bit Ascii Load filename (A6.A2) - 4 words
{c) 0S8 packed date word - 1 word

2.1

46

(d) File length in blocks - 1 word

{e) GPP starting address in PM address space - 2 words

() PDP8e starting address in special segment - 1 words

(g) Number of PM segments - 1 word

{h) Number of GRE segments - 1 word oo

{i} Size of 8e special "special code" segment

(j) Relative block where PM segment starts

(k) Relative block where GR segment starts

{1} Relative block where 8e code segment starts - 1 word

(m) Relative block where symbol table starts, 0 if none

- 1 word

(n) Number of PM/GR/8e symbols - 1 word.

(o) Ascii device name (2-words) and ".SV* file name
(3 words) and ",SV" extension (1 word) of "DEV:FILE."SV
which if non-zero indicates the name of a ",Syn
file to be loaded into the special segment area
instead of the ".BN" segment of the GEEPER file.

(p) [PM segment 1 start address
PM segment 1 end address] - words

1

(g} [GR segment 1 start address
GR segment 1 end address] - 2 words

{r) PM segments data - 5 PDP8e words to 1 PM word

{s) GR segments data - 4 PDPBe words to 3 GR words (packed 058)
(t) 8e segments data PAL10 .BIN format (0S8 packed)

(1) Symbol triples (NAME[1:3],IVAL[1:2],ITYPE[1])

- 6 words/datum.

2.2 Loader data segments: PM/GR/PDP8e

T o — o ———

There are three distinct data segment areas on the data
portion of the loader file. These are discussed below. Data is
written in a continuous stream of groups of 12 bit binary words
(compatible with 0S/8 device handlers). There 1s no checksum
used.

{a) PM segment data 1is written in five 12-bit-S8e
words/PM word. Then a PM segment with starting address N1, end
address M1 has 5(M1-N1+1) Be words of data. Data is packed HMSB
to LSB. '

47

(b} GR segment data is written in four 12-bit binary 8e
vords/ three GR words. Then a GR segment with starting
address P1, end address Q1 has (4/3) (Q1-P1+1) B8e words of data.

(c) PDPBe special segment code is #4096 words 1long for
the segment which 1is optionally included. This mini-monitor
code is executed while the GPP program is running. As this
code is produced by the PAL10 program on the PDP10, it is in 8e
binary loader format thus facilitating overlays etc. DDTG
modifies its idle 1locop before starting it so as to bring it
under DDTG's control. If control does get lost, the PDP8e may
be restarted by the PDP10 using the remote hardware bootstrap.

48

SECTION 3

GET/PUT data file space format

T e AT ——— T R

Data space files may be generated or used with the $GET
and PUT commands. These data files are of a variable format
with the exact format described in the first (header block) of
the file. The format is a function of the data type. There are
five basic types of data:

(a) (x,y) coordinate pairs such as graph-pen data,.
These may be stored as either packed 8-bit datat relative to
the window used to generate it or as 10-bit right Justified
data in 12-bit PDPB8e words.

{h) (x,y,grayscale) triples (not used to date).

(c) Grayscale g(x,y) raster for 256x256 or 1024x1024
image. The largest (FULLRASTER) window is 1024x1024. The
default window is the 256x256 size. Its upper left-hand
coordinate is defined as the position of the frame and scale
window (HPR,VPR).

(d) (entrance(y),exit{y)) coordinate pairs of line
intercepts from the Mask register.

(e) A non-image data file space type is also used. This
is for Quantimet data and is a list of 5-tuples. The 5-tuple
is:

[funct. comp. 1, funct. comp. 2, X-acp, Y-acp, det. video]

3.1 Data file space header

P T e e i T - —————

2 data file consists of a file header followed by data
where the data format is described in the header.

LR ekl el bl he e Rk L R X Y e e ———

| Header | Variable length data segment |

T T WP A S W W T Y e . — - —

-1 block n blocks
3.1

49

The header contains the following information:

12-bit
word
number

~ h

16

11
12
13:16
17:52

53:76
77

18
79:80

field and function

(a)

(b)
{c)
(d)

(e)
(£)

(9)

(h)

(i)

(3)
(k)
(1)
(m})

(n)
{(0)
(p)

(9)
{r)

Rt el e ——

data file space mode (7 to 15 decimal) - 1 word
BN=7, MASK=10, QMT=11, GRAFPEN=12, GALSCAN=13,
STATE=15,
file length in blocks (0 means variable) - 1 word
number of data (0 means variable) - 2 words
number of wordssdatum (a fraction
expressed by the numerator in the left 6-bit byte,
and the denominator in the right 6-bit byte -~ 1 word.
data file submode number (see DDTG.DOC table 2) - 1 word
data length - 1 word (0=8-bit, 1=10-bit,
2=12 bit data, 3=16-bit, 4=1-hit)
information type - 1 word (0=z data, I1=xy data,
2=xyz data (not used), 3=(x(e),x(x))
MASK register data, 4=QMT function
computer data, 5=binary mask)
data packing mode - 1 word (0 means packed 8-bit,
1 means unpacked in 12-bit words).
0S/8 date word when file created - 1 word
month - bits 0:3
day - bits 4:8
year (0 to 7) =~ bits 9:11.
horizontal windov coordinate before scan - 1 word
vertical window coordinate before scan - 1 word .
file name and extension (6~bit Ascii) - 4 words
72 character comment (6-bit Ascii) with zero last
character - 36 words
t2-tuple double precision CURRENT position state
vector, see MDPDATA[7:8,1:12] in COMMON - 24 words
gray value used for filling masks (8-bits 1sb
default is 255) - 1 word
Class key (00 if not used), 1 to 12 if used.
Time of day in two words packed 446
Size of image for tsubmode 15 as (2%#*n)-1

50

Table 2.

The table below specifies (a)-{h) where appropriate for the

data file modes.

Data file mode

Data space file header information

12

TR M MR e D e R SR R CED D e TR M S e MM S e A e A i O W S i A SR e

5 GRAF-PEN
6 GRAF-PEN
7 GRAF-PEN
8 GRAF-PEN

(8-BIT PACKED)
(16-BIT PACKED)

{10-BIT VECTOR)
(10-BIT NOVECTOR)
(8-BIT VECTOR)
(8=-BIT NOVECTOR)

Bl e e L R R R ek el T T T ——

9 GALV-SCAN
GALV-SCAN
11 GALV-SCAN
GALV-SCAR

(256 RASTER)
(1024 RASTER)
(256 RAST-MASK)
(1024 RAST-MASK)

(see header)

iy i e T b - ——— -

14

T ————— WD P i e Y — e ————— T -—— - W A sk e

16

14

{in PROC 10)

{in PROC10)

Data file mode | (fy | (9} (h)

1 BMi i 0] 0 0 (MEMORY i=[{0:7])
2 BMi 1 3 ;] 0 0 (MEMORY i=[0:7])
3 MASK 11 | 3 1 |

4 QMT |1 | & I 1

5 GRAP-PEN. |1 11 I 1 (DOUBLE O IS EOF)
6 GRAF-PEN 11 | 1 | 1 (DOUBLE 0 IS EOF)
7 GRAF-PEN | © 1 { O (DOUBLE 0 IS EOF)
8 GRAFP-PEN | 0 |1 { 0 (DOUBLE 0 IS EOPF)
9 GALV-SCAN 1 0 1 0 1 0

1C GALV-SCAN] 0] 0 | 0

11 GALV-SCAN I 0 1 0 0

12 GALV-SCAN i 0 i 0 | 0

13 STATE I 1 1 4 | 1

14 STATE | 4 | 5 | 0

15 STATE SR + T I | 0

51

52

SECTION 4

DDTG implementation

DDTG is implemented in 0$/8 Fortran 1II using
interspersed SABR type <coding which allows easy access to
hardware registers. The system consists of the DDTG.FT main
program and subroutines called by it in a hierarchical tree
structure., This section goes into this structure in more
detail,

DDTG.FT is the line scanner/finite state parser for
DDTG, the RTPP debugger. It processes the ITY: or DSK:
character input stream by parsing it into a stack (IPSTK) of
symbol table 1indices +to be interpreted. It then interprets
this stack.,. The parser section uses a 128 character Jjump
table as part of its finite state mackine (FSM). Lowver case
letters are mapped to upper case before interpreting. The use
of the symbol table is explained in more detail in Section 4. 4.

