

CHAPTER 9 ANNEX

CONTENTS

		Page
9	Annex	9-3
9.1 9.1.1 9.1.1.1	Beampath Configuration Guide for Fluorescence Microscopy with the LSM 5 Optical elements in the Configuration Control window Main Dichroic Beam Splitter (HFT)	9-3
9.1.1.2 9.1.1.3	Secondary Dichroic Beam Splitter (NFT) Emission Filters (EF)	9-3
9.1.1.4 9.1.2	Miscellaneous Setup of Single Tracks Using Single Detectors	9-5
9.1.3 9.1.4	Multitracking Configuration Beam path Configuration for Multi Photon Excitation	
9.2	Recommendations for excitation laser lines and emission filters of dyes	9-9
9.3 9.3.1 9.3.2 9.3.3 9.3.4	Configurations Overview. LSM 510 META LSM 510 Basic Configurations. LSM 510 Upgraded Configurations - UV. LSM 510 Upgraded Configurations - NLO.	9-11 9-12 9-13
9.4	Filter Change in the Detection Beam Path of Channels 1 and 2	9-15
9.5	Detaching / Attaching the Scanning Module from / to Microscope Stands	9-16
9.6 9.6.1 9.6.2 9.6.3	Hints on the Use of the HRZ 200 Fine Focusing Stage General Description Application Fields Additional Information on the Operation	9-18 9-18
9.7	Piezo Objective Focussing Device - MIPOS 3 SG	9-21
9.8	Specifications of Trigger-Interface LSM 510	9-23
9.9	Monitor Diode	9-26

A	Ν	Ν	Ε>	<

Contents

9.10 9.10.1 9.10.2 9.10.3	NLO Non Linear Optics Laser for LSM 510 NLO Laser Control Window Configuration Control Window Pinhole and Collimator Settings	
9.11	Non Descanned Detection (NDD)	
9.12 9.12.1 9.12.2 9.12.3	AxioCam High Resolution Digital Cameras High Resolution Microscopy Camera AxioCam HRm Rev.2 High Resolution Microscopy Camera AxioCam HRc Microscope camera port adapters for the AxioCam	
9.13	List of Key Words	

Carl Zeiss

9 ANNEX

9.1 Beampath Configuration Guide for Fluorescence Microscopy with the LSM 5

9.1.1 Optical elements in the Configuration Control window

All wavelength values given in Nanometer [nm].

9.1.1.1 Main Dichroic Beam Splitter (HFT)

- A **HFT XXX[/YYY/...]** deflects the indicated laser lines onto the specimen and allows the emitted fluorescent light to pass through. Example: HFT 458/514, HFT UV/488/543/633 (deflects also UV excitation light)
- A **HFT KP XXX** (KP = Short Pass) is a special type of a main dichroic used for IR multi photon excitation. The **HFT KP 650**, deflects laser light with a wavelength longer as 650 nm onto the specimen and allows fluorescent emission light in the visible range below 650 nm to pass through. Example: HFT KP 650
- A **HFT KP XXX_YYY** is a combination of a HFT YYY and HFT KP XXX used for simultaneous IR multi photon and single photon excitation. Example: HFT KP 700_488.

9.1.1.2 Secondary Dichroic Beam Splitter (NFT)

- The **NFT XXX** is used to split the emitted light which will be guided into separate channels. Light with shorter wavelength than XXX nm is deflected, light with longer wavelength passes the NFT. A cascade of NFTs allows to distribute the emission light to more than two channels/detectors.
- The **NFT KP YYY** solits emission light the other way round: it transmits light shorter than YYY nm and deflects above YYY nm.

ANNEX

Beampath Configuration Guide for Fluorescence Microscopy ... LSM 510

Carl Zeiss

9.1.1.3 Emission Filters (EF)

- A LP XXX (Long Pass) transmits emission light with wavelengths longer than the indicated threshold value XXX.
- A **KP XXX** (Short Pass) transmits emission light with wavelengths shorter than the indicated threshold value XXX.
- A **BP XXX-YYY** (Band Pass) transmits emission light within the indicated wavelength band.
- A **BP XXX/BB** has a transmission band for emission light with a center wavelength of XXX nm and a width of BB nm.
- The **BG 39** (Blue Green glass) blocks infrared excitation light by absorption.
- **BP** ... **IR** (Band Pass Infra Red) is a band pass suitable for detection of IR excited dyes. It blocks the IR light.

9.1.1.4 Miscellaneous

- **Plates** do transmit light 100%. They are used for a correct beam guidance and will be set automatically.
- **Mirrors** do deflect 100% over the whole spectral range and can be used to guide the emission light to selected detectors.

9.1.2 Setup of Single Tracks Using Single Detectors

- Switch on the suitable lasers for excitation of the dyes in the specimen. For the UV laser and the Argon laser set the tube current of the laser to a value of app. 50% (Excitation, Laser, Output [%]). Example: for Alexa 488 and CY 3 switch on Argon (blue excitation) and HeNe1 (green excitation).
- Activate the proper laser lines in the Line Active check box, set Transmission [%] for each active line.

Example: Select 488 to 5% and 543 to 100%

• Select a main dichroic beamsplitter (HFT) which deflects the selected laser lines to the specimen. Example: HFT 488/543

Configuration Control			×			
Channel Mode	l	.ambda Mode	Close			
Single Track	Multi Track	Ratio				
Beam Path and Ch	annel Assignmen	ıt	Spectra			
Descanned	N	on Descanned	Laserline			
Mirror		560	Config			
	BP	385-470	Conng			
NFT 545		505-530				
HFT 488/543	Plate	Excitation	Excitation			
		<u> </u>		ansmission [%]	Laser Power	Close
Specimen				0.1		
	_			5		
		ChD	514 nm	0.1	— Ī •	Laser
and the second second	and the second second	and some starts	☑ 543 nm 1		• •	
			🗖 633 nm 🔽	.05		

Fig. 9-1 Configuration Control window and Excitation panel

 Check the available emission filters (EM 1- 4) for transmission of fluorescent light from the specimen, in order to identify the channels for detection.
 Example: BP 505-530 in channel Ch 3 for acquisition of green emission and LP 560 in channel Ch 1 for acquisition of red emission

ANNEX Beampath Configuration Guide for Fluorescence Microscopy ... LSM 510

Carl Zeiss

LSM 510 META

- Use the secondary beam splitters (NFT 1/2/3) to split and guide the emitted fluorescent light to the detectors (PMTs) of the selected channels (see above).
 Example: an NFT 545 in NFT 1 position will allow light longer then 545nm to pass to Ch 1 and deflects light shorter then 545 towards channel Ch 3 (if available) and channel Ch 2. Note: on switching from 'None' to a beam splitter in the NFT 1 position the system will automatically set 'Plate' in NFT 3 position.
- Select the proper emission filters in front of the channels and activate channels. Example: select LP 560 in front of Ch 1, and BP 505-530 in front of Ch 3].
- Make sure that the active detection bands do not include any of the active laser lines Example: do not use a BP 505-550 for detection of green emission when using the 543 nm line for green excitation

Additional hints:

- Do not forget to turn on detectors.
- Assign appropriate colors to these activated channels. Example: Ch 1 red (for Cy3 emission, Ch 3 green (for Alexa488 emission)
- The Spectra dialog is a big help for checking if the configuration of the beam path was successful. It shows activated laser lines and for each channel the emission range that can be "seen" by the detector indicated by the corresponding channel color. A gray bar indicates an emission range that is guided into a channel, but the detector is not turned on.
- When simultaneously detecting more than one fluorescent dye use channel Ch 1 for detection of the emission with long wavelength, then channels Ch 4 and Ch 3 (if available) for medium wavelengths and channel Ch 2 for short wavelengths.
- Use NFT 3 for separating emission into channels Ch 1 and Ch 4 and NFT 2 for separating emission into channels Ch 2 and Ch 3

9.1.3 Multitracking Configuration

Multitracking is the method of choice for multi fluorescence imaging. It has the advantage to avoid artifacts based on emission crosstalk that occurs when using simultaneous excitation and detection. Laser lines are switched very fast and channels recorded quasi-simultaneously.

