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SUMMARY

The prevailing view of intra-Golgi transport is cister-
nal progression, which has a key prediction—that
newly arrived cargo exhibits a lag or transit time be-
fore exiting the Golgi. Instead, we find that cargo mol-
ecules exit at an exponential rate proportional to their
total Golgi abundance with no lag. Incoming cargo
molecules rapidly mix with those already in the sys-
tem and exit from partitioned domains with no cargo
privileged for export based on its time of entry into the
system. Given these results, we constructed a new
model of intra-Golgi transport that involves rapid par-
titioning of enzymes and transmembrane cargo be-
tween two lipid phases combined with relatively rapid
exchange among cisternae. Simulation and experi-
mental testing of this rapid partitioning model repro-
duced all the key characteristics of the Golgi appara-
tus, including polarized lipid and protein gradients,
exponential cargo export kinetics, and cargo waves.

INTRODUCTION

The Golgi apparatus processes and sorts newly synthesized

protein and lipid moving through the secretory pathway (Kepes

et al., 2005). It is typically composed of seven flattened cisternae

arranged as an asymmetric stack with surrounding vesicles and

tubules (Ladinsky et al., 1999). The cis or forming face has cister-

nae morphologically and biochemically similar to the endoplas-

mic reticulum (ER). The trans or distal face at the opposite pole

contains cisternal membranes that resemble the plasma mem-

brane and associate with forming secretory vesicles. Within the

stack, lipids and proteins maintain cis-to-trans gradients in distri-

butions (Holthuis et al., 2001; Orci et al., 1981; Rabouille et al.,

1995; Roth et al., 1986) despite continuous movement of secre-

tory cargo through the system.
The most widely accepted model for how the Golgi apparatus

accomplishes its diverse and essential trafficking tasks is cister-

nal progression (or maturation). It postulates that the stack of

Golgi cisternae constitute a historical record of progression

from entry at the cis face to exit at the trans face (Glick et al.,

1997). Recently arrived cargo molecules are confined to the

cis-most cisterna, undergo initial processing, and await arrival

of enzymes from more distal cisternae for subsequent process-

ing. In this model, cargo molecules remain within a given cisterna

as it passes, conveyor-belt-like, through an average of seven

locations within the Golgi stack on its way to the trans face and

exit from the Golgi via transport carriers. Data from electron mi-

croscopy studies of large cargo proteins like Procollagen (Bon-

fanti et al., 1998) or scale formation in algae (Melkonian et al.,

1991) have been interpreted to show these molecules traversing

the stack without leaving their cisternal cocoon. Observations of

cargo transport after a temperature block indicate a wave-like

distribution that has been interpreted as cisternae with confined

cargo progressing across the stack (Trucco et al., 2004). In addi-

tion, the sequential appearance of Golgi enzymes in individual

yeast cisterna over time (Losev et al., 2006; Matsuura-Tokita

et al., 2006) has been widely cited in support of this hypothesis.

Here, we report the results from fluorescent highlighting exper-

iments that pose a challenge to cisternal progression in its classic

form. The data revealed that newly arrived cargo in the Golgi

exited with exponential kinetics rather than exhibiting a discrete

lag or transit time as predicted by cisternal progression. More-

over, transmembrane cargo molecules entering the Golgi quickly

distributed throughout the system before differentially partition-

ing between two different membrane environments: processing

domains enriched in Golgi enzymes and export domains capable

of budding transport intermediates. To develop a model consis-

tent with these data, we propose that intra-Golgi trafficking is

based on partitioning of transmembrane cargo and enzymes

within a two-phase membrane system. Through experimental

testing and simulation, this model is found to explain the full range

of Golgi characteristics, including polarized lipid and protein

gradients, exponential cargo export kinetics, and cargo waves.
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RESULTS

iFRAP to Measure Bulk Golgi Exit Kinetics
A salient prediction made by the classical cisternal-progression

model is that a pool of cargo initially distributed throughout the

stack empties with time in a linear fashion in the absence of fur-

ther input (Figures 1A and 1B, details in Model S1 and Figure S1,

available online). Linear export kinetics are predicted because

the cisternae conveying cargo are thought to form at the cis

face, move across the stack, and be consumed into vesicles at

the trans face at a constant rate. So that this prediction could

be tested, the export kinetics of three different types of GFP-

tagged cargo molecules (large soluble, small soluble, and trans-

membrane) were examined. GFP-Procollagen, which assembles

into aggregates upon arrival in the Golgi from the ER (Bonfanti

et al., 1998), was used as large, soluble cargo, whereas YFP

with a cleavable signal sequence peptide (ss-YFP) (Nehls

et al., 2000) was used as small, inert soluble cargo. The temper-

ature-sensitive ts045 VSVG protein (VSVG-GFP), which is re-

tained in the ER at 40�C and moves into the secretory pathway

Figure 1. Cargo Exit Kinetics from the Golgi

Show an Exponential Rather Than Linear

Loss of Cargo

(A) Diagram of cisternal progression in its classical

form modeled as newly arrived cargo, moves

forward, and exits.

(B) Simulation of cargo export for a pool of cargo

initially distributed throughout the Golgi apparatus

and assuming a 25 min transit time. Details of

model implementation are in Model S1.

(C) Inverse FRAP (iFRAP) was employed to selec-

tively highlight Golgi cargo molecules.

(D) The indicated cargo molecules expressed in

human fibroblasts, NRK, and COS7 cell types

were subjected to iFRAP (yellow regions) and

monitored over time. Scale bars represent 10 mm.

(E) Golgi region fluorescence (outlined in blue in

[D]) was then monitored at 1 min intervals and

plotted over time. The open circles represent Golgi

fluorescence associated with each cargo type af-

ter the iFRAP. The mean Golgi fluorescence values

were normalized to the first data point after the

iFRAP. The best fit of the data predicted for the

cisternal-progression model is shown in blue.

The observed kinetics of export were best de-

scribed by an exponential decrease (in red) with

fits yielding distinct exit rate constants of 0.065

min�1 for GFP-Procollagen, 0.039 min�1 for

VSVG-GFP, and 0.07 min�1 for ss-YFP. Details

of model implementation and data fitting are in

the Model S1.

(F) Diagram of a 5 min input of cargo in the cister-

nal-progression model.

