NCI/IP-76/08

GPPASM -- A PDPSE ASSEMBLER
FOR THE GENERAL PICTURE
PROCESSOR

NCI/IP Technical Report #16
December 15, 1976

Peter Lemkin, Bruce Shapiro,
Morton Schultz, Lewis Lipkin,
George Carman*

Image Processing

Division of Cancer Biology and Diagnosis
National Cancer Institute

National Institutes of Health

Bethesda, Maryland 20014

*Carman Electron ics, Inc.
Corvallis, Oregon 97330

"We here highly resolve . . ."



XCI/IP-76/08

GPPASM - A PDPBE ASSEMBLER FOR THE

GENERAL PICTURE PROCESSOR

NCI/IP Technical Report #16

Peter Lemkin, Bruce Shapiro, Mort Schultz

Lewis Lipkin, George Carman

Image Processing Unit

Division of Cancer Biology and Diagnosis

Na tional Cancer Institute
National Institutes of Health
. Bethesda, Md. 20014
December 15, 1976

Abstract
GPPASM, an assembler for the General Picture Processor
at the National Cancer Institute, will run on a PDPBe. Tt is

intended to asserble RTPP source
compiler on the PDP10 as well as micro
microinstruction control prograrm memory (MCPM) of the

Binary output
GPPLDR program.

code produced by the MAINSAIL
instructions for the

GPP.

files may then be loaded into the GPP by the



10

TABLE OF

Introduction

GPPMODE Assembler Syntax . .

NN N R
-
N E Wk -

CONTENT

SECTION

- - - - - - -

Labels . .
GPPASH Operators
GPP Operands .
Comments . .
beclarations .

« 8 & 8 8 @
-

4 8 s & & @

4 &4 & 8 & @

MICROMODE Assembler Syntax e e s s »

GPPASM Assembler Operations . . . ..

b.1

L]

*

BJOUEWN

EREPEPEEEEFE
L]

L] * . -

Running GPPASM

Running GPPLDR

Assembly location . a
Expunging symbols . e
Nested source time files
Requiring load time files
Runtime file . . . .,
New symbol definitions .
SECTICON statement . .
GPP starting address = .

» L] L L ] L * - * -

Descriptions of GPPASM Modules . . . .

7.1

* @ » L B ]

& a

- ot wd DD NS WN

.
N =O

~3 e e I ISV EES IUS RENE IS JE REN REN

~J

. e
-k
F =¥y

7.15

Main program description

Command decoder descriptlon
Input/output description .
Scanner description . . .

Scanner = symbol routines description

Code generators description
GR allocator description .

GR allocator - Space checker description

PM allocator description .

PM allocator -~ Space checker description

MCPM allocator description

L L] L] [ ] L] L]

MCPM allocator - Space checker

description . . .
Symbhol cleanup description
Listing generator description

Symbol table map generator description

GPPASM BNF Grammar Specification SRR

Loader image file format . . . . . .

9.1

References

Loader data section . . .

- [ ] - L ] L] . L] L] . L] L] L ] L] L 3 L]

« & 8 ® & 2 8 & & . & % & 0 0

&*

[ ] L ] [ ] L . » L 3 -

L]
-
»
.
-
L
L]

L]
L]
-
-

»

L ] L] L] - L] L] * L[] » L] L ’

[ 3 » L] - [ ] L] L ] L L]

L[] » L] L] » L]

L] - - ] L[ ] - L L] » - . L

L ] . -

PAGE

. - - L] - L]

NEFEww

[=))

-
OO WO YOI

11
12

13
15
15
15
15
15
16
16
16
16
i6
16

16
17
17
17
18

22
22

24



GPPASH lmplementatlon s s e e e e« o
A.1 Logical structure of GPPASM « e a

A.2 Use of symbols in GPPASM . . . .
A.2.1 The symbol table ITYPE field . .

A.2.2 The symbol table IVAL[1:2] field

A.2.3 Label parsing . . +« <« . . .

A.3 Internal subroutines . . 5

I
Ut & WA -

P v Do D e
*
w W www

o
L ]
=

k-
-
LA

List of error

Internal GPPASH subroutlnes 5
Internal GINTRP subroutines .
Internal GIO subroutines . .
Internal SYMTAB subroutines .
Internal GSOPS subroutines .
External FOBRTRAN subroutine files
GPPASM . 5 A . 5 .
Compiling GPPASM and GPPLDR . .
Building GPPASM.SV and GPPLDR.SV core
images 5 o a9 o o o ¢

H
¢« & T a s ¢ s

numbers . 5 o A o0 - 5 o A

.« 4 5 5 = & ¢ &

L L] L] - L » L] a L L] - L]

25
28
29
29
29
30
32
32
32
33
i3
33

34
35

35
37



SECTION 1

Introduction
The General Picture Processor {GPP) is a
special-purpose image processing computar, one of the

components of the Real Time Picture Processor (RTPP) ({Carm74],
[Lem74], [{Lem76al}). This system, now under construction at
the National Cancer Institute, will use powerful techniques of
image- processing and artificial intelligence on the images of
objects being examined with an automated microscope under
control of the RTPP, to provide "intelligent™ assistance to the
bioclogist using its facilities.

The system is described more extensively elsewhere
{Lem76a]}. For the purposes of this document, its important
characteristics are these:

1) The GPP component is a processor in its own right.
It is not autonomous, but always operates under
control of the PDPBe, and has no peripheral devices
of its own except buffer memories, and some
switches and 1lights at a control desk. It is
optimized for processing images.

2) Part of the network constituting the system 1is a
large, interactive time-shared computer, the
PDP-KI10, which will be used to support the RTPP.
Extensive softwvare support already exists on the
PDP10 for the creation of software. :

For these reasons software for the GPP will be created
on the PDP10 using the MAINSAIL cross-compiler [Wil75]. GPP
source code generated by MAINSAIL on the PDP10 will bhe
transmitted from the PDP10 to the PDP8e, where it will be
assembled by the absolute code assembler GPPASM. The load file
produced may be loaded by the PDP8e using the absolute binary
loader program GPPLDR in the DDTG system [Lem76b) and run on
the GPP.

. A runtime program for the GPP running on the PDPS8e
computer may be chained to by GPPLDR in order to provide the
GPP program associated with it with a specific runtime system.

This document describes the GPP assembler, GPPASH,
which runs on the PDP8e to produce programs which run on the
GPP.

It should be noted that GPPASM is a reentrant
assembler. Thus a GPPASM program {(in GPPMODE) consists of two
separate processor load segments (an instruction memory (PM)
segment and a data memory (GR) segment). Together with a
REQUIRE <PDPB8e ",SV" file> RUNTIME specification in the file,

1



2

this constitutes the 1loader file for the GPPLDR. This
resulting load file is described subsequently.

Alternatively, GPPASHM may be used to assemble
microinstructions for the microinstruction c¢ontrol program
memory (MCPM) and mapping memory (MM) when in MICROMODE. These
memories and the microprogram control structure is discussed in
portions of this document and in {lLem76a]}. The MCPM microcode
constitutes the irplementation of the GPP "macro" instruction
set {eg. ADD, MOVE, etc.).

The mapping memory is used to map the operator values
of the macro instruction set (eg. ADD=000120) to corresponding
starting addresses of a set of microinstructions in the MCPM.
Both the microinstructions and mapping memory source language
may be assembled by GPPASM (while in MICROMODE) and loaded hy
GPPLDR. The default assembple mode is GPPMODE.

It 1is possible +to shift between macro and micro
assembler modes defining new instructions in the microassembler
mode and using them in the macroassembler mode.

Section 2 discusses the GPP assembly modei while
Section 3 the microinstruction assembly mode. Section 4
discusses the assembler in general. Sections 5 and 6 discuss
running GPPASM and GPPLDR respectively. Section 8 presents the
BNF grammar for GPPASM. Section 9 discusses the load file
format. -



SECTION 2

GPEMODE Assembler Syntax

L U e R T et W W e W

The syntax of the GPP assembly language (GPPASM) is
similar to that of most assembly languages. GPPASM is the
assembler for the GPP, and certain of its features are chosen
with rapid assembly and ease of documentation in mind. For
example: statements are fixed fields and are delimited by
carriage returns; comments are delimited by special comment
delimiters ("...") in the same way as in SAIL. The full BNF
specification is given in the Appendix. .