The configuration of Multiple Tracks follows the same rules described above for single track configuration. The main difference is that each track is configured to excite and detected only one fluorescent dye to prevent cross talking (or two dyes with non overlapping emission spectra).

- Create a single track for both, Alexa 488 and CY 3 detection separately (see above).
- Open the Multi Track configuration window. The system displays the Single Track setup as track one.
- Add a new track.
- Click on track one, deactivate Ch 1 (red emission detection) and switch off the green laser line (543nm) in the **Line Active** check box in the **Excitation** control window.
- Click on track two, deactivate Ch 2 (green emission detection) and switch the blue laser line (488) off.
- To extend the detection band for the green light it is now reasonable to use the BP 505-550 instead of BP 505-530 in track one. This is now possible since the green laser line is turned off during detection of the green fluorescence emission.
- Use the Spectra window to check the proper settings for each individual track as described above.

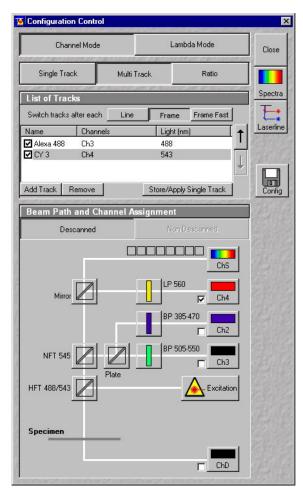


Fig. 9-2 Configuration Control window

Line and Frame Mode of Multitracking

- Settings can be used for Line or Frame wise Multitracking.
- In Line mode the lines are scanned in turns for all tracks with the corresponding laser lines turned on exclusively. Preferred for living samples with moving objects. Acquisition time can be reduced using bidirectional scan mode.
- In Frame mode whole frames are scanned in turns for all tracks with the corresponding laser lines turned on exclusively. This mode can be advantageous for dyes that tend to bleach and need time to recover.
- There are parameters that can be changed quickly in a line wise: Amplifier Gain, Amplifier Offset, Laser Line Attenuation,
- Any other changes of track settings of the selected tracks, e. g. different filters, dichroics or Detector Gain settings, need a bit more time to be changed, and require Frame mode.
- There is a fast Frame mode, that requires identical settings of these parameters.
- In our example it is now possible to use the BP 505-550 also in track two. There is no function of this BP in track two, but it guarantees equal settings in both tracks/channels, which now allows line wise Multitracking.

9.1.4 Beam path Configuration for Multi Photon Excitation

- The beam path configuration for multi photon excitation follows the same rules as described for a single and multi track configuration (see above).
- Use a KP 650 or KP 700 as main dichroic beam splitter to deflect the IR excitation light (700-900 nm) onto the specimen.
- On detection side, set always a BG 39 in the beam path or use a IR suitable band pass filters (BP XXX-YYY IR) to prevent a bleed through of IR excitation light to the detector.

Dye	Laser line/HFT	Emission/EM
DAPI	364 or 405	> 385/420, max. at 461
EBFP	364 or 405	> 385/420, max. at 447
Hoechst	364 or 405	> 385/420, max. at 440
Fluoro-Gold	405 or 458	> 420/475, max. at 536
ECFP	405 or 458	> 420/475, max. at 501
Lucifer Yellow	458	> 475, max. at 536
EGFP	477 or 488	> 505, max. at 507/516
FM 1-43™	477 or 488	> 505, max. at 598
Alexa Fluor 488™	488	> 505, max. at 520
Calcium Green	488	> 505, max. at 531
Су2™	488	> 505, max. at 508
DiO (DiOC18(3))	488	> 505, max. at 508
Fluo-3	488	> 505, max. at 520
Fluorescein (FITC)	488	> 505, max. at 520
СуЗ™	514	> 530, max. at 566
EYFP	514	> 530, max. at 535
Oregon Green	514	> 530, max. at 535
SYTOX Green	514	> 530, max. at 536
FM 4-46	514 or 543	> 560, max. at 640
Alexa Fluor 546™	543	> 560, max. at 572
Calcium Orange	543	> 560, max. at 575
Dil (DilC18(3))	543	> 560, max. at 565
DsRed	543	> 560, max. at 583
Tetramethylrhodamine (TRITC)	543	> 560, max. at 576
Rhodamine B	543	> 560/585, max. at 625
Texas Red™	543 or 568	> 560/585, max. at 620
Alexa Fluor 633™	633	> 650, max. at 654
Су5™	633	> 650, max. at 666

9.2 Recommendations for excitation laser lines and emission filters of dyes

ANNEX	
Recommendations for excitation laser lines and	LSM 51

Here you can note your specific combinations:

Dyes	Laser/HFT	EM1	NFT	EM2

Example:

Dyes	Laser/HFT	EM1	NFT	EM2
FITC/Cy3	488/543	BP 505-530	545	LP 560

9.3 Configurations Overview

9.3.1 LSM 510 META

Configuration	3 META	13 META	15 META	18 META
Main beam	NT 80/20	NT 80/20	NT 80/20	NT 80/20
splitter / available laser	UV/488/543/633	UV/488/543/633	UV/488/543/633	UV/488/543/633
lines	477/543	KP 700/488	UV/488	405/488/543
	488/543	KP 700/543	458/514	405/514
	458/514	458/514	477/543	458/514
	514/633	458	458	488/543
	458	488	UV (375)	458
	488	КР 650	488	488
Secondary beam	none	none	none	none
splitter 1	mirror	mirror	mirror	mirror
	545	490	490	490
	570	515	515	515
	635 VIS	545	545	545
	none	635 VIS	635 VIS	635 VIS
	KP 545	KP 545	KP 545	KP 545
	plate	plate	plate	plate
Secondary beam	mirror	mirror	mirror	mirror
splitter 2	515	490	490	490
	545	545	545	515
	plate	BG39	plate	545
Secondary beam	none	none	none	none
splitter 3	plate	plate	plate	plate
	none	BG39	none	none
	mirror	mirror	mirror	mirror

ANNEX					
Configurations Overview					

9.3.2 LSM 510 Basic Configurations

Configuration	1	2	3	4
Main beam	NT 80/20	NT 80/20	NT 80/20	NT 80/20
splitter / available laser	458/514	UV/488/543/633	UV/488/543/633	UV/488/568/633
lines	458/543	458/514	477/543	488/568
	488/543	458/543	488/543	488
	458	458	458/514	568
	488	488/548	458	633
	514	514/633	514/633	none
	477/543	488	488	none
Secondary beam	none	none	none	none
splitter 1	mirror	mirror	mirror	mirror
	515	515	545	570
	545	545	570	635 VIS
	none	635 VIS	635 VIS	none*
	none*	none*	none*	none
	none	none	none	none
	plate	plate	plate	plate
Secondary beam	mirror	mirror	mirror	mirror
splitter 2			515	570
			545	plate
			plate	none
Secondary beam	none	none	none	none
splitter 3	plate	plate	plate	plate
	none	none	none	none
	mirror	mirror	mirror	mirror

*) Position used for beam splitter NFT 610 of SNARF filter sets

**) Position used for beam splitter NFT 450 of Indo-1 filter sets

9.3.3 LSM 510 Upgraded Configurations - UV

Configuration	5	9	11	15	16	18
Main beam	NT 80/20	NT 80/20	NT 80/20	NT 80/20	NT 80/20	NT 80/20
splitter / available laser	UV/488	UV/488/54	UV/488/54		UV/488/543	UV/488/543/633
lines	UV/543	3/633	3/633	3/633	/633	405/488/543
	458/514	UV/488	UV/488	UV/488	UV/488	405/514
	488/543	458/514	UV/568	458/514	458/514	458/514
	UV (375)	488/543	488/568	477/543	477/543	488/543
	477/543	UV (375)	UV (375)	458	488/543	458
	458	477/543	488	UV (375)	UV (375)	488
		458	568	488	458	
Secondary	none	none	none	none	none	none
beam splitter 1	mirror	mirror	mirror	mirror	mirror	mirror
	490	490	490	490	490	490
	515	515	545	515	515	515
	545	545	570	545	545	545
	none**	570	635 VIS	635 VIS	635 VIS	635 VIS
	none*	none	plate	plate	plate	none*
	plate	plate	none	none*	none*	plate
Secondary	mirror	Mirror	mirror	mirror	mirror	mirror
beam splitter 2		490	490	490	490	490
		none*	none*	545	545	515
		plate**	plate**	plate**	plate**	545
Secondary	none	None	none	none	none	none
beam splitter 3	plate	Plate	plate	plate	plate	plate
	none	None	635 VIS	none	635 ViS	none
	mirror	Mirror	mirror	mirror	mirror	mirror