The symbol definitions and interpreter process numbers
are defined for the system on a S5YS: file "INISYM.DA™ which is
compiled by INISYM.SV into the 64 block file SYS:CMPSYM.DA. The
latter file simulates a 16K PDP8e memory for paging the DDTIG
symbol table, :

The DDTG program works as follows. A command is input
from the logical teletype (or S$EXECUTE file). Commands are
compiled and executed one line at a time into "IPSTK" with
pointer “"IPTOP", Operator precedence [(*,%) over (+,-) etc.] is
performed using a temporary operator stack WPIOPSTK" with
pointer "IQPTOPR",

Characters are first loaded into a line buffer “LINE"
with pointer "ITTYP" using internal subroutine “GETLINEY,
"GEFTLINE" allows local editing with {(rubout, Ctrl,/u, Ctrl/cC,
ctrl/T, Ctrl/R). Break characters are (line feed, carriage
return, =, /, <, >, (8nd Ctrl/z and Ctrl/E in DEFINE function
editing mode}).

The parser (internal DDTG.PT subroutine "PARSEM™) then
compiles the buffer "LINE(ITTYP)" into a reverse Polish stack
"IPSTK(IPTOR) ™. Entries 1in the stack are all the indices of
symbols in the symbol table. All symbols, numbers, operators,
and f$operators (and temporaries created during interpretation)

4

53

are stored as symbols (See section 4.4 for more details on
their definition and use). Characters are parsed by a set of
finite state machines (PSM) using a Jump table WP ABLE"™
consisting of a FSM to service one or more input characters.
The character to be parsed is in variable "ICHAR". {Note: it
is an onto mapping (in the algebraic sense) since many
characters have the same FPSM, e.g. all upper case letters have
PSH "letter" etc.). Further testing is performed within each
FSH when required to take the state of DDTG into account in the
parse.

Furthermore, undefined symbols and numbers are also
pushed by the parser onto a garbage collection stack {ITMPSTR)
which is used to clean up the symbol table at the end of the
interpreter phase.

The interpreter

The interpreter {external subroutine DINTRP.FT)
interprets the Polish stack which was generated during the
parse by “PARSE" in DDTG,FT. Specific DDTG features are
implemented at this point. "DINTRP.FT" scans "IPSTK (IP)" from
IP=IPTOP to 0 1looking for ITYPE(index) values which are not
type I or II process commands or PDP8e IOT's.

PDP8e IOT's are treated as operators in the non-gpen®
state and as operands in the "opened" state. Type I and II
processes, and PDP8e I0T's are pushed onto OPSTK while the
search for an operand continues. Note that operator precedence
was performed in "PARSE" and already exists here. IP is then
decremented until an operand is found at which time the top
operator in the IOPSTK is evaluated. Operator processes are
responsible for popping the IPSTK.

Errors are noted by an error typeout (residing in

Type I and PDP8e IOT operator processes are located in
DINTRP.FT while type II processes are located in IDTYPEII.FT.
Note that all external I/0 obeys the OCTAL or DECIMAL {BCD 1is
the same as DECIMAL) switch mode MODEN. All internal
arithmetic, however, is performed in decimal.

DDTG.FT) consisting of an error number with the rest of the
command being ignored (or the entire command if no backup is
required) . There are two types of errors: fatal {(denoted by
negative internal error numbers where control goes to 05/8) and
nen-fatal (denoted by positive internal error numbers where
control goes to DDTG's get next command (in the listen loop) .)
The error numbers are listed in section 5.

4

54

Processes

e o e . ———

The actual processes used to implement the actions of
DDTIG are described in five groups of subroutines:

{a) ODTSIM which simulates the O0DT 1like debugging
envirnment through data space opening and closing,
search, breakpoint insertion and service and continue;

(b) GPPLDR and DUSR which loads, saves and starts
special segments and services special segment requests
respectively;

(c) GETPUT, DOAUX, and DICMED which irplements the $GET
and $PUT operations;

(d) MANUAL and MOVESTATE which control the stepping
motor envirnment,

(e} Low level primitive functions used throughout the
system include IO,FT, IBCD.FT, DPCVRT.FT, OCT.FT and
SYMTAB.FT,.

.1 Arguments for Special Segments

- —— A T S —— o ——

whenever any file specification 1is analyzed <for any
file related operations, it is put onto stacks in COMMON. These
stacks (SDEVICE, ISDEVICE, SFILE, SEXT with pointer IFILTOPF)
and (ISVARLST with pointer ISVIOP} are available to special
segments. Note that when one RUNs a special segment the file
and starting address (0 for default file starting address) are
in +the COMMON variables ({DEVICE, IDEVICE, FILE, EXT) .
Therefore, the IFILTOP and ISVTOP pointers are 1 more than the
number of arguments actally desired to be passed to the special
segment {i.e. fetch args for I=2:IFIL{(ISV)TOP).

55

4.1 BNF grammar for DDTG

A cmk — ————— d—— - WP sk e in -

The following BN? grammar is given for DDTG. The semantics of
the grammar is given in the rest of DDTG.DOC.

<Command>: := <expr><break char>

<expr>::= <arith expr> | <assignment state> } <dspace assign> |
<get cmd> | <put cmd> | <loader cmd> |
<control cmd> |} <mode>
<list> | <opcode> | <address> |
<new symbol definition>» } <odt command> |
<dicomed cmd> | <microstate cmd> |
<if statement> | <then statement> |
<goto statement> | <polling cmd> | <eval cmd>

<break chard:i:i= / | < | > | = | <line feed)> | <carriage return>

<arith expr>::= <termd> | <term>+<{term |<term>-<term> | -<term>
<term>::= <factor> | <term>*<factor> | <term>_%<factor>
{tactor>::= <variable> | <number> | <8eIOT>] <null>

<assignment state>::= <variable>_<expr>
<new symbol definition>::= <new sym triple>\<new symbol>
<dspace assignd>::= DSPACE_<data space>

<variable>::=<symbol>

<symbol>::= <symbol><letter> | <symbol><number> | <letter>
<number>::= <number><digit> | <digit>
<{statement number>::=<number>

<list>

1= <list><delim><expr> | (<list>) | <expr>
<delim>::

::= 3 | 4, | <space character>

<new sym triple>::=<ival[1]><delimd<ivalf 2}><delim><itype>
<ival[1]>::=<expr>

<ival[2]>::=<expr>

<itype>::=<expr> { <data space>

<new symbol)>::=<symbol>

<mode>::= BCD | DECIMAL | OCTAL | ECHO | NOECHO | SPOOL |
NOSPOOL | PROTECT | UNPROTECT | SIXBIT |
SYMBOLIC | MODES | MODE | DSPACE | LISTSYM |
SYMPRINT | DELETE | VERSION | STDDET |
DIGDET | COMMENT | MANUAL | NOMANUAL | SETQMT

4.1

56

<data spaced>::= PM | GR } I1] I2 } I3 | BM | PDPBE | PDPARI

<data f space>::= BM<octal digit> | MASK | QMT | GRFPER |
GALSCAN | DICMED | STATE

<if statement>::= <if statement><carriage return><then statement> |
IF<expr><condition><expr>

<condition>»::= GT { LT { EQ | GE | LE

<then statement>::= THEN<expr>

<goto statement>::= GOTO<statement number>
<dicomed cmd>»: := $ERASE | SVIEW | SNOVIEW

<microstate cmd>::= $MOVESTATE (<8 state args>,<m mode>) |
$READSTATE (<B state args>) |
$READSTATE | $ZEROSTATE | $SAMPLE ({<expr>)

<m mode>::= ABS | REL

<8 state args>::= <t2>,<t1>,<x>,<y>,<focus>,<zoom>,<nd>,<wavel>

<t2>»::=<arg>

<t1>::=<arg>

<x>::=<arg>

{y>::=<arg>

<focus>::=<arg>

{zoom>:i1=<£arg>

<nd>::=<arg>

<wavel>::= <arg>

<arg>::= <number> | <variable> | P

<odt command>;::= <address expr><odt sym><breakpoint expr>
<odt sym>:;:= BREAK | CONT |} SEARCH { GO
<breakpoint expr>::= <arith expr>
<address expr>::= <arith expr>
<switches>::= <delim><switch types><switches>
<switch types>:i:= <GET/PUT switches> | <loader switches>
<GET/PUT switches>::= NOVECTOR | FILL | FPULLRASTER | USEMSK |
USEDIC | ALLBM | USEFILEXY | HGHBYT | USEFRM | USECLASS
<loader switches>::= NOSE | NOPM | NEW | MERGE | CLEAR |
RELOCATE | SAVSYM | PAL

