

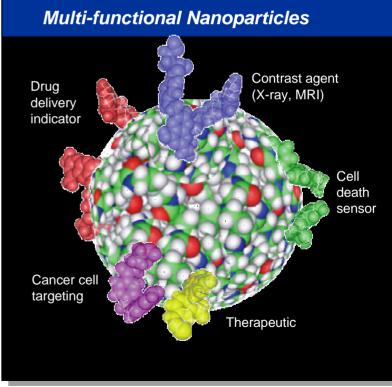

# Presentation to ASTM E56 Workshop May 19, 2005



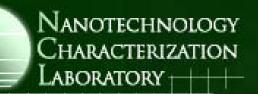
Scott McNeil, Ph.D. Director, Nanotech Characterization Lab SAIC-Frederick



# Outline


- Background
- NCL
- Assay Cascade
  - Physical Characterization (Dr. Patri)
  - In vitro and in vivo Pharm/Tox (Dr. Stern)




# Why Nano?

# **Therapeutic Benefits**

- Solubility
  - Carrier for hydrophobic entities
- Multifunctional capability
- Active and passive targeting
  - Ligands; size exclusion
- Reduced toxicity



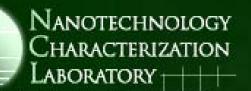
Jim Baker, University of Michigan



# Nanotech at NCI

# **Background**

- NCI has funded exploratory work over the past 6 years on integrating nanotechnology into biomedical research
- Unconventional Innovations Program (UIP)
  - Diagnostics (Imaging)
  - Therapeutics
- Priority is to now transition that research into the clinical realm.




## NCI Alliance for Nanotechnology in Cancer

- •Run by Office of Technology and Industrial Relations (OTIR)
  - •Director: Dr. Greg Downing
  - •Extramural Budget: \$144M over 5 years
  - •Launched on Sept 13th, 2004
  - •Website: http://nano.cancer.gov/

•Consensus among cancer researchers that significant obstacles must be overcome in order to transition 'nano' to clinical realm

- Critical lack of available standards
- •1st principles characterization
- •Regulatory uncertainty



The Nanotechnology Characterization Laboratory

# **Mission Statement**

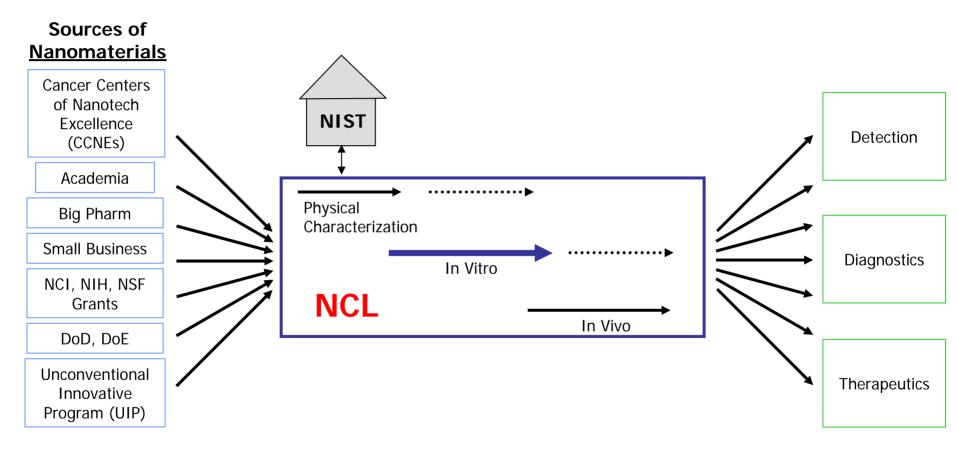
- The Nanotechnology Characterization Laboratory (NCL) will perform and standardize the <u>pre-clinical characterization of nanomaterials</u> developed by researchers from academia, government, and industry.
- The NCL will serve as a national resource and knowledge base for cancer researchers, and <u>facilitate regulatory review</u> and translation of nanomaterials and devices into the clinical realm.



# **NCL** Objectives

- Identify and characterize critical parameters related to nanomaterials' biocompatibility; structure-activity relationships.
- Establish and standardize an assay cascade for nanomaterial characterization.
- Examine the biological characteristics of multicomponent/combinatorial platforms.
- Engage and facilitate academic and industrial-based education and knowledge sharing.