*) Position used for beam splitter NFT 610 of SNARF filter sets

**) Position used for beam splitter NFT 450 of Indo-1 filter sets

9.3.4 LSM 510 Upgraded Configurations - NLO

Configuration	12	13
Main beam splitter /	NT 80/20	NT 80/20
available laser lines	KP 700/488	UV/488/543/633
	KP 700/514	KP 700/488
	KP 700/543	KP 700/543
	458/514	458/514
	488/543	458
	488	488
	KP 650	КР 650
Secondary beam splitter 1	none	None
	mirror	mirror
	490	490
	515	515
	545	545
	none	635 VIS
	none*/**	none*/**
	plate	plate
Secondary beam splitter 2	mirror	mirror
		490
		545
		BG39
Secondary beam splitter 3	none	none
	plate	plate
	BG39	BG39
	mirror	mirror

*) Position used for beam splitter NFT 610 of SNARF filter sets

**) Position used for beam splitter NFT 450 of Indo-1 filter sets

ANNEX Filter change in the detection beam path of channels 1 and 2

LSM 510

Carl Zeiss

9.4 Filter Change in the Detection Beam Path of Channels 1 and 2

For optimum investigation of specimens it is useful to employ filter wheels permitting the motorcontrolled change between different filters for narrow-band or broad-band detection depending on the wavelength. The number of filters is limited by the capacity of the filter wheel. The change of the filter wheel as a whole involves complete readjustment.

The filter wheels of channels 1 (upper cover cap) and 2 (lower cover cap on the right side) of the Scanning Module have a change position in which a filter, including its mount, can be changed in a reproducible position without requiring readjustment. The filters can be rotated in their cells, and with the light path being eccentric relative to the filter center, the best transmission area of the filter for the respective wavelength or pass range can be found by rotating the filter. This is very important for the investigation of specimens of low emission.

Filter change

- By software control, move filter wheel (9-3/**5**) to the change position.
- Pull cover cap (9-3/1) off the Scanning Module.
- Use the filter tool (9-3/2) to pull the filter mount (9-3/4) with the filter (9-3/3) out of the guide well.
- Change filter to suit the application.
- The filter is rotatable in its mount, allowing adjustment for finding the best transmission area of the filter for the wavelength used.
- Enter the designation of this particular filter into the System Software database.

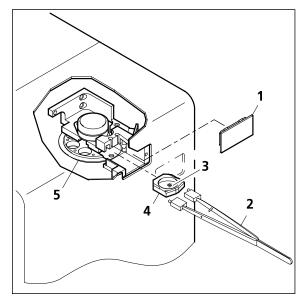


Fig. 9-3 Filter change

ANNEX

Detaching / Attaching the Scanning Module from / to Microscope Stands LSM 510 LSM 510 META

Carl Zeiss

9.5 Detaching / Attaching the Scanning Module from / to Microscope Stands

Tool needed: 3 mm Allen key

The user can remove the Scanning Module from one microscope and attach it to another within a few minutes. **No adjustment** is required after the change-over. Described below is the change-over from an Axioplan 2 to an Axiovert 100 M in baseport configuration.

Before the change-over, **shut down** the system as described in chapter 4 in order to avoid damage to the system and loss of data.

- Turn out both knurled-head screws (9-4/1) at the Scanning Module (9-4/2) fitted to the Axioplan 2.
- Turn out M3 hexagon socket screw (9-4/3) with the Allen key.
- Cautiously pull Scanning Module off the Axioplan 2 stand.
- Attach Scanning Module to the baseport of the Axiovert 100 M, minding the guide pins (9-4/**6**), and secure it with the M3 hexagon socket screw (9-4/**3**).
- Fasten Scanning Module to the baseport with two hexagon socket screws (9-4/**5**), using an offset Allen key.
- As the Scanning Module is heavy, weighing about 14 kg, it is easier if the changeover is carried out by two persons.
- Pull off covering caps (9-4/**4**) from the CAN-BUS and RS232 interface ports at the rear of the Axiovert, remove the two cables 457411-9011 (CAN-BUS) and 457411-9012 (RS232) from the Axioplan, plug them into the Axiovert and secure them there.
- Switch the LSM 510 on with the REMOTE CONTROL switch.
- Click on the **Stand select** icon to update the system database with the new database of the Axiovert 100 M microscope.
- Restart the LSM program.

ANNEX LSM 510 Detaching / Attaching the Scanning Module from / to Microscope Stands LSM 510 META

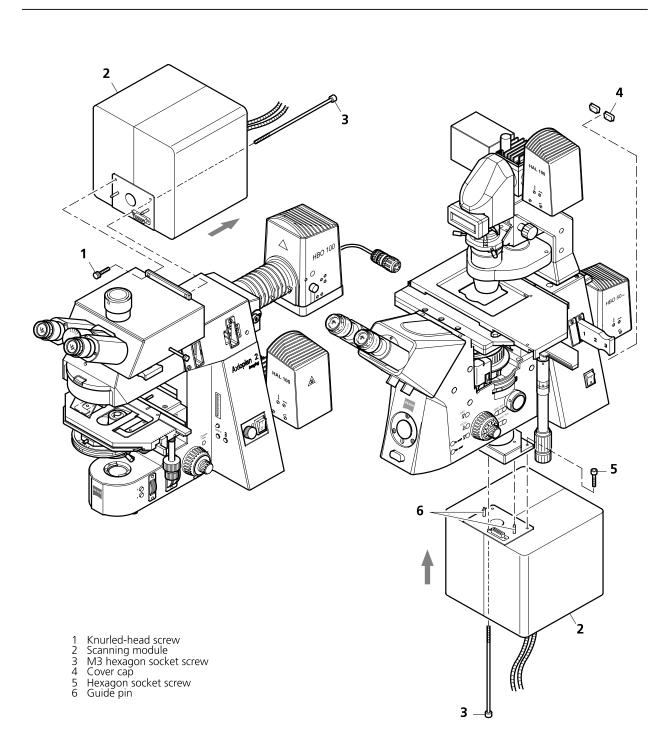


Fig. 9-4 Change-over of the Scanning Module

9.6 Hints on the Use of the HRZ 200 Fine Focusing Stage

9.6.1 General Description

The HRZ 200 fine focusing stage is a compact attachment for the Axioplan 2 MOT and Axiovert 100 M microscope stages, which allows the particularly fast and high-precision fine focusing of the object. The HRZ 200 permits fine focusing over a range of 200 μ m, with the smallest step width being less than 10 nm, reproducibility better than 40 nm, and the maximum speed amounting to 10 Hz. The stage allows the use of specimens with a weight of less than 100 g.

The HRZ 200 is not used if manual coarse focusing is performed. To position the objective in relation to the optical Z-axis, the standard XY-microscope stage is used.

The HRZ 200 features a mount for standard object carriers of 76 mm x 26 mm x 1 mm and a milled-out receptacle for \emptyset 36 mm x 1 mm Petri dishes.

9.6.2 Application Fields

- High-precision fine focusing and translation of the object along the optical axis.
- Fast and high-precision mounting of one-dimensional Z-line sections.
- Fast and high-precision mounting of two-dimensional R-Z-longitudinal sections.
- Fast and high-precision mounting of XY-Z-Stacks for the three-dimensional reconstruction of the object.
- Exact measurement of Point-Spread-Functions for deconvolution.

9.6.3 Additional Information on the Operation

The HRZ 200 fine-focusing stage is a high-precision, sensitive accessory for the LSM 510 from Carl Zeiss and must therefore be treated carefully.

High mechanical stress, such as the use of specimens weighing more than 100 g or the application of pressure or knocks on the movable stage tongue, can result in damage and therefore in failure of the stage function.