<get cmd>'-¥ <file spec>_<data f space><switches> |
GET <file spec><delim><data f space><delim><switches>

<put cmd>::= <data f space>_<file spec><switches> |
PUT <file spec)(de11m><data f space><delim><switches>

<loader cmd>::= <loader file cmd><delim><file spec><switches>

4.1

57

<control cmd>::= <ctrl file cmd><delim><file spec>

<ctrl file cmds>::= $EXECUTE | $EX 1 SCHAIN | $DEFINE |
$PRINT | S$EDIT
<loader file cmds>::= $RUN | $SAVE | $LOAD | $START

<file spec>::= <0S5/8 device>:<file name> | <file name>.DA
<05/8 device>::= SYS | DSK | DSK<letter> | DTALdigit> |

MTAQC | MTAT | LPT] TTY | HSP |

<user assigned devices-see 058 handbook>
<f11e name>::= <symbol> | <symbol><extension> | FILEGEN<extension>
{extension>::=.<{symbol> | null

<polling cmd>::= <load/signal IOT>"<read IOT>,<number>
<eval cmd>::= <expr>=

<8el0T>::= <load/signal IOT> | <read IOT> | <skip IOT>
<load/31gna1 TOT>::= CLEKACK | STQMT | MSTAG | e..

MQL | QSTAT § HPL | VPL | LQDT1 | sew
<read IOT>::= MQA | RQSTAT | HPR] VPR | QDAT1T1 | ...
<skip IOT>::= CLKSKP | QMSKP | IZSKP § ...

<opcoder::= <{GPP opcode> | <Be opcode>
{address>::= <addr mod><expr> |

<addr mod><expr>&<data space>
<addr mod>::= ' | & | <Null>

<8e opcoded>::= <Be IOT/OPR> | <8e mrid+<arith expr>

<8e mri>::= AND8 | TAD | ISZ) DCA | JMS | JHP |

ANDIS8 | TADI | ISZI | DCAI | JMSI | JMPI

ANDZ8 | TADZ | ISZZ | DCAZ | JMSZ) JMPZ
ANDIZS8 | TADIZ | ISZIZ | DCAIZ | JMSIZ | JMPIZ
CLA | MQL | STQMT § QMSKP | QOSTAT | «..

ADD | SUB | MOL | ...

<8e TOT/OPR>::
<GPP opcode>::

58

4.2 Logical structure of DDTG

e M S ol i o —— . T i

The logical control structure of the DDTG parser is outlined
below:

1. Initialize symbol tables (once only INISYM.PT).
2. TTY command from user or PDP10 and polling loop of
which the TTY is part.
2.1 GETLINE or file ==>1line buffer LINE[1:ITTYP].
- 2.2 Parse LINE into Polish stack==>IPSTK(IPTOP).
2.2.1 Define new symbols using SYMTAB.PT.
2.3 Interpret stack <==IPSTK.
2.3.1 Process DDTG functions by calling DINTRP.FT.

Logical structure of DINTRP
The logical control structure of DINTRP is outlined
below:

[1] Initialization of thé current IPSTK and IOPSTK
pointers,
[2] Decrement the current IPSTK pointer IP from IPTOP to 0;
[2.1] If IPSTK is null then done else goto [4.1];
{3] Look for type I, II processes, or PDPBe I0Ts as
- scan stack.
[3.1] If one is found, then push it into IOPSTK
- and continue scan. :
[4] If the top of the IPSTK is an operand
then do [4.1] else do [2];
{4.1] Dispatch a type I or II process on top of
, IOPSTK.
[5] Goto [2] .

4,3 Literal structure of DDTG.FT

AT - . S VW S — - ——— e

The DDTG ain is broken into 5 parts listed below in the order
in -which they appear in the source code.

(1) [1] Initialization.
{(2) [2] Read-parse-eval loop.
{3) Internal worker routines: PARSE, GETLINE, INCHAR,
03T, PUSHP, PUSHOP, OPMOVP.
(4) Internal finite state machines for the parser (cf. #4.5).
{(5) Parser character jump table “TABLE",

u-z = u-3

59

(6) Error service routine "ERROR".

Literal structure of DINTRP
Fortran labels are allocated as follows:
1. Main interpreter: 1 to 499, and 2000 to 2048
[1] Initialization of the current IPSTK and TOPSTK
pointers.
{ 2] Decrement the current IPSTK pointer from IPTOP to 0
testing when done. {Label 2000)
[2.17] Tf IPSTK is null then done else goto [4.1];
{2.1.1] Terminate interpretation (label 2010)
[3] Look for type I or II processes as scan stack. If
one is found, then push it into IOPSTK and
continue scan.
[4] If the top of the IPSTK is an operand
then do [4.1] else do [2];
[4.1] Dispatch a type I or II process on top of
IOPSTK.
[5] Goto [2].

2. Type I processes: 500 to 999
[I.01] to [1.09] 510 to 599
fI.10] to [I.19] 610 to 699
[T.20] to [I.29] 700 to 799
{I.30) to [I.39] 800 to 899

3. Type II processes: 1000 to 1599 (in IDTYPEIL.PT)
[¥1.01] to [TI.09] 1010 to 1099
[I1.10] to [I1.19] 1110 to 1199
{IT.20] to {IT1.29] 1200 to 1299
{¥T1.30] to {1I.39] 1300 to 1399
[II.40] to [TI.49] 1400 to 1499
[II.50] to [ITI.59] 1500 to 1599
{I1.60] to [I1.69] 1600 to 1699

4, PDP8e IOT execution 1700 to 1799.

5. Internal subroutines: 1800 to 1999,

4.4 Use of symbols in DDTG

All operators and data are encoded internally as
symbois and the "indices™ of these symbols are manipulated.

4.4

60

subroutine WSYMTARB"™ allows the creation, accessing, and
modification of symbols. A symbol in the symbol table is a
triple (name, value, type). 4 symbol (NAME[1:3]) is 6
characters or less (left justified, right filled with 0's) in

length (6-bit Ascii). It has two associated fields: a value
field (IVAL[1:2]) and a type field (ITYPE[1])). These are
specified below. The symbol table is initially compiled from

the Ascii SYS:INISYM.DA file. DDTG common area (DDTCMN.FT) is
also initialized during the compilation of the symbol table and
is saved in SVDDIG.DA being loaded on DDTG entry and saved on
DDTG exit.

The symbol table in DDTG can hold up to 2039 (a prime
number) decimal symbols of up to 6 characters each. A folded
hashing scheme is used on a prime number hash table which is
searched modulo 2039 to handle clashes as I<==(I+HASH(X))MOD
2039. Six PDP8e words are used to store the symbol table
entry.

4.4.1 The symbol table ITYPE field

T ———— i L i S A -

The "ITYPE" field of all symbols on stack "IPSTK" are
typed either by subroutine INISYM or the parser "parse" as:

10:14 for file structured data types
10= mask register

11 = QMT data (func.comp., xy-acp's,det)

12 = Graf-pen data

13 = galvanometer scanner

14 = Dicomed display

15 = State of RTPP stepping motors and thrs.

9 for PDP8e memory reference instructions
PDPHRI=9
2:8 for symbols of specific data types
PM=2
GR=3
I1=4
12=5
I3=86
BM=7
PDPBE=B
1 for GPP opr device code
GPPOPR=1
0 for special DDTG symbols
-1 for DDTG operators

4.4

6l

-2 for DDTG numbers and switches

-3 for DDTG $operators

-4 for DDTG variables

-5 for DDTG functions.

-6 **not used*x**

-7 for DDTG 0S/8 device names (4 char max)

-8 for DDTG for 0S/8 file names ({6 characters)
-9 for DDTG 0S5/8 file extensions {2 chars)

4.4.2 The symbol table IVAL[1:2] field

A e e W R R -

The "IVAL" field is used differently for the different
types of symbols.

- ———

ITYPE

ITYPE

ITYPE
ITYPE

ITYPE
ITYPE
ITYPE
ITYPE

LTI FH T VI I ¥

e non

IVAL[1:2]

[10:15], IVAL[1 2] is not used.

9, IVAL[2] is the memory reference 1nstruct10n

[2:8], IVAL[1 2] is an address

1, IVAL[2] is the GPP operator code

0, IVAL is information for special symbols.