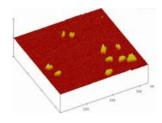



# The NCL

# The Nanotechnology Characterization Laboratory

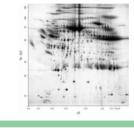
- Provides critical infrastructure support for Alliance
- Performs pre-clinical characterization of nanomaterials intended for cancer therapeutics and diagnostics
- Collaboration between NCI, NIST, US FDA

#### Nanotechnology Characterization Laboratory +++++-


# NCL Concept of Operations



NCL conducts pre-clinical characterization in support of an Investigative New Drug (IND) submission to the FDA


#### Nanotechnology Characterization Laboratory +++++-

# NCL Assay Cascade



#### Physical Characterization:

- Size
- Size distribution
- Molecular weight
- Density
- Surface area
- Porosity
- Hydrophilicity
- Surface charge density
- Purity
- Sterility
- Surface chemistry
- Stability



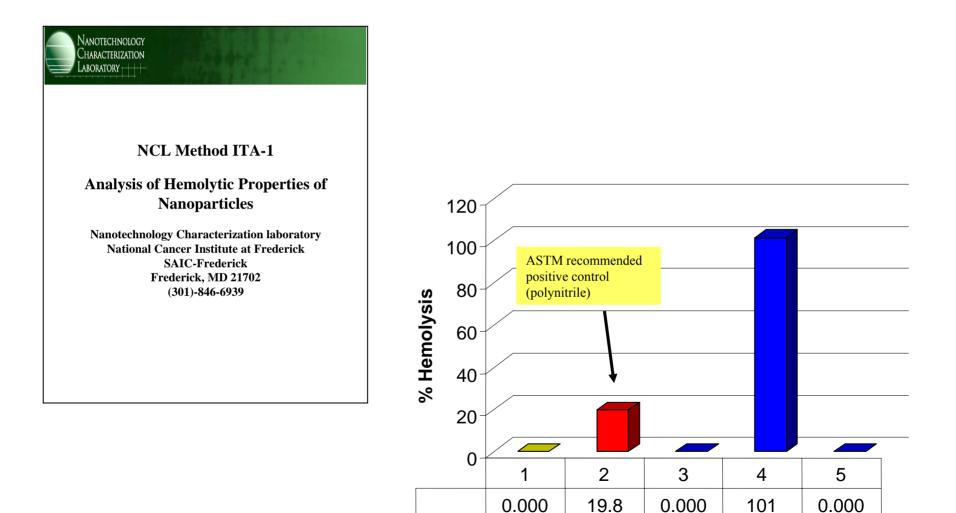
## In Vitro:

- Binding
- Pharmacology
- Blood contact properties
- Cellular uptake
- In vitro absorption, distribution, metabolism, excretion

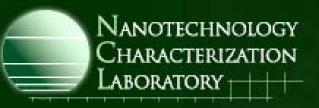


#### <u>In Vivo:</u>

- Absorption
- Pharmacokinetics
- Serum half-life
- Protein binding
- Tissue distribution
- Metabolism
- Excretion