(G) Simulation of the 5 min pulse protocol showing

the Golgi fluorescence as predicted by 25 min

cisternal progression. Details of model implemen-

tation are in Model S2.

(H) Photobleaching protocol to monitor a 5 min

pulse of VSVG-YFP fluorescence within the Golgi.

Cells were shifted from 40�C to 32�C for 25 min to

accumulate a pool VSVG-YFP in the Golgi. This

pool was photobleached, and molecules from

the ER entered the Golgi for 5 min before an iFRAP

was performed.

(I) COS 7 cells expressing VSVG-YFP were

subjected to the experiment outlined in (H). Open

circles represent the mean Golgi fluorescence at

each time point. The data are normalized to the

time point immediately after the iFRAP.
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at 32�C, was used as transmembrane cargo (Presley et al.,

1997). After expressing these proteins in cells and establishing

their steady-state distribution through the secretory pathway at

32�C, we selectively highlighted the cargo pool in the Golgi by

photobleaching all fluorescent molecules outside the Golgi

region with a technique referred to as inverse fluorescence

recovery after photobleaching (iFRAP) and then monitored by

time-lapse imaging. (Figure 1C)

Representative images from iFRAP experiments on cells

expressing each type of cargo protein are shown in Figure 1D

(see Movies S1–S3). When the fluorescent intensities associated

with the Golgi region of interest (outlined in blue) are plotted over

time (Figure 1E, open circles), no cargo type exhibits the linear

export kinetics predicted by the classical cisternal-progression

model (Figure 1E, blue lines; for details see Model S1 and Fig-

ure S1A). Instead, all cargo types show exponential efflux kinet-

ics and can be fit with a single Golgi exit rate constant (Figure 1E,

red curves). (Because each cargo is expressed in a different cell

type, the relative difference among the rate constants is not

informative.)

For GFP-Procollagen and ss-YFP, the fits to a single first order

process have average coefficients of variation for the effective

rate constants well below 5%. For VSVG-GFP, the fit diverges

slightly at late time points possibly because of slow endocytosis

and delivery of VSVG-GFP to juxtanuclear endosomes within the

Golgi region after arrival at the plasma membrane. Repeated

iFRAP over the time course results in no divergence from a single

exponential process of Golgi cargo efflux, confirming this expla-

nation (data not shown). Tests of other GFP-tagged transmem-

brane cargo proteins, including Tac-GFP and NTCP-GFP (Na2+

taurocholate cotransporting polypeptide) (Sun et al., 2001),

also exhibit exponential Golgi efflux kinetics (see Figure S9).

The average residence time of the different cargos in the Golgi

(calculated as the inverse of their rate constants) range from

15 min for ss-YFP to 25 min for VSVG-GFP, which are well within

the range estimated from biochemical experiments (Fries et al.,

1984). The results are thus inconsistent with a linear export pro-

cess and instead point to an export mechanism compatible with

exponential release.

Cargo Export Kinetics after a 5 Min Pulse Labeling
Besides linear export, the classical cisternal-progression model

predicts a lag before newly arrived cargo is exported from the

Golgi (Figure 1F). This prediction follows from the view of the

cisternal progression model that cargo-laden cisternae pass

vectorially through multiple locations within the Golgi stack on

their way to the trans face, where cargo can exit from the Golgi.

In the case of a 25 min cisternal-progression time, therefore, if

labeled cargo is pulsed into the Golgi over a 5 min period, no

label should be seen exiting the Golgi for at least another

20 min (Figure 1G; details in Model S2 and Figure S1B).

To test this prediction, we employed a protocol to fluores-

cently label an incoming pool of VSVG molecules that had only

been in the Golgi for 5 min (Figure 1H). The results from this

experiment reveal that the pulse-labeled pool of VSVG-GFP

exited the Golgi with exponential kinetics, exhibiting no lag be-

fore fluorescent VSVG-GFP molecules left the Golgi (Figure 1I).

Newly arrived VSVG-GFP molecules and VSVG-GFP molecules
already present in the Golgi have similar probabilities of exit. As

with our findings on bulk cargo release, therefore, the results on

pulsed cargo release point to a mechanism yielding exponential

rather than linear cargo release from the Golgi.

The Cisternal-Progression Model with Variable Cargo
Transit Times Still Cannot Explain the Kinetic Results
To reconcile the observed exponential patterns of Golgi cargo

release with the cisternal-progression model, we examined sev-

eral possible variations. The first was based on the observation

that many cells have numerous Golgi stacks, which could have

different cargo transit times because of differences in cisternal-

progression times. When averaged together, this could give

rise to the observed exponential efflux kinetics.

This variation is illustrated for 100 stacks having a symmetric

distribution of transit times ranging from 19 to 31 min centered

around the observed 25 min mean residence time for VSVG-

GFP (Figure 2A; details in Model S3 and Figure S2A). The simula-

tion yields a roughly linear profile (blue curve), similar to the simple

conveyor belt model of a fixed transit time of 25 min (green curve)

but punctuated by sudden small declines as each group of stacks

release its cargo to export. The lag of 2.9 min preceding the initial

cargo loss reflects the time required for the trans-most cisterna to

empty in the fastest group of stacks. Thus, this scenario cannot

reproduce exponential export kinetics (shown by the dashed

curve, Figure 2A).

EM Shows Rapid Filling of Golgi Stacks and No Cargo
Enrichment in the trans-Most Cisterna
Given that a distribution of Golgi transit times cannot explain the

export kinetics data, we considered a second variation of the

classical model. In this variation, cargo-containing cisternae

progress quickly across the stack and fuse with the trans-most

cisterna, and cargo is then exported by a single rate-limiting pro-

cess. Exponential export kinetics is possible in this scenario if cis-

ternae progress across the stack quickly enough so that newly ar-

rived and pre-existing cargo become well mixed in the trans-most

cisterna on a time scale faster than export. This necessarily pre-

dicts concentration of cargo in the trans-most cisterna (details in

Model S4 and Figure S2B). We tested this using immunogold

labeling and electron microscopy in cells expressing VSVG-

GFP that were shifted from 40�C to 32�C (Figure 2B).