The syntax is roughly as follows:

<label> <PM-statement>
o <label> <GR-statement>
vhere <label> is optional.

The <PM-instr.> consists of a fixed format triple operand
instruction:

<Operand> <Sourceoperand 1>, <Sourceoperand 2>, <Sinkoperand>

The <sinkoperand> is refered to as P3 effective address and the
{sourceoperands> as the P1 and/or P2 effective addresses.

2.1 Labels

o ——

A label is any valid non-~reserved symbol, terminated
(without an intervening space) by a colon (:). More than one
label may prefix a line. Examples:

JUMPSPOT: TARGET: BULLSEYE:
PLACEZ:

And the usual examples of things which aren't legal labels:

2PLACE: s
PLACEZ : :TARGET

Labels are not declared beforehand.



4 GPPMODE Assembler Syntax

2.2 GPPASHM operators

- o —— e e - -

Operators are symbols which represent GPP operation
codes, GR memory addresses, or assembler operations. Examples:

HALT (assemble here a GPP HALT instruction)
ADD {assemble here a GPP ADD instruction)
GRBLOCK (allocate storage in general registers)

2.3 GPP Operands

There are two kinds of operands associated with GPP
operation codes: a <sinkoperand> is always the P3 field of an
operation; <sourcecperands> are the Pt and P2 fields. Neither
operand field is required, omitted fields must always be
specified by delimiters or be filled with zeros. For example:

MOVE A,,B
MOVE 1,0,B
ADD a,B,C
ADD A B C
Some examples of illegal operand specifications are:

MOVE A,C
ADD A,B,C,

2.4 Comments

—— e T W W A -

A comment is introduced by the reserved upper-case word
"comment" and is terminated by a semicolon (;). For exampla:

Comment This is a comment
and this is the 2nd line of the comment:

A comment in the form of a string of characters
enclosed in gquotation marks (") may appear anywhere. Any
character except (") may appear within such a comment. For
example:

"No gquotation marks here"

The following is illegal however,

"An unmatched " can cause a lot of trouble.v

2.2 = 2.4



2.5 Declarations

General register memory (GR) scalar and array variables
are declared with the constructions.

GRBLOCK <sizeofarray>

Space is allocated for the arrays from the bottom of the GR
space on up starting at the last GRORIGIN.

Preloaded GR arrays are specified by
GRBLOCK 0 <preload>
{preload>::= <list=of-values> | \\<text>\\
<list-of-valuesd>::= <list-of~values> , <value> |<value>
I [ <repeat-times> <delim.> <list-of-values> ]

<repeat-times>::= <value>
<text>::= text string containing no \\, ", or ;

2.5



SECTION 3

MICRCMODE Assembler Syntax

e A Y O TR R S s -

The microassembler syntax is similar to that of the GPP
mode assembler. It is invoked by the MICROMODE pseudop.

The microcontrol part of the GPP consists of the
microcontrol program memory (MCPM), the mapping memory (MM),
the Mreq and the Oreg (the latter two are special fields in the
microinstruction). These memories are discussed in more detail
in [Carm77 1.

In general a <macroinst.def.> is an ordered 1list of
<microinstruction>s.

<macroinst.def.>::= <macroinst.def.> <microinstruction> |
<microinstruction>» crlf

<microinstruction>»::= / <MCPM-statement> \ |
<MCPM-statement> |
<MCPM-statement> crlf

{MCPM-statement>::= <MCPM-instr.> |
MCPMDEF ID = <value> |
MCPMORIGIN <value> |
EPSILON

<MCPM-instr.>::= <{MCPHM-instr.> <delim> <MCPM-opcode> |
<MCPM-opcode>

<MCPM-opcode>::= <{Mreg> | <0reg> | <HCPM-ALUs> | <MCPM-bits>

<Mreg>::i= [ <16~-bit value> ]

<Oreg>»::= ( <7-bit value> )

<MCPM-ALUs>::= AL13 <ALU-value> | AL2% <ALU-value>

<ALU-value>::= Q00| 01 | 02 | 03 | 04 § 05 106 { 07 10 1 11 |
12 1 13 ) 14 ) 15 { 16 § 17

<MCPM-bits>::= P1>A1 | P2>A1 | P3I>A1 § CA1>A1 | ALA>A1T | etc.

Expression evaluation 1is only allowed inside of Mreg
[+¢+], and Oreg (...) brackets. Labels are defined inside or

outside of microinstructions by terminating a symbol with a
n.n

A macroinstruction (eg. ADD) 1is an ordered 1list of
microinstructions. A microinstruction is an unordsred list
(because they are executed 1in parallel) of <micro-opcodes>
and/or the [Mreg] andsor (Oreq) fields embedded between
"/e.e\". For example:

DOIT: / MR>A2, [DMATO], READA2\
or
/ DOIT: READA2, MR>A2, [DMAIO N\
3



or
/ MR>AZ2 DOIT: [ DMATO] READA2\
or
/ MROA2
[ DMATO)
READAZ\.
The "OPRMAP  <GPP-opcode~-valued>=<microcode-label>"

pseudop maps GPP instruction values (eg. ADD=000120) to the
microinstruction sequences so that the 1link is made between
micro and GPP code. This mapping is done in the mapping
memory (MM) which for GPP instruction values a and micro
instruction labels b the mapping is:

contents (a) <==b.



SECTION 4

GPPASM Assembler Operations

I e e

Various pseudo-operations control the assembler's
actions, such as the location of instructions and data in
memory, assembler mode, the inclusion of source code from a
named file, number radix etc.

4.1 Assembly location

o ———————— e e A

The 1locations at which GPP instructions are assembled
into PM, data into the GR, and microinstructions in the MCPM
may be controlled with the PMORIGIN, GRORIGIN, and MCPMORIGIN
operations. Their use is as follows:

PMORIGIN <location>
GREORIGIN <location>»
MCPMORIGIN {location>

where <location> is an expression evaluated to a 16-bit value
designating a specific (non-relccatable) address in the relevant
memory space.

The code or data following the xxXORIGIN is assembled

into the location (modulo 65K for the PM or GR and modulo 8K
for the MCPM since this is the size of the memories).

4.2 Expunging symbols

Symbols may be expunged from the permanent symbol table
by using the EXPUNGE pseudop as:

EXPUNGE ID

or a class or symbols may be expunged by mentioning the class
type

EXPUNGE <class type>
where <class type>::= 1 | 2 | 3

where PM=1, GR=2, and MCPM=3.

u-1 - uoz



GPPASM Assembler Operations 9

4,3 Nested source time files

. —— - R . S W e A e W e ole W -

The REQUIRE operation may be used to insert a named
source file at an address in a program being assembled. It is
used as follows:

REQUIRE <filespecification> SOURCETIME

where the <file> may be any legal name of a PDP8e file. If the
file does not exist, or the <file> is omitted, an error
indication 1is returned; otherwise the file is inserted at this
point as if it occurred here. Such insertions may be nested to
16 levels.

4.4 Requiring load time files

It is also possible to require load files to be loaded
at load time by specifying an already assembled file as a load
module.

REQUIRE <filespecification> LOADTIME

GPP runtime procedures (such as the MAINSAIL runtimes) may be
declared using the LOADTIME REQUIRE statement.

4.5 Runtime file

e e e A e e e

The runtime environment of the GPP may be specified in
the GPP source file or at GPPLDR time. The file is run by being
started via the 0S8 chain feature from GPPLDR after all loader
data is processed {(i.e. loaded in the GPP). It may be specified
during GPPASM assembly by

REQUIRE <PDP8e ",SV" file> RUNTIME

4.6 New symbol definitions

GR addresses may be explicitly defined using the GRDEP
operator. For example:

GRDEF cat
GRDEF dog

1234,
cat+10;

Hon

PM operators (such as ADD etc.}) may be defined using
the PMDEF operator having 20-bit values coded as follows:

(opcode group base)*'10000 +
{(p1p2p3 use bits)**'1000C00 +
{(ALU number).

