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Abstract

Experiments involving neonates should follow the same ba-
sic principles as most other experiments. They should be
unbiased, be powerful, have a good range of applicability,
not be excessively complex, and be statistically analyzable
to show the range of uncertainty in the conclusions. How-
ever, investigation of growth and development in neonatal
multiparous animals poses special problems associated with
the choice of “experimental unit” and differences between
litters: the “litter effect.” Two main types of experiments are
described, with recommendations regarding their design
and statistical analysis: First, the “between litter design” is
used when females or whole litters are assigned to a treat-
ment group. In this case the litter, rather than the individuals
within a litter, is the experimental unit and should be the
unit for the statistical analysis. Measurements made on in-
dividual neonatal animals need to be combined within each
litter. Counting each neonate as a separate observation may
lead to incorrect conclusions. The number of observations
for each outcome (“n”) is based on the number of treated
females or whole litters. Where litter sizes vary, it may be
necessary to use a weighted statistical analysis because
means based on more observations are more reliable than
those based on a few observations. Second, the more pow-
erful “within-litter design” is used when neonates can be
individually assigned to treatment groups so that individuals
within a litter can have different treatments. In this case, the
individual neonate is the experimental unit, and “n” is based
on the number of individual pups, not on the number of
whole litters. However, variation in litter size means that it
may be difficult to perform balanced experiments with
equal numbers of animals in each treatment group within
each litter. This increases the complexity of the statistical
analysis. A numerical example using a general linear model
analysis of variance is provided in the Appendix. The use of
isogenic strains should be considered in neonatal research.
These strains are like immortal clones of genetically iden-
tical individuals (i.e., they are uniform, stable, and repeat-
able), and their use should result in more powerful
experiments. Inbred females mated to males of a different
inbred strain will produce F1 hybrid offspring that will be

uniform, vigorous, and genetically identical. Different
strains may develop at different rates and respond differ-
ently to experimental treatments.
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Introduction

The principles of experimental design are universal.
They apply equally, for example, to experiments in the
life sciences involving humans, animals, plants, and

cell cultures. However, in some areas of research, the ex-
perimental subjects may have characteristics that necessitate
special attention if the experiments are to be designed well
and analyzed correctly. Experiments involving neonates of
multiparous species are just such a special case. Investiga-
tors must identify the correct “experimental unit” (EU1) and
take “litter effect” into account for the experiments to afford
correct results. These critical aspects of experimental design
are discussed below.

Determining a Suitable Research Strategy

There are several different types of investigation, which
include but are not limited to the following: observational
studies, pilot studies, exploratory experiments, confirmatory
studies, and experiments that seek parameter estimates. The
first example, observational studies, do not involve the
imposition of an experimental treatment. The comparison of
animals of two different genotypes is an observational study
even though it may have the appearance of being an experi-
ment. Because it is not possible to assign a genotype to an
individual at random, it is the investigator’s responsibility to
ensure that the animals are, to the extent possible, identical
in all other respects apart from their genotype. However, the
statistical methods used for observational and experimental
studies are essentially the same.

Pilot studies are usually small investigations, some-
times involving only a single animal, with the aim of testing
the logistics of a proposed study, and sometimes of gaining
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preliminary data to be used in the design of a more defini-
tive experiment. For example, a pilot study could be used to
assess whether dose levels are appropriate, and to gain in-
formation on likely responses and variability.

Exploratory experiments look at the pattern of re-
sponse to some treatment but are not based on a formal,
testable hypothesis. Often many outcomes (characters) are
measured, requiring multiple statistical tests. Even though
one may use a correction of the p values (e.g., Bonferroni’s
method of dividing the chosen critical value [usually 0.05]
by the number of statistical tests) (Roberts and Russo 1999),
exploratory experiments tend to generate more questions
than they provide answers. They are usually used to gener-
ate hypotheses to be tested in a confirmatory study, where
the aim is to test some formal, prestated, preferably quite
simple hypothesis. Experiments may also be done to esti-
mate parameters such as dose-response curves, means, and
proportions.

Choosing a Model

There is surprisingly little discussion of the concept of
“models” in biomedical research despite their extensive use
(Festing 2004). According to the American philosopher
Marx Wartofsky, “Theories, hypotheses, models and analo-
gies I take all to be species of a genus, and my thesis is best
stated directly by characterizing this genus, as representa-
tion (although “imaging” or “mirroring” will do quite as
well)” (Wartofsky 1979). He goes on to say, “There is an
additional trivial truth, which may strike some people as
shocking: anything can be a model of anything else! This is
to say no more than that between any two things in the
universe there is some property they both share….”