Prior to the temperature shift, virtually no gold particles are

found in the Golgi area, consistent with retention of VSVG in

the ER at the restrictive temperature. Within 5 min of shift to

the permissive temperature (32�C), gold labeling for VSVG-

GFP is found throughout the Golgi stack (for quantification, see

Figure S2C). This indicates that VSVG-GFP moves efficiently

from ER to Golgi at 32�C and upon arriving in the Golgi can

rapidly move throughout the organelle. Notably, VSVG-GFP

maintains a widespread distribution in the Golgi without concen-

trating in the trans-most or any other cisterna, even at later time

points when input from the ER decreased (Figure 2B, 50 min;

Figure S2C). The data are thus inconsistent with a variation of

cisternal progression in which cargo-laden cisternae progress

quickly across the stack, delivering their cargo to the trans-

most cisterna, where it is retained for later export by a rate-

limiting process.
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The Cisternal-Progression Model Modified to Include
Extensive Cargo Recycling
A third variation of the cisternal-progression model includes

cargo recycling. So that this alternative hypothesis could be

tested, iFRAP responses were simulated as the recycling frac-

tion of cargo (from the trans face of each cisterna to the cis

face of all preceding cisternae) varied between 1% and 30%

(Figures 3A and 3B; details in Model S5 and Figure S3). The plots

for 1%–20% do not fit the observed exponential kinetics, having

prominent shoulders in the semilog plots (Figure 3B) reflecting

the time for cargo-laden cisternae to traverse the stack. But for

30% and larger recycling fractions, cisternal progression begins

to approach exponential export kinetics as observed with the

iFRAP data.

The 30% recycling rate, however, requires rapid cisternae

transit across the Golgi stack to achieve the observed 25 min

residence time for VSVG-GFP and results in cargo quickly ap-

proaching a well-mixed state across the stack. This is illustrated

in Figure 3C, which shows simulated cisternal progression with

30% recycling for a pulse of cargo added to the first cisterna

of a seven-cisterna stack. The effect of this fast progression

and recycling is that a pulse of cargo introduced at the cis-

most cisterna becomes well distributed across the stack

within �6 min, making the Golgi an effectively well-mixed

compartment.

Figure 2. Simulation of the Cisternal-Pro-

gression Model Modified to Include Variable

Transit Times and Electron Microscopy of

VSVG Filling the Golgi Apparatus

(A) Cisternal progression modeled as a conveyor

belt (green line) with a transport delay of 25 min

with an iFRAP protocol. Cisternal progression is

modeled as a population of 100 Golgi stacks hav-

ing a symmetrical distribution of transport times

centered around 25 min with an iFRAP protocol

(blue line). Cargo export is modeled as an expo-

nential decrease with an iFRAP protocol (dashed

line). See Model S3 for details.

(B) VSVG-GFP was expressed in COS 7 cells at

40�C (scale bar, 480 nm) and shifted to 32�C for

5 (scale bar, 300 nm), 10 (scale bar, 300 nm), and

50 (scale bar, 120 nm) min before fixation and

processing for immunogold-electron microscopy.

This leads to inconsistencies with pre-

vious data supporting cisternal progres-

sion. Notably, the high rate of recycling

makes it impossible for cisternal progres-

sion to reproduce a wave of cargo mov-

ing across the stack over �12–16 min

(Trucco et al., 2004). The fast recycling

causes the model to lose its maturation

character because of the mixing of cargo

contents within 6 min of their entry (Fig-

ure 3C). Reduction of the recycling rate

can yield a cargo wave, as shown for

cisternal progression modeled with 1%

recycling (Figure 3D), but overall export

kinetics are not exponential (Figures 3A and 3B) because of

the slow rate of cisternal progression. Hence, cisternal progres-

sion with either low or high recycling rates cannot simultaneously

account for the exponential export kinetics data reported here

and the cargo wave data seen in temperature shift experiments

(Trucco et al., 2004).

Two-Color Imaging Suggests a Membrane
Partitioning Model
In attempts to overcome these difficulties, we utilized dual time-

lapse imaging and photobleaching to observe the spatial organi-

zation and dynamics of membrane cargo and resident enzymes

within the Golgi more precisely. Previous live-cell imaging work

has shown that transmembrane cargo and enzymes in the Golgi

laterally segregate into discrete domains (White et al., 2001).

These domains are unlikely to correspond to distinct cisternae

within a Golgi stack (i.e., cis versus trans) because the distance

across a stack (�130 nm) is well below the resolution limit of dif-

fraction-limited confocal microscopy. To verify that transmem-

brane cargo and Golgi enzymes spatially segregate into optically

distinguishable domains in our system, we selectively photo-

bleached the VSVG-YFP molecules in the Golgi within cells ex-

pressing VSVG-YFP and GalT-CFP and then compared the dis-

tribution of newly arrived, fluorescent VSVG-YFP molecules from

the ER to that of the Golgi marker (Figure 4A and Movie S4).
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Figure 3. Predicted Export Kinetics for the Cisternal-Progression Model Modified to Include Cargo Recycling

(A) Golgi iFRAP experiments were simulated as the recycling fraction of cargo (from the trans-most cisterna to all preceding cisternae) was varied between 1%

and 30%. An exponential decrease is modeled as a single compartment with first-order exit.

(B) The simulations in (A) are displayed on a semilog plot to illustrate the monotonically increasing slope of the cisternal progression simulations.

(C) A pulse of cargo molecules introduced into the cis-most cisterna of a seven-cisterna stack is simulated as the cargo moves through the Golgi with 30% re-

cycling and a 25 min residence time. The fraction of cargo molecules found in each cisterna relative to the initial cisterna 1 amount is shown at the indicated time

points after the pulse.

(D) A pulse of cargo molecules introduced into the cis-most cisterna is simulated as it passes through the Golgi by cisternal progression with 1% recycling. As

in (C), the fraction of cargo molecules found in each cisterna is displayed. See Model S5 for details.
VSVG-YFP (green) rapidly redistributes into areas containing

GalT-CFP (red) upon arriving at the Golgi. Domains of VSVG-YFP

enrichment relative to GalT-CFP can be observed at all subse-

quent times during VSVG-YFP transport through the Golgi

(Figure 4A, images; Movie S5). This is confirmed by measure-

ment of the relative intensities of VSVG-YFP and GalT-CFP

within a line drawn across the Golgi (Figures 4A and 4B, graphs).

