Applications of Advanced Network Infrastructure in Health and Disaster Management

> Lister Hill Center, NLM, NIH Wednesday, Aug. 29, 2007

Helmuth F. Orthner, PhD Health Informatics, Dept. of HSA Univ of Alabama at Birmingham

United States National Library of Medicine National Institutes of Health

Acknowledgement: Project Team

Co-Principal Investigators

- Helmuth F. Orthner, PhD, PI, Professor, Health Informatics, Department of Health Services Administration, School of Health Professions, UAB
- Gary J. Grimes, PhD, Professor and Executive Director, Center for Telecommunications; School of Engineering, UAB
- Thomas E. Terndrup, MD, Professor and Chair, Department of Emergency Medical Services, School of Medicine, UAB (left UAB in Nov 2006)

Project Manager

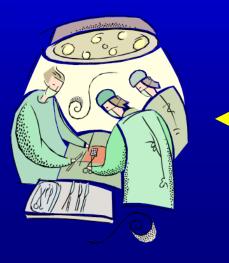
Marcie H. Battles, MSEE, Health Informatics, Department of Health Services Administration, School of Health Professions, UAB

Overview of Presentation

 Objectives and Scope Technology Assumptions (in 2002) Enhance Network Infrastructure for **Emergency Medical Services** Next Generation Emergency Medical Dispatching Next Generation Emergency Medical Responder Wireless Communication Test Bed Summary of Progress & Lessons Learned

Traditional EMS Patient Flow

9-1-1 Dispatcher



Ambulance dispatched

EMT stabilizes Patient

Treatment

Patient Triage & Transport

Hospital ED

Specific Objectives (1 of 4)

Enhance Emergency Medical Dispatch

- GIS/GPS enhanced maps for dispatching
 - Display static and dynamic EMS resources
 - Display maps in EDs and BREMSS
- Enhance quality of medical dispatch
 - Criteria-based Dispatching
 - Use information from regional Emergency Medical Patient (EMP) Database (requires patient ID)
- Push dispatch data to Fire Station
 - Enhanced "Rip & Run" process
- Push patient data to ambulance server or EMS Provider's electronic Patient Care Report (ePCR) terminal

Specific Objectives (2 of 4)

Enhance EMS Provider Capability Use GPS-enhanced maps on ambulances & transmit GPS coordinates to dispatch Link ambulance to BREMSS' LifeTrac System BREMSS provides up-to-the-minute information on available hospital resources for acute trauma, cardiac, stroke events (avoids diversions) Use wireless tablets as electronic Patient Care Report (ePCR) terminals Use Wi-Fi hotspot around the ambulance to link ePCR terminals with ambulance network Use public Wi-Fi, Wi-Max, or 3G (EV-DO) for wireless WAN communication with central database

Technology Assumptions (1 of 2)

Enhanced IP-based Infrastructure Cellular WANs (3G & 4G)

- 3G will be available
- GSM (UTMS) and CDMA are merged
 Wi-Fi (802.11a, b, g, n)
- Many public hotspots available to EMS
 Wi-Max (802.16)
 - Will support mobile wireless

Smart Antennae

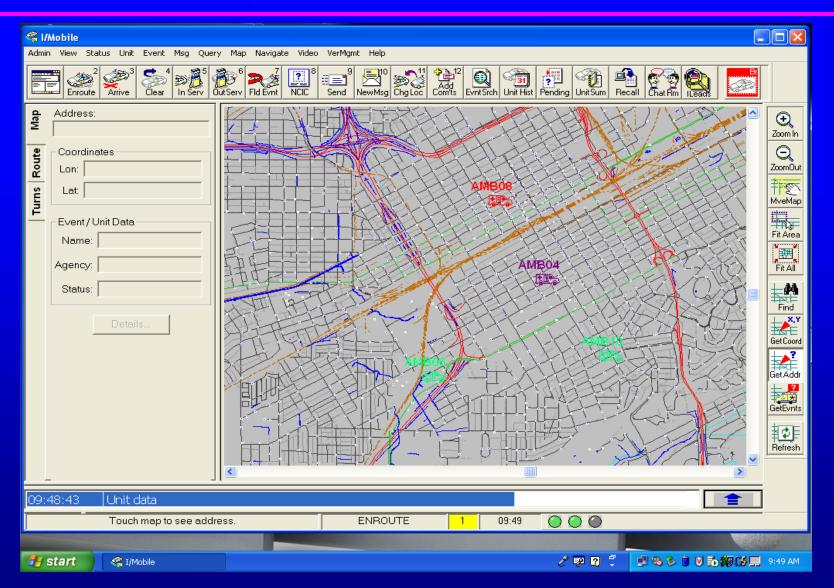
Able to focus and beam toward EMS providers to extend reach

