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Potentially the most profound Potentially the most profound 
advance in medical diagnostics in advance in medical diagnostics in 

the last half centurythe last half century
• Cancer diagnostics

– Ovarian, breast, colon, pancreatic, prostrate, bone, 
endometrial brain, liver, lung, head and neck

– Subtypes
– Stages, response to therapy
– Identification of specific proteins and their function

• Alzheimer’s disease
• Probably applicable to many conditions



The nature of the data extraction problem: The nature of the data extraction problem: 
large volume, low signal to noise ratiolarge volume, low signal to noise ratio

• Data quantity
– Many markers, many subjects, many groups in which 

subjects have been or will be placed, multiple 
measurements (time series) per subject

• Data quality
– Individual marker does not always correlate perfectly 

with disease, so that multiple markers are needed to 
achieve high accuracy

• Analysis requirements
– Near 100% accuracy for rare cancers (e.g. ovarian 

cancer)



Data Volume and ComplexityData Volume and Complexity
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216Total

121Women with ovarian 
cancer

95Unaffected Women

QQ--star Ovarian Cancer Datastar Ovarian Cancer Data
(NCI/FDA (NCI/FDA Ovarian High Resolution Ovarian High Resolution QqTofQqTof SELDI DataSELDI Data))

http://http://ncifdaproteomics.com/ppatterns.phpncifdaproteomics.com/ppatterns.php



Low Resolution Data SetsLow Resolution Data Sets

• http://clinicalproteomics.steem.com/downl
oad-ovar.php

• 4-3-02
– 100 ovarian cancer patients 
– 116 unaffected individuals

• 8-7-02
– 162 ovarian cancer patients
– 91 unaffected individuals
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IaIa.. Data Preprocessing: Smoothing  Data Preprocessing: Smoothing  

(1) De-noise and thus enhance the signal 
to noise ratio;

(2) Smooth with Gaussian kernel to enable 
a multiple-test correction via the 
random field theory. 

(3) Alternate method: smooth with least 
squares polynomial fitting to remove 
noise



(a) Illustration of the Gaussian kernel. The smoothed intensity of the 
biomarker with m/z value  is calculated as the weighted average, 
proportional to the Gaussian density, of the intensities of its 
neighboring biomarkers. (b) Relationship between the range of the 
11 adjacent points within the Gaussian smoothing kernel (y-axis) 
and the median of the range (x-axis) when FWHM = 11.  (c) 
Relationship between the ratio of the range over its median (y-axis) 
and the median of the range (x-axis) for FWHM = 11. 



IbIb.. Data Preprocessing: Data Preprocessing: 
Normalization  Normalization  

To ensure that the spectra are comparable 
across subjects/runs, we normalize 
each spectrum by first computing the 
average intensity of the entire 
spectrum, and then use the intensity for 
each m/z value divided by the average 
intensity. 

* Prior to normalization, one must ensure 
that the baseline subtraction is done 
uniformly across the spectra. 



IcIc.. Data Preprocessing: Data Preprocessing: 
Outlier Detection  Outlier Detection  

A two-step clustering analysis via (1) the K-
mean algorithm and (2) hierarchical 
classification is performed to examine: 

(a) Whether there are any sub-groups in 
each category (cancerous or normal).

(b) Whether there is any outlier or 
abnormal spectra in the data. The most 
obvious outliers are those ‘in a league 
of their own’ via the K-mean clustering.  



II.II. Training/Testing Sets  Training/Testing Sets  

(1) Training Set: A 
certain number of 
subjects (e.g. half) 
selected at random 
from each group 
(cancerous or 
normal). 

(2) Testing Set: The 
remaining subjects 
in each group. 
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III.III. StatgramStatgram ((t/zt/z map)map)



III.III. StatgramStatgram ((t/zt/z map)map)
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t test for statistical significancet test for statistical significance
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IV.IV. Critical region selection Critical region selection 
& multiple& multiple--test correction test correction 

via the random field theory via the random field theory 
(z(z--test)test)
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IV.IV. Critical region selection Critical region selection 
& multiple& multiple--test correction test correction 

via the random field theory via the random field theory 
(t(t--test with test with νν degrees of freedom)degrees of freedom)
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ThresholdingThresholding Step CompletedStep Completed

• All selected markers are statistically 
significant

• Improved chance of validity when applied 
to large population samples

• Improved chance of success when 
searching for protein giving rise to marker



V.V. Noisy MarkersNoisy Markers

• CV = coefficient of variation = STD/mean
• Large CV indicates noisy marker
• Possible causes of large CV

– Marker distinguishes between subgroups that 
have been lumped together in study

– Marker is subject to random variation within 
the population

• Avoid large CV markers for diagnosis but 
worth understanding for science



V. V. Variance Stability Check*Variance Stability Check*
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VI.VI. Clustering of Markers*Clustering of Markers*
• We use the K-mean clustering algorithm. Each new marker 

is near some existing cluster and is added to it or -- if not 
near -- it starts its own new cluster.