Segregated domains are not observed in cells expressing two

colors of the same proteins (Figures 4C and 4D). Transport

intermediates containing VSVG-YFP molecules bud from the

domains of VSVG-YFP enrichment (Movie S5). Similar results

are obtained when VSVG-YFP is coexpressed with two other

Golgi markers, sialyltransferase (ST) and mannosidase II (Man

II) (Figure S10). These observations raise the possibility that
upon entering the Golgi, VSVG molecules are rapidly partitioned

between two domains, one enriched in processing enzymes and

one that is not, and that these two domains are maintained over

extended periods (>20 min) as cargo is exported from the

system.

Partitioning Model Suggests an Experimental
Test for Exchange
The minimal model diagrammed in Figure 5A was constructed

without the features of cisternal progression to test the consis-

tency of partitioning with the observed exponential efflux kinet-

ics. In this scheme, transmembrane cargo molecules like

VSVG move between two different Golgi membrane locations,

a processing domain enriched in Golgi enzymes, and an export
Cell 133, 1055–1067, June 13, 2008 ª2008 Elsevier Inc. 1059



Figure 4. Two-Color Imaging Reveals Cargo and Enzyme Domains of the Golgi

(A) COS 7 cells expressing GalT-CFP and VSVG-YFP were shifted from 40�C to 32�C for 15 min to accumulate VSVG-YFP within the Golgi. The Golgi population of

VSVG-YFP was photobleached (post), and ER-derived, nonphotobleached VSVG-YFP molecules entering the Golgi were monitored at�16 s intervals. The GalT-

CFP (red) and VSVG-YFP (green) images are shown in columns 1 and 2, respectively with merged images in column 3. The scale bar in the merged image rep-

resents 5 mm. A magnified view of the merged image is shown in column 4. Images were contrast enhanced linearly to the full dynamic range of the brightest

postbleach image in either the GalT-CFP or VSVG-YFP time series and applied to the entire data set. Line profiles of the CFP (red) and YFP (green) fluorescence

intensities from the lines in the magnified views are shown in column 5.
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domain from which transport intermediates bud from the Golgi.

Explaining the exponential efflux kinetics reported in Figure 1,

requires only that exchange of VSVG between these two

membrane domains be faster than export. Every VSVG molecule

then has essentially the same probability of being incorporated

into transport intermediates even though they are constantly

exchanging between domains (see Figure 5B). If the partition-

ing or equilibration constant between processing and export

domains for VSVG also favored export domains, then VSVG’s

exponential efflux kinetics and export domain enrichment would

be explained by the same simple mechanism.

To test this partitioning scheme, we photobleached a box

across the Golgi region in cells coexpressing VSVG-YFP and

GalT-CFP. Fluorescence from both molecules quickly replen-

ishes the bleached area, but VSVG-YFP replenishment occurs

more slowly (Figure 5C), as predicted if VSVG-YFP molecules

partition into and out of membrane export domains while also

circulating within processing domains. Supporting this, when a

tubule containing VSVG-YFP that mediates export from the

Golgi is photobleached (Figure 5D), the level of replenished

(B) COS 7 cells expressing GalT-CFP (red) and VSVG-YFP (green) were shifted from 40�C to 32�C for 30 min to accumulate VSVG-YFP within the Golgi. A mag-

nified view of the merged image is shown in column 4.

(C) COS 7 cells expressing VSVG-CFP (red) and VSVG-YFP (green) were shifted from 40�C to 32�C for 30 min to accumulate a Golgi pool. A magnified view of the

merged image is shown in column 4.

(D) COS 7 cells expressing GalT-CFP (red) and GalT-YFP (green) were shifted from 40�C to 32�C for 30 min before imaging. A magnified view of the region in-

dicated by the square in the merged image is shown in column 4. Images were contrast enhanced linearly to the full dynamic range. Line profiles of the CFP (red)

and YFP (green) fluorescence intensities from the line in the magnified view in (B), (C), and (D) are shown in column 5. Scale bars in the merged images of (B), (C),

and (D) represent 5 mm. The CFP and YFP variants were Cerulean (Rizzo et al., 2004) and Venus (Nagai et al., 2002), respectively.

Figure 5. VSVG Diffuses into and out of

Golgi Export Domains

(A) Model depicting partitioning of VSVG-YFP be-

tween two phases of the Golgi (processing domain

and export domain).

(B) Cartoon depicting partitioning model for a small

region of Golgi membrane. The green cylinders

represent VSVG and red cylinders represent resi-

dent Golgi enzymes. The regions indicated in yel-

low represent Golgi export domains.

(C) Human fibroblasts expressing VSVG-YFP and

GalT-CFP were shifted from 40�C to 32�C for

35 min to accumulate VSVG-YFP within the Golgi.

The Golgi populations of GalT-CFP (red) and

VSVG-YFP (green) were subjected to photo-

bleaching within the regions indicated in the rect-

angles and imaged at 1 s intervals.

(D) COS 7 cells expressing VSVG-GFP were

shifted from 40�C to 32�C for 40 min to accumu-

late a pool within the Golgi. The forming tubule

was photobleached and its recovery imaged at

15 s intervals. Scale bars represent 5 mm.

fluorescence reaches comparable levels

to the pre-existing fluorescence in the

tubule. The incomplete photobleaching

provides confirmation that the tubule

does not detach from the Golgi and re-

emerge but is simply refilling with VSVG-

YFP fluorescence. Undetached tubules

neither become brighter with time nor exceed the average Golgi

fluorescence, so exchange with the Golgi is clearly bidirectional.

These data thus suggest that VSVG undergoes continuous, se-

lective partitioning between processing and export domains

upon entering the Golgi.

Enzymes and Transmembrane Cargo in the Golgi
Differentially Segregate in Response to Brefeldin A
Further evidence for a partitioning model comes from examina-

tion of the behaviors of GalT-CFP and VSVG-YFP during brefel-

din A treatment, which causes Golgi enzymes to return to the ER

and causes the Golgi to disassemble (Lippincott-Schwartz et al.,

1991). A portion of VSVG-YFP does not redistribute to the ER

with GalT-CFP during Golgi disassembly but remains in the Golgi

region and continues to be packaged into transport carriers di-

rected toward the plasma membrane (Figure 6A; Movie S6).