To be able to fully utilize the outstanding precision attainable with the fine focusing stage, anything which could interfere with its operation, especially mechanical knocks and impact of the LSM components, should be avoided. We would recommend you to always use the actively vibration-damped Kinetics stage (available as accessory under the order number 1007 508 or 1007 512) as the base for the setup of LSM systems containing the HRZ 200 stage.

The specifications of the stage are obtained only after a heating phase of approx. 30 minutes. Furthermore, the installation conditions for the LSM system must be observed.

The maximum reproducibility (better than 40 nm) for moving to an absolute position in Z is achieved by always moving to the required position from below.

Fine focusing is performed mechanically via an inclined position of the stage tongue. Therefore, the lifting range Z at the location of the image field depends on the position of the HRZ in relation to the optical axis. This means: if the user shifts the object on the microscope stage to the right via the HRZ 200, the lift will be different from the one in the zero position of the stage (max. 200 μ m) and also from the one after a shift of the stage to the left.

The HRZ has been developed to enable minute increments at a high precision. It is possible to have either a large travel range at a low precision or a low travel range at a high precision. The entire travel range of \pm 100 µm can only be passed without intermittent "Levelling" if step width >1 µm is selected.

If the LSM system is equipped with a motorized scanning stage, this shift is read back to Δx and the lift is calibrated automatically if the zero position of the HRZ has been matched to the zero position of the scanning stage via an initialization run. For this, activate the **Stage** button of the **Acquire** toolbar. Then position the scanning stage in such a way that the optical axis of the microscope corresponds to the zero position of the HRZ, i.e. to the center of the specimen holder in the stage tongue. Then perform initialization by pressing the **HRZ Null** button. This step must be repeated after every new start of the system. Also see the notes on the operation of the motorized scanning stages.

If the system is equipped with a manual microscope stage, the user has the option of performing the calibration by entering the Δx shift in mm via the **Calibration** slider.

The shift is read off from the microscope stages. In the case of the manual Axioplan 2 stage, Δx can be read directly from the scale adhered to the front of the stage. In the case of the manual Axiovert 100 stage, a scale is located on the right of the knob, where the 45 mm Δx shift relative to the zero position of the microscope stage can be read off. The Δx value is positive for both stages if shift from the zero position is made to the right and negative if the shift is made to the left.

On account of the inclined position of the stage tongue, the object is also shifted laterally during the fine focusing motion. This lateral shift is negligibly small if, as recommended by us, specimen carriers with thickness 1.0 mm are used exclusively. Otherwise, the marked lateral shift of the object during fine focusing can result in image distortion. For the same reason, Petri dishes without fixation ring must be used exclusively.

The nosepiece of the Axiovert stand is moved to the load position prior to switching off the LSM system and the HRZ 200 is then moved to the lowest position to avoid damage of the objective or object by a possible collision. The user must refocus after start-up of the system. Before an objective change in the Axiovert 100 or the Axioplan 2, the nosepiece and the microscope stage must be moved to the load position by the user, and then back to the work position to prevent the objectives from hitting the HRZ components. This is performed automatically if the objectives are changed menu-controlled via the relevant buttons of the LSM program.

LSM 510

ISM 510 MFTA

ANNEX Hints on the Use of the HRZ 200 Fine Focusing Stage

Carl Zeiss

The HRZ 200 for the Axiovert 100 M (1013 186) or for the Axioplan 2 MOT (1013 187) can be attached to the following standard microscope stages:

- mechanical stage 85 x 130 for Axiovert (451339)
- scanning stage DC 100 x 90 for Axiovert (451740)
- mechanical stages 75 x 50 for Axioplan (453505, 453502-9904, 453507)
- scanning stage DC 4" x 4" for Axioplan (453585-9901)

In the case of the last configuration, the object plane is shifted upwards so that KÖHLER illumination and classical transmitted-light microscopy will no longer be possible because the condenser cannot be moved sufficiently close to the object.

The user will not have to deal with any other restrictions.

9.7 Piezo Objective Focussing Device - MIPOS 3 SG

For upright stands Axioplan 2 imaging MOT, Axioskop 2 mot plus, Axioskop 2 FS MOT

Range: 80 µm

Minimum step size: 5 nm

Speed:

		Piezo objective focussing device	HRZ 200	Piezo / HRZ
Slices	Step size [µm]	xz-lines / s	xz-lines / s	
20	1	10	2.8	x 3.6
20	0.5	10	2.8	x 3.6
10	1	20	5.7	x 3.5

Objectives:

- W0.8/M27; Diameter max. 29 mm => NO C-Apochromats 40x/63x

- Modified Achroplan 40x / 0.8 W with reduced length to compensate for piezo height

Technical data:

part no.	thread M25xo.75 RMS (W0.8x1/36")	
(typical value r	neasured with -10 V to 150 V)	(open loop/closed loop)
operating volta	age	10 to 150 V
capacitance		7.2 μF
	or small electrical field strength)	
resonant frequ	iency	
(without load /	/ objective mass 140 g)	
resolution ope	n loop	0.13 nm
(measured wit	h-103-18 amplifier)	
stiffness		1.4 N/μm
connector		LEMOSA
cable length		1 m
2		5

ANNEX Piezo Objective Focussing Device

Carl Zeiss

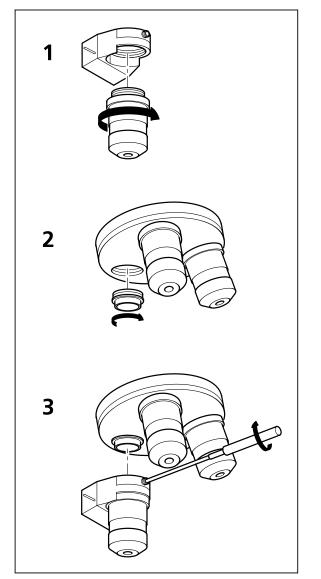


Fig. 9-5 Installation of the Piezo Objective Focusing Device

Installation:

- Screw in your microscope objective into Piezo Objective Focusing Device (see Fig. 9-5/1).
- Screw the thread-ring into your microscope (see Fig. 9-5/**2**).
- Easy clamp the Piezo Objective Focusing Device on the thread-ring (see Fig. 9-5/**3**).

9.8 Specifications of Trigger-Interface LSM 510

Application:

With the LSM 510 you can control various actions externally using Trigger-In or force external devices to work at a defined time depending on an action using Trigger-Out during time series. These actions are: Scan-Start / Stop, Bleach, Change of Scan-Interval, end of a countdown or even a mouse-click on a button.

Interface:

- Front plate Scanner-Interface (Scan-IF) inside
- Electronic-Box (Scan-Control-Module) of LSM 510:
- Connector 'User I/O', 26-pin shrunk SUB-D

Number:

- 4x Trigger-In, 4x Trigger-Out

Type/Voltage Range:

– TTL (HCMOS), 0.0 - 5.0 V

Load:

- In: 22 kOhm input impedance
- Out: ± 4 mA

Trigger pulse description:

- Level detection:
 - Low level: 0.0 1.0 V
 - High level: 3.0 5.0 V
- Slew rate:
 - rising edge: 1 µs
 - falling edge: 1 µs
- Pulse width (always positive pulses / high level):

Trigger-In:	≥ 20 ms	(Speed 10 - 5)
	≥ 31 ms	(Speed 4)
	≥ 62 ms	(Speed 3)
	≥ 123 ms	(Speed 2)
	≥ 246 ms	(Speed 1)
Trigger-Out:	ca. 100 ms	

– Pulse frequency:

Trigger-In:	2x pulse width
Trigger-Out:	> pulse width

Valid edge:

Trigger-In:	Rising edge
Trigger-Out:	Falling edge

Caution:

- Never apply more than 5 V or negative voltages to avoid any damage.
- In and outputs are not galvanically decoupled.
- Therefore proper measures for galvanic decoupling of external devices have to be taken (optocoupler etc.).
- Do not connect pins labeled 'reserved' (see table below). Otherwise, at least the interface can be damaged.