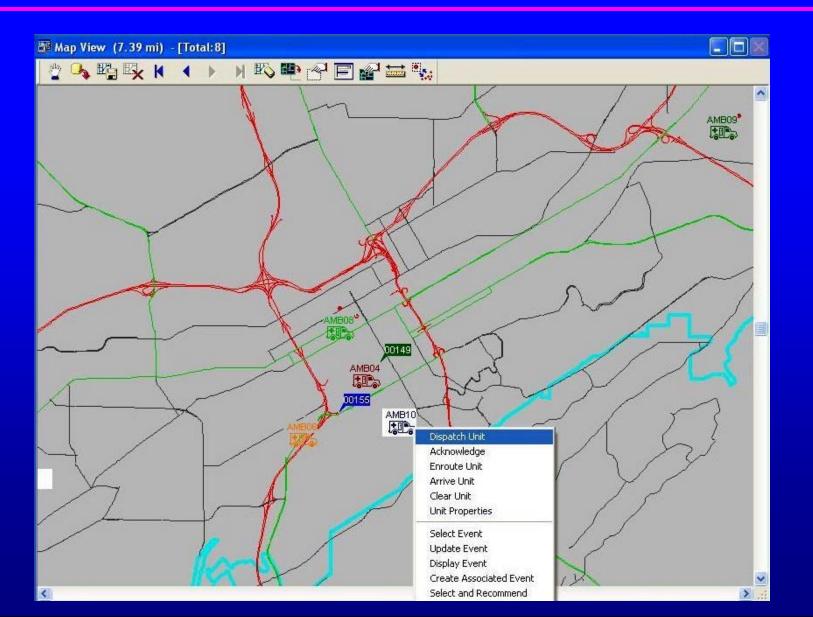
Technology Assumptions (2 of 2)

Wireless Hand-held Devices Cell Phone, PDAs, Tablet PCs Wearable Computers Clinical devices capturing vital signs Regional Emergency Medical Patient (EMP) Database Patients can be identified reliably Patient data is safe and secure Clinical Expert Systems for EMS Computer-based EMS protocols Clinical advice and reminders are available in the field

Emergency Medical Dispatching

- Computer Aided Dispatching (CAD)
 We use Intergraph's CAD System
 Emergency Medical Dispatching
 - (EMD)
 - Started in the 1970s by Dr. Jeff Clawson in SLC, UT
 - Professionals with minimal training
 - Determines level of EMS needed
 - Dispatches appropriate EMS Team
 - Provides pre-arrival support to patient or bystander


UAB Test Bed in the LRC


Dispatching Workstation

Intergraph's CAD Map

Street Maps with GPS/GIS

Enhancements to Intergraph's CAD

 Link to a Regional Patient Database Very useful if patient can be identified Only limited, potentially life-saving, information need to be available Improved EMD algorithms Chest Pain (Dr. Ninad Mishra) Trauma Injury (Dr. Muzna Mirza) Map Improvements Dynamic tracking of ambulance location using **GPS** coordinates Available at UAB ED and BREMSS via I/Net Viewer Ambulance Status transmitted via MDT

Dispatching: Lessons Learned

9-1-1 Call Centers need to improve Fail-Safe and Scalable (in disasters) Automatic Location Information (ALI) for **Cell Phones must improve and VoIP must** be supported Regional maps dynamically depicting assets should be available to authorized organizations (e.g., Emergency **Command Centers, Emergency** Departments, etc.)

