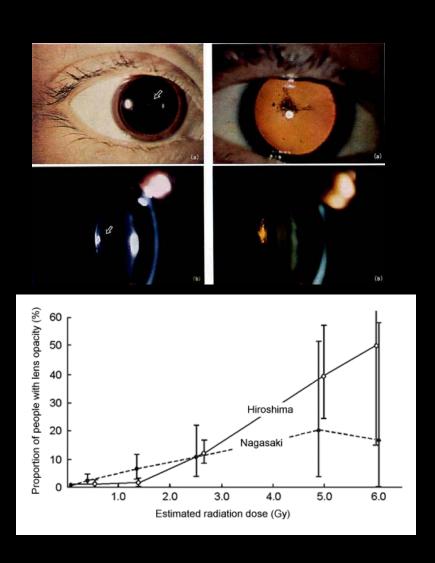
Non-Cancer Diseases in Atomic Bomb Survivors

Kiyohiko Mabuchi Radiation Epidemiology Branch, DCEG May 15, 2007

U.S. DEPARTMENT
OF HEALTH AND
HUMAN SERVICES

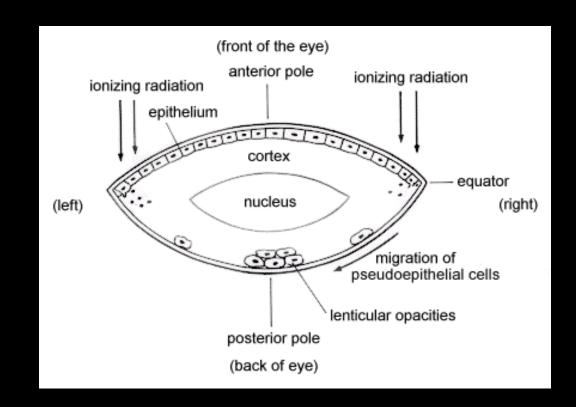
National Institutes of Health

Topics


- Atomic-bomb survivors
 - Acute radiation effects
 - Late effects
 - Cataract
 - Growth and development, hyperparathyroidism
 - Cardiovascular and other adult-onset diseases
- In-utero exposure
- F1 second generation

Acute Death & "Acute Radiation Syndrome"

- Acute radiation syndrome
 - Vomiting, diarrhea, bleeding, hair loss
 - Damage to the intestine, bone marrow, hair-root cells
- Acute death (within 2 months):
 - 50% acute mortality at 1-1.2 km (Hiroshima)
 and 1-1.3km (Nagasaki) from the hypocenter
 - UNSCEAR estimate of 50% lethal dose at 60 days (LD50/60) ~ 2.5 Gy; >5 Gy if full medical care available


Lens Opacity (Cataract)

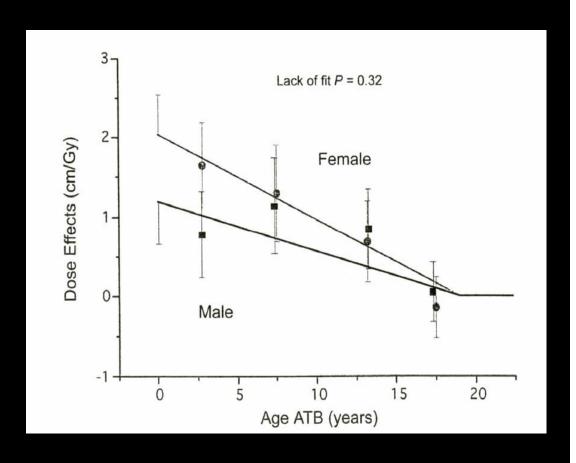
- An early radiation effects appearing 2-3 years after exposure
- Partial opacity, most often of posterior lens, detected by slit-lamp exams; rarely causing severe visual impairment
 - Possible "threshold" dose level ~ 1.5 – 2 Sv

