CGAP

Competitive Grant Applications Project

Approach and Models

01/08/2003

🙆 eRA 🍃

Major Phases

- Phase 1: Standard XML documentation, technology and application receipt flow
- Phase 2: Application Receipt and validation
- Phase 3: Business to Government flow and interchange infrastructure
- Phase 4: Integration with bi-directional communications on IPF, PPF, FSR and potentially other requests

Phase 1: Applications Only

Analyze and document the e-application standard

- Submit for comments
- Define the technical architecture for
 - Receiving
 - Storing
 - Integrating e-apps into the NIH business flow
- Define the business flows to process e-Apps

@eRA 🌦

Phase 2: Receipt of e-Applications

- Define and implement the transaction receipt and format validation
- Prototype and TEST the receipt function with external partners
- Define downstream impact of e-Applications
- Integrate feedback from comments and tests

Phase 3: Applications and B2B

- Define the business to government interchange
- Define and prototype error and change processing for e-Applications
- Define and prototype acceptance and referral by NIH
- Define and prototype registration, delegation of authority, security
- TEST the Application receipt
- PILOT a limited set of live applications

Phase 4: PPF, IPF integration

- Implement changes in business processes downstream from Receipt and Referral
- Define and implement PPF, IPF bi-directional transactions
- Define a receipt stream for FSR, eSNAP
- Construct the production quality systems for e-Applications
- TEST exchange with external partners
- Prepare for production release of CGAP
- PILOT with gradual increase in volume

Target Time Table

Phase 1: Now to end of January 03

- Standard XML documentation, technology and application receipt flow
- Inception, tech architecture and analysis

Phase 2: February – April 03

- Application Receipt and validation
- Build and test the receipt of XML stream

Phase 3: May – July 03

- Business to Government flow and interchange infrastructure
- Complete Design and build B to Gov exchange
- Pilot

Phase 4: August – November 03

- Integration with bi-directional communications on IPF, PPF, FSR and potentially other requests
- Build out the integrated system for e-Applications : Test and Gradual introduction 01/08/2003 HHS-NIH-eRA Program

7

Short term Actions

- More detailed plan under development
- Activated the focus group for e-Receipt and Referral
 - List internal issues to be addressed
- Activated the SBIR listserv and communicate approach
- Technical solution for packaging, transport and storage of XML + Docs started
- Resources assigned
- Test hardware procured, received, to be configured

Receipt and Exchange Models

- Receipt Sources
 - Current model
 - Future model
- Exchange architecture
 - One-way communications versus
 - Exchange protocol
- Critical architectural decision

Current: Multi-Source Receipts

Single Source Receipt for NIH

One-way Communications

One-way Communications

"Ticket" Process

SUBMISSION

- Request for submission issued with application identifier and file characteristics
- NIH issues an accession number and a place in queue
- NIH records submission request and file characteristics

LATER

- NIH signals for download
- SP sends file or NIH gets it
- NIH processes file

"Ticket" Process

Exchange

- Two-way communications
- A protocol to send and receive messages
- A "Hand Shake" computer to computer
- Controlled transfer of the large transaction

Messages-Web Services

- A message is an XML file sent and received by a computer
- A message may have attachments
- Each message type has its own XML schema and workflow paths
- Example Message Types are:
 - Form 398 with PDF project plan and CV attachments
 - Appendices to a Form 398
 - Request for submission of 398
 - Queue ticket
 - Notification of receipt of XML file
 - Notification of acceptance of application by NIH
 - Notification of IRG and IC assignment
 - FSR, eSNAP, Profile Submission
 - Protocols
 - and so on

Functional Components of the Exchange

Components

- Trading partner agreement
- Message transport
- Message queues
- Message validation
- Message metadata
- Trading partner database
- Message content processors
- Notification, audits, error processing

Issues

- Approach not validated with E-Grants
- Each service provider must have a listener
- Each service provider must write the interfaces to their own systems and NIH exchange
- Standards may change
- Protocol and technology not defined
 - SOAP with attachments ?
 - ebXML? Or JAX APIS, COTS product ?

Major Tech Drivers

- Avoid a huge peak a few times a year
- Minimize footprint at the service provider site
- Pick a standard that may be stable
- Look ahead for B 2 G interchanges and other transactions

Advantages of exchange

- Commercial models exists
- Lots of standard components exists
- No huge peak load problem to solve
- Generalized interface suitable for streamlining all exchanges
 - Post receipt processes can be automated
- Could be kept relatively simple and nimble

Questions to audience

- Is it feasible ?
 - Can NIH send a message, computer to computer, to an institution or service provider and expect an answer (not e-mail) ?
 - Will Institutions or SP write interfaces in a specific protocol or using a set of Web services ?

Question about **applications** transfers

- Model 1: Submitter says: Here it is, go get it when you are ready
 - With submission Service Provider (SP) indicates where the file is. Later NIH initiates transfer.
- Model 2: *NIH says: Its your turn, give it to me*
 - When place in queue is reached, NIH requests transfer and SP initiates transfer (synchronized).
- Model 3: Submitter asks: Is it my turn yet ? OK here it is
 - SP polls the NIH exchange for place in queue, when green light then SP initiates transfer.
- Model 4: NIH gives a time frame for download with the ticket
 - When ticket is issued, the NIH provides a time slot in which the application is scheduled to be transferred. The SP will download in that time frame or lose the place in queue

Current Status (Jan 03)

Preparation of a Summary report: Feb. 3, 2003

- Analysis of suitable technologies
- Processing steps for receipt of applications
- Proposed technologies for
 - Packaging, Transport of message
 - Exchange architecture
- Analysis of XML stream
 - Approach for handling core and non-core elements
 - Data element analysis, cross walk to 194, 424, 398, IMPAC II
- List of issues, action items and resolutions

eRA

Short term steps

- Publish the draft approach
- Request comments
- Work out and document the business rules for receipt, referral and review for e-applications for the Pilot
- Complete and publish the XML schema and SOAP envelope specification