#### Nanotechnology Characterization

# In Vitro Cascade


|    |                                        | NCL In Vitro Assay                  |  |  |  |  |
|----|----------------------------------------|-------------------------------------|--|--|--|--|
| ID | Task Name                              | 1st Quarter 3rd Quarter 3rd Quarter |  |  |  |  |
| 1  | In Vitro                               |                                     |  |  |  |  |
| 2  | Sterility                              |                                     |  |  |  |  |
| 3  | Bact/Viral/Myco                        |                                     |  |  |  |  |
| 4  | Endotoxin                              |                                     |  |  |  |  |
| 5  | Efficacy                               |                                     |  |  |  |  |
| 6  | Targeting/Cell binding                 |                                     |  |  |  |  |
| 7  | Internalization                        |                                     |  |  |  |  |
| 8  | Drug Release Properties                |                                     |  |  |  |  |
| 9  | Cytotoxic properties                   |                                     |  |  |  |  |
| 10 | Specificity                            |                                     |  |  |  |  |
| 11 | Blood Contact Properties               |                                     |  |  |  |  |
| 12 | Plasma Protein Binding                 |                                     |  |  |  |  |
| 13 | Hemolysis                              |                                     |  |  |  |  |
| 14 | Platelet activation                    |                                     |  |  |  |  |
| 15 | Coagulation                            |                                     |  |  |  |  |
| 16 | Complement system                      |                                     |  |  |  |  |
| 17 | Opsonization                           |                                     |  |  |  |  |
| 18 | Macrophage/Leukocyte function          |                                     |  |  |  |  |
| 19 | Neutrophil function                    |                                     |  |  |  |  |
| 20 | NK cell activity                       |                                     |  |  |  |  |
| 21 | Toxicity                               |                                     |  |  |  |  |
| 22 | Enzyme induction                       |                                     |  |  |  |  |
| 23 | Oxidative Stress                       |                                     |  |  |  |  |
| 24 | Cytotoxicity (necrosis)                |                                     |  |  |  |  |
| 25 | Cytotoxicity (apoptosis)               |                                     |  |  |  |  |
| 26 | Imaging Modality                       |                                     |  |  |  |  |
| 27 | MRI                                    |                                     |  |  |  |  |
| 28 | Optical                                |                                     |  |  |  |  |
| 29 | Ultrasound                             |                                     |  |  |  |  |
| 30 | Metabolic Stability                    |                                     |  |  |  |  |
| 31 | CYP450 (Phase 1)                       |                                     |  |  |  |  |
| 32 | Glucuronidation, sulphation (Phase II) |                                     |  |  |  |  |
| 33 | Bioavailability                        |                                     |  |  |  |  |
| 34 | Caco-2 Assays                          |                                     |  |  |  |  |

#### Nanotechnology Characterization Laboratory +++++-

## In Vitro Example: Hemolysis Protocol



Sample1-NC (polyethylene); 2- PC (nitrile); 3- dH2O; 4 - 50nm polystyreneNP; 5- silica coated glass beads12



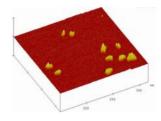
# Physicochemical Characterization and Standardization of Nanoparticles

# Presentation to ASTM E56 Workshop

May 19, 2005

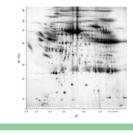


Anil K. Patri, Ph.D. Senior Scientist, Nanotech Characterization Lab SAIC-Frederick




# **NCL** Objectives

- Identify and characterize critical parameters related to nanomaterials' biocompatibility; structure-activity relationships.
- Establish and standardize an assay cascade for nanomaterial characterization.
- Examine the biological characteristics of multicomponent/combinatorial platforms.
- Engage and facilitate academic and industrial-based education and knowledge sharing.


#### Nanotechnology Characterization Laboratory ++++

# NCL Assay Cascade



#### Physical Characterization:

- Size
- Size distribution
- Molecular weight
- Density
- Surface area
- Porosity
- Hydrophilicity
- Surface charge density
- Purity
- Sterility
- Surface chemistry
- Stability

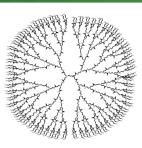


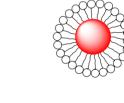
## <u>In vitro:</u>

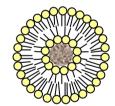
- Binding
- Pharmacology
- Blood contact properties
- Cellular uptake
- Toxicity