Dispatching: Lessons Learned

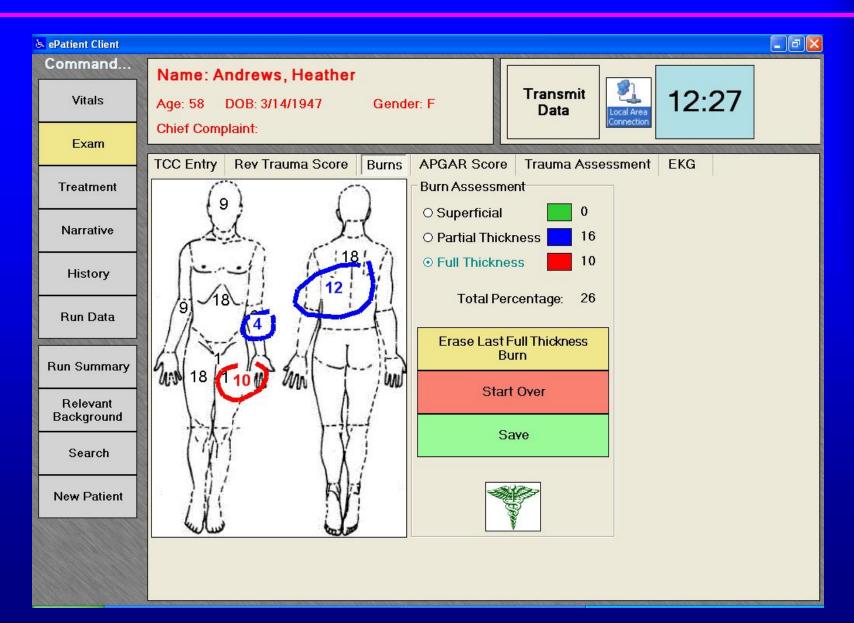
Enhanced EMD Systems Should have access to patient information for those patients that are at high risk (e.g., "golden hour" events) EMDs should be able to push event data to the MDT of EMS providers EMDs should be able to push patient data to the mobile data terminals of EMS providers (improved "rip & run") EMDs should be able to receive status information from ambulances or mobile data terminals of EMS providers

EMS Provider

Most have moderate typing skills and experience with computers Concerned about extra work "Paper + Computer = Slower Work" EMS (paper) documentation is a problem Over 60% of required data elements are missing (Mandar Gori's thesis) Adherence to clinical protocols appears low Could be a documentation problem Contact with Online Medical Control Contact is avoided even when required (Dr. **Devashish Saini's MSHI Thesis**)

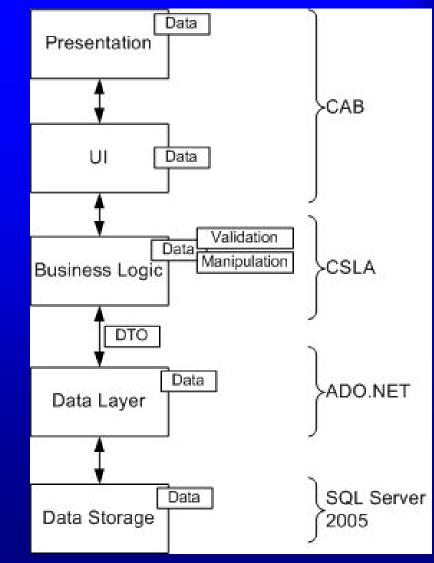
Potential Solutions

Expert Advice System to evaluate Patient Care Reports (PCRs) Based of AL EMS protocols and EMS Experts Provides feedback to EMTs and/or EMS Quality Assurance manager Feasibility established but not validated (Dr. Devashish Saini's Thesis)


Data Collection in the Field

 Touch Interface Stylus is not usable in ambulance Finger Touch works well but "buttons" must be large Voice Command Interface Prototype established Feasibility established but not validated Giovanni Mazza's thesis project

