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The Basics
Pattern Discovery And Recognition

A Single Biomarker For Ovarian Cancer Is Proving Elusive
CA125 As A Diagnostic Is Unreliable
Any Tumor Secreted Protein/Peptide Will Likely Have Low 
Concentration In Serum

Patterns Of Proteins/Peptides Reflect Systematic 
Response To Tumor Appearance

Hormonal Effects
Immunologic Response
Chaotic Changes
Multiple Patterns Per Disease State



© Copyright 2002 Correlogic Systems, Inc. Slide 2

The Basics
Feature Selection

Treat Mass Spec Data As A Signal
For Ciphergen Mass Spec, Each M/Z Line Is A 
Feature
Signal Consists Of 15,280 Features
Finding Optimal Feature Set Is Overwhelming 
Using Conventional Methods

For Five Feature Pattern, There Are 15,2805

Combinations
Explicit Search Cannot Be Finished In A Lifetime
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The Knowledge Discovery 
Engine™

Finds A Near Optimal Feature Set For Use In 
A Pattern Recognition Algorithm
Three Components

A Genetic Algorithm Selects Features
A Self Organizing, Adaptive Pattern Recognition 
Algorithm Clusters Data
A Simple Statistic Provides Information On 
Cluster Homogeneity
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Self Organizing Adaptive 
Pattern Recognition

Proteome Quest® Uses The Lead Cluster 
Map

N-Dimensional Euclidian Distance Based 
Classification
Adaptive - Always Learning
Vigilant - Recognizes Novel Event In Data Stream
Fast, One Pass Training
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The Lead Cluster Map

Process Begins With
An Empty Space
Dimensions Equal The
Number Of Features In
The Pattern

The First Vector Of 
Data Fixes The First
Centroid

A Decision Boundary
With A Radius Equal To
A Fraction Of The 
Maximum Distance 
Obtainable In The Space
Is Fixed

A Second Vector Of
Data Appears In The
Space And The 
Euclidian Distance
Between It And The
Previous Centroid Is
Calculated

If Distance Places The
New Vector Within The 
Decision Boundary, The
Vector Belongs To That
Cluster.  If It Doesn’t, A
New Centroid Is Fixed
And A Decision Boundary
Drawn

A Third Vector Now
Enters The Space.  The
Distances Between It And
The Centroids Are
Calculated

If The Vector Falls 
Within The Decision
Boundary Of A Centroid,
It Belongs To That Cluster.
If Does Not Fall Within The
Decision Boundary Of A
Centroid, A New One Is
Formed.

When A New Vector
Enters A Cluster, The 
Centroid And Its Decision
Boundary Is Moved
Slightly Towards The 
New Vector Coordinate

The Process Is Repeated
Until All Vectors Are 
Presented.  New Centroids
Are Formed Only As
Needed And Only The
Clusters Naturally Defined 
By The Data Arise
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How Homogenous Are The 
Clusters?

When The Map Is 
Organized, The 
Resulting Clusters Are
Evaluated For How 
Homogenous They Are
With Respect To Biological
State. 

For Example Red Is 100%
Diseased
Green Is 0% Diseased
Yellow Green Is 25%
Diseased
Yellow is 50% Diseased

The Map Homogeneity Is
Computed As The Average 
Homogeneity Or Error Rate
Across All The Clusters.  
This Is Used As The Fitness 
In The Genetic Algorithm
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The Genetic Algorithm

Simulates Natural Evolution To Optimize 
Feature Set
Operations Follow Biologic Adaptation

Probabilistic Fitness Selection
Mating (Crossover)
Reproduction
Mutation
Culling
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The Genetic Algorithm

[  575,   1457,   981,    8003,   10294]
[2661,   5619,   772,    11944,   3258]
[8428,   2254,   6927,  951,         646]
[  866,     932,   8155,  13842,   4044]
[7769,   6156,   9001,   9908,    2399]

0.75
0.60
0.80
0.65
0.81

First Generate A Random Population 
Of Feature Sets Or Logical Chromosomes.
No Feature Can Be Duplicated Within A 
Chromosome And No Chromosome Can
Be Duplicated

Build A Lead Cluster Map For Each 
Chromosome And Apply The Resulting
Fitness

Add Up All The Fitness Scores

3.61

0.21
0.17
0.22
0.18
0.22

Compute the fraction of the Total
fitness for each chromosome
Create A Spinner Such That It Is 
Divided Into Segments That 
Represent The Fraction Of The Total 
Fitness For Each Chromosome