Posterior Lenticular Opacity Possible Mechanism

- Radiation
 especially harmful
 to dividing cells, at
 the equator
- Damaged cells move toward the rear of the lens before converging on the center

Lens Opacity As Late Effect

- Emerging
 evidence of
 long-term effect
 on aging-related
 cataract (cortical
 cataract)
- Lower or absent threshold dose level

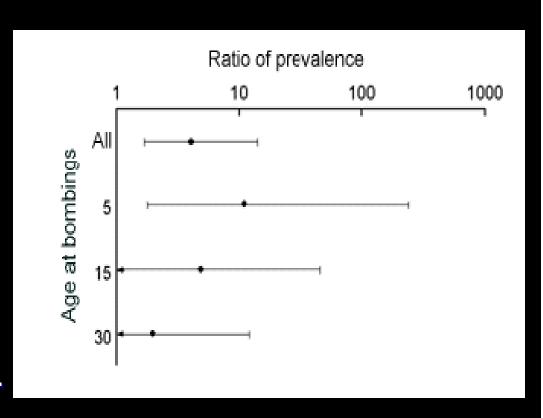

Lens Opacity Classification System II (LOCSII) for grading opacity AHS, 2000-02

	Odd Ratio per Sv	р
Nuclear color	1.01	ns
Nuclear opacity	1.07	ns
Cortical cataract	1.30	0.002
Posterior sub-capsular opacity	1.44	<0.001

(Nakashima et al, 2006)

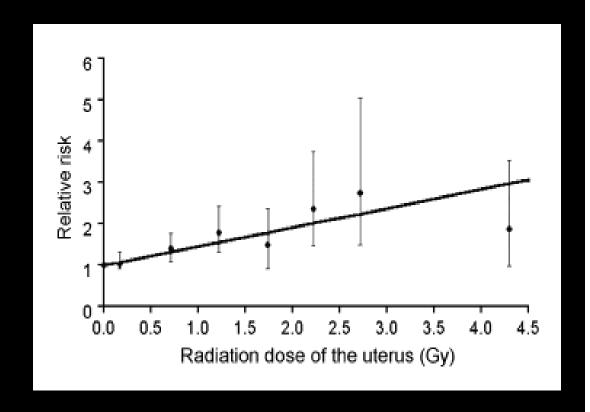
Development and Fertility

- Growth retardation
 - Reduction in height and weight, ages 19-27 yrs, among those exposed at <10 yrs (Otake, 1994)
 - Apparent gender and age-at-exposure effect (Nakashima, 2002)
- No radiation effect on age at menarche or fertility


(Nakashima, 2002)

Benign Tumors

- Excess risk of benign tumors or tumor precursors for some known sensitive tumor sites
 - Thyroid: Nodule
 - Breast: Proliferative disease, atypical hyperplasia
 - Neural: Schwannoma
 - Salivary glands: Warthin's tumor
 - Stomach: Polyps
- Intriguing sites/tissues
 - Hyperparathyroidism
 - Uterine myoma


Hyperparathyroidism

- Hyperparathyroidism
 - Results from increased parathyroid hormone due to:
 - Adenoma
 - Hyperplasia
 - Cancer
- Suggestion of age-atexposure effect

Uterine Myoma

- Often called "fibroids"
 - Originates from uterine muscle tissue
 - Highly estrogendependent growth

(Wong et al, 1993)

Effects on Immunity

- Acute (short-term) effects
 - 150,000 acute deaths and acute radiation syndrome
- Long-term effects
 - Became apparent in 1980s
 - Slight reduction in T-cells (10% per Gy)
 accompanied by slightly increased B-cells
 - No effect on innate immunity function, e.g., natural killer cells