-1, IVAL[{1] is the operator precedence

0 is highest, +n is lowest;

IVAL{ 2] bits [6:11] is a type I process pointer

IVAL{ 2] bits [0:5] is a condition number

where applzcahle.

-2, TVALf1] is M5V, IVAL{Z] is LSW of 2's
complement number. (Note: NAME[1:3]
stores {"!IMEIVAL[1:2)).

-3, is used for three types of special
operators. The IVAL[1] field IS USED
to specify which subtype is being used.

IVAL{ 1] IVAL[2]

type II process pointer.

PDP8e "load or pulse I0T"

PDPB8e "read IOT™

PDPBe "SKP IOQOTM

DDTG switches

-4, IVAL[{1:2] is =ame as ITYPE = =2.

-5, IVAL[2] is the active (1) /unactive (0)
switch.

-6, *¥not used*¥*

-7, IVAL[1] is the 05/8 device number

-8, IVAL[1:2] is not used.

-9, IVAL[1:2] is not used.

£ wh -

u-u

62

4.5 Internal subroutines

The following subsections (#.5.-) list the internal and
external subroutines embedded in the Fortran source
subroutines. Externally callable (Fortran II/SABR) subroutines
embedded in these sources are marked with "kEY*n,

4.5.1 Internal DDTG subroutines

et R R R R R I T O ——

1. PARSE - Parse input line into Polish stack "IPSTK"
2. GETLINE - *EX* Get next input line intop line buffer,
Break for (carriage return, line feed,
=y /o 24 <, Ctrl/Q)
Edit with (rubout, Ctrl/u, Ctrl/T, Ctrl/R,
Ctrl/E, Ctrl/z).

2.1 AGETLINE - alternate entry to GETLINE without (CRLF*) on entry.
2.2 CTLC - Control/C service, save state and exit.
3. INCHAR ‘ - ¥EX* Get next input character from input stream.
4. QUT - *EX* Print next character in the output stream.
5. PUSHP - Push index(CURSYH;IVAL,ITYPE)=*>IPSTK{IPTOP].
6. PUSHOP - Push index(CUBSIH,IYAL,ITYPE)==>IOPSTK{IOPTOP].
7. OPMOVP - Empty ICOPSTK==>IPSTK (copy indices).
#E¥44# S t ar t of finite state machines ##¥¥%E#
8. SYMBOL - FSHM: assemble symbol in ®CURSYM"™,
9. LOWER - FS5W: convert lower case to upper.
10. NUMBER - = FSM: assemble number into "CURSYM™.
11. COMMA - FSM: push argument symbol and test ignore THEN.

12. OPERATOR
13. ARITHOP

FSM: push opr ==>IPSTK (except +,-,%,%).

FSM: implement operator precedence
using IOPSTK and IPSTK.

FPSM: ignore input ICHARi's until next ",

14. COMMENT

15. DOLLAR - FSM: set special $operator mode.
16. PERIOD - PSM: to process current ptr's or file.ext syntax.
17 . COLON - FSM: to "“inquire"™ from the USR (0S/8) the

_ device name of CURSYM and push device number.
18. LFEED - FSH: to push the symbol "$LPEED" for line feed.
19. CRTRN - FSHM: to push the symbol "$CRTRN" for

carriage return.

20, SIXBIT ~.FSM: create & ~bit numbers using "!" as delimiters.

21. LEFTARROW FSM: detect GET/PUT use of "_w,

4,5

63

4.5.2 Internal DINTRP subroutines

e - — e S R e e e EE R R W N A A ER M

1. CTROTST ~ *EX* test for control/o, terminate interp.
2. BUMPL - test IP > 1, get symbol at
The top of IPSTK, decr. IP.
3. CVIVAL - *EX* convert IVAL(1:2] to F.pP. # fc
based on "MODEN®™ switch.
4, BINARG - *EX* test if binary arguments exist, then

get 2 top args IVAL[1:2] (of IPSTK)
into IA[1:2] and IB[1:2], and
convert IA to FA, IB to FB.

5. FCSTORE - *EX* convert FC to IVAL[1:2] and store
"number" symbol into IPSTK({IP).

6, FILESPEC - *EX* get the device name, device number, file
name and extension into COMMON.

7. DOSYMTAB - call SYMTAB (CURSYM,IVAL,ITYPE,INDEX,IDOSYNTAB)

4,5.3 Internal IO subroutines

e A ——————

1. ISETDEV

fetches the input device handler

2. OSETDEY - fetches the output device handler

3. R - read 1 block into IBUY¥ buffer

4, W - write 1 block from JBOF buffer

5. GETIC - get next character from IBUF

6. PUTC - put next character into JBUYF

7. INNC - *EX* external version of GETC

8. OUTC - *EX* external version of PUOTC, error in AC

4.5,4 Internal ODTSIM subroutines

R R A D S R W NE M S e T e A U e e

1. OCTOPEN - opens the address "MODED!KUEFPTR"™ by
putting its value in "KODTHNM".
2. ODTCLOSE - <closes the address "MODED!KURPTR" by

depositing the value contained in "KODTHN"™.

64

4,5,5 Internal GETPUT subroutines

A W ey mA M N R A A

1. DMPBUF - push the ac into the IBUFI1[1:512], write
2. LODBUF - load the ac from IBUF4[1:256], read
the buffer when empty.
3. GETXYZ - get the next (Z, or YY) argument using
using GETC or LODBUF according to KSUBTYPE.
4, DICPNT - test if USEDIC then display (IX,IY,IZ) or 256
5. XYouT - = output either 8-bit (USEFRH on} or 10-bit (off)
g raster.

4,5.6 Internal SYMTAB subroutines

Y - =

1. SETADR ~ set the symbol node ptr from I to KODE.
2, WBLK - write the symbol table page back onto the disk.

3. CBLKOFF - compute (using EARE) IRELBLK, IRELOPF from index I.

4,5.7 Internal IDTYPE subroutines

- T, W e A -

1. BUMPL - test IP > 1, get symbol at

-the top of IPSTK, decr. IP.
2. GOCHAIN - *EX* execute the CHAIN sequence

with the filename FILE in_COHﬂON

4.5.8 Internal DICMED subroutines

e e A A S M W A R A S A R A

1. DICSND - send (<x or y coord in acc>, z coord in MQ)

to the Dicomed.-

2. DicooDT - actual Dicomed I/0 routine.

4.5.9 Internal DOAUX subroutines

e e A e

1. GRFPIN - get the Graf-Pen data into (IX,IY).
2. GALPNT - position galvanometer scanner at ({(IX,IY)

4.5

65

then sample A/D channel 0 ==>I1Z.

3. CHKFRM - If USEFPRM=1 and NOT ((IX,IY) in FES3)
then retorn -1 else (3

4, SETQOMT - initial the QMT, FPES, QPROG, Mask Reg, etc.

5. SAMPLE - sample the A/D channel in ICHAN and put
the result in IZ.

6. SETVCTR - given two poimts (IX1,IY1) and (IX2,1IY2),
set the starting vector at (IX1,IX2).

7. VECTOR ~ given two points (IX1,1IY1) and (IX2,1Y2),

specified by "SETVCTR" call, successively
return (IX,IY) pairs on a linear approximation
between points 1 and 2. Set (IX,IY)=(-1,-1)
when done.
8. ERQMT - read the QMT srg inteo IBUFI1{1:768] using
six words/entry for 128 entries/calil.
An entry is (FPC1H,FCiL,FC2H,FC2L,XACP,YACP). Do
a "RSRGI, ZSRGI"™ before the initial
call to RQMT. Keep track of valid data yourself;
generally, a STQMT was done previously to doing
ROMT calls.
9., WOMT - write QMT srg data into (xacp,yacp)
from IBUF1[1:768) using the same 6 word format
as for RQMT, Do a max of 128 writes/call
do not write if the (x,y) arg =(0,0) or (V777,177
1C. SETWIN - reads the frame and scale [HP,HS,VP,VS),
then converts them to decimal from
BCD and returns (IXPCSITION,IHSIZE,IYPOSITICN,IYSIZE)
IF USEFILEXY=1 then use file header
(KX,KY) instead of (HP,VP).
compute and write out the header block.
analyze the switches in the IPSTR.