Although the preceding statements are of little help in
deciding whether or not a particular animal or in vitro sys-
tem is a good model of humans, it does at least clarify the
fact that models do not have to resemble the thing being
modeled in every respect. Indeed, in some cases it is essen-
tial for the model to be different from the thing being mod-
eled. Rodents are used widely as models of humans because
they are small and economical. The availability of isogenic
strains is also an advantage because they make it possible to
do efficient experiments using fewer animals and scientific
resources. The critical factor is whether the model is like
humans for the specific system being modeled, such as the
growth and differentiation of some organ or biochemical
characteristic, or the response of neonates to xenobiotics.

Principles of Experimental Design

The basic principles of experimental design were formu-
lated many years ago (Fisher 1960), and they remain un-
changed. To understand the ensuing brief discussion of
these principles, however, it is first necessary to understand
the two special characteristics of neonates that strongly in-

fluence the design and statistical analysis of experiments
involving them.

“Experimental Unit”

Experiments normally involve a number of subjects, or
EUs, in each treatment group to afford information about
interunit variation and a comparison with the variation be-
tween treatment groups. Each EU must be capable of being
assigned to a different treatment group, and the data re-
corded on the individual EUs are subjected to the statistical
analysis.

The EU in animal research is commonly the individual
animal. However, in research involving neonates, if the
pregnant female or the whole litter is subjected to an ex-
perimental treatment, the female or the whole litter, not the
individual neonate, is the EU, because individual pups
within a litter do not receive different treatments (although
see below). It is incorrect to use the data from individual
pups because the number of independent observations (“n”)
would be too large and the results would be incorrect, po-
tentially leading to false-positive results (Raubertas et al.
1999; Zorrilla 1997). Values from individual neonates may
be taken into account, for example, by averaging them. Such
averaging could improve the precision of the litter mean,
although they do not contribute as individual EUs (Haseman
and Hogan 1975).

Because litters vary in size, if all the neonates are mea-
sured in each litter, the averages will vary in precision ac-
cording to the number of pups per litter. It may be
advantageous to use a weighted statistical analysis when
evaluating the results. Pups from large litters may also be
smaller and less developed than those from smaller litters,
so if size (e.g., crown-rump length) is an important out-
come, it may be important to correct for this difference in
the statistical analysis. Where the outcome is a binary vari-
able such as “normal/abnormal,” a full statistical analysis
may require advanced statistical methods (Hunt and Bow-
man 2004; Yamamoto and Yanagimoto 1994).

If individual pups within a litter are subjected to differ-
ent treatments either postnatally or as a result of surgical or
other intervention on the pregnant female, then “n” will be
based on the number of individual pups in a treatment
group, and the individual pup is the EU. It is possible to
have an experiment that is a mixture of a between-litter and
a within-litter design. For example, if pregnant females re-
ceive one of two or more treatments (e.g., a drug treatment
or a vehicle control), and then after birth the neonates within
each litter receive additional individual treatments (e.g.,
some but not all receive a vitamin supplement), then for the
drug treatment the pregnant female is the EU, while for the
vitamin supplement the neonate is the EU. This design,
known as a “split-plot” experimental design (Cox 1958), is
often useful although the statistical analysis probably re-
quires professional advice.
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“Litter Effect”

In most cases, individual neonates within a litter are more
similar than individuals from different litters; in other
words, litters differ in a wide range of characteristics. If
genetically heterogeneous animals are being used, then in-
dividuals within a litter will be full sibs and genetically
more similar than unrelated animals. Both pre- and postna-
tally, animals also tend to have a similar environment. For
example, animals from a large litter may be relatively small
and immature. There may even be inaccuracies in recording
time of birth so that some litters appear to be older than they
really are.

It is important to consider “litter effect” when designing
an experiment that involves neonates as the EUs. Suppose,
for example, that the experiment involves treating some of
the neonates with a hormone, while others receive a pla-
cebo. Operationally it would be most convenient to treat
whole litters, because then pups would not need to be indi-
vidually identified before weaning. However, in such a case,
the litter rather than the individual pups will be the EU.
Each litter will be an “n” of one rather than the number of
pups in the litter. In contrast, if pups within a litter can
be individually identified and assigned to the treatments,
then the pups will be the EUs, and each pup will be an “n”
of one. However, in this case although the pups within
a litter will tend to be quite similar (e.g., in a character
such as weight), there may be large differences between
pups having the same treatment but in different litters. It
will be necessary to remove these differences between
litters in the analysis because otherwise, the power of
the experiment to detect treatment effects will be severely
reduced.

An additional complication is that litters vary in size, so
it may be difficult to obtain a balanced design with equal
numbers of animals on each treatment within every litter. As
a result, it may even be difficult to calculate treatment
means. A numerical example of the analysis of a within-
litter experiment illustrating some of these problems is
given in the Appendix.

Some litter effects due to the common environment of
litter mates may gradually disappear once the animals are
weaned and are no longer dependent on milk supply. How-
ever, litter effects due to the genetic similarity of full sibs
will remain for the life of the animals, assuming studies are
performed using genetically heterogeneous animals such as
Sprague-Dawley rats or any breed of rabbits.

