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Introduction
• Ionizing radiation (IR) is a known, and well-quantified, 

human cancer risk factor

• But estimation of radiation-related cancer risk is 
uncertain 
– Statistical uncertainty
– Transfer between populations
– Extrapolation to low doses

• Possibility of a threshold?

• Uncertainty considerations are important
– Is there really a risk? How strong is the evidence?
– How high could the risk plausibly be?
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We know as much as we do about radiation-
related risks mainly because we can (often) 

estimate organ-specific doses with some 
precision

Even in human populations

Even when the doses are low
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Estimating low-dose cancer 
risks directly is one of the most 

difficult tasks there is in 
epidemiology
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An overly simple example

• Suppose a known population baseline cancer 
risk of 10% over a 30-year period (i.e., no need 
to estimate it)

• Suppose a uniform exposure, to dose D

• Suppose also that excess risk is proportional to 
dose, for 0 ≤ D ≤ 1 Gy

• And that risk is doubled for D = 1 Gy 
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Statistical power and sample size

• Consider statistical tests of the null 
hypothesis of no excess risk at dose D
– vs. the one-sided alternative that there is an 

excess
– for tests at the 5% significance level

• How large a sample size, N, is needed to 
have an 80% probability of rejecting the 
null hypothesis when it is false?
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Example (cont.)
• Number of cancers: binomial (N, p), p = 0.1 H (1+D)
• Est. excess risk, ER = (number of cancers) / N - 0.1

– Approx. normally distributed 
– mean = 0.1 H D  
– variance = 0.1 H (1+D) H [1 - 0.1 H (1+D)] / N

• If no dose response, ER has mean = 0, variance = 
0.09/N (standard deviation = 0.3/ N½)

• We reject the null hypothesis if    N½H ER / 0.3 > 1.645

• How large must N be for statistical power $
80%?
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Suppose N is too small
• For D = 0.01 Gy (i.e., excess risk = 0.1%) and N = 

50,000, the probability of rejecting the null hypothesis is 
19%
– Under the null hypothesis, it is 5%
– Failure to reject would be predicted by both null and alternative 

hypotheses

• Thus, (in the example) even a large study would be very 
unlikely to yield conclusive results
– In fact, a significant result would be misleading, because the 

estimated excess risk would be biased upward:
– If the lower 95% confidence limit > 0 for N=50,000, the estimate

must be > 0.22%, over 2 times the true value of 0.1%



11

It’s actually worse than that:
• We don’t “know” the baseline; we have to 

estimate it, which requires about twice as many 
subjects

• Are we estimating the “right” baseline?
– How could we possibly control for every non-radiation 

risk factor that might increase risk from 10% to 10.1%, 
or decrease it to 9.9%? 

– How many such factors are known?
– How many are unknown?

• Low-dose extrapolation of estimates is 
unavoidable
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Linear regression estimates (" 1 s.d.) after trimming of high-dose data from the 
right.

Left-hand panel based on proximal (<3000m) survivors only; in right-hand panel 
the distal (>3000m) survivors also contribute, resulting in a higher zero-dose 
baseline

Based on data of Pierce & Preston, Radiation Research, 2000; 154:178:86
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With all these problems, why do we 
study populations exposed to low 

radiation doses?

• Suppose our extrapolated estimates were 
badly wrong? (especially, way too low?)

• We would need to know

• Except for that, we rely on low-dose 
extrapolation
– And not on low-dose studies
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The linear, no-threshold (LNT) theory

• Currently, radiation protection philosophy is 
based on the LNT model

• The theory states that, at low doses and low 
dose rates, excess risk is proportional to dose

• That doesn’t require linearity of dose response 
over the entire dose range, just at low doses
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The LNT theory (continued)

• For radiation protection, the ICRP posits a “dose and 
dose rate effectiveness factor” (DDREF) of 2 for low-
LET radiation at low doses and dose rates
– (BEIR VII recommends a DDREF of 1.5)

• Where the DDREF applies, we divide the linear-
model risk based on high-dose data by the DDREF
– In the statistical power example, with a DDREF of 2, excess 

risk at 10 mGy would be 0.05% instead of 0.1%

• A DDREF of 2 is implicit in the linear-quadratic 
model for leukemia
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Implications of the LNT theory:
Collective dose