#### <u>In vivo:</u>

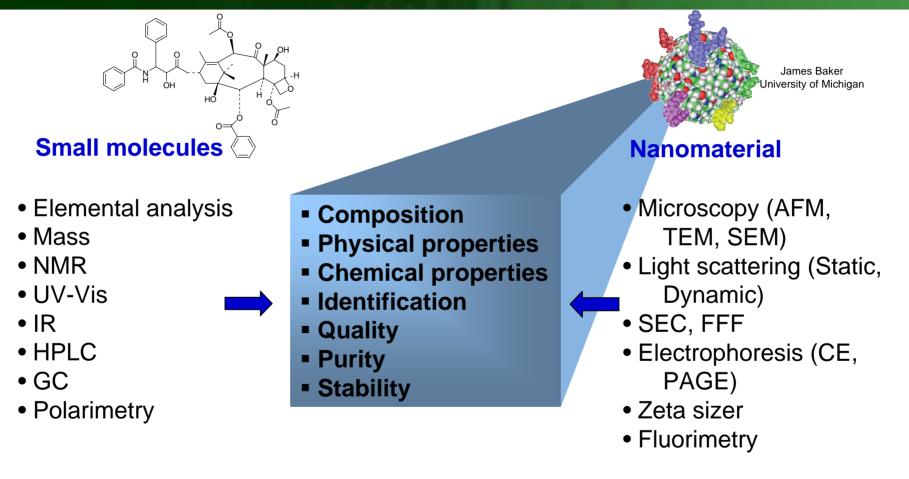

- Absorption
- Pharmacokinetics
- Serum half-life
- Protein binding
- Tissue distribution
- Metabolism
- Excretion





Nanoparticles by type for medical applications

- Organic Nanoparticles (e.g.: Polymers, Dendrimers)
- Inorganic Nanoparticles (e.g.: Iron oxide, gold nanoparticles)
- Organic/Inorganic hybrids (e.g.: Nanocomposites, core-shell type, Gd-chelates)
- Carbon based (e.g.: Functionalized fullerenes)
- Liposomes (e.g.: Functionalized, inclusion complexes)
- Nanoemulsions (e.g.: Oil-water-surfactant mixtures)
- Biological nanoparticles (e.g.: Protein and peptide based nanoparticles with other biological components)

#### **Terminology and Nomenclature will be addressed by E56 sub-committee**










Core parameters to define physicochemical property of material



Same parameters – different characterization methods



**Standardization of Characterization methods** 

#### **Property**

Size, Size Distribution, Topology

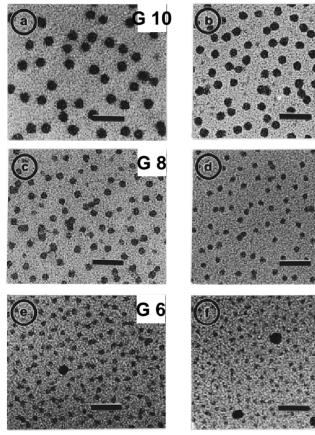
Purity, Composition, MW

Functionality, Charge Zeta potential

Stability, Reproducibility

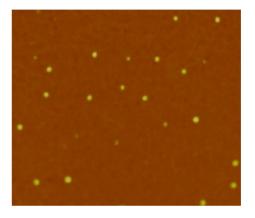
#### **Instrumentation**

- Light Scattering, Microscopy (SEM, TEM, AFM), SANS, SAXS
- HPLC, SEC, NMR, Mass Spectrometry, Light scattering, Atomic Absorption and Emission, PAGE, CE
- NMR, FTIR, UV-Vis, Fluorimetry, PAGE, Zeta sizer, CE, pH titrations
  - Chemical analysis, above methods


Physical characterization in collaboration with NIST with input from academia, industry and government agencies

All properties of the nanomaterial should be defined for standardization




# Size, size distribution with microscopy

#### Visualization of Poly(amidoamine)(PAMAM) Dendrimers by TEM



C.L. Jackson, H.D. Chanzy, F.P. Booy, B.J. Drake, D.A. Tomalia, B.J. Bauer, E.J. Amis, *Macromolecules*, 31(18), 6259, 1998