Cross-fostering soon after birth may reduce but will not
entirely eliminate litter effects. For example, cross-fostering
did not eliminate a litter effect associated with susceptibility
to dental caries (Peeling and Looker 1987), a highly inher-
ited character, in outbred Sprague-Dawley rats, or an effect
on growth rate (Raubertas et al. 1999). Standardization of
postnatal litter size is a common practice and is likely to
reduce, but not eliminate, between-litter variability associ-
ated with maternal effects such as limitations in milk yield.
One commercial company pooled all 2-day-old Sprague-

Dawley pups and made up single sex litters of 12 young.
Most female pups were discarded at this age because de-
mand was almost entirely for males. Females left without a
litter were returned to the breeding colony where they soon
became pregnant again without any apparent problems
(Lane-Peter et al. 1968). Such a procedure will reduce but
not eliminate litter effects because females will still differ in
milk yield. It may increase the variability within a litter
because individuals will no longer be full siblings, and the
procedure is likely to be practical only in breeding colonies
where large numbers of females litter at the same time.
Nevertheless, it may be worth investigating for neonatal
research because it would be very convenient for all litters
to have the same number of pups.

Requirements for a Well-designed Experiment

The principles of good experimental design have been
known for many years (Cox 1958). These principles are
described very briefly as follows.

Absence of bias must be ensured through the use of the
use of randomization and blinding. Animals must be se-
lected and assigned to the treatment groups in such a way
that there is no systematic difference among groups before
starting or during the conduct of the experiment. These
factors may be mistaken for the effects of the treatment.
This goal is usually achieved by assigning animals (or
other experimental subjects) to the treatment groups using a
formal randomization system. Subsequent housing and nec-
essary measurements should be in random order. Random-
ization distributes uncontrolled variation among the groups
with equal probability.

The exact method of randomization depends on the de-
sign of the experiment. In the most simple “completely
randomized” design (i.e., in a between-litter experiment),
subjects (e.g., pregnant females) are simply assigned to
treatments regardless of their characteristics. Thus, if a
teratology experiment involves 20 treated and 20 control
pregnant rats, 20 bits of paper could have the letter “C”
and 20 the letter “T” written on them. These would be
placed in a receptacle and thoroughly shaken. A piece of
paper would then be withdrawn, and the first rat would
be assigned to the indicated treatment. This process would
be repeated with all of the remaining rats. When the neo-
nate is to be the EU in a within-litter experiment, random-
ization must be done separately within each litter. Again,
it is possible to use physical randomization, tables of
random numbers, or random numbers generated by a
computer.

Ideally, subjects should be identified by codes so that
the investigator and other staff members are blind with re-
spect to the treatment groups to the extent possible. Blinding
is likely to be particularly important when there is a sub-
jective element to recording observations (e.g., when read-
ing and scoring histological preparations). It would be very
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unacceptable, for example, to score, measure, or record data
from all of the controls first, and subsequently from each
treatment group, because standards may change as the
scorer becomes more expert. Thus, all manipulations and
recording of information should be done either in random
order or in such a way as to take account of any time trends
with treatment groups equally represented at each time
point.

Designing Powerful Experiments:
Controlling Variation and Choosing an
Appropriate Sample Size

A powerful experiment is one that has a high probability of
detecting a difference between treatment groups, assuming
that a difference exists. Power depends on the relationship
between the variability of the experimental subjects, the size
of the treatment effect, and the sample size (discussed in
more detail below). Large experiments are likely to be ex-
pensive and may exceed the available resources of a facility,
so it is worth spending some time and effort to choose
uniform experimental material that is sensitive to the effects
of the treatment. Thus, if the experimental subjects are adult
animals (as in a teratogenesis experiment), they should be
closely matched for age, weight, genotype (e.g., by using an
isogenic strain where practical), and previous history.

Choosing the Strain or Breed

There are many different strains of mice (www.informatics
.jax.org) and rats (www.rgdb.mcw.org) as well as several
breeds of rabbits, dogs, and other species. It may be possible
to choose one or more strains that are sensitive to the pro-
posed treatments, although for the larger species it is usually
necessary to use whatever is available.

Isogenic strains (inbred strains and F1 hybrids between
two such strains) of mice and rats are widely available and
have many useful properties (Beck et al. 2000; Festing
1999a,b; Festing and Fisher 2000). They resemble immortal
clones of genetically identical individuals in some respects.
Tissue and organ grafts between individuals of the same
isogenic strain are not immunologically rejected and there-
fore such strains could be of particular value for studies
involving such procedures.