4.3 - 4.6



10

For example, the ADD instruction uses all p1,p2,p3 fields: is
in group 3 with OPR base code 120 and uses ALU O004. Then it
would be defined as:

PMDEF ADD j 3 1 120 | 004
or

PMDEF ADD 3120004

L}

MCPM opcodes are used in register transfer operations
in the GPP microcontroller. They are generated by a bit being
on in the appropriate position in the 128~bit M¥C command
register which is loaded from the MCPM. MCPM opcodes,
<MCPM-opcode>, (such as READA1, HNR>A2 etc.) may be defined
using the MCPMDEF operator. The value associated with the
symbol is the number of bits to shift the value 1 (where the
number of shifts < 128). For example,

MCPMDEF P1>aB1 = 000
MCPMDEF P2>AB1 = 001
MCPMDEF P3>AB1 = 002,

macroinst.def.s such as ADD, MOVE etc. need +to be
mapped to the actual microprogram starting addresses. This is
done by the OPRMAP pseudop (discussed in Section 3 in more
detail). The OPRMAP does NOT add the definition to the symbol
table, but rather generates information for the loader file.

<MM-statement>::= OPRMAP <GPP-opcode-value> = <MCPM-label>
{GPP-opcode-value>::= <value (i.e. base value+instance valusa)>

4.7 SECTION statement

- —— WP R N AR e e - A

It is sometimes desirakbtle to label various sections of
the code such that a non-executable marker gets passed to the
loader. The 1loader might wuse this for example to search for
sections of a file to load, or it might be used +to indicate
what sections are in the file. The syntax is:

SECTION <file specification>

which puts the specification into the load file at that point.

4.8 GPP starting address

— o W - - -y - -

The starting address of the GPP program may be
specified either by using the pseudop GPPSTART or through the
GPPLDR. For example,

GPPSTART <starting address value in PHM>,.

‘{»-7 - Q-B



1
SECTION 5

Running GPPASHM

A A A e e e - -

Running under 0S8 {(including BATCH), up to nine 0S8
partial input files may be assembled as one complete GPPASM
source file. The binary, 1listing and symtab map files are
optional and their absence causes that part of the assembly to
be aborted. The default extensions €£or the GPP source and
binary files are ".GS" and ".GB" respectively. The extensions
for the listing file is ".LS"™ and for the map is *".MPWw, The
program may be run as follows:

«R GPPASH
*<.6B8>,<.1L5>,<.MP>_<£1.G5>,K£2.G65>,¢..,<f9.GS>

Various switches may also be included:

/D - Debug mode switch which prints out the parse and
interpreter stacks.

/G - Load and go (start the GPP) by chaining to GPPLDR
and loading the <.GB> file then starting the
GPP.

/N - Debug mode switch to parse the input but not to
interpret it.

/S =~ append the symbol table map in GPPLDR readable
form at the end of the .GB file.



12
SECTION 6

Bunning GPPLDR

e e i e

The GPPLDR is a separate program which may be run
either from DDTG or from 0S8 (the latter includes running it
under BATCH). Up to nine input files may be specified on each
command line. BAn optional loader map file may be specified on
the output command line. The loader is run as follows:

-R GPPLDR
*<0pt. SEC. name>,<0pt. .MP>_<£1.GB>,<£f2.GB>,...,<F9.GB>

Various switches may be included to modify the loaded file.
*NEWRUNTIME.SV/N< - specify a new PDP8e runtime file.

*=nnnnn/k ~ specify a new GPP starting address (up to
32EK)

*/G - start the GPP.
*/R - chain to the current PDPBe runtime if it exists.

*<£f1.GB>,<f2.GB>,...,<F9.GB>/S5 -~ add symbols at the end
of the files (created with /S switch in GPPASM)
to the DDTG symbol table.

*<£1.6B>,<f2.G6B>,...,<F9.GB>/D - delete symbols at the
end of the files (created with /S5 switch in
GPPASM) from the DDTG symbol table.

*/¥{=n - expunge type n symbols from DDTG symtab.
n=1 (PM labels), n=2 (GR labels), n=3 (MCPM
labels).

*<f1.6B>,<f2.6B>,c4.,<F9.GB>/P =~ 1list the sections
contained in the input file list.

*<f1.BG>,<section-name-spec>/L - search <f1.GB> for the
start of <{section-name-spec.>. Load the data in
the section up to the end of data or start of a
new section.



13
SECTION 7

Descriptions of GPPASM Modules

T A D Gl e R R D N S PR W WS A R

This section contains brief functional descriptions of
the modules of GPPASM, the assembler for the GPP. The
descriptions indicate the methods of operation and general flow
of control.



14 Descriptions of GPPASM Modules

MAIN
3
*
*
*
COMMAND DECODER <~==-~Command Line
*
*
]
*
SYMBOL TABLE <---- SCANNER ommmmme SEMANTIC ROUTINES
ROUTINES = ----- > meemeee | eemeee- > ememememececee-
*
*
*®
*
Polish String *
¥
*
Loader Code (e e CODE GENERATOR
Assembly listing <----- =~=-----c-u----

Figure 1. Flow of Control for GPPASM Assembler

A e W L W e e g A ey e e - -



Descriptions of GPPASM Modules 15

7.1 Main program description

e A R AR e R W W

Controls initialization of operating variables, invokes
input/output initialization, controls passes (first pass plus
symbol cleanup). Contains main commentary on program operation
and usage. Contains interfaces with the operating system and
invoking programs.

7.2 Command decoder description

S e e e e e e W R W MR e A mE R TR D WP e B e

On being invoked by the main program, the command
decoder checks for the presence of a set of file name
specifications and switches. It then deciphers the input to
determine what files are to be used source code, binary, and
listing (if so desired), and what options are to be used in
assembly (eg. optional listing file). If there are errors it
so informs the user, and requests elucidation at the terminal.

7.3 Input/output description

A A i e - ——— - WS = e W e W e

Opens and maintains files. Provides simple 1I/0
interfaces for file usage to keep details of I/0 out of main
program logic. Interprets error returns and presents error
messages when desirable, and handles I/0 errors to whatever
extent possible.

7.4 Scanner description

e e ——— . - -

The scanner is a finite state acceptor hand coded
produced from the BNF grammar for the GPPASM. The scanner picks
from the source stream (source file} individual syntactically
significant symbols, encoding them into a form easier for
subsequent routines to handle (the symbol table indices which
are integer numbers < 2047). It detects and handles syntactic
errors at this level.

7.5 Scanner - symbol routines description

S e - W S WY R R N A G S W W S A A

The symbol table procedure SYMTAB maintains tables of
symbols, their values and types (permanent symbols and created
symbols) in a form allowing rapid retrieval of their values and
characteristics. Symbols are created by being entered in the
appropriate tables, and duplicate symbols are detected and
handled (by being rejected or modified).

7.1 = 7.5



16 Descriptions of GPPASM Modules

7.6 Code generators description

W S D R Al i A W R SN R R AR A WP e B -

Translates a syntactically proper 1line from GPP or
MICROMODE assembly language source c¢ode to absolute binary
loader input files. Assembler actions (pseudo-operations) are
also handled here.

7.7 GR allocator description

L e R R A e e S W W L e W

Handles the usage of GR memory through GR origin
- definition and subsequent allocation. :

7.8 GR allocator ~ Space checker descrlption

Checks whether there is space in the GR for the GR
data. The operation symbol may cause the allocation of more
than one GR location.

7.9 PM allocator description

RN AL A T e W e A T A WD R L W we e e W e

Handles the wusage of PM memory through PM origin
definition and subsequent allocation.

7.10 PM allocator - Space checker description

S M R A e S R MR G s e G MR D S D e ee W S A W e M AR e Lk ke e e R D e mp

Checks whether there 1is space in the PM for the PN
data.

7.11 MCPM allocator description

A S A W i e - R W

Handles the usage of MCPM memory thrpugh MCPM origin
definition and subsegquent allocation. -

7.12 MCPM allocator - Space checker description

A e D G S G A W D e W e e AL M R M S e e R WP ER A D s me me e e me

Checks whether there is space in the MCPM for the MCPM
data.

7.6 - 7.12



17
7.13 Symbol cleanup description

- N e e e S S A R D WDk e S = -

Flags undefined symbols and handles <them. Deletes
unwanted symbols from the symbol tables.

7.14 Listing generator description

Ll R e R R R . Lk prepspp——

If the an output .LS file is specified, it generates an
assembly listing file.

7.15 Symbol table map generator description

LR R R R R i R L T e ————

If the an output .MP file is specified, it generates an
assembly symbol table map file.