#### AFM



#### **Gold colloids**

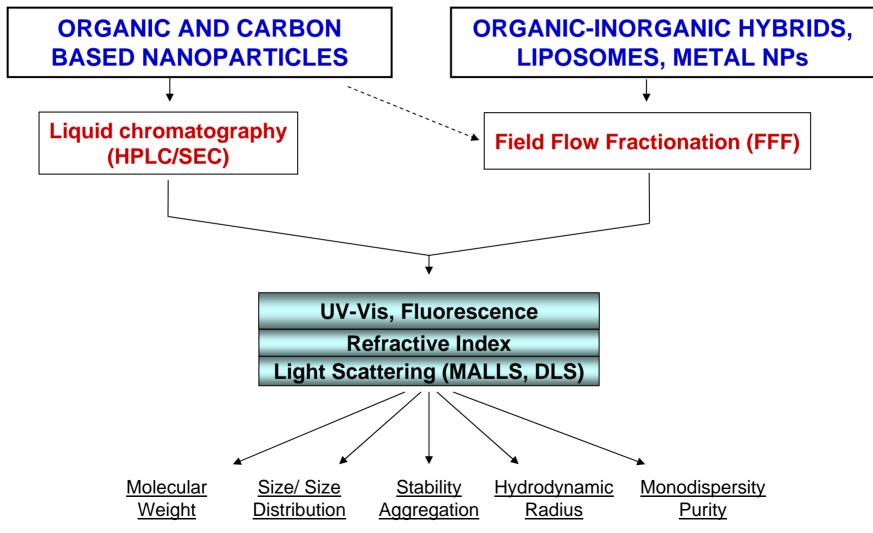


#### Functionalized gold particles



## **Molecular weight determination**

### **Mass spectrometry**


- Small organic molecules
- Peptides and proteins
- Low M.Wt. polymers
- Lower generation dendrimers
- Not suitable for very high molecular weight material

# **Light scattering**

- Ideal for nanomaterial
- Gentle method
- Size, size distribution
- Hydrodynamic size
- Batch mode
- Flow mode



# Flow mode analysis of Nanoparticles



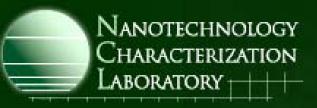


# **Quality, Purity, Functionality**

### **UV-Vis Spectroscopy**

- Qualitative and quantitative analysis
- Kinetic studies
- Stability studies

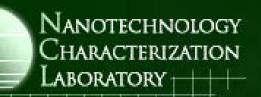
### **NMR spectroscopy**


- <sup>1</sup>H and <sup>13</sup>C NMR
- Identity
- Purity
- Functionality
- Quantitation from integration

#### Infrared spectroscopy

- Functional group analysis
- Surface characteristics

#### Electrophoresis CE and PAGE


- Separation based on charge/mass
- Purity
- Component distribution



## **Multifunctional Nanomaterial**



- Targeting, Imaging, therapeutic, reporter functions
- Complex nanomaterial for analysis
  - Control particles with each component or control components shall be established and characterized
  - Reproducibility
    - authenticated by physical, in vitro and in vivo test results
- Analysis to confirm the homogeneity in ligand distribution (e.g.: CE)
- Limitations in physical and chemical characterizations will be defined
- Detection limit of impurities or free individual components in the preparation



# NCL Pharmacology and Toxicology Preclinical Protocols

Presentation to ASTM E56 Workshop May 19, 2005



- Stephan Stern, Ph.D.
- Scientist, Nanotech Characterization Lab
- SAIC-Frederick



#### NCL Pharmacology and Toxicology Preclinical Protocols

## Outline

- I. In Vitro Pharmacology and Toxicology
- II. In Vivo Pharmacokinetics
- III. In Vivo Toxicology



### NCL Pharmacology and Toxicology Preclinical Protocols

Objectives of NCL Preclinical Testing Program

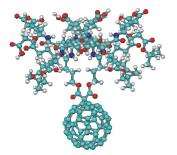
• Develop Standardized Assay Cascade for Nanoparticle Characterization

ASTM Guidance

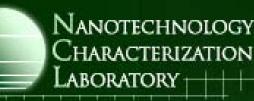
ASTM F 1904-98: Standard practice for testing the Biological Responses to Particles *in vivo* ASTM F 1903 – 98: Standard Practice for Biological Responses to Particles *in vitro* 



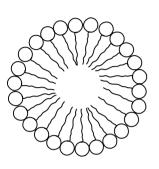
## NCL Nanotherapeutics and Diagnostics

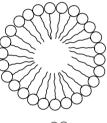

Nanoparticle Applications

- Cytotoxic oncology drugs
  - ex. dendrimer/cytotoxic drug formulation, liposome/cytotoxic drug formulation
- Imaging/Diagnostic Agents
  - ex. Denrimer/gadolinium MRI agent, Quantum dot diagnostic agent




## NP Structure-Activity Relationship


I. Surface hydrophobicity




- Hydrophobic surface- taken up by RES system
- Hydrophilic surface- Increased systemic half-life, enhanced permeability and retention in tumors (EPR)
- II. Surface Charge
  - Toxicity: cationic>anionic>neutral
- **III.** Surface reactivity
  - More reactive ( $\uparrow$ ROS)=  $\uparrow$ Toxicity