• If the estimated risk from 100 mGy to 10,000 
people is 50 excess cancers,

– The estimated risk from 10 mGy would be 5 excess 
cancers,

– But the risk to 100,000 people would be 50 excess 
cancers

– And the estimated risk from 1 mGy to 1,000,000 
people would also be 50 excess cancers
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• Of course, you’d never be able to prove it

• It might be expensive to reduce the dose, 
and the million people might not want to 
pay for it

• They might feel that someone else should 
pay for it

• But probably “someone else” would insist 
on proof
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The low-dose threshold theory
• If we could agree that there is no radiation-related 

cancer risk associated with doses below (say) 2 mGy, 
the 1 million people exposed to 1 mGy could relax

• Radiation protection might be cheaper and easier than it 
is today

• It might be even easier with a threshold at 10 mGy

• Unfortunately, a low-dose threshold at 10 mGy or 2 mGy 
would be difficult to prove, for the same reasons that 
make it difficult to demonstrate the opposite
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A long-standing issue*

• Leukemia risk associated with 90-Sr in global 
fallout from nuclear weapons testing during the 
1950s & early 60s
– Very small doses to very large populations

– Leukemia risk had been demonstrated from higher-
dose exposures:

• A-bomb survivors, ankylosing spondylitis patients, thymic
irradiation patients, US radiologists (compared to non-
radiologist physicians)

*J Caron, undergraduate thesis                                  
http://resolver.caltech.edu/CaltechETD:etd-03292004-111416
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• Fruit fly geneticists found linear dose 
response for drosophila mutations down to 
250 mGy

• Moreover, radiation doses to US 
radiologists were estimated to have 
accumulated at rate of ~ 1 mGy per day
– And they had been shown to have a higher 

cancer risk than non-radiologists 

– Thus, presumably, dose-related risk 
accumulated daily
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Edward Lewis and Austin Brues
• Edward Lewis (1957) used available data on 

leukemia in radiation-exposed populations to fit 
a linear dose-response model

– Argued for a mutational factor in radiation 
leukemogenesis

– Estimate: 2 excess leukemias per million per cGy per 
year

– Argued that there was no experimental or 
epidemiological basis for radiation threshold
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• Austin Brues, for AEC: toxicology model 
argues for radiation threshold – why 
should radiation be different?
– Clearly there was a leukemia risk at high 

doses

– But no direct proof of excess leukemia risk at 
very low doses

• Eventually, the LNT model prevailed in radiation 
protection policy 
– But we are still in the same debate, and using many 

of the same arguments
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Quick review of radiobiology
• Unique type of DNA damage by ionizing 

radiation involves multiple lesions in close 
proximity (clustered damage) 
– ~ 70% for high-LET, ~30% for low-LET

• Can be induced by single electron track
• Can compromise repair machinery
• Processing and misrepair can lead to 

chromosome aberrations and mutations 
– Damaged or altered cells can escape cell cycle 

checkpoint and apoptotic pathways
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Radiobiology Review (cont)

• Roles of radiation-related adaptive response, 
genomic instability,  & bystander effects not well 
understood; may not be relevant to threshold 
question

• Critical radiation events in tumorigenic process 
are mostly early events involving DNA losses 
and critical genes

• Mechanistic arguments support linear response 
in low-dose region
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Evidence differs by tissue
• Stem cells in the intestinal crypt of laboratory 

mouse: Selective retention of template DNA 
strands in stem cells, providing protection of the 
stem cell genome (Cairns 1975; 2002) 

• But induction of small intestine cancer by high-
dose radiation of exteriorized loop is a well-
established experimental procedure
– Threshold?