7.13 - 7.15



18
SECTION 8

GPPASM BNF Grammar Specification

e il R R ek Sy ——

The BNF grammar specification is given for +the GPPASH
assembler to be used to assemble RTPP programs. Note that
MAINSAIL will generate GPPASM assembly language output. The
MICRCMODE source programs on the other hand are coded manually.

Note that ID is any identifier which is not a keyword in the
grammar, INT is any integer, and <text> is any text not
including the symbols \\, ", or ;. EPSILON is the null string.

Various terminal symbols whose meaning is not apparent
are defined (including the semantics) in [ Lem7é6a ],

<program>::= <{GPPsegment> ~Z

<GPPsegment>::= <GPPsegment> <statement> | <statement> |
EPSILON

<statement>::= <compiler-mode-statement> crlf |
<section-statement> crlf |
<expunge-statement> crlf |
<number-mode> crlf | '
{comment> |
<require-statement> c¢rlf |
<PM-label> <PM-statement> orlf |
<GR-label> <GR-statement> crlf |
<MCPM-label> <microinstruction> |
<MM-statement>

<compiler-mode-statement>::= GPFMODE | MICROMODE
<section-statement>::= SECTION <file>

<expunge-statement>::= EXPUNGE ID | EXPUNGE <class type>
{class type>::= <PM-class> | <GR-class> | <MCPM-class>
<{PM-class>::= 1

<GR-=class>::= 2
{MCPM~class>::= 3
<number-mode>: 1= DECIMAL | OCTAL

<require-statement>::= REQUIRE <file> SOURCETIME |
REQUIRE <file> LOADTIME }
REQUIRE <file> RUNTIME

<PM-statement>::= <PM-instr.> |
PMDEF ID = <value> |
PMORIGIN <value> |
GPPSTART <PHM~-label> |
EPSILON
8



GPPASM BNF Grammar Specification 19
<PM-instr.>::= <GPP-opccde> <P1> <delim> <P2> <{delim> <P3>

<GR-st atement>::= GRBLOCK <GR~-list>
GRDEF TD = <valued> crlf |
GRORIGIN <value> crlf |
EPSTLCN

<macroinst.def.>::= <macroinst.def.> <{microinstruction> |
<micreinstruction> crlf

<{microinstruction>::= / {MCPM-statement> \ |
<HCPM-statement> |
<{MCPM~-statement> crl¢
<MCPM-statementd>;:= <{MCEM-instr,> |
MCPMDEF TID = <value> |
MCPMORIGIN <value> |
EPSTLOXN

<{MCPM-instr.>::= <{MCPM-instr.> <delim> (HCPH-Opcode> |
<{MCPM-opcode>

<MM-statement>::= OPRMAP <GPP-opcode-value> = <{MCPM-labeld>
<GPP-opcode-value>::= <value (i.e. base valuetinstance value)>

<filed>::

= <device> <fname> . <ename>
<device>::=

5YS: } DSK: { DSKB: | LCSKC: | DSKD: | DSKE: |
DSE¥: | DSKG: | DSKH: | DTAO: { DTA1:

<{fname>»::= ID

Cename>::= ID

comment>::= Comment text 3 1" text

<P1>::= ' {GR-address> | <GR-address> | # <value>

<P2::= ' {GR-address> | <GR-address> | # <value> | <I/0 list>
£P3I»e:= ' {(GR-address> | <GR-address> | <PM-address>

<value>::= <land> | <value> 1 <valuet> | <ae>
<valuel1>::= <ae> | <land>
<land>::= <value> 5 <valuel>

Caed>::= {sae> : _
<gae>::= <term> | <sae> + <term> | <sae> - <term>
Ctarmd>::= <factor> | <term> * <{factor> | <term> % <factor>
<factor>:3= Lprimary>
<primary>::= <PM-label> | <GR-labeld> | <MCPM-label) |

{ <value> ) | + <primary> | - <primary>

<PM-label>::= <label> | EPSTILON
<{GRE-label>::= <label> | EESTILON
<MCPM-1labeld>::= <3abel> | EPSILOW
<{labeld::= ID :

<PM-address>::= <{PM-labeld>

<GPP-opcode>::= MOVE | JUMP | PUSHJ | PORJ | INCB | DECB | BE
| BGE | BLT | BGT | BLE | BNE | HLT | AND | NAND
| XOR | IMPLIES | OR.| NOR | EQV | MOVE | MOVBIT

8



20 GPPASM BNF Grammar Specification

| MOVBS } SHFTR | SHFTL | ROTBE | ROTL | GTST |
LTST | GEST | LEST { DMOVE ] DSWP | ADD | SUB |
MUL | DIV | ADDST | SUBST | MULST | DADD | DSUB
| DMUL | INC | DEC | MOVEN | MOVEC | DMCVEC |
TOCLR | YRST | XRST | XCLKB | XCLK | YCLKB |
YCLE | LINE | MAKYXADDR | GETIY | GETI2 | GETI3
! MAX | MIN | DIVST | ANDST | NANDST | XORST
ORST | NORST { EQVST | MOVBL | MOVBH | MOVBSL

MOVBSH | MOVBSP | LOPT | LOP2 | COPY1 { COP2
POUTBYTE | CLREH | CLRBL | ANDE | ORB | BSETBL

BSETBH | BGEB | BLEB | BEQE | BGTB | BLTB
DNAND | CAND | DOR | DXOR | DSHPTL | DSHFTR

DINC | DDEC } DINCB | DDECB | DADDST | DMULST
DDTVST | CANDST | DNANDST | DORST | DXORST

FADD | ¥®SUB | _FMUL { ¥DIV | FMINUS | FLOAT
"LOATD | PIX { FIXD | ASR | ASL

{GR-address>::= <valued> | <GR-I/O0-address>

<GR-I/O-address>::= <meighborhood-pixels> | <auto~-index> |
<irdirect-BM-addresses> | <TTY-I/0> |
<byte-pointer> | <comtrol-desk> |
<status-registers> .| <dynamic~address-vectors> |
<GR-T /0~registers>

<neighborhood-pixels>::= T10 | T11 | I12. | I13 | T14 { Y15 |
I16 { T17 § I18 | TI20 | TI21 f TI22 | T23 | 124 |
I25 | T26 | Y27 ) I28 § T30 | I31 | TI32 | I33 |
I3 ) I35 ] I36 | I37 | 138 <auto-index>::= AQD
{ A0 | AOT { ATD | A1 { ATI | A2D | A2 | A2T |
A3D | A3 | A3Y | A4D | A4 | AUT | ASD | AS | ASI
| A6D | A6 I A6T | A7TD | AT AT7I

<indir ect-BM-addresses>::= PBM0O { PBN! ( PBM2 | PBM3 | PBM4 |
PBMS | PBM6 | PBM7 |{

<TTY-T/0>::= KRB | KSTATUS | TLS { TSTATOS
< by te-pointer>::= PPOINT )} GPNT1 | GPNT2

<control-desk>::= SW1 | SW2 | SW3 | SWA | DSPLYA | DSPLYB |
DSPLYC | EKNOBO? | KNOB23 | ENOB45 | ENOB67 i

<status-regists>::= PDLCNT | PDI. | FXAR  DRA | DRB | ETXAR |
EEXAR | ¥DRB | STATOS

<dynamic-address-vectors>::= I1¥M | I1¥  I1XP | TI1Y | I2XxM |
I2X | T2XP § I2Y | I3XM | T3X |} I3XP | I3Y

<GR-I/C~registers>::= GIN | GoOUT

<I/0 list>::= ( <list> ) } <I/0 list> 1 <I/0 symbol> |
<I/0 symbol>

<list>::= <list> { <I/0 symbol> { <list> 1 INT | <I/0 symbol> }
: 8 '



21
INT

<I/0 symbol>::= $T1 | $I2 | $I3 | $XP | $X | $XM | SYP | $Y |§
$YM | SRIGHT {$LEFPT | $VERTICAL | SHORIZONTAL |
$BMO | $BM1 | $RM2 | $BM3 | $BM4 | S$BHMS |
$BM6 | $BM7 | SDOUBLEBUFFER