Select Two Chromosomes For Mating
By Spinning The Spinner.  Whichever
Segment The Spinner Stops On Is 
Selected

Select A Crossover Point And Exchange
Features (Alleles)

[8428,   2254,   6927,   9908,    2399]
[7769,   6156,   9001,   951,        646]

Determine The Fitness For The New
Chromosomes And Total (1-Fitness)
For The Entire Population

0.90
0.73
1.76

0.14
0.23
0.11
0.20
0.11
0.06
0.14

Compute The Fraction Of The
Total (1-fitness) For Each Chromosome
And Create The Corresponding Spinner

Spin The Spinner And Remove Chromosome
Represented By The Resulting Segment

[2661,   5619,   772,    11944,   3258]
[8428,   2254,   6927,  951,         646]
[7769,   6156,   9001,   9908,    2399]
[2661,   5619,   772,    11944,   3258]
[8428,   2254,   6927,  9908,      2399]

The New Population Is Subjected To The
Same Process And The Process Repeats
Generation After Generation Until 
Homogeneity Is Achieved
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Diagnostic Model Use
When An Unknown
Specimen Arrives In 
The Lab Its Protein
Pattern Is Compared To
The Diagnostic Model.
The Specimen Is Scored
Based On The Cluster It
Falls Into.  The Score Is
100% Diseased In This
Example

If the specimen does
Not fall into a cluster,
It is scored as the 
Nearest cluster and
Noted as novel.  This
Sample would be 
Scored as 0% diseased
But new to the system.
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Modeling Results For Ovarian 
Cancer

Node  Count  State  StateSum  Error 349.44058 785.44338 245.53704 8749.6273 8003.3008
0 42 1 36 6 0.996845 0.216242 0.396389 0.063826 0.345897
1 43 0 5 5 0.995847 0.216443 0.597174 0.062445 0.408394
2 25 1 25 0 0.993629 0.18432 0.457702 0.0471922 0.210048
3 9 0 0 0 0.997733 0.426925 0.715582 0.0410085 0.336809
4 3 0 0 0 0.974219 0.377149 0.655183 0.0844548 0.53315
5 13 0 0 0 0.993606 0.202087 0.65194 0.0515213 0.265342
6 1 0 0 0 1 0.560264 0.539024 0.0747843 0.464684
7 4 0 0 0 0.846141 0.262706 0.876987 0.0368215 0.376691
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Fibroid V Cancer

Node  Count  State  StateSum  Error 8688.6274 8118.9303 9175.448 364.60468 6877.1305 8672.9762 4609.5839 280.32307 244.66041 353.28911
0 40 1 40 0 0.0452824 0.193639 0.0815192 0.129139 0.0302258 0.0476951 0.0953376 0.304083 0.217213 0.461908
1 26 0 4 4 0.056271 0.24848 0.186583 0.133643 0.0360071 0.0584209 0.150795 0.349218 0.580895 0.393635
2 9 0 0 0 0.0545433 0.240165 0.202003 0.137641 0.0361038 0.0574982 0.176575 0.334897 0.373167 0.605806
3 3 0 0 0 0.0641974 0.183802 0.509919 0.122027 0.0468114 0.0680114 0.294685 0.321132 0.486563 0.531164
4 6 1 6 0 0.0374897 0.185343 0.0600801 0.120849 0.0248064 0.0392355 0.0693076 0.256004 0.547108 0.260906
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KDE Advantages and 
Disadvatages

Advantages
Efficient 
Begins With No Assumptions
Intrinsically Non-Linear

Disadvantages
Over-fitting
Sensitive to Artifacts
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Key Features Of LCM Model

Computationally Efficient – 2.0 Ghz
Computers Can Process > 1,000,000 
Samples A Day
Ability To Gain Experience Is Built In
Recognizes Novel Proteomic Patterns

New Disease Variants
Identify Pockets Of Emerging Disease
Provide General Monitoring Of Target Population
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Pre-Analytic Issues

Sample Set
Sample Collection

Tube Type
Subject Condition

Sample Preparation
Clotting Time
Time On Clot
Time To Freezer
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Pre-Analytic Issues

Sample Characterization
Mislabeling
Corroboration of Histo-Path
True Control
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Data Collection Issues

Machine Variation
Day To Day
Site To Site
Duplicate Or Triplicates

Sequential
Random

True Validation
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Post-Analytic Issues

Role Of Variability
Meaning Of Indeterminate Results
Clinical Use w.r.t. Sensitivity and Specificity