Isogenic strains remain genetically constant for many
generations and have an international distribution, so that
work involving the same strains can be replicated through-
out the world. A single individual can be genotyped at loci
of interest, which will serve to genotype all animals of that
strain. Thus, a genetic profile of the genes present in each
strain can be built up by all investigators working on that
strain. The genetic authenticity of the animals can be tested
using a small sample of DNA. Each strain has a unique set
of characteristics, which may make a particular strain valu-

able for a particular type of study. Some care must be taken
in interpreting results if a single inbred strain is used be-
cause it represents only a single genotype. However, the
interpretation of results is also not easy when using an out-
bred stock because generally little is known about its
genotype.

One disadvantage of inbred strains for neonatal research
is that they often have a poor breeding performance, which
may limit their use. When the individual neonate is the EU
(in a within-litter experiment), it may be worth using inbred
mothers mated to a male of a different inbred strain. The
pups will then be F1 hybrids, which are vigorous and uni-
form. Litter size is about 30% larger than when pure iso-
genic strains are used. When the mother is the EU, it may be
worthwhile to use F1 hybrids, which breed exceptionally
well as a result of hybrid vigor (Festing 1976). The sire
could be either another F1 hybrid of the same strain, in
which case the pups will be genetically heterogeneous F2
hybrids, or the females could be backcrossed to one of her
parental strains so that the pups would be backcross indi-
viduals that, although genetically heterogeneous, are less
variable than F2 hybrids.

Outbred stocks such as Sprague-Dawley or Wistar rats
and Swiss mice are used widely, but the scientific case for
doing to is questionable (Festing 1999b). Animals from dif-
ferent breeders will be genetically different even though
they may have the same name. The genotype of any indi-
vidual will be unknown, the stock is subject to genetic drift
over a period of time, the actual degree of genetic hetero-
geneity is usually unknown, and few methods of genetic
quality control are available. It is not even possible to dis-
tinguish genetically between Wistar and Sprague-Dawley
rats (Festing 1999b). Thus, it is necessary to balance the
advantage of better breeding performance against these dis-
advantages.

Designing the Experiment

After choosing the EU (the female, and/or litter, or indi-
vidual neonate), it is necessary to determine the number and
types of treatment. It may be useful to perform a small pilot
study to define dose levels and clarify logistics. It may be
necessary to study male and female neonates separately, in
which case a factorial design including both sexes in the one
experiment may be appropriate (see below, Increasing the
Range of Applicability). Outcomes (characters) to be mea-
sured or counted must be decided. Where measurements are
possible, they are frequently more precise than a “count”
(number of positive/negative), and greater precision re-
quires fewer EUs. Each neonate may provide several nu-
merical observations. For example, one should give thought
to methods of analyzing individual growth curves within an
overall analysis. A microarray experiment may result in
thousands of observations from each individual, so the
method of statistical analysis of the resulting data should
always be considered at this design stage.
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Determining Sample Size

The usual way of estimating sample size is to use a power
analysis. The success of using this tool depends on a math-
ematical relationship between several variables, as shown in
Figure 1. However, a serious limitation of this method is
that it depends critically on the estimate of the standard
deviation. This value is not available because the experi-
ment has not yet been done, so it must be estimated from a
previous experiment or from the literature. Unfortunately,
because standard deviations can vary substantially between
different experiments, the power calculations can provide
only an indication of the appropriate size of an experi-
ment. This should be interpreted with common sense and in
relation to available facilities.

It is easiest to describe the method for a character where
there is a treated and control group with a measurement
outcome that can be analyzed using an unpaired t-test, such
as a teratology experiment with two treatment groups,
treated and control. Six variables are involved. Usually the
significance level and sidedness of the test are specified,
(often the significance level “�” is set at 0.05 with a two-
sided test) and the variability of the material (i.e., standard
deviation) is taken from a previous study or the literature.
When the neonate is the EU, it is necessary to estimate the
standard deviation from the pooled standard deviations
within litters and treatment groups. The effect size is the
minimum difference in means between the two groups
the investigator considers to be of biological or clinical
importance. Somewhat arbitrarily, the power (i.e., chance
that the study will find a statistically significant effect of
the specified size) is usually set somewhere between 80
and 95%. It is then possible to estimate the required sample
size.

For the calculations, a number of dedicated computer
programs such as nQuery Advisor (Elashoff 2000) are avail-
able. In addition, many statistical packages such as
MINITAB have routines for power analysis, and there are a
number of free sites on the web (e.g., http://www.biomath
.info), where one can enter data to obtain estimates of re-
quired sample sizes. In some circumstances, such as when
resources are limited, the sample size may be fixed and the
power analysis can then be used to estimate the power of the
proposed experiment (i.e., the chance that the specified ef-
fect is likely to be detected). The calculations are similar for
a binary variable (normal/abnormal) with two groups, but
the specification becomes more difficult when there are sev-
eral treatment groups, or when the data are not appropriate
for a parametric analysis (Dell et al. 2002).