Three observations indicate that this results from a partitioning

mechanism rather than localization of VSVG-YFP within a brefel-

din A (BFA)-resistant trans-Golgi network (TGN) (Lippincott-

Schwartz et al., 1991). First, the soluble cargo protein, ss-YFP,
Cell 133, 1055–1067, June 13, 2008 ª2008 Elsevier Inc. 1061



with no mechanism for selective membrane partitioning into

BFA-resistant Golgi domains, rapidly redistributes back into

the ER during BFA treatment with no portion remaining in the

Golgi region (Figure 6B). Second, the amount of VSVG-YFP

within Golgi export domains that resist return to the ER during

BFA treatment does not noticeably change when BFA is added

at 10 min or at 50 min after temperature shift from 40�C to

32�C (data not shown), conditions in which VSVG-YFP mole-

cules will spend different lengths of time in the Golgi. And third,

VSVG-YFP that resists return to the ER during BFA treatment

does not colocalize with the TGN marker, TGN38 (Figure 6C).

During intra-Golgi transport, therefore, transmembrane cargos

like VSVG appear at all times to be partitioning between two

distinct membrane environments: one characteristic of Golgi

enzymes (i.e., processing domain), which is BFA sensitive;

and one characteristic of Golgi export (i.e., export domain),

which is BFA resistant and distinct from TGN38-containing

membranes.

Figure 6. Disruption of the Golgi with Brefel-

din A during Cargo Transport Demonstrates

Enzyme and Export Domains of the Golgi

(A) COS 7 cells expressing VSVG-YFP and GalT-

CFP were shifted from 40�C to 32�C for 30 min

to accumulate a Golgi pool of VSVG-YFP. Brefel-

din A (5 mg/ml) was added, and and the Golgi re-

gion was highlighted by iFRAP. Images of VSVG-

YFP and GalT-CFP were acquired at 30 s intervals

as the Golgi redistributed into the ER.

(B) COS 7 cells expressing ss-YFP and GalT-CFP

were shifted from 40�C to 20�C for 2 hr to accumu-

late ss-YFP within the Golgi. BFA (5 mg/ml) was

added, and the Golgi region was highlighted by

iFRAP. The ss-YFP and GalT-CFP were imaged

at �16 s intervals as the Golgi redistributed into

the endoplasmic reticulum.

(C) COS 7 cells expressing CFP-TGN38 (red) and

VSVG-YFP (green) were shifted from 40�C and to

32�C for 30 min to accumulate a Golgi pool of

VSVG-YFP. Brefeldin A (5 mg/ml) was added and

the Golgi region was highlighted by iFRAP. Images

of VSVG-YFP and CFP-TGN38 were acquired at

�16 s intervals as the Golgi redistributed into the

ER. The CFP and YFP variants used in (C) were Ce-

rulean (Rizzo et al., 2004) and Venus (Nagai et al.,

2002), respectively. Scale bars represent 10 mm.

Developing the Membrane
Partitioning Model of Golgi
Organization and Trafficking
To give more definition to the Golgi parti-

tioning model, we developed a spatially

resolved version of it drawing on a number

of observed features of the Golgi and

model membrane systems (Figure 7A;

Model S6; Figure S4). First, the lipid com-

ponents in the two Golgi phases (i.e., pro-

cessing and export) are considered either

characteristic of ER and enriched in glyc-

erophospholipids (GPL) (Model S7) or

characteristic of plasma membrane and enriched in sphingoli-

pids (SL) (Model S8) (Holthuis et al., 2001; van Meer and Sprong,

2004) with each type entering and exiting the Golgi by different

routes (Gkantiragas et al., 2001; Holthuis et al., 2001; van Meer

and Sprong, 2004). Vesicle-tubule mediation of protein and lipid

traffic (Marsh et al., 2004; Orci et al., 2000; Trucco et al., 2004) is

built into the model using intercisternal transport rates that pre-

vent formation of a completely well-mixed system. We addition-

ally hypothesized that budding of cargo toward the plasma

membrane is not restricted to the trans-most cisterna, consistent

with previous electron microscopy studies showing cargo-laden

vesicles budding from all cisternae (Mogelsvang et al., 2004; Vol-

chuk et al., 2000). Finally, transmembrane cargo proteins (see

Model S9) and resident enzyme proteins (see Model S10) are

modeled with preferential affinity for different SL/GPL composi-

tions (Bretscher and Munro, 1993; Lundbaek et al., 2003), which

is observed for proteins in artificial membrane systems (Killian,

1998). Thus, the Golgi partitioning model consists of cisternae
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Figure 7. Development of the Rapid-Parti-

tioning Model of Golgi Apparatus Organiza-

tion and VSVG Transport

(A) The rapid-partitioning model consists of seven

stages, of which only three are shown here for sim-

plicity. Each stage represents one cisterna of an

EM-resolvedor biochemically resolved Golgi stack.

The Golgi membrane lipid environment is modeled

as having one component consisting of glycero-

phospholipids (GPL; gray) and another component

consisting of cholesterol and glycosphingolipids

(SL; yellow) giving rise to processing domains

(gray) and export domains (yellow), respectively.

Transmembrane cargo proteins move between

both lipid environments but concentrate in the

export domain (green), whereas transmembrane

Golgi enzymes are excluded from export domains

and diffuse within the processing domain (red).

(B) The steady-state ratio of sphingolipid (SL) and

glycerophospholipid (GPL) levels is shown for

each Golgi cisterna in a stack of seven cisternae

upon simulation of the rapid-partitioning model

constrained by literature data on organellar lipid

abundances.

(C) Resident Golgi proteins distribute by partition-

ing into lipid domains of optimal composition.

Simulations of trans Golgi proteins (dark blue),

which are assumed to prefer higher SL/GPL envi-

ronments than medial Golgi proteins (green) and

cis Golgi proteins (red), result in polarized distribu-

tions of Golgi proteins across different cisternae.

(D) Rapid-partitioning model simulation (red line)

of VSVG-GFP export during an iFRAP experiment

is compared with the experimental data (black cir-

cles). Fit obtained by least squares. See Models

S6–S10 for details.

(E) The small pulse 40�C-15�C-40�C experimental

protocol used in a previous report (Trucco et al.,

2004) was simulated for the rapid-partitioning

model. The GPL (gray) and SL (yellow) distribu-

tions are illustrated for each temperature.

(F) SL/GPL ratios (left axis) in the Golgi exit do-

mains are shown for cisterna 1 (red line), cisterna

2 (green line), cisterna 3 (blue line), cisterna 4 (ma-

genta line), cisterna 5 (orange line), cisterna 6 (pur-

ple line), and cisterna 7 (black line). The tempera-

ture is indicated by the dashed black line (right

axis), and the horizontal gray line indicates the

SL/GPL ratio hypothesized to be optimal for

VSVG partitioning.