## NP Structure-Activity Relationship











**IV.** Size (aggregation/disaggregation tendency)

- Lung deposition

(titanium dioxide, Oberdorster et al., 1994)

- Biodistribution (dendrimers, Malik et al., 2000)
- Clearance mechanisms (i.e. renal, biliary)
- Subcellular distribution
  - e.g. < 9 nm access nucleus via nuclear pores (QD, Lovri *et* al., 2005)
- Particle surface area/cellular interaction

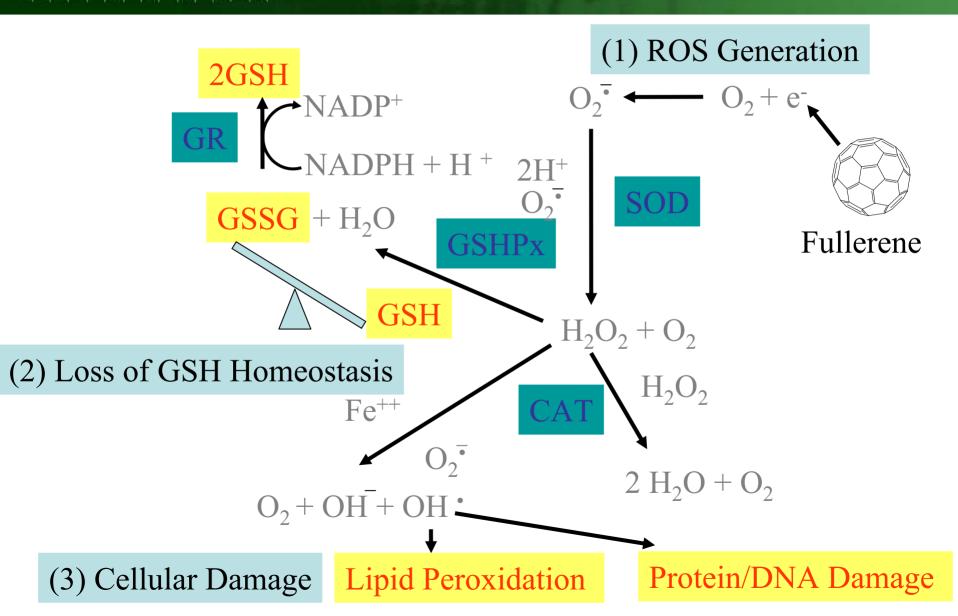


## Mechanisms of Nanoparticle Toxicity

#### Toxic mechanisms attributed to NP's

• Oxidative stress

(fullerenes, Oberdorster 2004; polystyrene, Fernandez-Urrusuno *et al.*, 1997)


• Induction of apoptosis

(cationic dendrimers, Kuo et al., 2005)

- Protein binding (quantum dots, Lovri *et al.*, 2004)
- Macrophage dysfunction (liposomal doxorubicin, Daemen *et* al., 1995; titanium dioxide, Renwick *et al.*, 2001)