An alternative method of sample size determination is
the so-called “resource equation method,” which depends
on the law of diminishing returns. This method is useful for
small and complex biological experiments that involve sev-
eral treatment groups for which the results are to be ana-
lyzed using the analysis of variance. In such a situation, it is
difficult to use a power analysis. The experiment should be
of an appropriate size if the error degrees of freedom in an
analysis of variance are somewhere between 10 and 20
(Festing et al. 2002; Mead 1988). This case reduces to the
very simple equation:

X � N – T – B + 1,

where N is the total number of observations, T is the number
of treatments, B is the number of blocks (litters for a within-
litter experiment), and X should be between approximately
10 and 20.

For a within-litter experiment with three treatments, an av-
erage litter size of six, and a proposal to use five litters,

X � (6 × 5) – 3 – 5 + 1 � 23.

The limits of X being between 10 and 20 can be liberally
interpreted, so this proposed experiment would be of an
appropriate size, although just beyond the suggested upper
limit.

The experiment described in the Appendix has X � 50,
which is more than twice as large as suggested by this
method. A repeated analysis of the data in the Appendix
using only the first three litters gives X � 23 and a p value
for treatments of 0.007 compared with p � 0.001 using six
litters. Thus, if the experiment had been performed with
approximately half the number of animals, the conclusions
would have been about the same. Compared with the power
analysis, the resource equation method is somewhat crude.
Nevertheless, it often seems to work in practice, particularly
when relatively large treatment effects are expected.

Figure 1 The variables involved in a power analysis for a two-
sample t-test. Usually the effect size of interest, the significance
level, sidedness of the test, variablilty of the material and power
are specified, which determines the required sample size. Alterna-
tively, if the sample size is fixed due to resource limitations, the
method can be used to assess power or effect size.
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Increasing the Range of Applicability:
Factorial Designs

It is often important to know the extent to which a response
to a treatment can be generalized. Is the same response
found in males and females, or in different strains of ani-
mals, or with different diets? Does the presence of some
drug or chemical alter response? Factorial experimental de-
signs allow such questions to be examined without requiring
any substantial increase in resources. A typical example
might be to learn whether alcohol potentiates the effect of a
teratogen in rats. If, for example, the basic plan was to have
20 pregnant females as controls and 20 treated with the
teratogen, then the effect of alcohol might be studied by
administering alcohol to half the rats in each group. There
would then be four groups of 10 pregnant females with or
without alcohol and with or without the teratogen. It first
seems as though the group size has been reduced from two
to 10 rats, but in fact the effect of the teratogen is still
determined by comparing those receiving the teratogen (20
rats) and those that do not receive it (20 rats). Similarly, the
effect of the alcohol is determined by comparing the 20 rats
that receive it with the 20 rats that do not receive it. Finally,
any potentiating effect of alcohol is determined by seeing
whether the difference in fetal weight, number of abnor-
malities, and other factors between the teratogen-treated and
-untreated rats is greater in the group receiving alcohol than
in those that do not receive it.

Factorial designs can also be used for within-litter ex-
periments. Pups could be sexed and assigned separately at
random to either a control or a treated group. There would
then be four groups within each litter: male and female
controls and male and female treated. The experiment could
then be analyzed (probably using an analysis of variance) to
determine whether the pups responded to the treatment, av-
eraging across sexes; whether the measured outcome (e.g.,
weaning weight) differed between males and females, av-
eraging across treatments; and whether the response to the
treatment differed between the two sexes.

Factorial designs provide a way of obtaining more in-
formation from the same scientific resources at relatively
little extra cost. Any number of factors (e.g., treatments,
strain, sex, diet) can be involved, and each can have any
number of levels (i.e., there can be any number of dose
levels within a factor). The main extra cost is the increase in
the complexity of the experiment, which could lead to mis-
takes, and the increased complexity of the statistical analy-
sis. Splitting groups into a number of subgroups does not
lead to any substantial loss of power, provided the experi-
ment is not too small.

Avoiding Excessive Complexity

Complex experiments may lead to mistakes and invalid con-
clusions. All experiments should be planned ahead, with
written protocols and standard operating procedures. It is

appropriate to alter experiments while they are in progress
only in exceptional cases (e.g., for ethical reasons). Animal
care staff should be regarded as integral and valued mem-
bers of the research team. If mistakes occur, it is vital to
acknowledge them, rather than covered them up, so that
staff members are not made to fear that they will be in
serious trouble if they make a mistake.

Statistical Analysis

No experiment should be started without the investigator
having a clear idea of how the results will be analyzed
statistically, although it may be necessary to modify the
analysis later in the light of actual results. For example, it
may be necessary to transform scales and to account for
missing observations. However, the statistical analysis is a
basic and integral part of the experimental design. More-
over, time (i.e., avoiding delay) is important. Normally, it is
important to analyze experiments as soon as they have been
completed so that the results can be used in formulating
future experiments (e.g., adjusting dose levels or altering the
timing of observations in subsequent experiments).