(G) The number of VSVG molecules (left axis) is in-

dicated for cisterna 1 (red line), cisterna 2 (green

line), cisterna 3 (blue line), cisterna 4 (magenta line), cisterna 5 (orange line), cisterna 6 (purple line), and cisterna 7 (black line) during the 40�C-15�C-40�C pro-

tocol. The temperature is indicated by the dashed black line (right axis).

(H) The number of VSVG molecules located in each cisterna is shown for 3, 6, 10, 17 min after the shift from 15�C to 40�C. See Model S12 for more details.
with discrete processing and exit domains characterized by spe-

cialized lipid environments that differentially retain resident and

cargo proteins based on thermodynamic partitioning.

Simulation of the Rapid-Partitioning Model Produces
a Lipid Gradient, Nonuniform Enzyme Distributions,
and Exponential Cargo Release
To test this rapid-partitioning model, we asked whether it could

account in a quantitative manner for key characteristics of Golgi
transport and organization, such as cis-to-trans gradient of glycer-

ophospholipids (GPLs) and sphingolipids (SLs) (Holthuis et al.,

2001; van Meer and Sprong, 2004), concentration of Golgi resident

proteins in cis, medial, or trans regions (Dunphy and Rothman,

1983; Roth et al., 1986; Slot and Geuze, 1983), and exponential

cargo release. This requires the spatially resolved form of the

model because each of the key characteristics being tested refers

to the spatial distribution of proteins and lipids within the Golgi

apparatus.
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After constraining the model with literature data on cellular

GPL and SL compositions for ER, Golgi, and plasma membrane

(details in Models S7 and S8), we found that it yields a steady-

state cis-to-trans gradient in SL/GPL ratio across the Golgi stack

(Figure 7B; details in Model S11 and Figure S5), which is depen-

dent on a variety of features. For example, the gradient collapses

when the lipids are forced to enter the Golgi randomly or when

entry of the lipids into the Golgi is blocked. Likewise, the gradient

does not form if transport across the stack is fast enough to

cause the Golgi to be completely well mixed. Faster export

from Golgi export domains to the plasma membrane increases

the SL gradient and decreases the GPL gradient. In addition,

faster recycling of GPL from Golgi processing domains to the

ER increases the magnitude of the GPL gradient. The rapid-par-

titioning model thus generates cis-to-trans Golgi lipid gradients

purely on the basis of the physical consequences of lipid parti-

tioning, the organization of cellular lipid traffic, and the existence

of intercisternal membrane traffic.

To explain the distribution of resident Golgi proteins within the

stack, we hypothesized that these proteins distribute by parti-

tioning into lipid domains of optimal composition. In brief, pro-

teins with shorter transmembrane domains are modeled to

partition into thinner bilayers, whereas proteins with longer trans-

membrane domains are modeled to partition into thicker bilayers

(Bretscher and Munro, 1993; Lundbaek et al., 2003). Because

protein distribution is dependent on local lipid composition in

this mechanism, concentration of resident proteins in specific

Golgi regions (e.g., medial or trans) requires only a means for es-

tablishing cis-to-trans lipid gradients. Because these gradients

are already a feature of the organization of lipid trafficking in

the model, resident protein distributions can be readily explained

without invoking additional sorting machinery. This feature of the

rapid-partitioning model is demonstrated by simulation of resi-

dent protein, SL, and GPL trafficking modules in parallel. Golgi

proteins having different preferred SL/GPL environments are

found to concentrate in different Golgi cisternae (e.g., cis, medial

or trans) even with continuous movement up and down the stack

(Figure 7C; details in Model S10).

We next tested the spatially resolved, rapid-partitioning model

with VSVG export data observed in our bulk release (iFRAP) and

pulse release (short refill) experiments. When we compared

this with data from the iFRAP experiment, we found that the

spatially resolved rapid-partitioning model can account for the

exponential cargo release kinetic data (Figure 7D; for details,

see Model S9).

The Rapid-Partitioning Model Predicts a Cargo Wave
upon Temperature Blockade and Release
A potential challenge to the rapid-partitioning model is explana-

tion of the cargo wave seen traversing the Golgi stack in response

to a short, low-temperature block and release of membrane traf-

fic (Trucco et al., 2004). Upon release from a short temperature

block, VSVG is found to shift its distribution from cisterna to

cisterna in a wave-like pattern across the stack as quantified by

immunogold labeling and electron microscopy. Previously, this

was interpreted as evidence for cisternal progression, with the

time for the wave to traverse the Golgi (i.e., 12–16 min) corre-

sponding to the rate of cisternal maturation. In the framework of
1064 Cell 133, 1055–1067, June 13, 2008 ª2008 Elsevier Inc.
the rapid-partitioning model, however, the protocol for generat-

ing the cargo wave (i.e., 40�C to 15�C for 15 min and then back

to 40�C) alters the Golgi’s lipid gradient and affects both the

distribution of cargo across the cisternae and cargo export rates

out of cisternae (Figure 7E). Recent electron microscopy data

showing enzymes are disorganized within the Golgi stack at

15�C (Martinez-Alonso et al., 2005) supports this interpretation.

To directly address the effect of the temperature block and re-

lease protocol effect on cargo and lipid distributions, we applied

it to simulations of the rapid-partitioning model.

The simulated behavior of SLs and GPLs during this protocol is

shown in Figure 7F (for details, see Model S12). Within 15 min of

shifting from 40�C to 15�C, the SL/GPL ratios in all Golgi exit do-

mains begin to approach the ratio characterizing the entire Golgi

when steady-state gradients are abolished and the lipids equili-

brate in a closed system. Upon shift to 40�C, the SL/GPL ratios in

all Golgi export domains begin re-establishing their steady-state

levels seen prior to the 15�C incubation period. During this tem-

perature shift, only VSVG molecules that had accumulated in

pre-Golgi structures during the 15�C incubation enter the cis

Golgi. Because this pulse of cargo carries a corresponding

wave of GPL, it transiently dilutes the SL in the Golgi, reducing

the SL/GPL ratio in each exit domain. Over the succeeding

14 min, therefore, the SL/GPL ratios in each cisternal exit domain

drop below steady-state 40�C levels and then gradually return

to their steady-state levels.