11. WRTHEADER
12. SWANALYSIS

4,5.10 Internal DUSR subroutines

- S e s e WP e okl I TR S AR ANl e e A ki w w

1. CLOCK - *EX* external clock subroutine
2. GPTR - get the next pointer from the
special segment,

4.5,11 Internal MANUAL subroutines

o ————— T ——— i ————————————— " —— -

1. SETUP - calls MOTORS to change desire and set active bit
2. MOTORS - *EX* change desired state

4.5

3. MVMTR - *EX* change current state to desired state
4, GETBIT - put + bit for selected motor into LINK register
5. REPLACE - restores motor pattern in COMMON at end of MVNTR

4,5.12 Internal MOVESTATE subroutines

S R TR A D e D e AR S o

1. GETSTK . = pop IPSTK{IP) into CURSYM,IVAL, ITYPE.

4.5,.13 Internal GPPLDR subroutines

e — A A e o W -

1. GETPAGE - get the next input page for loading .SV files.

4.5

67

4.5 External FPORTRAN subroutine files in DDTSG

it R e R e X ot S A A ——

The following list of subroutines are used in DDTG.

1. RDDTG - re-entrant DDTG address for use with chaining
2. I0WLFT - General 8 bit Ascii I/0 and hloc I/O0.
3. (D)SYMTAB.¥T Make, fetch, delete (name,value,type)
symbol triples and indices. (D) is for disk
simulation version.

4. DPCVRT.FT - D.P., Integer to/from F.P,

5. OCTI.FT - D.P. Octal to/from D.P. Integer

6. DINTIRP.PT - DDIG interpreter called after parse is done.

7. IDTYPE.FT - function to implement type II interpreter
processes

8. OLCTSIM.FT - implements ODT type commands

9. GPPLDR.FT - GPP loader

10. SETPUT.FT - implements GET/PUT commands

11. CLOCK.FT - 200 Hz clock.

12. MANUAL.FT - joystick, threshold control service

13. MOTORS,FT - MOVESTATE legal state checker

14, MOVEST.FT - move state dispatcher

15, MVMTR.FT - actual motor state service.

16. DOAUX.FT ~ auxillary subroutines For GETPUT

17. TUSR.TFT - DDTG user service routine

Subroutine (D)INISY®,.FT is wused for Symbol table
initialization and returns to 0S/8 when it is done. The (D)
version is for the disk simulation version.

4.7 DDTG I/0

Various types of I/0 (Ascii and binary byte, and block)
methods are required by DDTG. The S$EXECUTE <file> command
takes input characters from the specified .DA file using
Fortran II general (device 4) input and uses them as 1input to
the DDTG interpreter instead of getting input from the TTY:.
The output spooler sends character I/0 to an open ended output
file. The FCRTRAN general (device #) oantput channel is used for
the output spooling. A "/H" switch is specified during DDTG.SV
loading so that the logical MTA1: 05/8 device can be used for
spoeling. Various other types of 8~-bit and 12~bit I/0 are also
done by DDTG and its subroutines. These may require the use of
2 ¢cr more I/0 channels to be open at the same time.

4.6 - 4.7

68

Data acquisition and data display require a more
advanced I/0 facility than that offered by Fortran II. For this
reason, subroutine I0.FT was written which facilitates mixed
8-bit byte and block I/0 as well as random accessing block
structured random access devices.

Program (D}INISYM.FT uses PFortran input to read the
SYS:INISYM.DA file while subroutine ({D)SYMTAB.FT random
accesses the SYS:CMPSYM.DA file using the 05/8 system device
handler. :

4.8 Compiling DDTG

—— o —————————— -

DDTG consists of a set of subroutines which may be
compiles separately under 0S5/8 as follows. The set. of compile
statements is included in the batch program DDTGCP.BI running
on the PDPBe. . .

« R FORT
*DDTG .RL, DDTG.LS_DDTCMN.FT,DDTG.FT

.R FORT _
*DINTRP.RL, DINTRP. LS_DDTCHMN.FT, DINTRP. F2

. R FORT
*IDTYPE.RL,IDTYPE.LS DDICMN.FT,IDTYPE.F2

.R FORT
*I0.RL,I0.LS_TO.FT

. R FORT
*GPPLLCR.RL,GPPLDR.LS_DDTCMN.FT,GPPLDR.F2

« R FORT
*GETPUT.RL,GETPUT.LS_DDTCMN.FT,GETPUT.F2

«R FORT
*DOAUX.RL,DOAUX.LS_DDTCMN.FT,DOAUX.F2

+R FORT
*MOVEST. RL,MOVEST.LS_DDTCMN. FT,MOVEST.FT

«.R FORT
*0ODTSIM.RL,ODTSIM.LS_DDTCMN.FT,ODTSINM.F2

4.8

69

«R PORT
*DSYMTAB.RL,DSYMTAB.LS_DSYNTAB.PT

.R FORT
*DINISYM.RL, DINISYM.LS DDTCMN,.¥T,DINISYM,PT

.R FORT
*DUSR.RL, DUSR.LS_DDTCMN.FT,DUSR.PT

«RB FORT
*DICH®*D.RL,DICMED.LS_DDTCHN.PT,DICMED.FT

«R FORT
*DPCVRT.RL,DPCVRT.LS_DPCVRTI.FT

.R FORT
*QCT,. BL, OCT.LS_OCT.FT

«E FORT
*IBCD.RL, IBCD.LS_IBCD.PT

R FORT
*MANUAL.RL,MANCAL.LS_DDTCMN.PFT,MANUAL. PT

.R SABR
*MP.RL, MP.LS_MP.SB

4.8.1 Building a DDTG.SV core image

—— A i ————— W - —— -

DDTG.SV may be built on a PDP8e using the following
loader sequence. The 0S/8 batch file DDTGBL.BI contains this
seguence.

.R LOADER
*10/0/1/H

*DOAUX,IDTYPE,DINTRP, GPPLDR,DSYMTAB,GETPUT,ODTSIM, DICMED, DUSR
*LIB8/L

*MQOVEST/7

*MANUAL/T

*DDTG, DSYMTAB, DPCVRT, OCT, IBCD

*LIB8/L

*DDTG,.MP/M<

*/M%

.SAVE SYS:DDTG

70

The symbol table compiler program is loaded as follows:

.R LOADER
*10,/1/0/H
*DSYMTAB/2 -
*DINISYN,O0CT/I/H
*INISYM.MNP/N<$
.SAVE SYS:INISYM

To compile the symbol table (before running DDTG) type:
« R INISYM
To which INISYM will respond with twolmessages, one at the

start of compilation and the other at the end with the number
of symbeols compiled being printed.

71

SBECTION 5

Creating 0S5/8 Fortran II special segments

T e S ———— T ——————— o o——

Special segments may be created using the Portran II
language in 0S/8 which can access all of the DDTG.SV Fortran
subroutines. This is possible because of the fact that the 0S/8
LOADER program assigns entry point numbers +to external
subroutine calls by their occurance during loading. If +the
first reference to an external subroutine is the same for both
DDIG.SV and the special segment then the special segment can be
loaded separatedly but can call the same subroutines. The
actual linkage is wade at runtime by the Fortran runtime
system.

To insure that the loading sequence will be the same as
for DDYG, a dummy SABR file MP.SB may be loaded with the
special segment. MP.SB contains calls to all of the external
subroutines which are used in DDTG and must therefore be the
first file loaded in the loader sequence for DDTG.SV. That 1is,
replace

*10/1/0/H
with

*MP.RL/I/0/H/7
*I0/0

In the special segment loading sequence do the following:

+R LOADER

*MP.RL/I/0/H/T

*MOVEST/7

*MANUAL/?

*SPECIALSEGMENT.RL /7

* /M35 (ase this to get the <starting address>)
« SAVE SYS:SPECIAL.SY 70000-77577

Then run DDTG and RUN (using the DDTG RUN command) the
special segment.

.R DDIG :
*RUN SYS:SPECIAL.SY
or

72

*RUN SYS:SPECIAL, SV

5.1 Creating internal subroutines for special segments

W L L S W S W A G i i S W e ki e e wn

As the Fortran II permits up to 64 external subroutines
and DDTG.SV uses 64 externanal subroutines, there are no free
slots for addtional special external subroutines. This means
that additional special segment subroutines should be made
internal in the Portran special segment. The following example
shows how this may easily be done. :

(1) Put all internal subroutines just before the
END statement with a CALL EXIT before the first one.

(2) Call the subroutine with a JMS.