• Very different for colon, for which there is clearly 
a low-dose risk



30

Epidemiological evidence
• For threshold:

– Shape of dose responses for basal cell skin 
carcinoma, bone, soft tissue sarcoma, rectum, small 
intestine

– Apparent fractionation effect for lung cancer

• Against threshold:
– X-ray pelvimetry studies (leukemia, solid cancers)
– TB, scoliosis fluoroscopy studies (female breast)
– Linear dose responses for female breast, thyroid, all 

solid cancers combined
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• Experimental and epidemiological 
evidence doesn’t preclude tissue-specific 
thresholds

• But also, it doesn’t support existence of a 
universal threshold, operating in all tissues

• And a threshold has to be universal to 
have much influence on radiation 
protection policy
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But estimates of low-dose risk 
are uncertain
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Major uncertain components
• Linear model estimate of ERR at 1Gy 

– Note confidence limits in previous slide
• Correction for transfer from LSS to US 

population
• DDREF to be applied at low doses and 

low dose rates
• Possibility of a universal threshold at some 

dose above that of interest
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ERR per Gy, in percent

Lognormal statistical uncertainty distribution for 
all solid cancers, LSS population. Sex-averaged 
ERR per Gy at age 50 following exposure at 
age 30. 

Mean 0.33, 90% probability limits 0.18 - 0.43. 
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• Baseline cancer rates differ between Japan and 
the U.S.

• This has uncertain implications for radiation-
related risk  in the US population

• For a few cancers, choice of a transfer model 
can really make a difference

• Example: for stomach cancer, Japanese rates 
are 12 times those in the United States

Transfer to the U.S. population



37
0 20 40 60 80 100

0

200

400

600

800

1000

St
om

ac
h 

ca
nc

er
 ra

te
 p

er
 1

00
,0

00
 p

er
 y

ea
r

Age in years

Additive transfer to US

Multiplicative transfer to US

Comparison of U.S. and Japanese Stomach Cancer Rates (Males)

Japan baseline

US baseline

Baseline + excess



38

Breast cancer example: fitted dose responseHow to transfer ERR estimate from 
Japan to the US?

• Use the A-bomb survivor ERR
– Multiplicative transfer – assume ratio of excess to 

baseline doesn’t change
– Biologically plausible if baseline rates differ because 

of differential exposure to promoters

• Use the LSS excess rates (ERR H baseline)
– Additive transfer: use the Japanese ERR, times 12
– Plausible if baseline rates differ because of differential 

exposure to competing cancer initiators
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• For all cancers combined, the baseline 
rates are not very different between the 
US and Japan
– So the difference between multiplicative and 

additive transfer is not very great

• In this case, “complete ignorance” about 
population transfer does not add much 
uncertainty to the estimate
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Monte Carlo simulation of the uncertainty distribution for cancer ERR at 1 Sv, after 
transfer to a U.S. population: the simulated distribution is approximately lognormal, 

mean 0.25 and 90% probability limits 0.13 – 0.41. 
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Uncertain DDREF

• Using a DDREF of 2 at low doses and low 
dose rates means dividing the linear-
model estimate by 2

• Using an uncertain DDREF means 
dividing by an uncertain number

• Which adds uncertainty to the low-dose 
estimate
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mean 0.17 and 90% probability limits 0.08 – 0.36.
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Point of view:
Implications of an uncertain risk estimate

• It is widely recognized that risk estimation 
is uncertain
– Uncertainty distributions like the one in the 

previous slide aren’t a new idea

• Formally, radiation protection today is 
based on a single, central value, e.g., the 
mean
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Point of view (cont.)
• But that ignores important information

• The uncertainty distribution summarizes all the 
identified information about risk
– (We can’t think of everything)

• The exposed population presumably is 
concerned with upper limits on risk
– How bad might it be? Is the benefit really worth the 

risk?



48

Point of view (cont.)
• Those liable for the expense of dose reduction 

tend to be more concerned with lower limits
– Is there strong statistical evidence that there is a risk, 

or that the risk high enough to be of concern? (Can 
you prove it?)

• Radiation protection is a political process, which 
depends on the consent of those affected
– If it is to work, the various points of view must be 

considered
– And must be seen to be considered
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• The process of estimation determines the 
final uncertainty distribution for excess risk

• That distribution summarizes all we know, 
think we know, or had to assume in order 
to get the estimate

– That includes the uncertainties of the parts
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Uncertain possibility of a threshold

• Consider a threshold somewhere above (say) 1 
mGy as an uncertain possibility, with probability 
p. 