The simulated behavior of VSVG upon shift to 40�C in the pro-

tocol is plotted in Figure 7G. The molecules quickly distribute

throughout all cisternae but are initially most concentrated in

the first cisterna because it first displays the optimal SL/GPL ratio

for VSVG. Over the succeeding 14 min, each cisterna, in turn, be-

comes the place where VSVG is optimally localized (due to VSVG

distributing according to its optimal SL/GPL ratio). A wave of

cargo thus appears to traverse the Golgi stack as VSVG mole-

cules move randomly and discover their minimum free energy

environment. This wave of cargo repositioning as predicted by

the rapid partitioning model is illustrated in Figure 7H, which plots

the relative number of molecules in each cisterna at 3, 6, 10, and

17 min after release of a pulse of VSVG from pre-Golgi structures.

Thus, the wave of cargo traversing the Golgi stack seen in previ-

ous electron microscopy studies (Trucco et al., 2004) can be

explained in the rapid-partitioning model without invoking cis-

to-trans movement of cisternae in a cisternal maturation pathway.

The rapid-partitioning model furthermore accounts for other

Golgi characteristics. With the model parameters that produce

the timing of the cargo wave, cargo preferentially enriches

in the cis-most cisterna during the first 3 min of cargo entry into

the Golgi after the usual 40�C to 32�C temperature shift (Fig-

ure S6), which is also observed in a previous immunogold elec-

tron microscopy (Bergmann and Singer, 1983). Quantitatively,

cargo takes approximately 4–5 min to distribute widely across

the Golgi stack, consistent with our electron microscopy results

shown in Figure 2B, Figure S2C, and previous observations

(Bergmann and Singer, 1983; Griffiths, 2000). Nevertheless, there

is no lag in cargo export (see Figure 7D) because cargo molecules

can exit from export domains in all cisternae. The rapid-partition-

ing model accounts for all these results and the cargo wave while

simultaneously accounting for other key features of the Golgi (i.e.,



protein and lipid gradients and monoexponential cargo export

kinetics). We conclude, therefore, that it is an effective unifying

hypothesis for Golgi apparatus organization and function.

DISCUSSION

In this study, we tested several widely accepted versions of cis-

ternal maturation against previous data on polarized Golgi lipid

gradients, nonuniform distribution of resident proteins, and the

production of cargo waves after a temperature block. These

were tested against new data on kinetics of cargo release from

the Golgi (unconfounded by continuous entry from the ER) and

on partitioning of cargo within the Golgi. Our studies indicate

that neither cisternal maturation as classically defined nor any

of its modern variations can simultaneously account for all of

these data. In their place, we proposed and rigorously tested

a new model of intra-Golgi trafficking based on partitioning of

transmembrane cargo and enzymes within a two-phase mem-

brane system. In this model, the stack-like organization of the

Golgi, combined with the requirement of vesicular or tubule

cargo transport across it (which prevents the system from be-

coming well mixed) and with the partitioning of lipids between

two domains allows molecules in the system to sort spatially.

Simulation and experimentally testing of the rapid-partitioning

model generates monoexponential export kinetics of VSVG-YFP

and other major features of the Golgi. We find a gradient in SL/

GPL composition, with the ratio lowest in the cis cisterna and

highest in the trans cisterna. Resident proteins with different

SL/GPL preferences enrich in different cisternae within the Golgi

despite processing enzymes and cargo continuously circulating

up and down the stack. Finally, the simulations reveal a cargo

wave pattern across the Golgi stack in response to a short,

low-temperature block and release of membrane traffic, consis-

tent with that observed in electron microscopy experiments

(Trucco et al., 2004). The model and parameter values thus

comprise a useful working hypothesis that can be challenged

to account for future results as new information about Golgi

structure and function emerges.

At the same time, the model can be seen as an organizing prin-

ciple for the molecular machinery that previous studies have

associatedwith the Golgi pathway.For example,phosphatidylino-

sitol 4-phosphate and diacylglycerol are known to be required for

Golgi to plasma membrane transport (Bard and Malhotra, 2006).

Their respective effectors, phosphatidylinositol-4-phophate

adaptor proteins (FAPPs) and protein kinase D, modulate levels

of specific lipids in the Golgi and lead to recruitment and/or acti-

vation of fission-inducing proteins (Bard and Malhotra, 2006;

D’Angelo et al., 2007). Within the partitioning model, this could

be a consequence of specific SL/GPL concentrations facilitating

the spatial organization of these molecules. Similarly, Arf1, coat-

omer, Arf1-GAP, and their effectors, which regulate retrograde

transport to the ER, would be dependent on the existence of spe-

cific SL/GPL concentrations for facilitating their temporal-spatial

assembly. In contrast, clathrin and GGA proteins, which sort mol-

ecules into vesicles destined for lysosomes, would be predicted

to act at sites distinct from SL/GPL-rich export domains budding

off vesicles toward the plasma membrane. Consistent with this,

high-resolution, tomographic imaging of the Golgi has shown
that the TGN produces exclusively clathrin-coated buds,whereas

other cisterna display only non-clathrin-coated buds (Ladinsky

et al., 1999). Because clathrin is involved exclusively in packaging

products destined for the endosome/lysosome pathway, associ-

ation with the trans-most cisternae suggests that this cisternae

packages molecules for the lysosomal pathway rather than the

plasma membrane and thus acts separately than the rest of the

Golgi. Supporting this interpretation is our observation that

TGN38 did not colocalize with VSVG during BFA treatment.

The model can also account for intra-Golgi transport of small

and large soluble cargos. Small, soluble cargos circulate through

the luminal volume of the Golgi system, freely moving into carriers

that bud out toward the plasma membrane. Large insoluble car-

gos (i.e., Procollagen), on the other hand, are too large to pass

freely in this manner and so use a different mechanism. A possible

explanation is that once such cargos become too large to move

into the vesicles and tubules mediating transport between cister-

nae, they gain affinity for export domain lipids. Partitioning of

these lipids around the aggregates would then lead to the forma-

tion of a transport carrier. Cisternal movement (e.g., progression)

could additionally play a role in distributing the Procollagen

aggregates across the stack, but not for the purpose of export.