(3) Begin the actual code for the subroutine with the

following:

s CPAGE 3 /KﬁﬁP‘THE RETURN PTR AND THE JNP T TOGETHER
S RNAME1, JMP I NAME1 /RETORN

S NAME1, 0 /ENTRY

S JMP RNAME1 /EXIT TO RETURN

Note that Portran II will reset the data field to the current
field on the return from an internal subroutine call.

5.2 Fetching arquments from the DDTG stack

Rl ittt e e h e A ———

Since special segments are generally started via a $RUN
<filespec> command, it is easy to pass additional arguments to
the special segment through the working stack (IPSTK) which has
working pointer IP and top pointer IPTGCP. The convention is
that the first file specification and all switches in the stack
are used by the DDTG GPPLDR routine. The indices removed from
the IPSTK can be analyzed as to type and value using a (IOPR=3)
SYMTAB call. This then is an effective way to pass file and
variable names to special segments.

An more effective way of accessing hp to 4 additional

5-1 - 5-2

73

file spcifications is via file specification stacks in COMNMON.
The file specifications are already decoded S0 that
SDEVICE (1:IFILTOP~1) contains the ASCII 6-bit device names,
ISDEVICE (1:IFILTOP-1) contains its 0s8 device number,
SFILE(1:IPILTOP-1) the 6-bt file name, and SEXT{(1:IFILTOP- 1)
its 6-bit extension. The list of variables and numbers is given
by its symbol table index so that the user must look it up with
a call to SYMTAB with IOPR=3, This 1list 1is contained in
ISVARLST(2:ISVTOP). ISVARLST(1) is the starting address (if

nonzero) of the special segment and so is not used +to pass
arguments.

5.2

74

SECTION 6

References

Carm74, Carman G,. Lemkin P, Lipkin L, Shapiro B, Schultz H,
Kaiser P:A real time picture processor for use in biological
cell identification « II hardware implementation. J. Hist.
Cyto. Vol 22, 1974, 732:740.

DEC73. Digital Equipment Corporation:DEC System 10 - Assembly
Language Handbook. Maynard, Mass. (cf. 863:914 on DDT), 1973.

DEC74., Digital Equipment Corporation:05/8 Handbook. Maynard,
Mass. (cf. 1-113:1-122 on ODT), 1974.

East69. Eastlake, D, Greenblatt R, Holloway J, Knight T, Nelson
S:ITS 1.5 Reference Nanual. MAC AIN 161, July 1969.

GrosG76.G6rosfeld G, Lemkin P, Shapiro B:GPP assembler for the
RTPP., NCI/TP Technical Report #16. In prep.

Lem74, Lemkin P, Carman G, Lipkin L, Shapiro B, Schultz
M, Kaiser P:A real time picture processor for use in biological
cell identification - I systems design. J. Hist. Cyto. Vol 22,
1974, 725:731.

Lem76a. Lemkin P, Shapiro, B:PRDL - PRocedural Description
Language. NCI/IP Technical Report #15. In prep.

Lem76b. Lemkin P, Carman G, Lipkin L, Shapiro B, Schultz
M:The real time picture processor - description and
specification. NCI/IP Technical Report #7. In prep.

Lem76c. Lemkin P F:Description of the NCI Biological 1Image
Modelling System - CELMOD. NCI/IP Technical Report #14. In prep.

Lipl74. Lipkin L E, Lemkin P F, carman G:Automated
Autoradiographic Grain Counting in Human Determined Context. J.
Hist. Cyto. Vol 22, 1974, 755:765.

ShapB76a. Shaprio B:PDP11 message switcher. NCI/IP Technical
Report #17. In prep.

S5hapB76b. Shapiro B:SLR(1) parser generator. NCI/IP Technical
Report #9. '

75

SECTION 1A

List of error numbers

When an error occurs in any procedure in DDTG, an
internal error number is generated and is passed backwards from
the error condition to internal subroutine ERROR in DDTG.FT.
The error number is passed through the COMMON variable IERRNODM.

ERROR searches file "SYS:DDTGER.DA" for the error
number and prints it and its associated error message. DDTG
then clears various DDTG switches and restarts at the "xn
command level.

ERROR CODE ALLOCATION

000:099 - DDTG PARSER

200:299 - ODTSIN ERRORS

300:399 ~ GPPLDR ERRORS

400:499 - MOYESTATE ERRORS

500-599 - GETPUT ERROES

600:699 - DOAUX ERRORS

700:799 - DICMED ERRORS

800:899 - DUSR ERRORS

900:999 - MANDUAL, MOTORS, MVYMTR ERRORS

ERROR LIST
11! ILLEGAL ERROR MESSAGE NUMBER !1!
<DIGITS><LETTERS> IS ILLEGAL SYMBOL
UNTERMINATED QUOGTE (")
DOLLAR ($) IS NOT FIRST CHAR OF SYMBOL WHERE IT APPEARS.
"FATAL" SPOOLER OUTPUT ERROR.
ILLEGAL 0S/8 DEVICE NAME.
ILLEGAL PABSE CHARACTER.
ILLEGAL <FILE> SPECIFICATION.
ILLEGAL UNARY OPERATOR SEQUENCE
TOO MANY DIGITS IN <NUMBER>
16 ** NOT USED**
11 SIXBIT CONVERSION ERROR
12 FATAL: NO SVDDTG.DA PILE ON S¥S:
13 FATAL: NO CMPSYM.DA FILE OKN SYS:
14 PARENTHESIS MIS-MATCH ERROR

VRN E W ad

101 BINARY OPR DOES NOT HAVE 2 ARGS

A

76

102
103

104

105
106
107
108
109
110
imnm
112
113
114
115
116
117
118
118
120

201
202
203
204
205
206
207
2(8
209

301
302
303
304
3905
306
307
308
309
310
311
312
313
314

401
501

PATAL:

UNARY O
ILLEGAL
ILLEGAL
FILE LO
URDEF S
ILLEGAL
EVAL AR
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
TLLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
TLLEGAL

ILLEGAL
ILLEGAL
TLLEGAL
BREAKPO
ILLEGAL
NO BREA
ILLEGAL
TLLEGAL
ILLEGAL

ILLEGAL
GPPLDR
GPPLDR
GPPLDR
GPPLDR
GEFPLDR
GPPLDR
GPPLDR
GPPLDR
GPPLDR
GPPLDR
GPPLDR
GPPLDR
GPPLDR

ILLEGAL

ILLEGAL

INTERNAL

SYETAB OVERFLOW DURING INTERPRETATION
PERATOR ARG EERROR

ASSIGNMENT SYNTAB.

FILE NAME SPECIFICATION SYNTAX
OPUP PAILED (FILE DOES NOT RXIST)

YMBOL - NO OPERATION PERFOBRNMED WITH COMMAND LINE.

DATA SPACE SPECIFICATION
G ERROR FOR "=0,

WBREAK"™ SYNTAX

"CONTINUE"™ SYNTAX

WSEARCH"™ SYNTAX

DATA SPACE ASSIGNMENT

HGO" RETURN FOR ODTSIN

WTYPE"™ RETURN FOR ODTSINM
"FUNCTION® RETURN FOR ODTSIN
POLLING LOOP R/W IOT SPECIFICATION
"IF CONDITION®" ARGUMERT

"GOTO"™ ARGUMENT

LEFT SYMBOL IN ASSIGNMENT STATEMENT.