• Correlation between markers is computed across subjects 
and equals covariance / mean x mean

• Select one marker per cluster
• This is an optional procedure often done when the number 

of markers selected is too large.
• Alternate method: double discrete cosine transformation 

provides an averaging-data compression method to reduce 
the number of markers



Cosine Dimension ReductionCosine Dimension Reduction
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VII.VII. Stepwise Stepwise DiscriminantDiscriminant AnalysisAnalysis

Marker pool: Significant markers selected 
via the random field theory or Mahalanobis
and (Fisher) linear discriminant analysis
Markers can be selected and de-selected 
during the stepwise  procedures
A marker set is selected as the final 

model if it achieves 100% cross-validation 
in the training data set. 



Evaluate Features Selected UsingEvaluate Features Selected Using
Cross ValidationCross Validation

1. K-Nearest Neighbors (K-NN)
2. Neural Network (NN)
3. Support Vector Machine (SVM)



The KThe K--NN AlgorithmNN Algorithm

There are five major steps to this algorithm:
1. Data pre-processing (entire data);
2. Sampling (divide the data into training/testing);
3. Pre-marker selection via the random field 

theory (training data);
4. Final marker selection via stepwise 

discriminant analysis (training data); 
5. Validation of the final model via KNN (testing 

data).



Example FeaturesExample Features



VIII.VIII. Validation via the Testing SetValidation via the Testing Set

• Binary decision: Use the K-nearest 
neighbor algorithm (e.g. K = 11) to score 
the testing subjects as cancerous or not

• Probability based scoring: Computes the 
likelihood ratio of cancer versus normal for 
each subject in the testing set. 

• Alternate method: SVM, Neural Nets



KK--Nearest Neighbor ScoringNearest Neighbor Scoring

• Each testing subject finds its K (e.g. K = 11) 
nearest neighbors in the training set.

• The disease state of the majority of these K 
training set subjects determines the predicted 
state of the testing subject.

• The algorithm depends on a distance between 
subjects, and this distance depends on the 
selected set of markers.

• Mahalanobis distance used to determine nearest 
neighbors.



MahalanobisMahalanobis distancedistance
• This is the covariance adjusted distance of a test 

subject scores to the mean marker scores of the 
cancerous and non-cancerous populations as 
defined by the training set.
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Probability Based ScoringProbability Based Scoring
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Results on the Q* Ovarian DataResults on the Q* Ovarian Data

10 training-testing set pairs
Average number of markers: 52
Success rate: 121.4/122 = 99.51% correct



ResultsResults

• Example Marker set (26) in reduced dimension
(That resulted in 100% accuracy)

26              40            125            221       17844    
17846       17847       17848       17849 22920       
22921       22922       22923       22924       
22925       22926       23893       22910       
22911       22912       22913       22914       
22915       22916       22917       22918



Low Resolution Data 1, 2Low Resolution Data 1, 2
Our algorithm achieved 100% sensitivity and 
100% specificity for both data sets
18 protein biomarkers identified for Data 4-3-02 
can also achieve perfect discrimination for all 
subjects in Data 8-7-02 via cross-validation. 
Problems with data: 

(a) differential intensities at some markers 
inconsistent between two data sets; 
(b) Data 8-7-02 is “easy” to classify, including with 
use of very low m/z markers, i.e. m/z = 2.79; 
(c) offset of peaks between two data sets in high m/z
region



Low Resolution, ContinuedLow Resolution, Continued
• Statistics for repeated choices of training/testing sets

– Data 4-3-02 (cancer versus normal): many perfect results; mean 
success rate 96% (1200 training-testing pairs sampled).

– Data 8-7-02 (cancer versus normal): many perfect results; mean 
success rate near 100%

– Furthermore, marker sets selected from the 4-3-02 training data (50 
cancer + 50 normal) can classify the entire 8-7-02 data via cross-
validation with a mean success rate of 96%.

• Need to re-examine results in view of new questions regarding the data
– Shift to align peaks between data
– Compensate for effects of baseline subtraction
– Statistical stability of cross data set comparison
– Biological meaning of the markers to be determined in all cases

• Future work will emphasize high resolution data



Ovarian Cancer ScreeningOvarian Cancer Screening

Prevalence of ovarian cancer is 1 in 2500 
Screening with a test of 97% specificity 
would result in 75 false positives for every 
true positive case identified 

A suitable screening test must have near 
100% specificity
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