Pin assignment:

No.	Name	Direction	Description
1	Trig1O	Out	Trigger Output #1
2	Trig2O	Out	Trigger Output #2
3	Trig3O	Out	Trigger Output #3
4	Trig4O	Out	Trigger Output #4
5 8	-	-	reserved
9	GND	-	Ground (0 V)
10	Trig1I	In	Trigger Input #1
11	Trig2I	In	Trigger Input #2
12	Trig3I	In	Trigger Input #3
13	Trig4l	In	Trigger Input #4
14 17	-	-	reserved
18	GND	-	Ground (0 V)
19 25	-	-	reserved
26	GND	-	Ground (0 V)

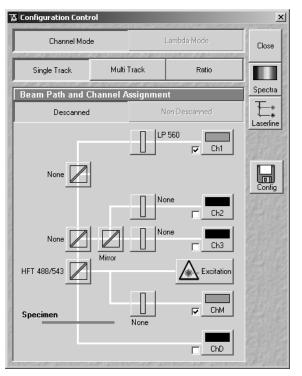


Fig. 9-6 Configuration Control window

9.9 Monitor Diode

The monitor diode is placed in the excitation ray path of the LSM 510 behind the beam splitter combining the visible and the UV ray path and in front of the main beam splitter. Therefore it allows to check the laser input in terms of power and noise. With the attenuation filter wheel in front of the diode it is possible to attenuate the laser power reaching the diode. It is not possible to select one line out of a few excitation wavelengths to be detected by the diode.

Proceed as follows to activate the diode as a detector:

- Click on the corresponding button in the Configuration Control window of the LSM 510 software (Expert Mode).
- Choose either **Frame** or **Line** scan.

LSM 510 LSM 510 META

- Change to the **Scan Control** window and press **Cont.**; the system will scan with the diode as a channel.
- Choose the right amplification of the signal obtained by using the special neutral density filters in front of the diode or / and by using the setting of the **Amplifier Gain** and **Amplifier Offset** value.

(Scan Control - Channels ChM-1).

Application examples:

a) Checking the laser power

This function is not automated so far. To qualitatively measure the laser power, the diode can be used in such a way that the gray level obtained in the **Line Scan** mode at a certain setting of the whole system is stored as a text overlay together with the image (manually done by user). As the diode setting (Ampl. Gain, Ampl. Offset, ND filter) is stored together with the image, the setting is automatically reloaded when using the **REUSE** button. If deviations can be observed it is easy to set the laser power to the old value by means of the AOTF transmission.

🚡 Scan Control × <u>M</u>ode <u>C</u>hannels Close Spot Line -Frame 🌌 New Channel Settings Channels Ch1 ChM ΦŌ Find F Fast XY B1 À Pinhole 73.5 🗆 🕨 1 Max Single Pinhole Ø = 1.00 Airy Units Optical slice < 193.3 µm STOP Stop Detector Gain 700 Þ Cont. Amplifier Offset -0.095 4 ▶ Þ Amplifier Gain 1.4 Г Excitation Lase Line active Transmission [%] Powe / 🐘 Lase 458 nm 0.1 🔳 ۲ ۲ 🗖 488 nm 0.1 Þ ▼ 543 nm 30 ۲ . □ 633 nm 0.1

Fig. 9-7 Scan Control window

b) Noise Reduction by Ratio

Contrary to the PMT signal, the signal of the monitor diode is not modulated by any specimen information. Thus it can be used to ratio the PMT signal to get rid of the laser noise (due to any laser as a physical fact) and thereby improve the signal to noise ratio of the fluorescence or reflectance image. The major condition which has to be fulfilled to use the monitor diode for this purpose is that the dominating source of noise is laser noise. The signal of the monitor diode will always be dominated by laser noise (independent of the power set at the laser, or the transmission set at the AOTF), whereas the dominating source of noise in the PMT signal can also be the shot noise of light (shot noise especially occurs in low light fluorescence application; as rule of thumb it can be noted that the shot noise is limiting the signal to noise ratio, if the PMT voltage has to be set to a value > 400 V).

Any kind of noise which can not be observed in both channels at a time will be amplified and not reduced by the ratio process. Low or high frequency laser noise is the only source of noise which is correlated in the PMT signal and the signal of the monitor diode.

Low or high frequency laser noise is mainly introduced if the Ar, ArKr lasers are used at a tube current lower than 8 A (Ar-Vis, ArKr) or 20 A (Ar-UV) respectively.

🖾 Configuration Control × Channel Mode Close Single Track Multi Track Ratio Spectra Beam Path and Channel Assignment F* Descanned Laserline LP 560 Ch1 Config None Ch2 Ch3 HFT 488/543 - Excitation ChM Specimen None ChD Ratio Settings Source 2 ChM-T1 💌 🔽 R1 Source 1 Ch1-T1 🔻 Source 1 Ch1-T1 💌 Source 2 Ch1-T1

Carl Zeiss

Fig. 9-8 **Configuration Control window**

To use the monitor diode for ratio application, proceed as follows:

- Click on the Ratio button.
- Activate the ratio channel R1 or R2 in the Ratio Settings panel in the Configuration Control window in addition to the monitor diode channel (ChM-1) and one PMT channel.
- Choose the appropriate PMT channel as source 1 in the Ratio Settings panel and ChM-1 as source 2. If this numbering is changed (inverted), the ratio image will show an inversion of gray levels if compared to the PMT image.
- B It is not possible to do the ratio between an on-line ratio image generated with channels (as two PMT in ionconcentration sensitive ratio imaging) and the signal of the monitor diode.

LSM 510

The following image is an example of the reduction of correlated noise. The low frequency noise has been generated artificially.

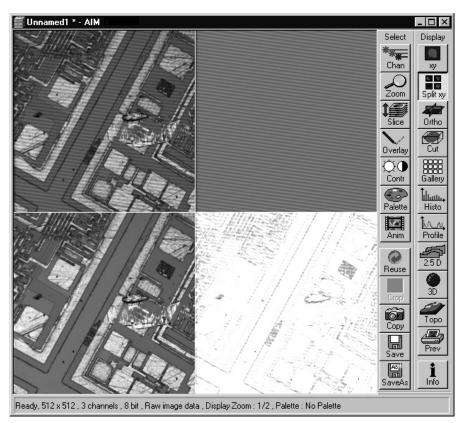


Fig. 9-9 Image Display window

The image in the upper left corner shows the PMT image plus noise, the image beneath this (upper right corner) shows the signal of the diode expanded to 512×512 pixels (noise without object information). The two images below show the ratio of the PMT and diode signal (left) and the sum of all signals (right). The sum-image does not contain any information and can therefore be neglected.

To get a ratio image like the one shown here, Detector Gain, Amplifier Gain, Amplifier Offset of the PMT channel, Gain and Offset of the diode channel, Gain and Offset of the ratio channel must be set in the correct way.

Each of the parameters summarized effects either the amplification of the ratio image, or the contrast of the ratio image, or the quality of the noise reduction.

ANNEX Monitor Diode

The single steps to find the right setting of all the parameters to be set are listed in the following:

- Activate the Range Indicator.
- Adjustment of **Amplifier Offset**: the Offset of the PMT channel and diode channel have to fit to each other to guarantee the best noise reduction.

The best way to do the adjustment is the following:

- Choose different colors in the **Configuration Control** window for PMT and diode channel.
- Activate Line Scan.
- Switch off all laser lines in the **Excitation** window.
- Activate Cont.
- Set values for **Ampl. Gain** to 1 in each channel.
- Set the lines visible to the same level as close to the ground level as possible; the values you find for the Offset in each channel should be negative.

A final adjustment of the offset adjustment is done by visually evaluating the noise reduction in the ratio image. As the Offset value of the PMT channel influences the range setting of the ratio image much less than the Offset value of the diode channel, the fine tuning should be done via the PMT offset, if required.

As mentioned before, the calculation of the ratio image is very sensitive to different signal offsets in the two channels used. As the offset is influenced by the scan speed as well as by the Amplifier Gain used, the offset calibration is not valid any more if the scan speed is changed, or the Ampl. Gain is set to a new value respectively. In most cases a new fine tuning is necessary. If this doesn't work, the complete calibration process has to be repeated.