The aim of the statistical analysis is to obtain summa-
rized results that may be easily understood and that clarify
the range of uncertainty in the conclusions. Access to a good
statistical textbook is highly recommended. A basic as-
sumption is that the EUs are a random sample from a popu-
lation of such units (real or hypothetical), and the aim is to
make inferences about the population from the sample. The
accuracy of these inferences will depend mainly on the bio-
logical variability of the EUs and the sample size, assuming
that the experiment has been designed well to avoid bias.
Clearly, if the sample size is very small and/or the variation
is large, then only rough estimates of the population char-
acteristics will be available.

It is essential to use a good-quality statistical package.
Spread sheets such as EXCEL are adequate for storing and
manipulating the raw data, but they should not be used for
the main statistical analysis. The output is often not stan-
dard, and it fails to provide the range of methods available
in a dedicated package. For example, the statistical analysis
presented in the Appendix could not be done using EXCEL.
Packages such as SPSS, MINITAB, SAS, Statistika, Graph-
pad, GLIM, Genstat, and BMDP are readily available and
have been tested thoroughly for errors. One or more are
usually available on most institutional networks.

The first step in the analysis should be to screen the data
for errors. Histograms and dotplots showing individual ob-
servations (e.g., as in Figure 2 in the Appendix), possibly
plotted against dose levels, or plots of two outcomes likely
to be correlated will often show whether there are any se-
rious outliers. Any outliers should be individually checked
against notebooks or original printouts to ensure that they
are not transcription errors, and should be corrected if nec-
essary. Outliers that appear to be valid should not be dis-
carded at this stage. Many outcomes of measurement data,
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particularly concentrations of a substance, have a log-
normal distribution, with most numbers being relatively low
but with a few very high. If this is the case, the data can be
transformed by taking logarithms or square roots of the raw
observations. This step frequently removes outliers and al-
lows parametric statistical methods—usually a t test or an
analysis of variance (ANOVA1)—to be used in the analysis.
These parametric methods depend on the assumption that
the residuals (deviations of each observation from group
means) have a normal distribution and the variation is ap-
proximately the same in each group.

One way to deal with one or two persistent outliers is to
perform the statistical analysis with and without them. If it
makes no difference to the conclusions, then they can be
retained. However, if the conclusions depend entirely on
one or a few outliers, and these appear to be perfectly valid
data points, the results should be treated with caution. Out-
liers that are more than 3 standard deviations from the mean
(assuming an approximately normal distribution) are auto-
matically rejected by some authors; but again, it may be
worth seeing what effect the outliers have on the overall
conclusions.

When it is not possible to normalize badly skewed data
using a scale transformation, and when the aim is to com-
pare groups, it may be necessary to analyze the data using
nonparametric methods such as the Mann-Whitney or Wil-
coxon test. Dose response curves are normally estimated
using some form of regression analysis. A numerical ex-
ample illustrating the statistical analysis of a within-litter
experiment using the analysis of variance is shown in the
Appendix.

Presentation of Results

Scientific papers are often written in such a way as almost
to observe exactly what the investigators did. In theory,
sufficient information should be given so that others can
repeat the studies. Unfortunately, in a surprisingly large
proportion of papers, it is difficult or impossible to deter-
mine exactly how many animals were used, or how many
separate experiments were involved.

Guidelines are available for the design and statistical
analysis of experiments using animals (e.g., Festing and
Altman 2002), and they include a number of suggestions for
presenting results.

• Label and number each experiment;
• State the number of animals used in each experiment,

along with the purpose of each experiment;
• Identify the species, breed, and/or strain of animals

complying with agreed international nomenclature
rules where these are available (e.g., for rats and mice,
WWW.informatics.jax.org);

• Provide details of husbandry (e.g., diet and housing) to
the extent allowed by the journal editor;

• Describe efforts where possible to minimize pain, dis-
tress, or lasting harm to the animals;

• Describe methods of statistical analysis, with references
in the case of any unusual methods used;

• Identify the statistical software used;
• Avoid excess decimal places where means, proportions,

or differences are presented;
• Include measures of variation (e.g., standard deviations,

standard errors, or, preferably, confidence intervals
[Altman 1991; Altman et al. 2000]);

• Identify the number of observations for every mean,
including those shown graphically. It is not adequate to
make statements such as “the number in each group
ranged from four to 10.” Where possible, tabulate
means in columns for ease of comparison.

• Use graphs to illustrate points that are difficult to show
in tables or in the text. Where possible, show individual
observations rather than means with error bars because
this presentation more clearly indicates the distribution
of the observations. If error bars are used, explain
clearly whether they are standard deviations, standard
error, or confidence intervals.