EMS Data Collection: Vitals


🖕 ePatient Client											
Command	Name: Andrews, Heather										
Vitals	Age: 58 DOB: 3/14/1947 Gender: F				Transmit Data 12:25						
Exam	Chief Complaint:			0400000							
Treatment	Date Time Mental Pulse RR S-BP D-BP Temp PO2 Gluco Skin Col Skin Cond Cap Re Left Pupil Right Pupil										
Narrative											
History	Age < 1		Enter P02			Min: 0 Max: 10			00		
Run Data	▲ ▼ 12:		Mental Stat	1	2	3	4	5	С	Canc	el
Run Summary	Pulse Rate: /N		Resp Rate	6	7	8	9	0	L R	Ok	(
Relevant Background	Diastolic BP: mm Hg		Temperature:				P02: %				
Search	Glucose: mg/dl		Skin Color:				Skin Cond:				
New Patient	Cap Refill:		Left Pupil:				Left Pupil:				
	Delete Selected		Clear				Add				
🛃 start 🛛 😂 🙆	gge ePatient Monitor (Do 🚴 ePatient Client 🦉 untitled - Paint					¢	9 E ⁰ S 🕵	% 🔠 😾	ō ♥ ★ [🗟 🗊 🔶 12:2	25 PM

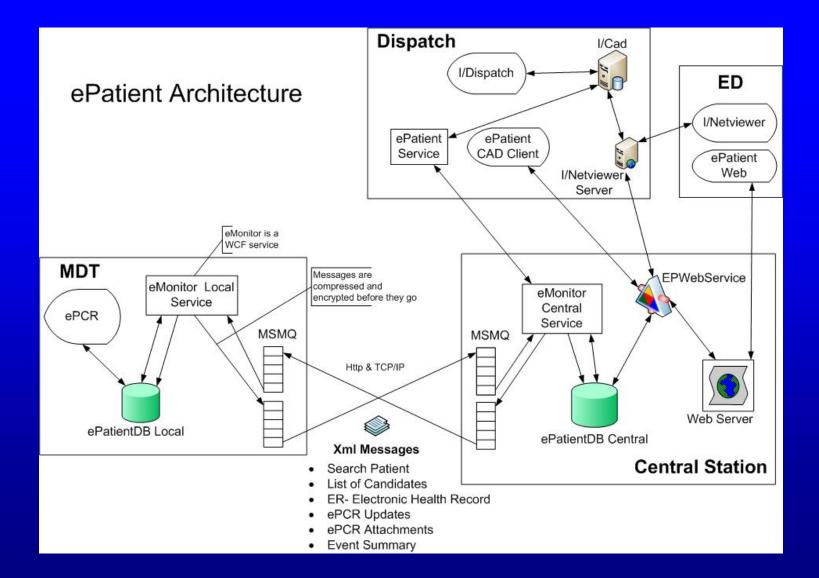
EMS Data Collection: Burns

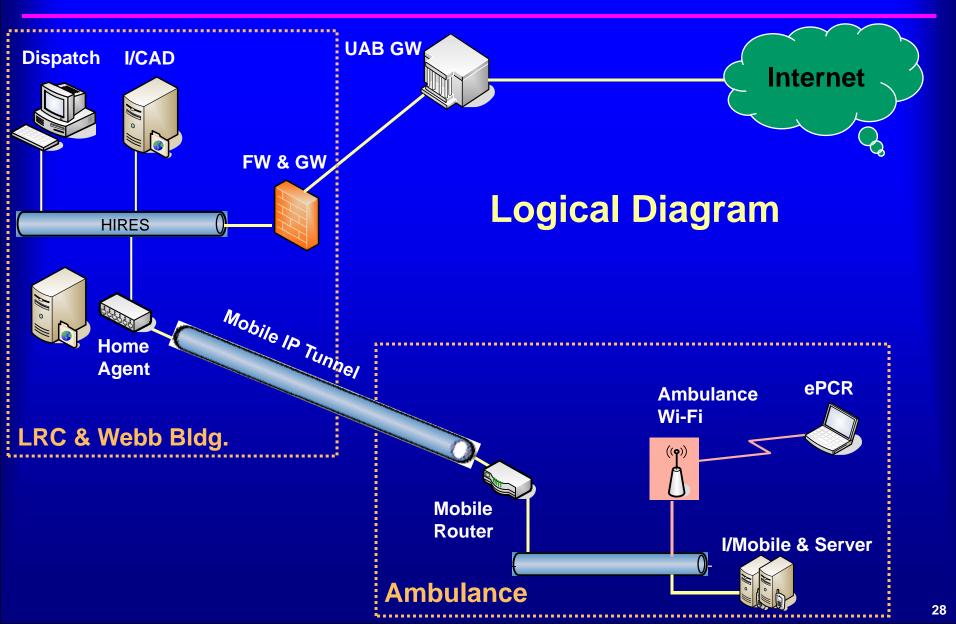
ePatient Software Architecture

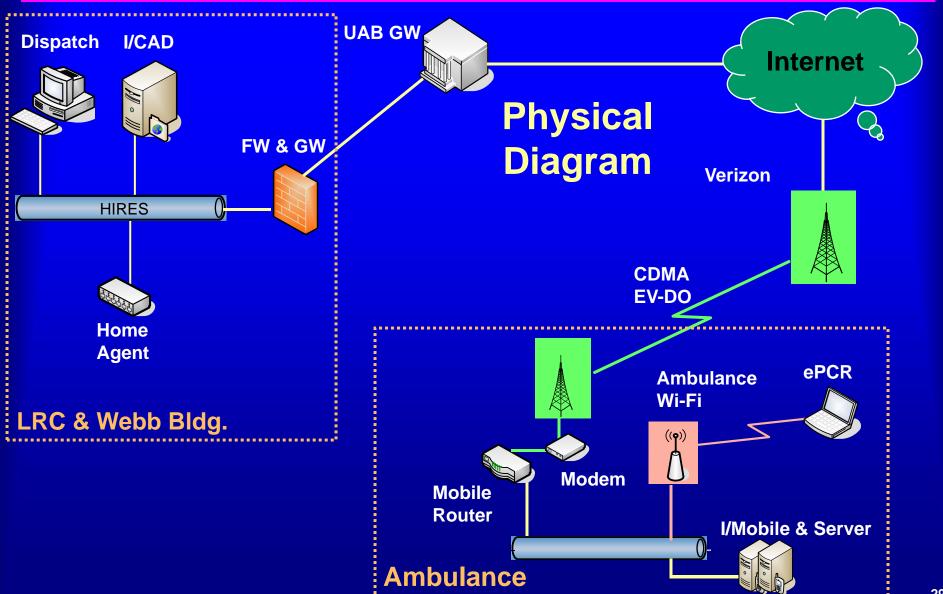
Layered Architecture Presentation User Interface Business Logic Data Validation: Range Checking Data Manipulation Conversion from common units to international units Data Layer ADO.NET Data Storage

