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Background and motivation

Mass spectrometry instruments are very 
sensitive; they see everything
Artifacts can be introduced into spectra from 
physical, electrical, or chemical sources
Low-level processing is an attempt to remove 
systematic artifacts and isolate the true 
protein signal



Miscalibration can be misleading

SELDI data from MDACC



Sinusoidal noise can be caused by 
faulty power supplies or detectors

Lung cancer data from Duke Radiology



Computer clock can insert unusual 
spikes into spectra 

Lung cancer data from Duke Radiology



Polymers are unlikely to yield 
interesting biology

Lung cancer data from Duke Radiology



Differences in the sample collection 
protocol can dominate the results

Red = First 20
samples

Blue = Last 30
samples

MALDI data from MDACC



Data set for developing and testing 
methods for low-level processing

One pooled sample of nipple aspirate fluid, 
divided into aliquots
Three 8-spot Ciphergen chips
On each of four days, apply sample to two 
spots on each chip
Produces 24 replicate spectra
Note: We performed the experiment with 
WCX2 and IMAC3 chips, and scanned each 
spot at two different intensities



Twenty-four spectra from the same 
sample on WCX2 chips, low mass range



Saturation occurs frequently in the 
early portion of the spectrum



Individual spectra have different baseline 
curves, but reproducible peaks



Low-level processing

View each spectrum as composed of three 
components
• True peak signal
• “Exponential” baseline
• White noise

Primary goal of low-level processing is to 
disentangle these three components



Wavelet denoising

Idea: use the undecimated discrete wavelet 
transform to isolate the white noise 
component
• Undecimated implies “shift-invariant”, so the 

results don’t depend on where you start 
processing the signal

• Established tool in image processing and other 
scientific fields

• Code freely available in the Rice Wavelet Toolbox 
(http://www-dsp.rice.edu/software/rwt.shtml)



Underlying principle of denoising 
spectra using wavelets

Idea:
• Transform from the time domain to the wavelet 

domain
• Discard wavelet coefficients below some threshold
• Transform back.

Noise should be equally distributed over all 
wavelet coefficients at low levels.
True signal should be represented in a few 
wavelet coefficients at high levels.



As the threshold increases, more true 
signal is included in the noise



Long-range view of raw spectrum with 
wavelet denoised overlays



Closer view shows that high thresholds 
over-smooth the spectra



Close-up view shows that smoothing 
decreases noise and preserves peaks



Baseline correction removes the 
exponential trend



Peaks are easily isolated after 
denoising and baseline correction



A median filter computes a running 
estimate of the noise



Review of the method

Denoise using wavelets
Baseline correct using a monotone minimum
Normalize to total ion current (usually in a 
restricted mass range)
Locate peaks as local maxima after denoising and 
baseline correction
Quantify peaks as height at local maximum
Estimate S/N as height divided by median-
smoothed wavelet noise
Match peaks across spectra (based on clock tick 
separation or relative mass accuracy)



Results on the 24 replicate spectra

On average, each of the 24 replicate spectra 
contained 96 peaks with S/N > 10 and 158 
peaks with S/N > 2
Match peaks if separated by 7 clock ticks or 
by 0.3% mass and find a total of 174 peaks 
that occur at least once with S/N > 10
47 peaks were found in all 24 spectra
Logarithmic height of peaks found in at least 
3 spectra had median CV = 11%



Peaks found 10 times reflect differences 
in technology, not in statistical processing



Our method find peaks more 
reproducibly than Ciphergen



Our method finds peaks more 
reproducibly than Yasui et al.



Yasui et al. find many spurious peaks



Peaks found at least 10 times are visible 
in most spectra, and in the mean



Using the mean spectrum

We have started using the mean spectrum for 
peak finding
Advantages:
• Greater sensitivity, since noise should be reduced
• Automatically accounts for minor calibration errors
• Entirely avoids the problem of matching peaks 

across multiple spectra
• Borrows strength across spectra, so it avoids ad 

hoc rules based on number of times a peak is 
seen with give signal-to-noise ratio.



Revised algorithm

Check that calibration is consistent
• Interpolate to common time scale if needed

Compute mean of raw spectra
Apply wavelet method to denoise, baseline 
correct, and locate peaks in mean spectrum
Quantify peaks in individual spectra
• Apply wavelet method to denoise and baseline 

correct
• Normalize by total ion current
• Quantify by height (maximum) or area (sum)



Differences may become obvious when 
using mean spectra

Pancreatic MALDI data from MDACC



Need to check approximate alignment 
across spectra before computing mean

Pancreatic MALDI data from MDACC



Noise goes down in the mean by the 
square root of the number of samples



Noise goes down in the mean by the 
square root of the number of samples



Peak matching and mean peak finding 
give different results



Mean peak finding is consistent across 
batches of spectra

Pancreatic MALDI data from MDACC



The mean spectrum finds peaks that 
are only present in a few samples

Pancreatic MALDI data from MDACC



Consistent peaks with small S/N in 
individual spectra show up in the mean

Ovarian Q-Star data from Conrad et al



Simulated spectra

Difficult to evaluate processing methods on 
real data since we don’t know “truth”
Have developed a simulation engine to 
produce realistic spectra
• Based on the physics of a linear MALDI-TOF with 

ion focus delay
• Flexible incorporation of different noise models 

and different baseline models
• Includes isotope distributions
• Can include matrix adducts, other modifications



MALDI-TOF schematic

Vestal and Juhasz.  J. Am. Soc. Mass Spectrom. 1998, 9, 892.



Modeling the physics of MALDI-TOF

Parameters
D1 = distance from sample 

plate to first grid (8 mm)
V1 = voltage for focusing 

(2000 V)
D2 = distance between 

grids (17 mm)
V2 = voltage for 

acceleration(20000 V)
L = length of tube (1 m)
v0 = initial velocity ~ N(µ,σ)
v1 = velocity after focusing
δ= delay time

Equations
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Simulation of one protein, with isotope 
distribution



Overlay of the same protein simulated 
on a low resolution instrument



Simulation of one protein with 
decreasing numbers of matrix adducts



Simulated calibration spectrum with 
equal amounts of six proteins



Simulated spectrum with a complex 
mixture of proteins



Closeup of simulated complex spectrum



Open problems

Better calibration?
• Internal validation

Better baseline correction?
Alternative methods for normalization?
Best method for quantification?
Best statistical methods to use after done 
with preprocessing?
Quality control/quality assurance?
Ways to exploit simulations to test new 
methods?
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