<GR=-list>::= <GR-allocation-size> | 0 <preload>

<GR-allocation-size>::= INT

<preload>::= <list-of-values> | \\<text>\\

<list-of-values>::= <list-of-values> , <value> | <value> |
{ <repeat-times> <delim.> <list-of-values> )]

<repeat-times>::= <value>

<text>::= text string containing mo \\, ", or :

<MCPM-opcoded>::= <Mreg> | <Creg> | <MCPM-~-ALUs> | <MCPM-bhits>

<Mreg>::= [ <16-bit valued> ] '

<O0reqgr::= [ <7-bit valued )

<MCPM-ALUs>::= AL1$ <ALU-value> | AL2$ <ALU~valued>

<ALU-value>:s:= 00y 01 } €2 f 03 1 04 { 05 j06 | 07 110 1 11 |
12 1 131 14 | 151 16 | 17

<MCPM-bits>::i= - PI1>AY1 | P2>A1 | P3I>A1 | CAT>AT1 | ALA>AT |
ALB>AT | ALC>AY | PDADA1T | PA2>A1 | MRD>AT |
GTC>A1 | P1>A2 | P2>A2 | P3>A2 | CA2>A2 | ALA>A2
| ALB>A2 | ALC>A2 | PDADA2 | MR>A2 | AIP>A2 |

P1>D1 { B2>D1 | P3>DY1 | CA1T>DY | AIA>D1 | ALB>D1
| ALC>DAY | BCO>D1 | MR>DT | PI>D2 | P2>D2 | PI>D2

{ CA2>r2 { ALA>D2 | ALB>D2 | ALC>D2 | PC>D2 |
MR>D2 | WIHDIT | WILDIT | WIHDIF | WILDIF
W2HD2T | W2LD2T | W2HD2F | W2LD2F ]| READA1

}
|
READR2 | DI>ALA { D1I1>ALB | T1>PCT | L1>PCF |
D2>ALA | D2>ALB | D2>PCT | D2>PCF¥ | ALUSET |
ALUGCLR | ALU0 ) ALU1Y | ALU12 | ALU12 | ALU20 |
ALU21 | ALU22 | ALU23 { MRO §{ MR1 | MR2 | MR3 |
MR4 | MBS | MR6 | MR7 | MRE | MR9 | MR10 | MR11
| MR12 | MR13 | MRI4 § MR15 { MOPO | MOP1 | MOP2
i MOP2 | MOP4 | MOP5 | MOP6 | MOPT7 | MOPDOP |
MR>MC | LCECMC | JMPNCO { JMPT | JMPF | PUSHJT |
PUSHJF | PORJT | POPJF | TINCPDL | DECPDL |
SAVEPT | SAVEPF | ISALDT { ISALDF | INCGTC |
INCPCT | INCPCF | MHALT | TEST | SET

<delim>::= , | space | tab



22
SECTION 9

Loader image file format

S A e T D WE e S W S e T -

Programs for the RTPP are written and compiled on the
PDP10 using the MAINSAIL cross-compiler. The output of MAILSAIL
is GPPASM source code. This is then transmitted to the PDP8e
and assembled using the GPPASM assembler. The GPPASM produced
absolute binary 1load file is then loaded by the GPPLDR in the
DDTG program.

Alternatively, microinstruction programs using the
MICROMODE are written manually and assembled with GPPASM on the
PDP8e. These are also 1loaded with GPPLDR. The loader file
format is discussed here. '

The 12-bit binary file consists of 2 parts: a data
section, and a symbol table section. Data is packed in standard
058 binary 8-bit mode which packs 3-bytes/2 12-bit words as
follows:. g

word 1: |Byte 3 high H4~-bits | byte 1 8-bits|

word 2: |Byte 3 high 4-bits | byte 2 8-bits|

AR e e ke e SR e e S T D e A WP A A e wn e e w

The symbol table section is used only with DDTG. It
contains symbols which address the corresponding PM, GR, and MCPHM
memories. The maximum size of the PM and GR memory spaces are
65K each while the MCPM is B8K.

The PDP8e RUNTIME file is set up by the GPPLDR for the
RTPP and other hardware. It acts as a mini-monitor for the GPP
to post images, acquire images, perform some of the MATNSAIL
runtimes related to file I/0, communicate with the PDP10, etc.

| Data section | Symbol table section]

T e ke W D A A e TR e e D S ap e A WL A e e e A e e

9.1 Loader data section

There are four distinct data segments in the data
section of the loader file: PM, GR, MCPM, MM (microinstruction
mapping memory). These are discussed below. Data is written in
a continuous stream of groups of 8-bit bytes in 0S8 3/2 packed
data mode (compatible with 0S/8 device handlers). There is a
16-bit checksum used at the end of the file. All data is
written as multiples of 8-bit bytes.

9.1



23
A loader datum consists of a variable number of bytes,

the first of which is a data type code. This in turn determines
the number of bytes required as well as its function.

Code

-

- v -

e

Data interpretation

2 bytes of PHM origin

2 bytes of GR origin

2 bytes of MCPM origin

2 bytes of MM (mapplng memory) origin

8 bytes of PM data (64-bits)

2 bytes of GR data (16-bits)

16 bytes of MCPM data {128-bits)

2 bytes of MM (mapping memory) data (13-bits)

AR e i e -

14 bytes of A2 format LOADTIME regquire file
14 bytes of A2 format RUNTIME require file
2 bytes of GPP starting address

o —— R AR S S e

1 byte of GPPASM version number

2 bytes of 0S8 12-bit (LSB) assembly date
14 bytes of A2 SECTICN file name

2 bytes of checksum

0 bytes of data - end of data section.

- i . - —————————— -

8 bytes of symbol table entry:

(NAME(1:3],TVAL[1:2], ITYPE[ 1]} packed 3/2.

0 bytes of data - end of file.

1 number of PM¥ words (8 bytes/word) following

1 number of GR words (2 bytes/word) following

1 number of MCPM words (16 bytes/word) following

o

L]

Ind

o
i n



24

SECTION 10

References
Carm74. Carman G, Lemkin P, Lipkin L, Shapiro B, Schultz M,
Kaiser P:A real time picture processor for use in biological
cell identification - II hardware implementation. J. Hist.
Cyto. Vol 22, 1974, 732:740.
Carm77. Carman 6, Lemkin P, Schultz M, Lipkin L, Shapiro

B:Microcontrol Architecture of the General Picture Processor.
NCI/IP TEchnical Report #22. In prep.

Lem74. Lemkin P, Carman G, Lipkin L, Shapiro B, Schultz H,
Kaiser P:A real time picture processor for use in biological
cell identification - I systems design. J. Hist. Cyto. Vol 22,
1974, 725:731.

Lem76a. Lemkin P, G Carman, L Lipkin, B Shapiro, ¥ Schultz:The
Real Time Picture Processor: Description and Specification.
NCI/IP Technical Report #7, March, 1976.

Lem76b. Lemkin P:Punctional specifiéations for the RTPP monitor
/debugger -~ DDTG. NCI/IP Technical Report #2, Feb, 1976.

Wil75. Wilcox C:MAINSAIL - MAchine INdependent SAIL. DECUS
meeting, Languages in Review Session, 1975.

VvanL?’3. VanLehn K:SAIL User Manual. Stanford Artificial
Intelligence Laboratory. Memo AIN-204, July 1973

10



25
APPENDIX A

GPPASM implementation

T e - W e W R e e e - —

GPPASM is implemented in 0S/8 Fortran II using
interspersed SABR type coding which allows easy access to
hardware registers. The system consists of the GPPASM.FT main
program and subroutines called by it in a hierarchical tree
structure. This section goes into +this structure in more
detail. .

The assembler uses upt to 3 passes through the input
file stream. The first pass is used to define all 1labels by
generating code to force the GPP pseudo PC counters (KPCPTR,
KGRPTR, KMCPTR) to be incremented and defined appropriately
according to how the corresponding memory data would be
generated. Undefined symbols are noted on the teletype at the
end of the pass 1.