Another possibility to calibrate the offset values is to set the values to -0.1 as default for both channels, then perform steps 3 and 4 and finally adjust the noise reduction by varying the PMT offset value.

If the ratio application is used and the offset has been set to the best reduction of noise in the ratio image, it is not allowed to change the offset of the PMT channel to change the reduction of background fluorescence, for example. This can be done only if the diode offset is corrected afterwards.

Adjustment of Detector Gain

The Gain of the PMT should be set with the help of the range indicator function. No 'red ' and no 'blue' pixels should occur in the image of the PMT.

Amplifier Gain

The diode signal is set to the right range (gray level between 50 and 200 - 8 bit image / 750 and 3500 - 12 bit image) with the help of gray filters and amplifier gain. The use of a lower filter density should be prioritized against the use of a high gain value.

The value of the amplifier gain of both channels (PMT and diode) should be set to one, if possible. Because of an increasing amplifier noise, parallel to the gain factor, a gain value of more than 2 should be avoided. The most important thing is to avoid pixels below the zero level and beyond the maximum range respectively.

Mode Channels Z Settings Close • Spot Line Frame Use Z Stack Channel Settings Channels Ch1 ChM Channels Ch1 ChM Find Pinhole 73.5 ● 1 Max Optical slice < 193.3 µm Pinhole Ø = 1.00 Airy Units Single Detector Gain 700 ● ● Stop Amplifier Offset 0.095 ● ● ● Cont Excitation ● ● ● ● ● ● Laser Line active Transmission [%] ● ● ● ● ● Laserine 633 nm 0.1 ● ● ● ● ●	절 Scan Control	×
Sput Line Pranie Rol Stack Channel Settings Ch Dh Find Channels Ch Dh Find Pinhole 73.5 Image: Stack Find Optical slice < 193.3 µm	Mode Channels Z Settings	Close
Channels Ch1 Channels Ch1 Channels Ch1 Channels Ch1 Channels Ch1 Pinhole 73.5 Coptical slice < 193.3 µm	Spot — Line — Frame Use CO Stack	
R1 Find Pinhole 73.5 Optical slice < 193.3 µm	Channel Settings	New
B1 Pinhole 73.5 Optical slice < 133.3 µm	Channels Ch1 ChM	
R1 Pinhole 73.5 ↓ 1 Max Optical slice < 193.3 µm		Find
Pinhole 73.5 Pinhole 74.5 Pi		Fast XY
Detical slice < 193.3 µm Pinhole Ø = 1.00 Airy Units Detector Gain 700 ↓ Amplifier Offset 0.095 ↓ Amplifier Gain 1.4 ↓ Excitation Laser Laser Laser ↓ 488 nm 0.1 ↓ ↓ 543 nm 30 ↓	<u></u>	
Detector Gain 700 Amplifier Offset 0.095 Amplifier Gain 1.4 Excitation Excitation 488 nm 0.1 48	Pinhole 73.5	Single
Detector Gain 700 Image: Content of the second	Optical slice < 193.3 μm Pinhole Ø = 1.00 Airy Units	
Amplifier Gain 1.4 Cont Excitation Laser Laser Laser 488 nm 0.1 Cont Cont Cont Cont Cont Cont Cont	Detector Gain 700	
Excitation Laser Laser Laser V 543 nm 30		
Line active Transmission [%] Laser Power 458 nm 0.1 488 nm 0.1 488 nm 0.1 488 nm 0.1		23
Image: Power Power Laser 458 nm 0.1 Image: Power Image: Power 488 nm 0.1 Image: Power Image: Power Image: Power Image: Power Image: Power Image: Power Image: Power<	Law I	
↓ ↓	458 nm 0.1 4	
633 nm 0.1 ↓	Laserline	
	633 nm 0.1 4	
Reptile and the second second second		

Fig. 9-10 Scan Control window

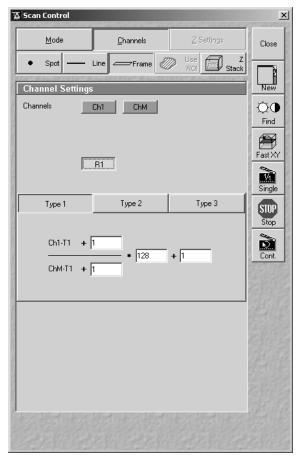


Fig. 9-11 Scan Control window

Gain and offset in Ratio channel

If the setting of the PMT channel is finished, the range of the ratio channel is adjusted by the parameters in the corresponding formula. Three types of formulas are offered when the **R1-1** button is pushed. The only formula needed for a ratio image with the monitor diode is type 1:

$$\frac{S1+n}{S2+m} * x+y$$

The values for n and m have to be zero, as well as the value for y. Any deviation from zero will decrease the contrast of the ratio image.

Only the value of x shall be influenced by the user. Dependent on the choice of data depth (8 or 12 bit), x is between 0 and 256 (8 bit) or between 0 and 4096 (12 bit).

Default settings are 150 and 3000 respectively. With the help of the range indicator the default value is changed until pixel overflow ('red pixels') is no more available

Any new value can be set by hand-typing and pressing the **ENTER** key while the scan is running.

Any change in the setting parameters of PMT and diode signal will make a new Gain x in the ratio formula necessary.

If the adjustment of all parameters is finished, only the ratio image can be scanned or displayed by switching off the PMT channel and the diode channel in the **Configuration Control** window and leaving only the Ratio Channel turned on. As a result, only the ratio image is displayed; which can still be influenced by the settings in PMT and diode channel.

9.10 NLO Non Linear Optics Laser for LSM 510 NLO

When the optional NLO laser (Titanium-Sapphire-Laser in the near infrared range - NIR) is used, some specialties in the operation of the **Laser Control** window and the configuration of the system in the **Configuration Control** window must be taken into consideration.

9.10.1 Laser Control Window

The **Laser Control** window features no remote control functions for the NLO laser.

On activation of the **On** button, the laser is not switched on directly, but the software is only informed that the laser is switched on and the laser safety shutter can be opened.

The laser wavelength to be used must be matched with the hardware and entered in the software.

- Allow the use of the **Titanium:Sapphire** laser with a click on the **Lasers** panel of the **Scan Control** window. The **Titanium:Sapphire** panel is displayed.
- Click on **On** to activate the laser for the software.
- Click on the **Modify** button. The **Laser Modify Control** window is displayed.
- Enter the wavelength set on the laser in the **Edit Laser Wavelength** input box (no laser tuning).
- The **Fine Tuning AO-Frequency** slider enables you to fine-tune the AO-frequency (Acousto Optical) during the continuous scanning procedure. This should only slightly influence the intensity of the signal because the automatic presetting is of high precision.
- Click on **Store** to confirm the setting. The **Laser Modify Control** window is closed and the **Laser Control** window updated.

_asers	1		Close
Laser Unit	Wavelength	Power	-
Argon	458, 488, 514 nm	Off	1.4700
HeNe1	543 nm	On	
HeNe2 Titanium:Sapphire	633 nm 780 nm	Off On	
Titanium:Sappl	hire		
Maximum Power:	50.0 m₩	<u>O</u> n	
Maximan Fower.			
Wavelength:	780 nm	04	
	780 nm connected	0 <u>f</u> f	
		<u>0</u> n	

Fig. 9-12 Configuration Control window

La	ser Modify Control
AND COMPANY	1. Edit Laser Wavelength [nm] 780
A PARTY	2. Fine tuning AO-Frequency [MHz]
AND COMPANY	109.577
	and the second second second
N. N.	<u>S</u> tore <u>C</u> ancel
	all and the first of the fair of the first of

Fig. 9-13 Laser Modify Control window

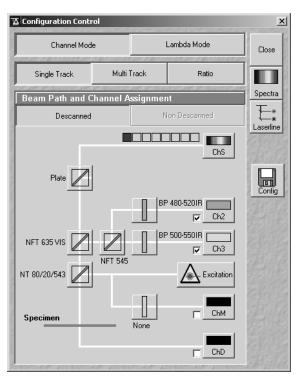


Fig. 9-14 Configuration Control window

9.10.2 Configuration Control Window

Application of the NLO laser requires special main dichroic beam splitters and the relevant emission filters to be activated in the **Configuration Control** window.

