caBIG CDE/V Kickoff Meeting Presentation Fred Hutchinson Cancer Research Center

Daniel E. Geraghty, Heather Kincaid, Derek Walker, Rahul Joshi, Robert Robbins, Mark Thornquist.

Data Sharing Continuum

- Geraghty from individual site to community
- Thornquist bringing community to individual site

Development Principles

- Roadmap Driven: all pieces align with a reference architecture / roadmap
- <u>Flexibility in inputs and outputs</u>: allows variety of data types and meta data classifications to co-exist within the same system
- <u>Scalable Design</u>: retain system performance under increasing system load
- <u>Wide Ranging</u>: retain consistency with other information technology initiatives
- <u>Technology Agnostic</u>: allow for variety of technologies to exchange data
- Open source: allow interested parties to adopt, modify and improve the current state

Different Approaches for Different Circumstances

Thornquist – EDRN

- Integration through middleware
- Map existing databases to common data elements

Geraghty – GeMS

- Integration through usage
- Provide useful, needed tools resulting in de facto common data elements

Thornquist Lab: Early Detection Research Network (EDRN)

- 5-Year collaboration supported by NCI
- Goal: Identify, evaluate, and validate promising biomarkers to support the early detection of cancer
- Comprised of:
 - 18 Biomarker Laboratories
 - 9 Clinical and Epidemiology Centers
 - 3 Biomarker Validation Laboratories
 - Data Management and Coordinating Center
- Informatics Approach:
 - Cross-disciplinary team of biomedical and computer science researchers
 - Common Data Elements to standardize data definitions for databases and forms
 - Informatics infrastructure that allows for capture and exchange of information across EDRN centers
 - Leverage JPL/NASA's experience and software in developing IT infrastructures to support planetary science
 - Use existing EDRN databases without requiring changes
 - Develop a common IRB protocol template
 - Common portals to access data (secure, validation, public, etc) as a single entry point

EDRN Resource Network Exchange (ERNE)

- Virtual Specimen Repository
- Informatics infrastructure created for EDRN
- Existing sites specimen databases maintained locally
- Uses EDRN Common Data Elements (CDEs)
- Maps institutions local data definitions to EDRN CDEs
- Secure and Confidential
- Secure Dynamic Portal

EDRN Informatics Tools

- EDRN Secure Website CDE Tools
 - CDE Repository
 - Form Tools
 - Mapping Tools
- EDRN Resource Network Exchange (ERNE)
 - An infrastructure for sharing data resources across EDRN
 - Supports real time (on demand) distribution of data to users
 - First release Specimen sharing tool
 - EDRN CDE Mapping Tool
- Validation Infrastructure (VSIMS)
 - Provide common infrastructure across validation studies
 - Online Forms Data Driven from CDE Repository

Legacy Data and Mapping

- Semantic Architecture
 - Many institutions have existing specimen repositories with locally defined data models
 - EDRN Common Data Elements (CDEs)
 - ISO/IEC 11179
- Data Model Mapping
 - Communicating EDRNCDEs
 - EDRN CDE Mapping
 Tool
 - EDRN CDERepository

Shared needs of the local (small) genetics data generating labs.

- Laboratory organization and data flow.
 - Solid informatics infrastructure essential for data retrieval (i.e., a lab notebook).
 - Efficient data tracking improves data quality and lowers costs.
- Collaboration Potential. Ability to easily share data in a secure manner.
 - Labs at different localities collaborating on a project.
 - Acquiring genomic data developed in another lab (e.g. for genotyping).
 - Pooling data among labs to increase sample size.
 - Pooling genetic data from common samples (e.g. building haplotypes).
 - Sharing data for standardization (e.g. STRs).

To address these issues we are building a <u>Ge</u>netics <u>M</u>anagement <u>S</u>oftware suite.

Geraghty Lab: GeMS Approach

 Wide area data integration is seen as stack of activities

 Focus on bringing full power of high throughput DNA sequencing instruments into hands of small (R01-funded) laboratory

Data Flow

GeMS System Overview

- Data generated from sequencer
- Converted to standardized text formats
- Populated into published schema which relates variables to one another

GeMS Architecture

- The data store is accessed through a file storage service API that acts as a DAO (Data Access Object) Layer.
- Core services is made available above J2EE application server. These services are used by the plugins to carry out their functions.
 - File Storage Service
 manages file system
 - Authentication identify validation
 - Authorization users level of access
 - Messaging local workflow processes and collaboration with remot sites
 - Plugin Manager manages the resigration of plugin components
 - Workflow manages the workflow agents, their states, and the associated triggers
- Plugins represent the functional components that use the core services.

GeMS Data Schema

- Schema currently relates all key variables in automated high throughput DNA sequencing to the output files for data analysis, sharing and comparison including
 - DNA Source information
 - SNP Identification
 - Primers
 - Haplotypes
 - Sequencers
 - Technicians
 - PCR Thermocycles

· 2 60

From Data Generation to Data Publication

- Nightly Data pick up by system
- Unstructured and unrelated data sent to GeMS server for processing
- Data related to associated parameters
- Subset of data made available to the Geraghty website

Data Flow

Proposed Collaboration/Contribution to caBIG

Summary

- Support establishment and maintenance of Common Data Elements by
 - Fostering the generation of CDE/Vs from the data gathering instruments (GeMS)
 - Developing tools to interpret and integrate legacy data (EDRN)
 - Understanding the need to build and share mapping tools (GeMS EDRN)
- Experience and Lessons Learned
 - Managing and integrating data sets from a variety of sources
 - How to share data effectively across data grids
 - Data publishing in real time as it becomes available
- Flexibility is Essential
 - Consider the variability in data sets that must be assembled in a grid environment
 - Depends on the perspective of the study itself, or point of view of the researcher
 - Support for evolving data elements and classifications in discovery-oriented research
 - Supporting the scientist by delivering tools that add value as a mechanism for delivering established CDEs.