Late Immunity Effects Health Implications

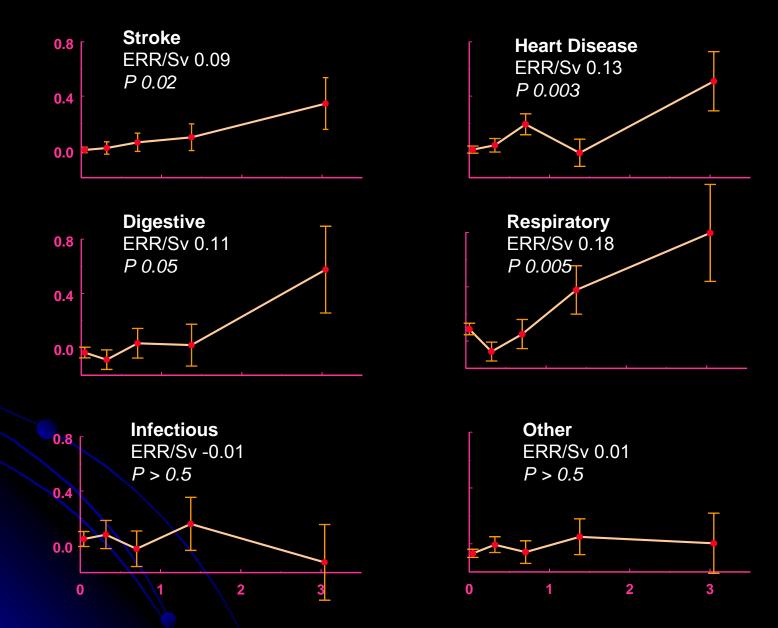
- Reduced clearance of hepatitis B virus in the carriers (Fujiwara, 2002)
- Increases in chronic inflammation markers
 - Sedimentation rate, α-1 and α-2 globulin and sialic acid (Neriishi, 2001)
 - C-reactive protein and Interleukin 6 (Hayashi, 2003)
 - Reason for excess risk of cardiovascular and some other chronic diseases ?
- No increased risk for tuberculosis or autoimmune diseases (rheumatoid arthritis, autoimmune thyroiditis)

Aging

- No dose response for physiological markers of aging
 - Skin elasticity, vision, breathing capacity, etc
- No radiation effects on certain specific aging-related diseases
 - Alzheimer disease
 - Osteoporosis

Psychological Effects

- Anxiety and somatization symptoms compatible with PTSD seen in the survivors 17-20 years after the bombings — (Yamada, 2002):
 - Increased ORs for anxiety (1.73) and for somatization (1.99) associated with acute radiation syndromes
 - Anxiety nervousness, fatigue, getting up tired in morning, etc
 - Somtization pain, GI and psychoneurological symptoms
 - ORs increasing with increasing distance from hypocenter, but independent of disease history
- Inverse dose response for suicide morality in LSS


Cardiovascular and Other Chronic Diseases in LSS

- Emerging evidence on radiation effects on heart disease, stroke and other adultonset chronic diseases
 - Small relative risk, but
 - Large absolute risk because of high background rates
 - Increasing evidence of a linear dose response

LSS Non-cancer Mortality - 1950-97

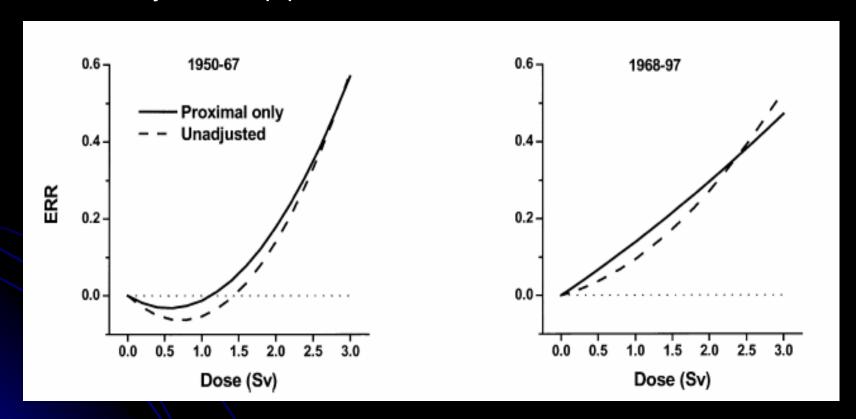
Dose, Sv	Obs	Ехр	Excess
<0.005	13,832	13,954	0
0.005-0.1	11,633	11,442	17
0.1-0.2	2,163	2,235	17
0.2-0.5	2,423	2,347	47
0.5-1	1,161	1,075	61
1-2	506	467	68
2+	163	111	40
Total	31,881	31,631	250*