NLO-excited signals can be detected in every channel by taking care on the blocking of the NIR laser excitation light.

The following filters are especially designed for detection of NLO-excited fluorescence signals:

- HFT KP 680

main dichroic beam splitter reflecting NIR excitation longer than 680 nm, transmission for shorter wavelengths

- HFT KP 680 / 488 (514, 543)

main dichroic beam splitter reflecting NIR excitation longer than 680 nm,

transmission for shorter wavelengths and reflecting 488 nm excitation for simultaneous detection of NIR and VIS excitation

KP 685 (short pass filter) transmitting wavelengths shorter than 685 nm

- BP 500-550 IR

special bandpass for NLO blocking also in the NIR range (extension IR), can be used without additional BG 39

– BG 39

highly efficient block filter for NIR, for combination with normal emission filters without IR extension

9.10.3 Pinhole and Collimator Settings

- The pinhole can be fully opened for maximum detection efficiency due to the focal excitation capabilities of the NLO effect (see **Scan Control** window, **Channel Settings**).
- In the **Pinhole & Collimator Control** window, the **NIR** collimator can be used to align the overlap of the excitation planes within the object for VIS as well as NIR excitation light wavelength in the **Collimator** panel (see **Maintain** menu, **Pinhole** button).

9.11 Non Descanned Detection (NDD)

The application of Non-Descanned Detection with the LSM 510 is only useful in combination with the optional NLO laser.

The Non-Descanned Detection modules can be used on the reflected or transmitted-light beam path or simultaneously on both beam paths. This means that the maximum of four NDD channels can be configured. If two NDD channels have been assigned to the transmitted-light beam path, no transmission PMT can be implemented.

In Non-Descanned Detection, the radiation emitted by the specimen is conducted directly on the relevant detector without passing the scanner mirror again.

Non-Descanned Detection is set and configured in the **Configuration Control** window by activating / deactivating the buttons **Descanned Detection** and **Non-Descanned Detection** while the NDD module is being connected.

- Click on the **Non-Descanned Detection** button to change to Non-Descanned Detection.
- Configure the NDD channels analog to the Descanned Detection mode.
- The configuration of multitracks is also possible for NDD applications, though not in combination with the standard channels.
- Pull out or push in the pushrod (9-16/1) to close or open the shutter for the HBO 100 illuminator.

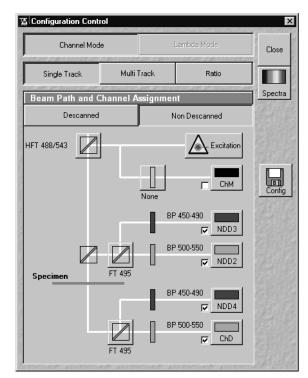


Fig. 9-15 Configuration Control window

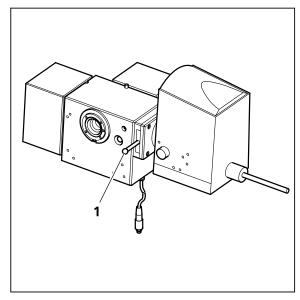


Fig. 9-16 Non descanned detection module with HBO 100 lamp

ANNEX
AxioCam High Resolution Digital Cameras

9.12 AxioCam High Resolution Digital Cameras

9.12.1 High Resolution Microscopy Camera AxioCam HRm Rev.2

Cat. No	000000-0445-553, incl. digital interface and cable	
High Range Monochrome		
Number of Pixels:	1388 (H) x 1040 (V) = 1.4 Mega pixel	
Chip size:	8.9 mm x 6.7 mm, equivalent to 2/3"	
Spectral range:	With BK-7 protection glass up to 1000 nm, with IR barrier filter BG40 limited to about 350 nm to 700 nm	
Selectable Resolution by Binni	ng or Microscanning	
H x V	Acquisition Time (s) @ 20 ms exposure	
694 x 520	0.07 (13 images / s	
1388 x 1040	0.2 (5 images / s)	
2776 x 2080		
4164 x 3120		
Dynamic Range:	Better than 2000 : 1 @ 8 e readout noise	
Integration Time:	1 ms to several minutes	
Cooling:	Single stage Peltier cooling	
Optical Interface:	C-Mount	
Size:	about 11 cm x 8 cm x 6.5 cm (2.3" x 3.2" x 2.6")	
Registration:	GS, CE, cUL	
Power Supply:	12 V DC, 1 A, 230 V/110 V, autodetecting	

ANNEX AxioCam High Resolution Digital Cameras

Carl Zeiss

9.12.2 High Resolution Microscopy Camera AxioCam HRc

Cat. No	000000-0412-312, incl. digital interface and cable	
High Range Color		
Number of Pixels:	1300 (H) x 1030 (V) = 1.3 Mega pixel	
Chip size:	8.7 mm x 6.9 mm equivalent to 2/3"	
Spectral range:	Limited by IR barrier filter BG40, about 400 nm to 700 nm	
Selectable Resolution by Binnin	ng or Microscanning	
H x V	Acquisition Time (s) @ 20 ms exposure	
432 x 342	0.07 (Color interpolation)	
1300 x 1030	0.2 (Color interpolation)	
1300 x 1030	0.7 (full resolution for color channels)	
2600 x 2060		
3900 x 3090		
Dynamic Range:	Typical 2000 : 1 @ 9 e readout noise	
Integration Time:	1 ms to several minutes	
Cooling:	One stage Peltier cooling	
Optical Interface: C-Mount		
Size:	about 11 cm x 8 cm x 6.5 cm (2.3" x 3.2" x 2.6")	
Registration: GS, CE, cUL		
Power Supply:	bly: 12 V DC, 1 A, 230 V/110 V, autodetecting	

9-38

ANNEX AxioCam High Resolution Digital Cameras

Carl Zeiss

9.12.3 Microscope camera port adapters for the AxioCam

Adapter Video V200 C 2/3" 0.63x at frontport Axiovert 200M Cat. No 000000-1071-171

This adapter is **needed for attachment** of the high-resolution AxioCam microscope cameras **on the Axiovert 200M**

Adapter Video 60 C 2/3" 0.63x

This adapter is **needed for attachment** of the high-resolution AxioCam microscope cameras **on the Axioplan 2, 2i** and **Axioskop 2, 2FS & 2plus**.

For an additional documentation port to be connected to the camera port of the tubes with interface 60:

Double video adapter

For connection to interface 60, 2 switching positions for switching to 100% mirror or to interface for P&C modules.

Adapter Video 44 C 2/3" 0.63x

This adapter is **needed for attachment** of the high-resolution AxioCam microscope cameras **on the Axiovert 100M BP / SP**.

No other cameras are supported by the LSM Software!

LSM 510 LSM 510 META

Cat. No 452997-0000-000

Cat. No 00000-1058-640

Cat. No 000000-1069-414

List of Key Words 9.13

Numbers

2.5 D	5-290
3D	5-292
3D for LSM	
terms and definitions	8-3
3D View	5-20, 5-178

Α

About LSM 510	5-238
ACE Automatic Component Extra	iction 5-349
Acquire	5-20, 5-44
Add image sequences	8-22
Alpha rendering method	8-60
And calculation	8-49
Automatic object measurement	8-66
Ampl. Gain	.5-356, 5-358
Ampl. Offset	.5-356, 5-358
Analysis of images	5-239
Animation	5-259
Area	5-276
Average	5-89
Axioplan Control	5-49
Axioskop 2 FS Control	5-60
Axiovert Control	5-56

В

Beam path	5-68, 5-70
Beam Path	5-66, 5-71, 5-352, 5-360
Bleach	5-135
Bleach Parameter	5-138
Bleach Regions	5-138

c	
Calculation	
And8-49	Э
Or8-50	
Xor8-51	1

С

OPERATION Annex

List of Key Words

Camera detection	5-83
Carl Zeiss Vision image sequence	s8-15
Channel	5-91, 5-242
Channel	
add, remove	
delete	
Channel Assignment5-66, 5-71	, 5-352, 5-360
Closing	8-43
Coded	5-342
Collimator adjustment	5-230
Color Palette	5-256
Configuration Control	5-61
Configurations overview	9-11, 9-12
Contrast	5-159, 5-252
Contrast	
change contrast	
enhance	8-31
Сору	5-263
Сору	
content of Display window	8-19
Crop	5-262
Cut	5-272