Instead, the export of Procollagen aggregates would be depen-

dent on the kinetics of exit domain lipid partitioning around these

aggregates, a process compatible with the experimentally ob-

served monoexponential export kinetics of Procollagen.

In summary, our methods and tools for formulation and testing

intra-Golgi transport models suggest that the mammalian Golgi

apparatus comprises a two-dimensional gradient in lipid compo-

sition generated by two physical processes at work simulta-

neously. One process is the physical distribution of proteins

and lipids as a consequence of their entry and exit fluxes, which

establishes their steady-state distribution in the cisternal mem-

branes of the Golgi. The second process is the partitioning into

domains on the basis of physical properties of the individual

membrane components. With these two processes operating

across a two-dimensional structure of interconnected cisternae

that may be progressing, we demonstrate by simulation and

experimental evidence that a membrane system can arise with

all the key characteristics of the Golgi apparatus.

EXPERIMENTAL PROCEDURES

Plasmid Constructs

Strategies for construction of fluorescent protein chimeras are outlined in the

Supplemental Data.

Cell Culture

COS 7 cells, NRK cells, human fibroblast cells, and chick embryonic fibroblast

cells were grown in Lab-Tek chambers with #1.0 borosilicate cover glasses

(Nalge Nunc International, Naperville, IL) or on #1.5 round cover glasses (A.

Daigger & Company, Wheeling, IL). Transfections were performed with

FuGENE 6 transfection reagent (Roche, Indianapolis, IN). Imaging medium

was DMEM containing 25 mM HEPES (pH 7.5) (Biosource International, Rock-

ville, MD), or CO2 independent medium (Invitrogen, Carlsbad, CA).

Fluorescence Microscopy

Imaging of CFP, GFP, and YFP was performed in multitracking mode on a Zeiss

LSM510, a Zeiss LSM510 META, or a Zeiss LSM510 ConfoCor 2 laser scan-

ning confocal microscope (Carl Zeiss, Thornwood, NY) with a 253 Plan
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NeoFluar 0.8 NA objective, a 403 Plan NeoFluar 1.3 NA objective, or a 633

Plan Apochromat 1.4 NA objective. Imaging was also performed with an Olym-

pus FV1000 Fluoview laser scanning confocal microscope with a 603 Plan

Apochromat 1.4 NA objective.

Image Analysis

Images were collected in 8 bit or 12 bit mode and analyzed with Zeiss LSM510

software (Carl Zeiss, Thornwood, NY) or converted into 8 bit and analyzed with

NIH Image 1.62 or ImageJ 1.34 (National Institutes of Health, Bethesda, MD).

Mean pixel values of the background (a region selected outside of the cell)

were subtracted from the mean pixel value of the region of interests inside

the cell or a region of interest encompassing the entire cell. The mean pixel

value of a region of the plasma membrane was subtracted from the mean

VSVG pixel value in the Golgi region to remove the plasma membrane contri-

bution from the quantification. Imaging conditions were chosen to minimize

photobleaching during the experiments, and the loss in fluorescence was

normalized by the entire cell fluorescence, which was quantified from the

�22 mm optical sections obtained with the 253 0.8 NA objective.

Electron Microscopy

VSVG-GFP-expressing cells were fixed for immuno-EM at the end of the 40�C

block or at different times after its release as described (Polishchuk et al.,

2000). Then cells were incubated with polyclonal anti-GFP antibody (Abcam,

UK) overnight and subsequently with anti-rabbit Fab’ fragment nanogold con-

jugates (NanoProbes) enhanced then with GoldEnhance kit (NanoProbes).

Epon embedding and sectioning of the gold-labeled cells was performed as

reported earlier (Polishchuk et al., 2000). Sections were then analyzed under

Philips Tecnai-12 electron microscope (Philips, Einhoven, The Netherlands)

equipped with Analysis software.

Kinetic Analysis and Modeling

All models and model variants were formulated and managed with the Proc-

essDB software (Integrative Bioinformatics, www.integrativebioinformatics.

com) and exported to Berkeley Madonna (www.berkeleymadonna.com) for

solution and parameter optimization. Detailed technical information on the

models and computational techniques used in this work is provided in the

Supplemental Data. We provide the text of model definitions, native files for

Berkeley Madonna as exported from ProcessDB, and explanatory comments

that should permit interested groups to reproduce and evaluate these results.

SUPPLEMENTAL DATA

Supplemental Data include Model Descriptions, Supplemental Results and

Discussion, Supplemental Experimental Procedures, Supplemental Refer-

ences, ten figures, one table, and six movies and can be found with this article

online at http://www.cell.com/cgi/content/full/133/6/1055/DC1/.

ACKNOWLEDGMENTS

We thank Nihal Altan-Bonnet, Rachid Sougrat, Suliana Manley, Markus Elsner,

and Wei Lui for assistance in preparing this manuscript. We thank Alberto Luini

and Alexander Mironov (Consorzio Mario Negri Sud, Italy) for sharing the Pro-

collagen-GFP cDNA, for sharing unpublished observations, and for helpful dis-

cussions. We thank David Piston, Atsushi Miyawaki, Julie Donaldson, Freder-

ick Suchy, and Colin Hopkins for sharing reagents. This work was funded in

part by U.S.-Israel Binational Science Foundation (BSF) grant #2005281 to

K.H. and J.L.S. The kinetic modeling and data analysis reported here were

supported in part by NIH R01GM079305 to R.D.P. and Integrative Bioin-

formatics (IBI). R.D.P. is cofounder of IBI. The ProcessDB software used in

this study was developed by IBI with support from NIH SBIR grants

R43GM066611 and R44GM066611.

Received: May 18, 2007

Revised: November 15, 2007

Accepted: April 24, 2008

Published: June 12, 2008
1066 Cell 133, 1055–1067, June 13, 2008 ª2008 Elsevier Inc.
REFERENCES

Bard, F., and Malhotra, V. (2006). The formation of TGN-to-plasma-membrane

transport carriers. Annu. Rev. Cell Dev. Biol. 22, 439–455.

Bergmann, J.E., and Singer, S.J. (1983). Immunoelectron microscopic studies

of the intracellular transport of the membrane glycoprotein (G) of vesicular

stomatitis virus in infected Chinese hamster ovary cells. J. Cell Biol. 97,

1777–1787.

Bonfanti, L., Mironov, A.A., Jr., Martı́nez-Menárguez, J.A., Martella, O.,
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