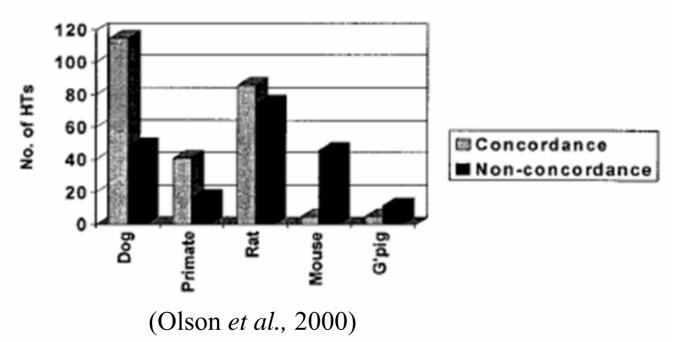


## **Oxidative Stress**



#### Nanotechnology Characterization Laboratory

# In Vitro Protocols


| Study        | Cell line                                             | Parameter                         | Specific Assay                                                                               |  |
|--------------|-------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------|--|
|              | Rat/human hepatic<br>microsomes                       | Metabolic stability               | Oxidative/Conjugative in vitro<br>metabolism                                                 |  |
| Pharmacology | Leukemia-(HL60)<br>Non Small Cell Lung (NCI-<br>H460) | Efficacy-Necrosis (Cytotoxicity)  | MTT Assay                                                                                    |  |
|              | Breast-MCF7<br>CNS-SF268                              | Efficacy-Apoptosis (Cytotoxicity) | Caspase-3 activation                                                                         |  |
|              | Rat hepatic primaries<br>(Sprague Dawley)             | Necrosis                          | MTT Assay (viability), LDH<br>(membrane integrity)                                           |  |
|              |                                                       | Apoptosis                         | Caspase-3 activation                                                                         |  |
|              |                                                       | Oxidative Stress                  | GSH homeostasis (DTNB assay),<br>lipid peroxidation (TBAR assay)                             |  |
| Toxicology   |                                                       | Cytochrome P450 induction         | CYP 1A1 (EROD), CYP 1A2<br>(MROD), CYP 2B1 (PROD)                                            |  |
|              | Pig renal proximal tubular cells (LLC-PK1)            | Necrosis                          | MTT Assay (viability), LDH Assay<br>(membrane integrity), γ-GT assay<br>(membrane integrity) |  |
|              |                                                       | Apoptosis                         | Caspase-3 activation                                                                         |  |



Rats are the preferred rodent species :

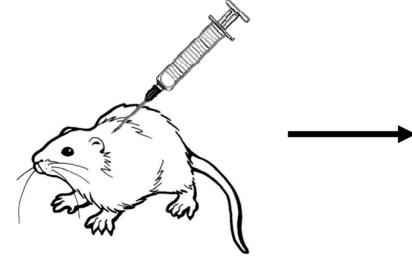
-Large blood volume for serial blood sampling

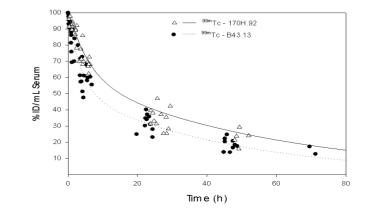
-Predictive of human toxicities (HTs)

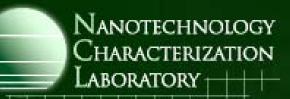


#### Nanotechnology Characterization Laboratory ++++

## In Vivo Pharmacokinetics

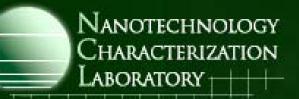

- Single/repeat-dose PK/TK/tissue distribution
- Clinical Tx cycle
  - -Schedule
  - -Duration
  - -Route
  - -Formulation
- Quantitation method


   radiolabeled nanoparticle (Scintillation)
   Imaging
   ELISA
- PK Parameters
   -AUC, Cmax, CL, t <sup>1</sup>/<sub>2</sub>, tmax


#### Nanotechnology Characterization Laboratory

### In Vivo Pharmacokinetics

| Purpose                                                                                     | Duration | Time<br>Point's | Groups                   | Tests                                                           | Comments                                                                               |
|---------------------------------------------------------------------------------------------|----------|-----------------|--------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Plasma PK profile/<br>Tissue distribution<br>(Liver, lungs, kidney, heart,<br>spleen brain) | 24 hrs   | 8               | 1X, 10X (5 F SD Rats/Tx) | scintillation counting of<br>plasma and tissue<br>samples (NCL) | Dosing, blood<br>draws by<br>Jugular<br>catheter,<br>cardiac<br>puncture (final<br>tp) |

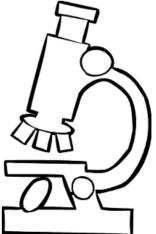







## In Vivo Toxicology Studies

- Single/Repeat-Dose Acute/Subacute Toxicity -Rats (determine STD10/NOAEL/Lethal dose)
- Clinical Tx Cycle -Schedule
  - -Duration
  - -Route
  - -Formulation
- Endpoints monitored
  - -Hematology
  - -Clinical chemistry
  - -Gross pathology
  - -Histopathology
  - -Clinical signs