Again, the main aim in presenting the results should be to
state as clearly and succinctly as possible exactly what was
done and what results were obtained.

APPENDIX: A NUMERICAL EXAMPLE

Consider the weaning weight of 59 unsexed Sprague-
Dawley rats (real data), including one that died as a missing
observation (Table 1). When pups were 2 days old, each
litter was split, and the pups were assigned at random to a
control group, a “low-dose” group, or a “high-dose” group
(simulated by subtracting 0.5 g from the low-dose group and
1.0 g from the high-dose group). Within each litter, to the
extent possible, the same number of pups were assigned to
each treatment, and pups were individually marked for sub-
sequent identification. The sex of the pups was not re-
corded. The aim of the statistical analysis is to determine
whether the treatments altered weaning weight, and if so
to what extent. (Note: It should be a reduction of ap-
proximately 0.5 g and 1.0 g in the low and high groups,
respectively.)

The first step in analyzing such data is to examine it
graphically to learn whether there are any obvious outliers
and to obtain a visual impression of the situation (see plot in
Figure 2). In this case, there are no obvious outliers. How-
ever, the litter effect is very obvious and clearly there is
considerable variation within each litter. Although there is a
tendency for the controls to weigh more than the treated
groups (e.g., in litter 6), in litter 2 the lightest pup is a
control.

Anyone planning to make a career in animal research is
strongly advised to familiarize him- or herself with the
analysis of variance as it is the most appropriate statistical
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method for dealing with most data arising from formal ex-
periments like this one. A good introduction to the methods
is given by Roberts and Russo (1999), and it is also de-
scribed in detail in most statistical textbooks.

The data in Table 1 can be analyzed using a two-way
(treatment and litter) analysis of variance “without interac-
tion.” A t test would be entirely inappropriate because there
are more than two groups, and it is necessary to account for

Figure 2 Weaning weight by litter number and treatment for the numerical example. Note that some random variation or “jitter” has been
applied on the X-axis to avoid too much overlap between points (see text for details).

Table 1 Data for the numerical example. The table shows weaning weight (g) of six litters of
Sprague-Dawley rats assigned to three treatments: control, low, and high doses. Weights are real data,
but treatments are simulated (see text).

Treatment

Litter number

Simple
mean (1)

Weighted
mean (2)

Least
squares
mean (3)1 2 3 4 5 6

Control 49.5 45.2 56.8 43.0 42.2 53.8
51.5 37.2 59.7 47.7 38.4 47.0
48.6 42.9 45.4 43.9 51.6

X 50.8
45.6

Mean 49.9 42.7 58.3 45.4 41.5 50.8 48.1 47.4 48.1

Low dose 45.6 40.1 54.1 45.1 40.9 50.0
48.6 40.8 57.4 48.7 36.3 47.8
47.6 41.7 44.7 40.4 46.9

40.5
40.7

Mean 47.3 40.8 55.8 46.2 39.2 48.2 46.2 45.2 46.2

High dose 40.6 43.2 53.8 40.0 42.2 46.3
44.1 42.5 55.5 45.6 40.6 44.3
45.1 41.4 46.8 39.8 46.8

39.3 40.2
40.0

Mean 43.3 41.3 54.7 44.1 40.7 45.8 45.0 43.9 45.2

X, missing observation due to death of animal.
(1) Mean of litter by treatment means. These means are biased (see 4, below).
(2) Mean of all animals in a treatment group, ignoring litter. These means are biased (see 4, below).
(3) Differences between least squares means give the best unbiased estimate of the treatment differences.
(4) Numbers in parenthesis show the size of the treatment effect (control mean-dose mean) estimated from these means. The least squares
means give the best unbiased estimate of the size of the treatment effect.
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the litter effect. The ANOVA quantifies the variation asso-
ciated with treatments, litters, and the remaining “residual”
or “error” variation. It is assumed that the response is the
same in each litter apart from sampling variation (hence
“without interaction”). However, there is a problem with
these data as they stand. The usual two-way ANOVA as-
sumes that there are equal numbers in each treatment group
within each litter. In this case, there is one missing obser-
vation in litter 2 and two extra animals in litters 5 (high-
dose) and 6 (control). The data could be adjusted by
discarding at random two animals from groups where there
are the extras, and replacing the value for the animal that
died by an appropriate value. Missing values can be worked
out using formulae available in most of the older textbooks
(e.g., Cochran and Cox 1957). In situations where there is
more than one animal in a litter by treatment subgroup, as in
this case, it would probably be sufficiently accurate (al-
though not strictly correct) to replace the missing value with
the mean of the rest of the animals in the group. Having a
balanced design used to be almost essential because other-
wise the calculations were extremely tedious. However,
modern statistical packages now make it possible to do a
“general linear model” ANOVA, which is capable of ac-
commodating unequal numbers in each group, so a balanced
design is no longer so essential.