ODTSIM FUNCTION REQUEST
ODTSIM DATA SPACE NODE
BREAK POINT NUMBER

INT IN USE

BREAKPOINT DATA SPACE
KPOINT PRESENT

WSEARCH" DATA SPACE MODE
“GO" DATA SPACE MODE
WCONTINUE" DATA SPACE

GPPLDR PUNCTION
ERROR ATTEMPTING TO OPEN INPUT FILE
ERROR ATTEMPTING TO OPEN OUTPUT FILE
GPP LOAD NOT IMPLEMENTED YET
GPP START NOT IMPLEMENTED YET
GPP RUN NOT IMPLEMENTED YET
GPP SAVE NOT IMPLEMENTED YET
INTERNAL "OPEN" ERROR
PREMATURE END-OF-FPILE ON INPUT
“START" ERROR
SAVE COMMAND ®CLOSE" I/O ERROR
"READ BLOCK" ERROR
"WRITE BLOCK" ERROR
TLLEGAL ".SV" FILE

REQUEST

MOVEST FUNCTION REQUEST
GETPUT FUNCTION REQUEST

A

502
502
503
504
505
506
507
508

601
602
603
604
605

701
8¢

901
921
922
923
324

<NOT USED>

ILLEGAL GETPUT SWITCH

GETPUT ENTER, WRITE, CLOSE ERROR

GETPUT LOOKUP, READ ERROR

ILLEGAL READ ON WRITE ONLY DEVICE - $GET IGNORED
ILLEGAL WRITE ON READ ONLY DEVICE - $PUT IGNORED
DATA FILE SPACE TRANSFER MODE ON $PUT IGNORED
DATA PILE SPACE TRANSFER MODE ON $GET IGNORED

TLLEGAL DOAUX FUNCTION REQUEST

DOAUX ILLEGAL GETPUT/GPPLDR SWITCH

DOAUX ILLEGAL VECTOR GENERATED

DOAUX HEADER ODTPUT I/0 ERROR

DOAUX ILLEGAL DATA FILE MODE "MODGP"™ SWITCH VALUE

ILLEGAL DICOMED FUONCTION REQUEST
ILLEGAL DUSR FPUNCTION REQUEST

MANUAL TOGGLE SWITCH NOT HELD LONG ENOUGH
MOTORS, ILLEGAL MOTOR #: < 1 CR > 12
MOTORS, ILLEGAL OPERATION

MOCTORS, DESIRE > UPPER LIMIT

MOTORS, DESIRE < LOWER LIMIT

77

78

SECTION B

Table of PDP8e IOT's used in DDTG

- ——————— o — D -k ke S — v i E—— - —

PDPBe instructions may be used in various DDTG
operations to control the RTPP. The following two tables list
RTPP specific. input/output transfer instructions (IOT!s). The
concept of I0OT 1is explained in detail in the DEC Ysmall
Computer Handbook"™ [DEC74]. The first - table 1lists GPP
{General Picture Processor} related 1I0T's while the second
lists I0T's which control the Quantimet and control desk
functions.

B.1 List of PDPBe I0Ts for the GPP

- ——— i ————— "l ol T Wy vl il e o —— i

The following 1list of GPP operators are discussed in
detail in [Lem76b]. ' - :

$DABTDS disable DAB trap register

nnnn$DABTRP set the DAB trap addr/enable
nnnn$DMACA load the DMA CA register

$DMACLR clear all DMA channels

nnnn$DMAGO load the DMA cmd register, start DMA
DMASKP wait DMA to be done

nnnn$DHARC "load the DMA WC register

nnnn$EXDMAT load the DMA peripheral device address high
nnnn$EXDMA2 load the DMA peripheral device address low
nnon$GETBIN enable BMs to access binary images
nnnn$GETPIX enable BMs to access gray scale images
$GPPCLR clear the GPP

$GPPCONT continue the GPP

$GPPHLT halt the GPP

nnnn$GPPLAD load GPP PC from EXDMA1,2

nnnn$LBKX load BM XP register

nnnn$LBNY load BM YP register

$LBMO (XP,YP)==>BM0

$LBM1 {XP,YP) ==>BM1

$LBM2 . {XP,YP)==>BN2

$LBHM3 {xXP,¥YP)==>BM3

$LBMY {XP,YP)==>BMlU

$LBM5 (XP,YP)==>BM5

$LBM6 (XP,YP) ==>BM6

B.1

79

SLBM7 {(XP,YP}==>BN7

nnnn$LPMPCH lcad the GPP high PC<==8e ACC.
nnnn$LEMPCL load the GPP low PC<==8e ACC.
$PCTDS disable PC trap register
nnnn$PCTRPH set the PC high trap addr/enable
nnnn$ PCTRPL set the PC low trap addr/enable
nnnn$POSTPIX post selected gray scale BN windows
nnnn$POSTBIN post selected binary BM windows
$RGPPCH read the GPP high PC==>8e ACC.
$RGPPCL read the GPP low PC==>8e ACC.
$STATG1 read high 4 bits of GPP STATUS reg.
$STATG2 read low 12 bits of GPP STATUS regq.
nnnn$X8ECTL load the X8E control worgd
nninn$XBECA load the XBE current address word

B.2 List of PDP8e I0Ts for the QMT/control desk RQC

o e T VS S e e O —— . A wh mw e w— we

set of commands are implemented for the QMT

sequences - which would normally use a
"skip-done" type of 8e sequence to test when done will
automatically invoke such a sequence internal to DDTG after
issue of the "GO" type IOT. These IOT's are discussed in more
detail in [Lem76b].

A similar
imterface. Command

SADVSR advance the SRG one word

$CSRGI clear the SRGI

nnnn$DETB load standard detector B

nnnn$DETC load standard detector C

nnnn$DET1 load 1-D detector threshold 1

nnnn$DET2 load 1-p detector threshold 2

nmnn$DETDIG load densitometer thresholds

nnnn$DISP1 load control desk display 1

nnnn$DISP2 load control desk display 2

nnnn$EXADR l1cad external interface channel

address (0 to 7)

SEXIN read external interface channel

nnnn$EXOUT load external interface channel

$FBUW 1 read z,¥Y,x Joystick/focus {bits 3 4 §
speed bits 6-7=z, 8-9=y,
10-11=x)

$FBW2 read the 12 command keys

$FBW3 read the 12 momentary class keys

$FBWL read the 12 on/off toggle switches

$FBWS read digiswitch octal digits 0 1 2 3

$7BW6 read digiswitch octal digits # 5 6 7

B.2

80

$FPBW7
$FBR10

$PBWT1

$FBW12

$GETMSK enable

GRPRI
GRFSKP
nnnn$HPL
$HPR
nnnn$HSL
$HSR
nonn$LDXP
nann$LDYP
NNNNSLPBR2
nnnn$LMASKE
nnnn$LMASKX
nnnn$LODT1
nnnn$LQODT2
nnnn$LQDT3
nnnn$LSRGB
nnnn$LGALX
nnnniLGALY
nnnn$MSKADR
nanniM STAG
$0DAT1
$0DAT2
$ODAT3
SQMSKP
nnnn$QPROG T

nnnn$QPROG2

nnnn$QPROGI
nnnn$GPROGY "
nnnn$QPROGS v
nnnn$QPROGE v
nnnnfQPROG7 "
nnnn$ QPROGS ¥
nnnn$QSTAT
$RPFC1H

$RFC1L

$RFC2H

$RFC2L
3RMASKE

read digiswitch octal digits 8 9 10 11

read 3 5 position switches TH1, TH2
Zoom. Same format .as FBW1

read 3 5 position switches fregq, intens,
spare 1. Same format as FBW1

read 5 position switch spare2
{speed bit 3, motion bits 6
7), and momentary execute bit 0,
grap-pen tip switch bit 11.

acquiring a mask from QMT

DET-video ' '

get next x or y grafpen datum

skip on grafpen ready

load P&S BCD horizontal position

read F&S BCD horizontal position

load F&S BCD horizontal size

read P&S BCD horizontal size

load QMT cursor X register

load QMT cursor Y register

locad the 12 command key lights

load mask entrance(MSKADR).

load mask exit (MSKADR)

load QMT right display reg lsb

load QMT right display reg middle

load QMT right display reg msb

load the SRGB input register

load galvanometer scanner x D/A

load galvanometer scanner y D/A

load the mask line address register

load stepping motor word

read low QMT BCD data==>8e ACC

read middle QNT BCD data==>8e ACC

read hi QMT BCD data==>8e ACC

vait for QMT ready. .

load QMT program word 1 (see [Lem76b]))

load QMT program word 2 *

load QMT program word 3 "

load QMT program word 4 %

load QMT program word 5 "

load QNT program word 6 ®

load QMT program word 7 "

load QMT program word 8 n

load QMT status register n

read the PFC1 msb

read the FC? 1lsb

read the FC2 msb

read the FC2 1sb

read mask entrance(MSKADR)

B. 2

$RMASKX
SROSTAT
$RSRGT
$RSRGX
FRSRGY
nnnn$SIZEA
nann$SIZEC
nnnniSIZED
nnnniSTZEM
$SMACP
- $SMCLK
$SMHLD
$SMSYN
$SNAVTG
$STEP
$STOMT
nnnniVveL
$VPR
nnnn$VvsL
$VSR
SRPENX
$RPENY
$ZSRGI

81

read mask exit (MSKADR)

read QMT
read the
read the
read the
locad BCD
load BCD
load BCD
load BCD
simulate
simulate
simulate
simulate
simulate

status register

SRG index register

SRG XACP

SRG YACP

Amender sizer register
Classifier collector limit regq.
Standard Comp. sizer register
MS3 Computer sizer register
an ACP

the QNMT clock

the QNT hold

the QMT sync

the QMT vtrig

step MSTAG stepping motor word
start the QMT and automatically

load P&S

-read PES

load PBS
read P&S

BCD vertical position
BCh vertical position
BCD vertical size
BCD vertical size

read light pen X register
read light pen Y register

zero the

SRGI and do IZSKP

B. 2

82

SECTION C

Alphabetic¢ list of DDTG commands

A A N S S W S W A S . e S W A g — -~

order to facilitate the use of - DDTG, several

alphabetic lists of commands are given belovw.