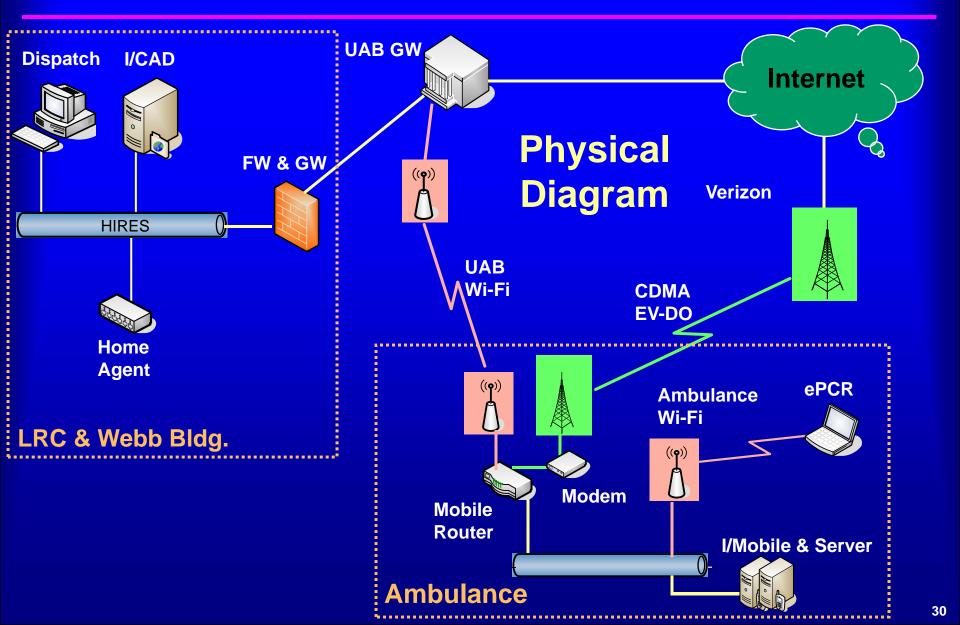
Lessons Learned

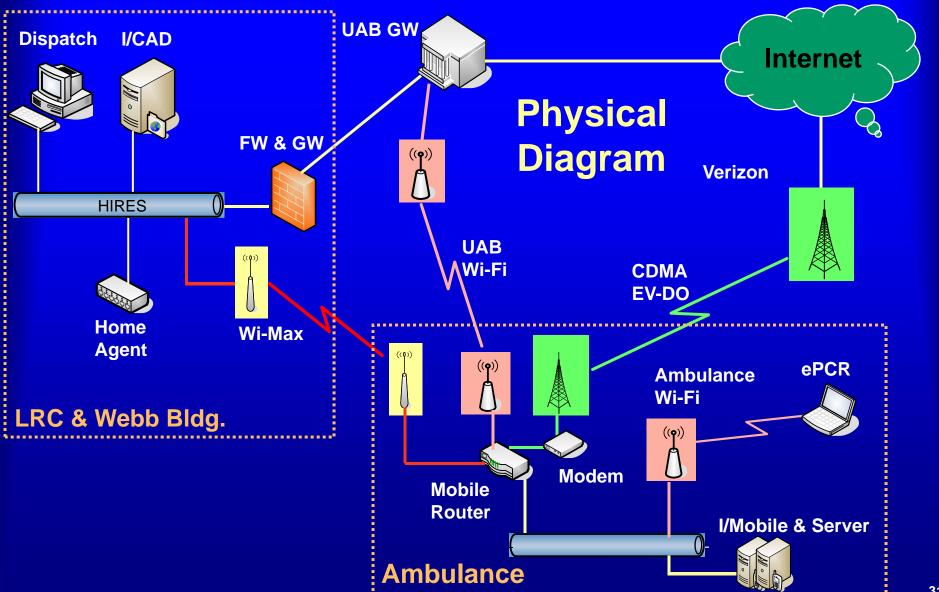
 Developing new User Interfaces is very labor intensive We use now CAB for the GUI Composite Application Block methodology as advocated by Microsoft's Pattern & Practices Team to develop smart client software CAB allows individual GUI modules to be assembled as needed at run-time using XML configuration files The GUI and Business Logic are separated


Lessons Learned


 Developing new User Interfaces is very labor intensive We use now CAB for the GUI Composite Application Block methodology as advocated by Microsoft's Pattern & Practices Team to develop smart client software CAB allows individual GUI modules to be assembled as needed at run-time using XML configuration files The GUI and Business Logic are separated


Communication Test Bed


All communication in the EMS environment needs to be asynchronous An ePCR tablet may be out of range and cannot communicate with the regional or ambulance database Each tablet maintains a local version of the main database that is synchronized when connectivity is restored


ePatient Architecture

Ambulance Communication

Communication Test Results

Wi-Fi Hotspot around ambulances Tested range with 802.11 a, b, g, pre-n Used "Smart Packets" and "Turbo Codes" to extend communication at the "fringe" (Manish Mittal's Thesis) Experiments with Wi-Max Static Communication – excellent Mobile communication – very poor Experiments with CDMA EV-DO Works well enough for text data but not for interactive video

Summary: Enhanced Dispatch

Completed Test Bed Many components Intergraph I/CAD Intergraph GIS/GPS System with Map Street Maps for Birmingham and six counties (BREMSS Region – not complete) Enhanced Criteria-based Dispatch Chest Pain Cases (Dr. Ninad Mishra's MSHI project) Trauma Cases (Dr. Muzna Mirza's MSHI project)

Summary: Enhanced EMS

Wireless Communication Test Bed Wi-Fi (802.11 a, b, g, n); Wi-Max (802.16); 3G Emergency Medical Patient (EMP) DB HL7 – CDA compatible; Data Elements follow **NHTSA and Alabama guidelines** MDT developed with Tablet PCs Developed GUI for Finger-touch capability Voice enabled ePCR (vePCR - Giovanni Mazza's MSHI project) Developed ePatient Architecture using Web Services and asynchronous http/tcp-ip.

Conclusions

The EMS Environment is complex and very competitive Accurate data capture is poor EMTs are willing to try but environment is difficult and challenging Have not found the "solution" yet Sharing data is not a reality yet Most EMS data is ignored by ED