## In Vivo Toxicology Studies

#### **Dose Range-Finding Toxicity Study**

| Purpose                                                  | Duration | Groups                                     | Tests                                                                                                        | Comments                                                                                       |
|----------------------------------------------------------|----------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| determine<br>dose at<br>which<br>toxicity is<br>observed | 14 days  | ctrl, 10X, 50X, 100X<br>(5 M+F SD Rats/Tx) | Clinical<br>chemistries,<br>histopathology,<br>hematology, gross<br>pathology, clinical<br>observation (PHL) | BW<br>measured<br>daily,<br>euthanasia<br>criteria<br>(decrease<br>in body<br>weight ≥<br>20%) |





#### Nanotechnology Characterization Laboratory +++++-

## **Comprehensive Toxicology**

#### Histopathology

Brain Lymph node Thyroid Pituitary Thymus Spleen Ileum Cecum Lymph node Prostate Urinary bladder Hardian gland Femur Mammary gland

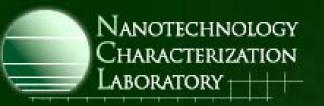
**Pancreas** Esophagus Trachea Heart Gall Bladder Lung Rectum Colon Epididymis Seminal vesicle Uterus Nasal Sections Vertebra Skin/Subcutis

Salivary gland Parathyroid Adrenal Kidney Liver Duodenum Stomach Jejunum Ovary Testis Eye Femur Spinal cord Tongue

#### Nanotechnology Characterization Laboratory +++++

## **Comprehensive Toxicology**

#### Hematology


Erythrocyte count (RBC) Hemoglobin (HGB) Hematocrit (HCT) Mean corpuscular volume (MCV) Mean corpuscular hemoglobin (MCH) Mean corpuscular hemoglobin concentration (MCHC) Platelet count (Plate) Reticulocyte count (RETIC) Total leukocyte count (WBC) Differential leukocyte count Nucleated red blood cell count



**Comprehensive Toxicology** 

#### **Clinical Chemistry**

BUN GLUC Globulin Chloride AST Creatinine A/G ALT total protein Sodium GGT Albumin Potassium



**Environmental** Aspects

#### **Studies Applicable to Environmental Risk Assessment**

- General Cytotoxicity Assays- determining concentrationresponse relationships.
- Mechanistic Studies- Identifying apoptosis, oxidative stress and cytochrome P450 induction/suppression as potential mechanisms
- In Vivo Toxicology Studies- Identification of target organs
- **General ADME-** define t1/2, clearance mechanisms (i.e. metabolism, biliary excretion, renal clearance, etc.)

#### Nanotechnology Characterization Laboratory +++++

#### NCL Pharmacology and Toxicology Preclinical Standards

#### **References**

- 1 DeGeorge *et al.* (1998) Regulatory considerations for preclinical development of anticancer drugs. *Cancer Chemother Pharmacol* 41: 173-185.
- 2 Guideline for Industry: Pharmacokinetics: Guidance for Repeated Dose Tissue Distribution Studies, FDA:CDER: March 1995
- 3 Guidline for Industry: Toxicokinetics: The Assessment of Systemic Exposure in Toxicity Studies, ICH:S3A:March 1995
- 4 Guidance for Industry: S6 Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals
- 5 Guidance for Industry: Single Dose Acute Toxicity Testing for Pharmaceuticals, FDA:CDER: August 1996
- 6 ASTM F 1904-98: Standard practice for testing the Biological Responses to Particles *in vivo*
- 7 Guidance for Industry: Developing Medical Imaging Drug and Biological Products Part 1: Conducting Safety Assessments, FDA:CDER:June 2004
- 8 Guidance for Industry: S7A Safety Pharmacology Studies for Human Pharmaceuticals, FDA:CDER: July 20-01
- 9 ISO 10993-5, Biological evaluation of medical deivices-part5: tests for *in vitro* cytotoxicity
- 10 ASTM F 1903 98: Standard Practice for Biological Responses to Particles *in vitro*

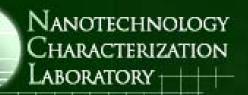
#### Nanotechnology Characterization Laboratory +++++

## NCI Alliance for Nanotechnology



- University and Medical Centers
- Technology Centers of Excellence
- National Labs
- NCI Technology
- Development Programs




Nanotechnologies

**Clinical Applications** 

Nanotechnology Characterization Laboratory NCI



**Protocols and Data** 



# **Questions/Comments**

Contact Info:

Scott E. McNeil (301) 846-6939 ncl@ncifcrf.gov