The second pass 1is used to generate the binary (.GB)
{(-DA) output file if it is specified in the command decoder. If
it is not, then it goes immediately to pass 3. Pass 3 will
generate a assembly 1listing on the 2nd output device if
specified. Otherwise, it terminates assembly. If a 3rd output
file (.MP) is specified, the symbol table label map is printed
after the 3rd pass. -

GPPASM.FT is the line scanner/finite state parser for
GPPASM, the GPP assembler. It processes the 0S8 input file
character input stream by parsing it into a stack (IPSTK) of
symbol table indices. The stack is then interpreted. The parser
section uses a 128 character jump table as part of its finite
state machine (FSM)}. Lower case letters are mapped to upper
case before interpreting. The use of the symbol table is
explained in more detail in Appendix A.3.

The builtin symbol definitions and interpreter process
numbers are defined for the system on a SYS: file “INIGPP.DA"
which is compiled by subroutine INIGPP.FT into a 10K core
symbol table and later saved with the GPPASM.SV image on disk
with a new starting address.

Characters are first loaded into a line buffer PLINE®
with pointer “ITTYP" wusing internal subroutine "YGETLINE".

The GPPASM program works as follows. A command decoder
command line . is input from the teletype via the 058 command
decoder. The command then sets up a list of input files to be
assembled as 1 source data stream. Data is read in line by line
into LINE(ITTYP) from the input stream, and converted to symbol
table indices (by GPPASM internal subroutine PARSE} which are
stored in the reverse Polish push down stack "IPSTK"™ with
pointer "IPTOP", Operator precedence [ (*,%) over (+,-) etc.] is
performed using a temporary operator stack WTIOPSTK" with

A



26 GPPASM implementation

pointer "IQPTOP", Entries in the stack are all the indices
of symbols in the symbol table,

All symbols, numbers, single character pseudos (type I
operators), multi-character pseudops (type II operators), (and
temporaries created during interpretation) are stored as
symbols (See Appendix A.3 for more details on their definition
and use). Characters are parsed by a set of finite state
machines (FSM) wusing a jump table "TABLE" consisting of a FsSH
to service one or mecre input characters. The character to be
parsed is in variable "ICHAR". (Note: it is an onto mapping
(in the algebraic sense) since many characters have the same
FSM, e.g. all upper case letters have FSM "letter" etc.).
Further testing is performed within each FSM when required to
take the state of GPPASM into account in the parse.

Furthermore, undefined symbols and numbers are also
pushed by the parser and interpreter onto a garbage collection
stack (ITMPSTK) which is used to clean up the symbol table at
the end of the interpreter phase.

The interpreter

The interpreter (external subroutines GINTRP.FT and
GSOPS.FT)} interprets the Polish stack which was generated
during the parse by "PARSE"™ in GPPASM.FT. Specific GPPASHM
features are implemented at this point. “GINTRP.PFT" scans
WIPSTK(IP)" from IP=IPTOP to Q looking for ITYPE{lndex) values
which are not type I or II operators.

Type I and II operators (single and multi- character
operators) are pushed ontoc IOPSTK while the search for an
operand continues. Note . that operator precedence was
performed in “"PARSE" and already exists here. IP is then
decremented until an operand is found at which time the top
operator in the IOPSTK is evaluated. Operator processes are
responsible for popping the IPSTK.

In GPPMODE, when there are no more operators left in
the stack but there are operands in IPSTK, the operands are
ioaded into the PM assembly register (MOPR,MPP1,MP2,MP3). After
the instruction is assembled, it is dumped or listed (depending
on 2nd or 3rd pass). Checking is done before dumping or listing
to see if the # and ' fields are used correctly as well as to
see whether a Pi field was used which should not have been
used,

In MICROMODE, on seeing a / the microassembly register
MQO0[{0:127] is <cleared. Operands are ORed into MQO. The
instruction is terminated {and dumped or listed) on seeing a \.

Type I operator processes dre Jlocated in GINTRP.FT
while type II processes are located in GSOPS.FT. ©Note that all
input stream numbers are converted according to the OCTAL or
DECIMAL switch mode MODENUMBER. All internal arithmetic,
however, is performed in decimal. ‘



GPPASM implementation 27

Errors are noted by an error typeout (residing in
GPPASM.FT) consisting of an error number with the rest of the
command being ignored (or the entire command if no backup is
required). There are two types of errors: fatal (denoted by
negative internal error numbers where control goes to 05/8) and
non-fatal (denoted by positive internal error numbers where
control goes to GPPASM's get next statement from the input
stream) . The error numbers are listed in Appendix B.

Procasses

The actual processes used to implement the actions of
GPPASM use additional GPPASM runtime routines GIO, DPCVRT,
CODEGEN, CODELIST, GETDEV, OCT, and SYMTAB.



28 GPPASM implementation

A.1 Logical structure of GPPASM

The logical control structure of the GPPASM parser is
outlined below:

1. Initialize symbol tables (once only INIGPP.PT).
2. Get TTY command.
2.1 GETLINE or file ==>line buffer LINE[1:ITTYP}.
2.2 Parse LINE into Polish stack==>IPSTK (IPTOP).
2.2.1 Define new symbols using SYMTAB.FT.
2.3 Interpret stack <==IPSTK.
2. 3.1 Process GPPASM functions by calling GINTRP.FT.

Logical structure of GINTRP
The logical contrel structure of GINTRP is outlined
below:

[1] Initialization of the current IPSTK and TIOPSTK
peinters. _
{2] Decrement the current IPSTK pointer IP from IPTOP to 0;
[2.1] If IPSTK is null then done else goto {4.1];
[3] Look for type I, II processes as
scan stack.
[3.1] If one is found, then push it into IOPSTK
and continue scan.
{4] If the top of the IPSTK is an operand
then do [4.1] else do [2];
[4.1] Assemble GPP or MICROMODE instruction;
Dispatch a type I or Il process on
top of IOPSTK.
[5] Goto [2].



GPPASM implementation 29

A.2 Use of symbols in GPPASM

All operators and data are encoded internally as
symbols and the "indices"™ of these symbols are manipulated.

subroutine "SYMTAB® allows the «creation, accessing, and
modification of symbols. A symbol in the symbol table is a
triple (name, value, type). A symbol (NAME[1:3]7}) 1is 6
characters or less (left justified, right filled with 0's) in
length (6-bit Ascii). It has two associated fields: a value
field (IVAL{1:2]) and a type field (ITYPE[1]). These are
specified below. The symbol table is initially compiled from

the Ascii SYS:INIGPF.DA file. GPPASM common area (GPPCMN.FT) is
also initialized during the compilation of the symbol table and
is saved in SVGPP.DA being loaded on GPPASM entry and saved on
GPPASHM exit.

The symbol table in GPPASM can hold up to 1823 (a prime
number) decimal symbols of up to 6 characters each. A folded
hashing scheme is wused on a prime number hash table which is
searched modulo 1823 to handle clashes as I<=={I+HASH(X))MOD
1823. Six PDP8e words are used +to store the symbol table
entry.

A.2.1 The symbol table ITYPE field

The "ITYPE" field of all symbols on stack W"IPSTK" are
typed either by subroutine INIGPP or the parser "parse" as:

3 for MCPM signal

2 for GPP GR address

1 for GPP PM opr device code

0 for undefined symbols

-1 for GPPASM operators

-2 for GPPASM numbers and switches

-3 for GPPASM multicharacter operators and switches
-4 *xnot usedx*

=5 *¥not used*x*

-6 ¥¥not usede*xx

-7 for GPPASM 0S/8 device names (4 char max)

-8 for GPPASM for 0S5/8 file names {6 characters)
-9 for GPPASM 05/8 file extensions (2 chars)

-10 for PM labels

-11 for GR 1labhels

-12 for MCPM labels

~-13 for all defined labels on first pass

A.2.2 The symbol table IVAL[1:2] field

e e il e e ok D A R M S W M R A G MR M M mE M M D A AN AR M AR T B R R e

The "IVAL" field is used differently for the different
types of symbols.

A.2

4



30 GPPASM implementation

ITYPE IVAL[1:2]

- um aa - —— i —

3, IVAL[1] is the # bits to shift '1 for the
MCPM signal.

]
e}
(]
-
™
H

ITYPE = 2, IVAL{1:2] is the GPP GR address
ITYPE = 1, PM instruction:
IVAL(2){0:2] - P1P2P2 use bits;

IVAL(2){3:11] - OPR group code base:

IVAL(1)[4:1%] - ALU number.
ITYPE = 0, IVAL is information for undefined symbols.
ITYPE = -1, IVAL[1] is the operator precedence

0 is highest, +n is lowest;

IVAL[ 2] bits [6:11] is a type I process pointer
ITYPE = -2, IVAL[1] is MSW, IVAL[2] is LSW of 2's

complement number. (Note: NAME{1:3)]
stores ("!IWEIVAL[1:2] .