• Then, with probability p, ERR for radiation-
related cancer at 1 mGy would be zero

• And with probability 1-p, ERR at 1 mGy would 
be distributed lognormally with 
– mean 0.00017 
– upper 95% probability limit 0.00036
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Uncertain threshold possibility
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Assume uncertain threshold possibility, 
with probability p

• ERR at 1 mGy is estimated to be
– zero with probability p
– lognormal (0.00015, 1.73) with probability 1-p

• p mean 5% limit 95% limit

– 0 0.00017 0.00006 0.00036
– 0.2 0.00014 0     0.00034
– 0.5 0.000085 0 0.00030
– 0.8 0.000034 0 0.00021
– 1 0   0 0
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Effect of uncertain threshold assumption on a lognormal 
(mean 0.17, upper 95% limit 0.36) uncertainty distribution 

for ERR per Sv
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Implications of an uncertain threshold for 
radiation protection

• For the simple case (threshold probability = p) 
– The mean of the uncertainty distribution for excess risk is 

multiplied by 1-p and therefore decreases with increasing p
– It doesn’t disappear until p reaches 1
– An upper uncertainty limit also decreases with increasing p, but 

the decrease is rather slow until p approaches the uncertainty 
level for the upper limit.

• The epidemiological and radiobiological information 
available does not suggest a high value for p at any dose 
level high enough to matter.

• Thus, allowing for the possibility of a threshold would 
make very little difference to radiation protection
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Conclusions
• Unless the benefit of a low-dose exposure 

clearly outweighs the risks, most people would 
prefer not to be exposed

• So upper limits on risk are important.

• If a threshold is judged to be very likely, it would 
make sense to take that into account

• Otherwise, the threshold possibility should make 
very little difference to radiation protection

• LNT is an appropriate basis for radiation 
protection
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The NIH radio-epidemiological 
tables – a real-life example

• In 1983 Congress passed a law directing the 
Secretary of the Department of Health and 
Human Services (DHHS) to compile “probability 
of causation” tables

• PC = ERR/(1+ERR) estimates the actuarial 
likelihood that a given cancer diagnosis could be 
attributed to a given prior history of radiation 
exposure

• The mandate specified that the tables be 
updated as new scientific information became 
available
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• DHHS Secy directed NIH to respond, and a 
working group was put together

• WG (NIH, 1985) computed “radio-
epidemiological tables” for estimating site-
specific ERR as a function of exposure history, 
age at diagnosis, and other data
– Uncertainty assessment included

• Tables used by the Dept. of Veterans Affairs 
(VA) to adjudicate compensation claims by 
military veterans 

• VA asked CIRRPC (another govt. comm.) to 
help make the tables easier to use
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• CIRRPC devised “screening” tables to screen out 
obviously unmeritorious claims

• CIRRPC tables screened out claims for which the 
90th, 95th, or 99th percentile of the uncertainty 
distribution for PC = ERR/(1+ERR) was < 50%

• VA decided to accept claims not screened out at 
the 99th percentile, i.e., at the least stringent 
screening level

• In 1998 VA asked NCI to update the tables
• REB replaced tables by “Interactive 

Radioepidemiological computer Program” (IREP)
• Program computes uncertainty distribution for PC
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Applications
• IREP easily modified to calculate yearly ERR for 

site-specific cancer risk for arbitrary exposure 
history
– Lifetable-weighted sum estimates lifetime risk

• Example: Fallout and thyroid cancer risk 
calculator

• Example: Site-specific lifetime risk calculator

• Next version of IREP to reflect new RERF tumor 
registry data, BEIR VII report, etc.
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2000 Energy Employee Occupational 
Injury Compensation Act (EEOICPA)

• Dept of Labor directed to use radioepi tables (& 
therefore IREP) to adjudicate claims by DOE & 
DOE contractor employees

• NIOSH to reconstruct doses
• Compensation claims to be awarded under 99th

percentile rule
• NIOSH uses modified version of IREP to 

calculate PC & advises DOL on claims 
adjudication