Solid cancer deaths: 1,335 (440 excess) (Preston, 2003)

Dose (Sv)

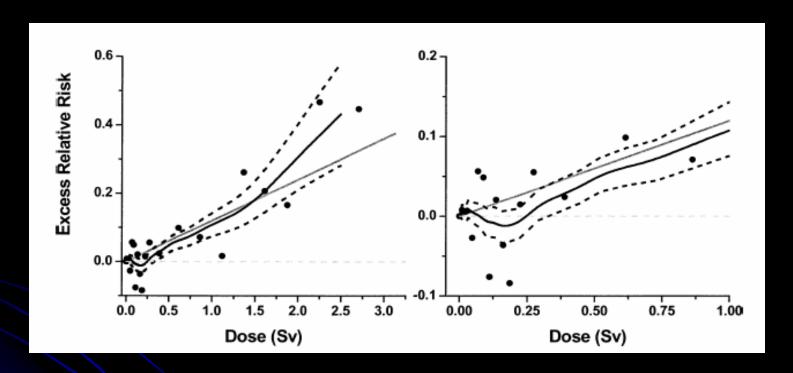
Confounding Does Not Explain the Dose Response

_		Noncancer ERR/Sv	
Subjects	Deaths	No	Adjustment
		adjustment	
10,308 men	1,163	0.07	0.09
13,154 women	1,121	0.14	0.14


Confounding factors used for adjustment:

- smoking
- education
- occupation
- marital status
- house size
- Japanese-style food
- physical activity

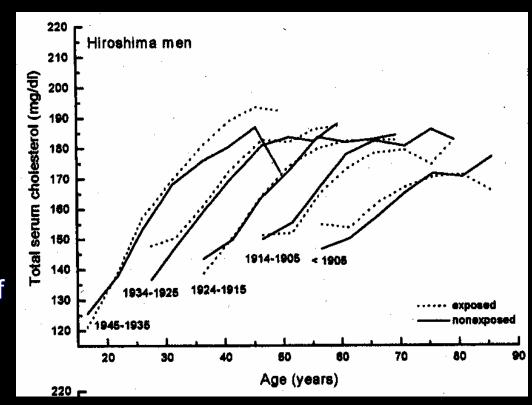
"Healthy Survivor Effect" and Urban-rural Difference Complicating Non-cancer Dose Response Analyses


Early follow-up period

Late follow-up period

Proximal survivors: <3 km from hypocenter. Unadjusted: full cohort.

Dose Response at Low Doses: 1968-97



Best described by a linearity but consistent with a non-linearity.

The risk below 0.5 Gy is uncertain.

Serum Cholesterol and Precursor Lesions

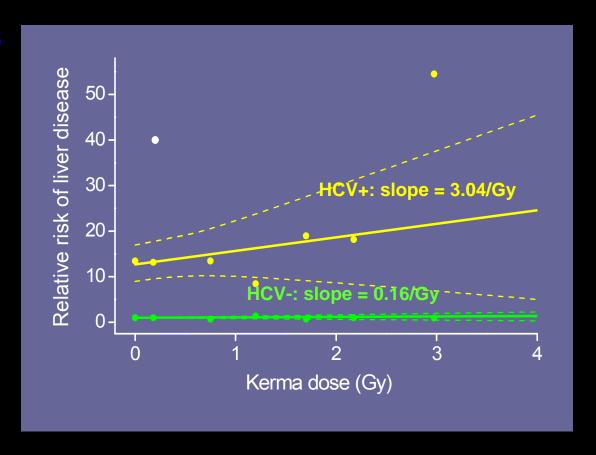

- Cardiovascular precursor lesions and related conditions
 - Changes in age trends for serum cholesterol levels and blood pressure
 - Increased prevalence of aortic arch calcification, isolated systolic hypertension