ITYPE = -3, is used for three types of special
operators. The IVAL[{2] field specifies
the type II process pointer.

IVALI[ 1] function

- A e e AR e e -

0 type II opr, process # in IVAL[2]
1 switch, switch # in IVAL[{2)]
ITYPE = -7, IVAL[1] is the 05/8 device number
ITYPE = -8, IVAL[1:2] is not used.
ITYPE = -9, IVAL[1:2] is not used.
ITYPE = ~10, IVAL[1:2] is the PM address of the label
ITYPE = -11, IVAL{1:2] is the GR address of the label
ITYPE = =12, IVAL[1:2] is the MCPM address of the label
ITYPE = =13, IVAL[1:2] is not used.

A.2.3 Label parsing

——— ——— A e ke e -

When a colon 1is encountered in an input line, the
Finite-State-Machine "Colon" is called to parse the label. The
initial action 1is to test the preceeding symbol to be sure it
is not null (if it is null, error condition #15 ‘*undefined
symbol", is raised).

If a valid symbol preceeds the colon, a symbol table
look~up for the symbol occurs. If the symbol did not previously
exist in the table, this has the effect of entering the symbol
with ITYPE and IVAL[1:2] set to zero, If the symbol did exist,
ITYPE (and IVAL) will be returned with their respective values.

ITYPE is then tested. If it is zero, it is set to =13
(IVAL may also be set here) by a second call to the SYMTAB
routine. This identfies the symbol as a defined label for the
first pass. This value will later be changed to -10, -11 or -12
depending on whether it is a PM, GR, or MCPHM label
respectively.

If ITYPE = -7, the symbol is an 0S5/8 device name. An
inquiry is then made of the current 05/8 system to determine if
the device is active (ie exists) on the system. If it is not

A.2



GPPASM implementation 31

active, error condltlon *#5 ("111ega1 device name") is raised.
If it is active, IVAL[1] is set to the internal 05/8 device
number and the necessary switches are set to expect a standard
<file> arguement following the. c010ny

If ITYPE is non-zero and not -7, then the symbol was
previously defined and error condition #16 ("multiple symbol
definition") is raised.

A.2



32 GPPASM implementation

4.3 Internal sabroutines

A e e e e W e e

The following subsections (4.5.-) list the internal and
external subroutines embedded in the Fortran source
subroutines. Externally callable (Fortran II/SABR) subroutines
embedded in these sources are marked with WxBY*w,

A.3.1 Internal GPPASM subroutines

. W SR SR N SR R R AR S AR e W W

1. PARSE - Parse input line into Polish stack "IPSTK"
2. GETLINE - *EX* Get next input line intop line buffer,
Break for (carriage return, line feed,
=, /¢ 2 < Crl/Q)
Edit with (rubout, Ctrl/uU, Ctrl/T, Ctrl/Rr,
Ctrl/E, Ctrl/z).
alternate entry to GETLINE without (CRLF*) on entry.

2.7 AGETLINE

2.2 CTIC - Control/C service, save state and exit.
3. INCHAR - *EX* Get next input character from input stream.
4, ouoT - %EY* Print next character in the output stream.
5. PUSHP - Push index(CURSYM,IVAL,ITYPE)==>IPSTK[IPTOP].
6. PUSHOP - Push index (CURSYM,IVAL,ITYPE)==>IOPSTK[ IOPTOP].
7. OFMOVP - Empty IOPSTK==>IPSTK (copy indices).
#ERE2% S t ar t of finite state machines #E##&i#is
8. SYMBOL ~ FSM: assemble symbol in "CURSYM",
9. LOWER - FSM: convert lower case to upper.
10. NUMBER - FSM: assemble number into "CURSYHM"v,

11. COMHMA - FSM: push argument symbol and test lgnore THEN.
12. OPERATOR FSM: push opr ==>IPSTK (except +,-,%,%).
13, ARITHOP FSM: implement operator precedence

using IOPSTK and IPSTK.

14. Comment - FSM: ignore input ICHARi's until next ™.
15. PERIOD - PSK: to process current ptr's or file.ext syntax.
16. COLON - FSM: to "inguire" from the USR (05/8) the
device name of CURSYM and push device number.
17. FTEXT - FS¥M: to process \\...\\
19. OPERMC - FMS: to process / for opening microinstruction.

19. CLOSEMC FMS: to process \ for closing microinstruction.
20. ERROR -~ *EX* error routine which either restarts on
next line or exits GPPASM.

A.3.2 Internal GINTRP subroutines

R L L T R R ]

1. CTROTST ~ *EX* test for control/o, terminate interp.
2. BUMPL - test IP > 1, get symbol at
The top of IPSTK, decr. IP.
3. CVIVAL - ®*EX* convert IVAL[1:2] to F.P. # fc
based on "MODEN" switch.
4. BINARG ~ *E¥* test if binary arguments exist, then

get 2 top args IVAL[1:2] (of IPSTK)
into IA[{1:2] and IB[1:2], and
A.3



GPPASM implementation 33

convert IA to FA, IB to FB.

5. FCSTORE - ¥EX* convert FC to IVAL[1:2) and store
"number" symbol into IPSTK(IP).

6. FILESPEC =~ *EX* get the device name, device number, file
name and extension into COMMON,

7. DOSYMTAB - call SYMTAB(CURSYH,IVAL,ITYPE,INDEX,IDOSYHTAB)

8. PMDATA ~ assemble PM instruction

9. MCPMDATA ~ assemble MCPM instruction

A.3.3 Internal GIO subroutines

1. ISETDEV - fetches the input device handler

2. OSETDEV - fetches the output device handler

3. R = read 1 block into IBUF buffer

b, W - write 1 block from JBUF buffer

S. GETC - g€t next character from IBUF

6. PUTC = put next character into JBUF

7. INNC - ¥*EX* external version of GETC

8. 0U0TC ~ *EX* external version of PUTC, error in AC

A.3.4 Internal SYMTAB subroutines

1. SETADR ~ set the symbol node ptr from I to NODE.
2. WBLK - write the symbol table page back onto the disk.
3. CBLKOFF - compute (using EARE) IRELBLK, IRELOPF from index I.

A.3.5 Internal GSOPS subroutines

RN ST e v e e e Y e e e - -

1. BUMPL -~ test IP > 1, get symbol at
the top of IPSTK, decr. IP.
with the filename FILE in COMMON

A.a



34 GPPASM implementation

A.4 External FORTRAN subroutine files in GPPASHM

O A D e e - R R P TR R R WS M e e e W e W e e L M - -

The following list of subroutines are used in GPPASHM.

1. GIO.FT - General B bit Ascii I/0 and bloc I/0.

2. SYMTAB.FT - Make, fetch, delete (name,value,type)
symboel triples and indices. is for disk
simulation version.

3. DPCVRT.FT - D.P. Integer to/from F.P.

4. OCT.FT - D.P. Octal to/from D.P. Integer

5. GINTRP.FT - GPPASM interpreter called after parse is done.

6. GSOPS.FT - function to implement type II interpreter
processes

7. CODEGENWN - generate code.

7. CODELIST - list assembled code.

9. INIGPP.FT - initialize the symbol table

Subroutine INIGPP,.FT is used for Symbol table
initialization and returns to 0S/8 when it is done.

A-u



GPPASM implementation 35

A.5 Compiling GPPASM and GPPLDR

AR Dk e e W S S A e . SR WS W

GPPASM consists of a set of subroutines which may be
compiles separately under 05/8 as follows. The set of compile
statements is included in the batch program GPPCP.BI running on
the PDPSe.