D

Database	5-21
Delete function	5-33
Export of images	5-39
Filter function	5-30
Form mode	5-25
Gallery mode	5-27
Import of images	5-38
Multi Print	5-40
New	5-21
Open	5-23
Saving an image	5-34
Subset function	
Table mode	5-28
Deconvolution	5-174

D

Delete	
object in specified size	e range8-54
Depth Coding	5-178
Desktop	4-9, 5-15
Detaching the Scanning	Module 9-16
Detector Gain	5-356, 5-358
Dialog boxes	8-6
Dichroic beam splitters	5-67
Dilation	8-37, 8-39, 8-41, 8-43
Display of images	
Display window	8-6, 8-10
Dyes	9-9

Ε

Edit Menu	8-8
Emission filter	5-67; 9-9
Erosion8-36, 8-37	, 8-38, 8-41, 8-43
Excitation	5-70, 5-80, 5-93
Excitation laser lines	9-9
Excitation of Bleach Track	5-139
Exit the Expert Mode	5-43
Exiting the LSM program	4-24, 5-363
Expert Mode	
exit	
quick start	4-13

F

File	5-20, 5-21
File menu	8-7
Fills holes	
Filter	5-68, 5-156, 7-26
Filter change	9-15
Find	. 5-233, 5-354, 5-360
Fingerprinting	5-347
Fingerprinting	5-81
Frame	5-84, 5-87
<u>creation of a</u>	<u>5-93</u>
Full Screen	5-236

F

• Functions	
Functions	0 20
Add Channel	
Arithmetics-Add	
Arithmetics-Subtract	
Automatic Object Measurementl	
Boolean-And	
Boolean-Mask	
Boolean-Not	
Boolean-Or	
Boolean-Xor	
Condition	
Contrast-Automatic	
Contrast-Interactive	
Contrast-Linearize	
Copy	
Delete All Images	
Delete Channel	
Edit Channels	
Exit	
Fill Holes	
Morphology	
Morphology-Close	
Morphology-Dilate	
Morphology-Erode	
Morphology-Open	
Object Features	
Open Image	
Print	
Render-Alpha	
Render-Surface	
Save Display As	
Save Image As	
Scrap	
Segment-Automatic	
Segment-Interactive	
Set Channel Colour	8-13
Smooth (Gauss)	
Volume Features	8-70
G	
Gallery 5-273, 8-5,	8-10
Gauss filter	8-33
Gradient shading method	
Grey value segmentation	

OPERATION Annex List of Key Words

LSM 510

Н

Help	5-238
Help menu	8-9
HFT	5-67
Histogram	5-275
Holes to fill	8-55
HRZ 200	5-103, 7-16; 9-18
Hyperfine Z Sectioning	5-103

I

E 22
5-33
5-239
5-39
5-38
5-336
5-23
5-34
5-44
7-30
7-31
5-351, 5-361
8-3
8-4
5-87
5-336
5-161
5-168

L

Lambda Mode	5-78
Laser attenuation	5-70
Laser Control	5-45
Line	5-84, 7-17
Line Selection	5-99
Line Step Factor	5-87
Line, creation of a	5-107
Log on to WINDOWS NT	4-8, 5-14
Lowpass filter	5-156
LSM 510 Switchboard. 4-11, 4-24	4, 5-17, 5-363

Μ

Macro	F 404
editing and debugging	
Macro	
Main components of the system.	
Main menu	
Main window	8-5
Maintain	
Admin	
collimator adjustment	
digital signal processor	
objektive Parameter	
pinhole adjustment	
Reboot	
set find	
spline	
Test Grid	
TSP Trace	
Mark First/Last	5-102
Marker	.5-127, 5-130
Mathematical morphology	8-34
Measurement concept	8-64
Measurement menu	8-9
Measurement process	8-65
Max	5-342
Mean	.5-337, 5-343
Mean ROI	5-133
Median filter	5-157
Microscope Control	5-48
Mode	5-87
Monitor diode	9-26
Monochrome image display	5-244
Multi Track	5-61
Multiple-channel	5-360
multitracking	
Non Descanned	

Ν

Negation of image	8-52
NFT	5-67

ANNEX List of Key Words

Carl Zeiss

Ν

Non Descanned Detection	9-35
Non Linear Optics Laser	. 9-33

Ο

Objective	5-224
object features (densitometric)	
Objective Lens	5-87
Object features (geometric)	8-68
Offset	5-90
Opening	
Operation	
Options	5-20, 5-203
dye database	.5-205, 5-206
export to	5-203
load routine mode	
settings	5-207
Orthogonal sections	5-267
Or calculation	
Overlay	5-248

Ρ

Palette	5-256, 5-357, 5-358
Parfocality	
Pinhole	
Pinhole adjustment	
Pixel Depth	
Player	
control elements	
PMT photomultiplier	5-358
Preview print	5-334
Print	
Print	
content of Display wind	ow8-18
Process	5-20, 5-148
add	5-148
channel shift	5-162
contrast	
сору	5-154
duplication	5-154
filter	

Ρ

5-160
5-152
5-153
5-151
5-287
5-181
8-4

R

Range 5-101
Range Indicator 5-357, 5-358
Ratio 5-153
Ratio channel9-32
Ratio Settings5-76, 5-77
Recording configuration 5-61, 5-71, 5-74, 5-75
Refresh 5-29
Region Of Interest 5-106
edit 5-116
Reuse5-261
ROI 5-106
edit5-116, 5-138
Rotation5-90
Routine Mode
acquisition of a frame7-7
acquisition of a time series
acquisition of a Z Stack
Standard Examination Methods
User Defined Examination Methods
Running down the operating system4-25, 5-364

S

-	
Save	5-264
Save	
content of Display window	
image	8-16
image sequence	8-16
Save As	5-264
Saving an image	5-22, 5-34

	OPERATION
	Annex
LSM 510	List of Key Words

S

Scan Average	5-89 , 5-359
Scan Control	5-84
Scan Direction	5-89
Scan speed	5-359
Scanning Modes	5-73
Scatter diagram	5-280
Segmentation	
automatic	
interactive	8-45
Select	0 54
object in specified size range .	
Settings	
Settings for excitation	
Sharpness filter	
Shut-Down Procedure	
Single channel	
Single Track	
single tracking	
Single tracking	
Slice	
Software	
Speed	
spline	
Spline	
Spline scan	
Split xy 5-94	
Spot	
Spot, creation of a	
Stage	
Starting the LSM 510 program	
Stereo	5-185
Structures	0.00
dilate erode	
Subset	
Subtract image sequences	
Switching on the Enterprise UV la	
Switching on the system	4-7, 5-13

т

Tile Scan	5-144
Time Delay	5-125
Time Interval	5-125
Time Series of a Frame of a Z Stack of a Z Stack over Lambda with Mean ROI	5-129 5-131 5-132
Toolbar	5-19, 5-237
Tool bar	8-5, 8-9
Tools change filters LSM Image Browser LSM Image Examiner stand select Topography 3D measurement functions data processing display modes measurement functions	
Track	
Track configuration	5-64, 5-65
Track Configuration	
Tracks panel, List of Transmission	
Trigger-Interface LSM 510	
Turning power off	

U

V

Value	
enter new value	8-28
mask grey value	8-53
scale a range of grey values	8-31
scale grey value	8-29
Vertical scale of histogram	8-28
View Menu	8-9
Volume features (densitometric)	8-72

ANNEX List of Key Words

Carl Zeiss

۷

Volume features (geometric)	8-72
W	
Window	5-236
full screen	
toolbar	5-237
Windows Menu	8-9

Х

Xor calculation	8-51
xy display	5-265

Ζ

Zeiss TIFF image sequence	-14
Z Sectioning5	-98
Z Settings5	-96
Z Stack5	-96
creation of a <u>5-</u>	105
Zoom	245