CVD - Other Irradiated Populations

- High-dose radiotherapy (Hodgkin lymphoma, breast cancer at >30-40 Gy) increases heart disease risk; doses are localized.
- Evidence of increased heart disease risk from some but not all medical and occupational studies
 - Ankylosing spondylitis but not TB fluoroscopy patients
 - US radiologists and radiologic technologists but not UK radiologists
 - Localized exposures
 - Few dose response data
- Varying results from low-dose occupational studies
 - Low statistical power
 - Lacking smoking and confounder information

Peptic Ulcer Disease Cohort

Weighted cardiac dose, Gy	In-field* dose, Gy	Coronary heart disease RR
0	0	1.00
0.1 – 1.9	0.86 – 9.1	1.00
2.0 – 2.5	9.2 – 11.7	1.23
2.6 – 3.0	12.0 – 13.9	1.54
3.1 – 7.6	14.4 – 35.6	1.51

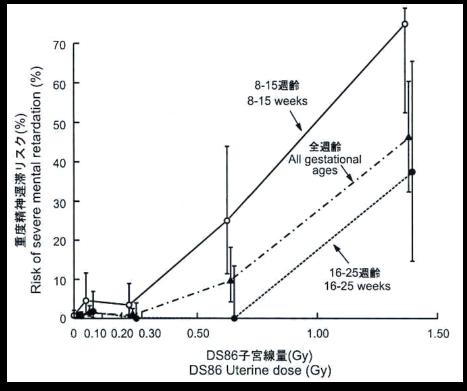

Best supporting low-dose data Marked dose heterogeneity

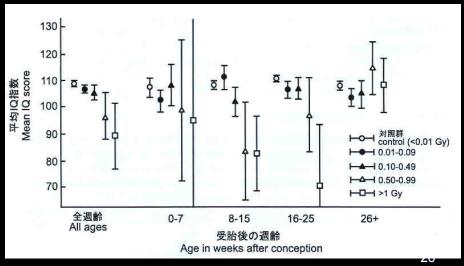
* 5% of the heart (apex) in the radiation field

(Carr et al, 2005)

Liver Disease and Hepatitis C Virus

- Chronic hepatitis and liver cirrhosis
- No relationship between radiation dose and HCV seropositivity
- Dose response for liver disease differs by HCV status

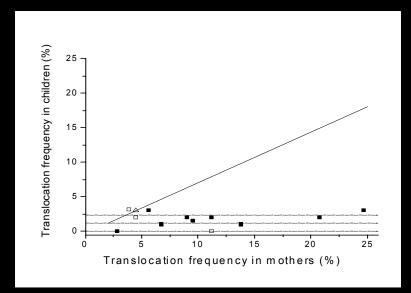

(Fujiwara et al, 2002)

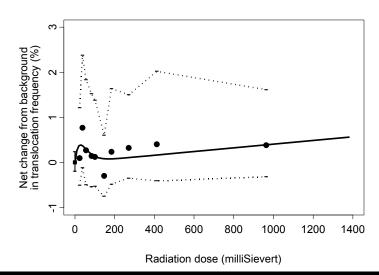

In-Utero Cohort

- Mortality, cancer incidence and clinical (subset) follow-up of 3,600 exposed and unexposed subjects
 - Impaired mental and physical growth development - the major health effects
 - More recently, increased risk of solid cancer at young adult ages
 - Follow-up for non-cancer diseases to continue