C.1 List of $operator commands

—— g —

- ————

$BCD
$BREAK

SCHAIN
$COMMENT
$CONT

$DECIRAL
$DEFINE
SDELETE
$DIGDET
$DSPACE

$RCHO
$EDIT
$FRASE
$EXECUTE

$FILEGEN
3GET

$GO0

$c0TO
31IF

$LISTSYM

T

Special forms

set teletype I/0 to BCD number conversion

nnnn $BREAK m (make breakpoint in current
data space)

nnnn $BREAK m E<PDPSE or PM>

~$BREAK m (delete breakpoint wherever it is)
$BREAK m= {type out breakpoint)
$BREAK= (type all breakpoints)

$CHAIN <.SV file named

toggle the comment mode switch

nnnn $CONT m

$CONT m ,

set teletype I/0 to decimal number conversion
$DEFINE <.DA function file name>

<list of symbols> $DELETE

use the contnol desk thresholds to control Digitizer
$DSPACE _<data space>

$DSPACE=

turn on the teletype echo on command input.
$EDIT <.DA function file name>

erase the dicomed display

$EXECUTE <.DA file specification>

$EX <.DA file sgpecifiation> {alternate form)

$GET filespec, data type, switches

filespec._data type, switches

$60 <start1ng address in current data space>

$G0 <starting address> &<PDPBE or PM>

$G0TO0 <command number>

$IF <expri1><conditional><expr2> THEN <do next command>
else skip the next command.

<list of data spaces> $LISTSYM

C.1

$LOAD
$MANUAL
SMODE
SMOVESTATE

$NCECHC
SNOMANUAL
$ROSPOOL
SNOVIEW
$0CTAL
$PRINT
$PROTECT
$PUT

$RUN
$READSTATE

$SAMPLE
$SAVE
$SEARCH

$SETQOMT
$SIXBIT
$SPOGL -
$START
$STIDDET
$SYMBOLIC
$SYMPRINT
$UNPROTECT
SVIFW
$ZEROSTATE

83

<list of examples of other symbols> $LISTSYM

$LOAD filespec, switches

enable control desk control of stepping motors

$MODES (print DDTG modes)

SMOVESTATE (t2,t1,x,y,f,2m,nd, wv,<cmd>)

where: <ai>::=<number> | <variable> | P

<cmd>»::= REL { ABS

don't echo teletype command input

disenable control desk control of stepping motors

turn off the teletype spooling

turn off the Dicomed view light

set teletype I/0 to octal number conversion

$PRINT <.DA function file name>

allow DDTG to access only special segment part of PDPBe

$PUT data type, filespec, switches

data type_filespec, switches

$RUN filespec, switches

print the microstate of the RTPP motors and thresholds

$READSTATE (t2,t1,x,y,£,2m,nd, wv)

$SAMPLE <channel number>», returns value

$SAVE filespec, switches

nnnn $SEARCH :

nnnn&é<data space> $SEARCH

reset QMT etc to standard state

toggle switch to show opened loc. data as 6-bit

turn on the teletype spooler

$START <starting address in current data space>

use the control desk threshold keys to control Std. Det.

$5 (special form)

print the value and type of specified symbols

allow DDTG to access all 32K PDP8e core

turn on the Dicomed view light

zero the motor and threshold microstate vector

C.1

84

<Write I0T>"<read I0T>,<index>

C.2 List of unary operators

D i ke A W G W R S N W S W W

The unary operators - used in DDTG are listed below.
Characters not listed are trapped by DDTG when used.

Character function

add operator

subtract operator

multiply operator

divide operator

define new symbol

eval and print expression
temporarily change data space
(back arrow) assignment

separate symbols

separate symbols

separate symbols

start list

end list

start subscript

end subscript

comment terminators

{(upparrovw) polling spec1f1cat1on
(dollar sign) define $operator

5 " evaluates to current location or file extension dellm

M7 %+

“s % N
o
o
Q
®

- e kg

©“ 1}

' indirect bit for GPP address

¥ immediate bit for GPP address

> open next location

< open previous location

/ open current location

LF {line feed) open next location

CR {carriage return} eval expression and close

opened location

Editing characters

——— ————————— -

The following characters are used in editing command inputs to
DDIG.

ctrl/C save state of DDTG and exit to 0S8
ctrl/E stop adding text during $EDIT
ctrl,/0 stop processing and return to DDTG "*® Jevyel

C. 2

ctrl/R
ctrl/T
ctrl /o
ctrl /2
rubout

85

print the cleaned up teletype input line

toggle DDTG. status word debug bit and print status
erase line currently input from teletype

stop adding text when $DEFINE S$EDIT

erase last symbol typed.

86

C. 3 List of data spaces - file data spaces and switches

SRk D R S Sy M N e — Y i t— N AP W D e e whe . R W e -

The four 1lists which follow sumariie the various
command switches and data (file)_modes.

Data spaces (used with DSPACE and §)
BM

GR

I

12

I3

PDPSE

PDPMRI

PM

Data file spaces (use with $GET and $PUT)

- ——— -

BM7
DICHED
GALSCAN
GREAFPPEN
MASK
QMT
STATE

Switches (used with $GET and $PUT)
ALLBHM

FPILL
FULLRASTER
HGHBYT
NOVECTOR
BSECLASS
USEDIC
USEFTLEXY
USEFRNM
USEMSK

Switches (used with loader LOAD, BUN, START, SAVE)

CLEAR
MERGE

C.3

NEW

NOPHM
NOB8F

PAL
RELOCATE
SAVSYM

87

88

SECTION D

DMA data transfers between the PDP8e and GPP/BM

Various data transfers must be set up and carried out
between the 8e and the GPP and the PDP8e and BM. The f£following
examples of 8e code illustrate how this may be implemented.

DMA from the PDP8e is distributed from one general DHA
card which plugs into the "Master™ (RTPP) PDP8e. Several
commands are implemented for the DMA channel control which
enable the selection and specification of DMA activity. As the
DMA channel selected by the PDP8e DMAGO[9:11] only one channel
can be active at a time! This section describes the DHA
channel.

DMAGC : 607Q DMA instruction to start the specified DMA channel.
A command word in the AC is loaded by the DMAGO.
bit function
0 Output or read = 0.

‘ Input or write = 1,
1 Wait for GPP I/O0 instruction = 0.
Direct I/0 (forced by the PDP8e) = 1.
3:4 packing mode for BM data
00 8e-words/1 16-bit packed EAE
format

01 4 8e-words/6 low 8-bit BN
bytes {058 packed)

10 4 Be-words/6 high 8-bit BN
bytes (058 packed)

1 4 8e-words/3 16-bhit BM
bytes (0S8 packed)

6:8 PDP8e extended current address.
9: 11 DMA channel select.
000 BN I/0.
001 X8e I1/0.
010 GPP general {GR) I/0.
011 GPP program memory {PN) I/0.
1600 GPP microprogram memory
(MPM) I/0

is allocated {even if not
eventually used).
101 spare

D

89

0 spare
1 spare

DMA3KDP : 6071 Skip on DMA channel done.

DMANC : 6072 Load +the DMA PDPBe word count from the PDP8e

AC, i.e. binary number of PDP8e words to be transfered. NOTE:
DMAWC = 0000 will transfer 4096 words.

DMACH : 6073 Load the DMA PDP8e current address from the
PDPBe AC, i.e. address of first transfer.

DMACLR : 6074 Clear the DMA channels.

Each DMA peripheral device (BM, GR, etc.) reguires an
additional address at which +to perform the DMA in the
peripheral device address space.

EXDHMA1 : High 12 bits of I/0 device address.
EXDMA2 : Low 12 bits of I/0 device address.