A general linear model ANOVA of the data in Table 1
is shown in Table 2. Note that whereas in the normal
ANOVA there is a heading labeled “Sums of Squares” (or
simply SS), in this case there are two headings “Seq SS” and
“Adj SS,” with the two being slightly different for the litter
effect. The ANOVA shows an F value of 7.99 and a p value
of 0.001 for the treatment effect (abbreviated Trt). The
“least squares means” presented in Table 2 are marginally
different from the simple means and weighted means pre-
sented in Table 1 (all three types of means are shown in
Table 1) inasmuch as they take account of the unequal
group sizes.

It is often necessary to use a post hoc comparison to
determine which means differ from which. When the aim is
to compare the means of the treatment groups with the
control, Dunnett’s test is appropriate (shown in Table 2). If
the aim is to compare each mean with every other mean, it
is appropriate to use other available post hoc comparisons
(e.g., Tukey’s test [Roberts and Russo 1999]). Dunnett’s
test subtracts the mean of the control group from each of the
other groups and then either gives a 95% confidence inter-
val (CI1) for the difference, or involves a t test to resolve
whether it is different from zero. Both approaches are
shown in the case. Note that the differences between the
three groups are larger than the simulated treatment effect of

Table 2 General linear model analysis of variance of the data in Table 1

Analysis of Variance for Weaning Wt, using Sequential SSa for Tests
Source DF Seqa SS Adja SS Seq MSa Fa p

Litter 5 1270.1 1232.49 254.18 48.37 0.000
Trta 2 84.02 84.02 42.01 7.99 0.001
Error 50 262.76 262.76 5.26
Total 57 1617.70
Least Squares Means for Weaning Wt
Trt Mean
1 48.08
2 46.18
3 45.17
Dunnett 95.0% Simultaneous Confidence Intervals
Response Variable Weaning Wt Comparisons with Control Level
Trt = 1 subtracted from:
Trt Lower Center Upper
2 −3.599 −1.903 −0.207
3 −4.585 −2.909 −1.232
Dunnett Simultaneous Tests
Response Variable Weaning Wt. Comparisons with Control
LevelTrt = 1 subtracted from:
Level
Trt Difference of Means SEa of Difference T-Value Adjusted p Value
2 −1.903 0.7455 −2.552 0.0258
3 −2.909 0.7368 −3.948 0.0005

aWt, weight; SS, sums of squares; DF, degrees of freedom; Seq, sequential; Adj, adjusted; F, variance ratio (a test statistic like Student’s t); Trt,
treatment; SE, standard error; p, probability that a difference as large as or larger than the one observed could have arisen by chance; T-value,
Student’s t.
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-0.5 g and -1.0 g in the low- and high-dose groups, respec-
tively, because the groups already differed by chance.

In this case, 95% CIs for the means should be calculated
by hand. The error mean square of 5.26 is the pooled within-
group variance, so the standard deviation is the square root
of this value, or 2.29. Standard errors are calculated by
dividing 2.29 by the square root of the number in each mean
(19 in the control and low-dose group, 20 in the high-dose
group). The 95% CI is estimated from the formulae given
below (also shown in most statistical text books):

M- SE*t0.05,d.f. < M < M + SE*t0.05,d.f.,

where M is the observed mean, the SE is the standard error
of the mean, and t0.05,d.f. is the value of the Student’s t for
the 0.05 level of significance for the degrees of used in
estimating the variance, which is 50 (Table 2). The means
can now be presented as follows:

Control mean � 48.1 (95% CI 47.0, 49.1);
Low-dose mean � 46.2 (95% CI 45.1, 47.2);
High-dose mean � 45.2 (95% CI 44.1, 46.2).
These confidence intervals could be used as error bars in a

bar diagram.

Finally, if one performed a similar experiment, but
treated whole litters rather than doing a within-litter experi-
ment, the EU would be the litter, rather than the individual
pup within the litter. To determine how many litters would
be needed, assume for simplicity that there would be only a
control and a high-dose group. The question can be ad-
dressed using a power analysis as described above. The
standard deviation of litter means in Table 1 is 5.68 g.

If one decided that a treatment effect (difference be-
tween treated and control groups) of 4 g in mean pup weight
would be of scientific interest, and the experiment should
have a 90% power and a significance level of 0.05, with a
two-sided t-test, then using the power calculator in
MINITAB, 44 litters in each group would be required to
perform this experiment. Thus, the between-litter experi-
ment would involve a total of 88 litters and at an average of
9.7 pups per litter over 850 pups, yet would only be capable
of distinguishing an effect of 4.0 g compared with a reso-
lution of 2.9 g in the within-litter experiment involving six
litters and only 59 pups. Clearly, between-litter designs
should only be used in situations where there is no alterna-
tive, such as in teratology experiments.
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