Effects of In-Utero Exposure

- Severe mental retardation in 21 of 476 in-utero survivors >0.005 Gy
 - 8-15 weeks of gestation at exposure
- Dose-related decreases
 - school performance
 - IQ scores
- Reduction in height & weight at age 18
 - No effect of gestational period





In-utero Exposure and Chromosomal Damage

- Lower translocation frequency from inutero exposure – mother-child comparison
- Apparent sensitivity at a low dose
- Suggestion of two subpopulations in lymphoid precursor cells in fetuses

(Ohtaki, 2004)

Somatic Effects – Conclusions (1)

- Acute deaths occurred from thermal, mechanical and radiation injuries, especially due to bone marrow depletion - acute effects on immunity
- Emerging evidence of long-term radiation effects of on immunity - characterized by subtle functional and quantitative abnormalities involving T- and B-cells.
 - Possible implications for some non-cancer disease risks
 - E.g., liver disease interacting with viral infection;
 cardiovascular disease through inflammatory process

Conclusions (2)

- Increasing evidence of a linear dose response, suggesting the low-dose radiation effect on cardiovascular and a variety of other chronic adult-onset diseases.
- Developmental effects are especially pronounced from exposure in utero or during early childhood.
 - Possible long-term effects and
 - Implication for future cardiovascular and other disease risks
- Low-dose radiation effects observed for a wide range of non-cancer diseases are subtle, longterm and interacting with a variety of other risk factors
 - Difficulty in corroboration from other studies

Early Genetic Studies

- 77,000 newborns, 1948-54
 - Use of food ration program for pregnant women (>20 weeks)
 - => 90% all pregnancies in Hiroshima/Nagasaki
 - Follow-up by midwifes
 - Physical examination during 2 weeks after birth
- Untoward pregnancy outcomes
 - Stillbirth
 - Malformations
 - Neonatal death (2 weeks)
- Sex ratio

Birth Defects, 1948-53

Total major birth defects: 0.91% (n=594) Tokyo Red Cross Hospital data: 0.92%

Mother's dose, Sv	Father's dose, Sv		
	< 0.01	0.01 - 0.49	> 0.50
< 0.01			
0.01 – 0.49	5.0%	5.0%	5.7%
	4.8%	4.5%	4.5%
> 0.50	6.1%	4.1%	8.0%

DNA Studies in F1

- Lymphocytes from 1,000 child-parents trios:
 - 500 one or both parents exposed
 - 500 non-exposed

- Pilot on 100 families
 - minisatellite loci, 8 probes
- Two-dimensional electrophoresis
- DNA chip technology

F₁ Cancer and Non-cancer Risk

- Mortality through 1999 (Izumi, 2003)
 - No excess cancer and non-cancer mortality
 - Hazard ratio for cancer = 0.96 (95% CI 0.59, 1.55)
 - Hazard ratio for non-cancer = 1.16 (95% CI 0.92, 1.46)
- Cancer incidence before age 20 yrs (Yoshimoto, 1990)
 - No excess for heritable and non-heritable type cancers

F1 Current and Future Studies

- Re-analysis of malformation and pregnancy outcome data using the latest dose estimates (DS02) - underway
- Question on risk for multi-factorial diseases (cancer, cardiovascular disease, diabetes, etc) through continued mortality and cancer incidence follow-up and subcohort clinical follow-up - underway

Acknowledgements

RERF

- LSS
 - Yukiko Shimizu
 - Dale Preston
 - Don Pierce
 - Kazunori Kodama
- AHS
 - Saeko Fujiwara
 - Michiko Yamada
 - Kazuo Neriishi
- Genetic/F1
 - Nori Nakamura
 - Jack Schull
 - Jim Neel

- Immunology
 - Yoichiro Kusunoki
 - Mitoshi Akiyama
- Statistics
 - Lennie Wong
 - Eiji Nakshima
 - Shizue Izumi

DCEG

- Ruth Kleinerman
- Charles Land
- Zhanat Carr (now WHO)