.R FORT
*GPPASM.RL,GPPASM.LS_GPPCMN.FT,GPPASM.PT

«B FORT
*GINTRP.RL,GINTRP.LS_GPPCMN.FT,GINTRP.F2

«R FORT
*GSOPS.RL,GSOPS.LS_GPPCMN.FT,GSOPS,F2

«R FORT
*CODELST.RL,CODELST.LS_GPPCHN.PT,CODELST.F2

«R FORT
*CODEGEN.RL,CODEGEN.LS_GPPCMN.FT,CODEGEN.F2

.R FORT
*GI0.RL,GI0.LS_GIO.FT

« R FORT
*GETDEV.RL,GETDEV.LS_GETDEV.FT

-R FORT
*SYMTAB.RL,SYMTAB.LS_SYMTAB.FT

«R FORT
*INIGPP.RL,INIGPP.LS_GPPCMN.FT,INIGPP.FT

.R FORT
*DPCVRT.RL,DPCVRT.LS_DPCVRT.FT

«R FORT
*0CT.RL,0CT.LS_OCT.FT

«R FORT
*GPPLDB.RL,GPPLDR.LS_GPPCMN.FT,GPPLDR.FT

«R FORT
*GSYMTAB.RL,GSYMTAB.LS_GSYMTAB.FT

A.b5 Building GPPASM.SV and GPPLIR.SV core images

TR N S S e D WD N S S R Nl ww e ——— W -

GPPASM.SV may be built on a PDP8e using the following
loader sequence. The 0S/8 batch file GPPASM.BI contains this
sequence.

$JOB GPPASM.BI
Acs - A-G



«.R LOADER
*GI0/0/1/H
*INIGPP/2
*CDREG/2
*SYMTAB

*0OCT

*DPCVRT
*GETDEV
*GINTRP

*GS50PS
*CODEGEN
*CODELIST
*GPPASH
*LIB8/L/U

*/M
*GPPASM.MP/N<$
«SAVE SYS:GPPASHM.SV

/ADD SYMBOL TABLE FIELDS 5,6,7 TO CORE CONTROL BLOCKS
«R ABSLLR.SYV

*F567.BN=40276%

«SAVE SYS:GPPASH

/BUILD THE SYMBOL TABLE ANDlShVE IT
«RUN S5YS:GPPASH
-SAVE SYS:GPPASHM; 40303

/BUILD GPPLCR.SV IMAGE
.R LOADER
*GI0/0/1I/H

*CDREG/2

*GETDEV

*OCT

*DPCVRT

*GSYMTAB

*G PPLDR

*LIB8/L/U
*GPPLDR.MP/M_$
.SAVE SYS:GPPLDR.SV



37
APPENDIX B

List of error numbers

A e e S S W N e A e -

When an error occurs in any procedure in GPPASM, an
internal error number is generated and is passed backwards from
the error condition to internal subroutine ERROR in GPPASM.FT.
The error number is passed through the COMMON variable IERRNUM.

ERROR searches file W"SYS:GPPERR.DA" for +the error
number and prints it and its associated error message. GPPASH
then clears various GPPASM switches and restarts at the "kn
command level.

ERROR CODE ALLOCATION
000:099 -~ GPPASM ERRORS
100:199 - GINTRP ERRORS
200:299 ~ GPPLDR ERRORS
200:299 - free

300:39% - free

400:499 - free

5¢0-599 - free

600:699 - free

700:799 - free

800:899% - free

900:999 - free

ERROR LIST

0 1!! ILLEGAL ERROR MESSAGE NUMBER !1!!

1 <DIGITS>}<LETTERS> IS ILLEGAL SYMBOL

2 UNTERMINATED QUOTE (")

3 DOLLAR (%)} IS NOT FIRST CHAR OF SYMBOL WHERE IT APPEARS.
4 "FATAL"™ SPOOLER OUTPUT ERRCR.

5 ILLEGAL 0S/8 DEVICE NAME.

6 ILLEGAL PARSE CHARACTER.

7 ILLEGAL <FILE> SPECIFICATION.

8 ILLEGAL UNARY OPERATOR SEQUENCE

9 TOO MANY DIGITS IN <NUMBER>

10 ILLEGAL USE OF / IN GPPMODE

11 SIXBIT CONVERSICN ERROR

12 PATAL: NO SVGPP.DA FILE CN SY¥S:

13 **%NOT USED**

14 PARENTHESIS MIS-MATCH ERROR

15 UNDEF SYMBOL - REMAINDER OF LINE NOT PARSED
16 MULTIPLE SYMBOL DEFINITION - REMAINDER OF LINE NOT PARSED

101 BINARY OPR DOES NOT HAVE 2 ARGS
102 FATAL: SYMTAB OVERFLOW DURING INTERPRETATION
103 UNARY OPERATOR ARG ERROR
104 ILLEGAL ASSIGNMENT SYNTAB.
105 ILLEGARL FILE NAME SPECIFICATION SYNTAX
106 FILE LOOPUP FAILED (FILE DCES NOT EXIST)
B



38

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

201
202
203
204
205
206

UNDEF SYMBOL -

NO OPERATION PERFORMED WITH COMMAKRD LINE.

*XNGT USED**x*
TWO MANY GPP INSTRUCTICN OPERANDS

TWO FEW
OPERAND
ILLEGAL
TLLEGAL
GRBLOCK

GPP INSTRUCTION OPERANDS

IN OP STACK WITHOUT. GPP INSTRUCTION

USE OF # IMMEDIATE FOR P3 FIELD

USE OF ' INDIRECT OPERATOR ON NULL OPERAND
ARG ERROR

MREG ARG ERROR

OREG ARG ERROR

NO [ ] IN GPPMODE UNLESS IN GRBLOCK
NO () IN GPPMODE

ILLEGAL
ILLEGAL

/ IN GPPMODE
\. IN GEPMODE

SAW \ BEFORE / IN MICROMODE

ILLEGAL
ILLEGAL
GREATER
REQUIRE
GRBLOCK
ILLEGAL

CODEGEN OPERATOR

CODELIST OPERATOR

THAN 16 SOURCE REQUIRE FILES

STATEMENT -TIME ARGUMENT ERROR

RAN QUT OF DATA FROM IPSTK - COMPILER MALFUNCTION
\\..-\\ TEXT SPECIFICATION

UNTERMINATED \\...\\

ILLEGAL
ILLEGAL
ILLEGAL

REQUIRE
REQUIRE
HANDLER
HANDLER
HANDLER
ILLEGAL

USE OF # OR ' IN GPP INSTRUCTION
USE OF P1, P2 OR P3 IN GPP INSTRUCTION
IVAL(2){0:2)] P1P2P3 USE CODE SPEC.

LOAD FILE LOOKUP ERROR

LOAD FILES > 16 FILES

FOR N - PM WORDS NGT IMPLEMENTED

FOR N - GR WORLS NOT IMPLEMENTED

FOR N - MCPM WORDS NOT IMPLEMENTED

/X EXPUNGE TYPE (=NNNNN IN COMMAND DECODER)



39
INDEX

Assembly location 8

BNF Grammar Specification 18
Building GPPASM.SV and GPPLDR.SV core images 35

Code generators description 16
Command decoder description 15
Compiling GPPASM and GPPLDR 35

Data section - loader 22
Descriptions of GPPASM Modules 13

Error numbers 37
Expunging symbols 8 _
External FORTRAN subroutine files in GPPASM 34

Format - loader file 22

GPP Operands &

GPPASM - Running 11

GPPASM Assembler Operations 8
GPPASM BNF Grammar Specification 18
GPPASM implementation 25

GPPASH operators 4

GPPLDR 22, 35

GPPLDR - Running 12

GPPMODE Assembler Syntax 3

GR allocator - Space checker description 16
GR allocator description 16

Implementation - GPPASH 25
Tnput/output description 15

Labels 3

List of error numbers 37

Listing generator description 17
Loader data section 22

Loader image file format 22



40

macroinst.def.s 10
macroinstruction 6

Main program description 15

Mainsail 18, 22

Mapping memory 7

MCPM allocator - Space checker description 16
MCPM allocator description 16
Microinstruction 6

MICRCMODE Assembler Syntax 6

Mini-monitor 22

M 7

Mreg 6

Nested source time files 9
New symbol definitions 9

OPRMAP 7, 10
Oreg 6

PM allocator - Space checker description 16
PM allocator description 16

References 24

Requiring load time files 9
Running GPPASM 11

Running GPPLDR 12

RUNTIME 22

Runtime file 9

Scanner - symbol routines description 15
Scanner description 15

SBECTION statement 10

Starting address - GPP 10

Symbol cleanup description 17

Symbol table map generator description 17
SYMTABR 29

Use of symbols in GPPASM 29





