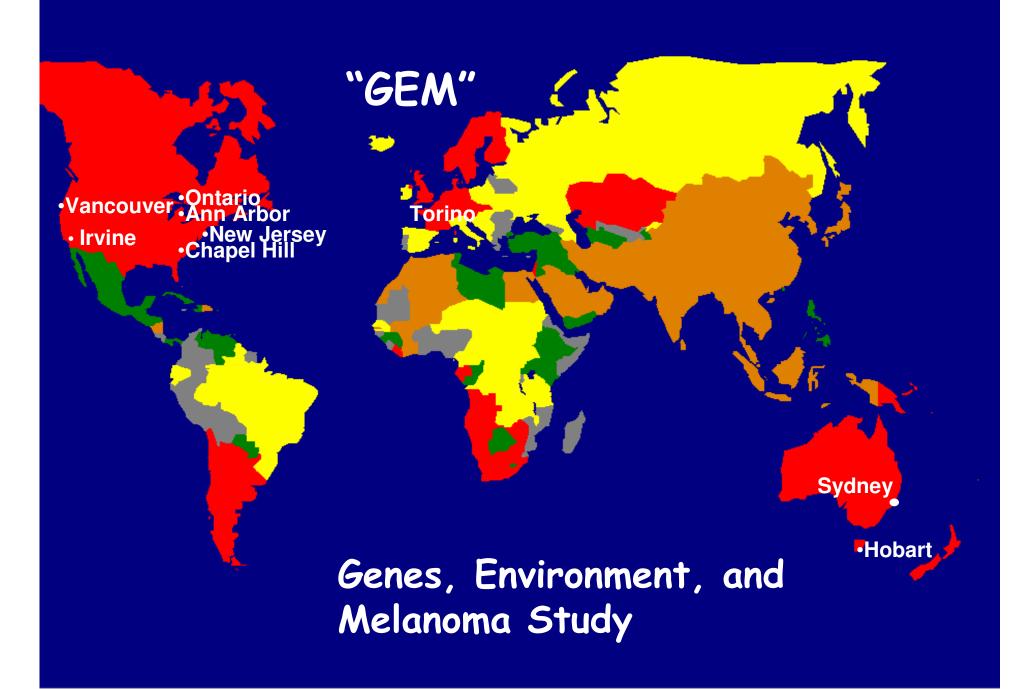
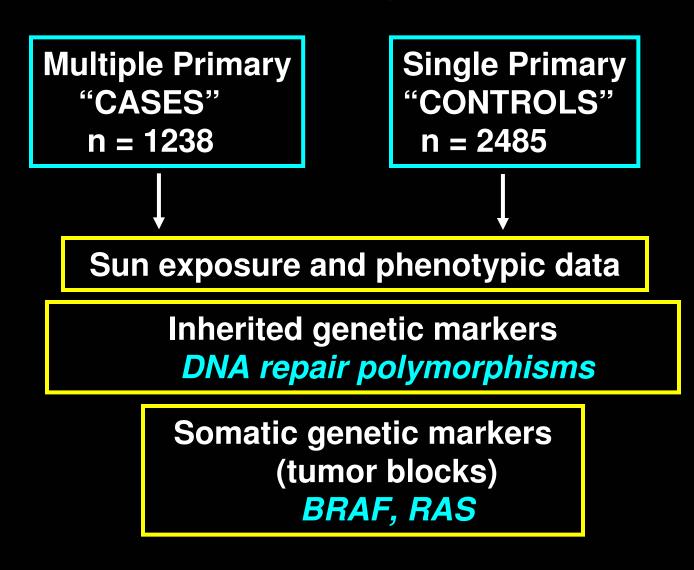
Molecular Epidemiology of BRAF and NRAS Mutations in Melanomas

Nancy E. Thomas, MD PhD Associate Professor University of North Carolina at Chapel Hill

Questions


Do childhood and adult sun exposure increase melanoma risk?

Do common NER polymorphisms increase melanoma risk?


Are melanoma pathways (denoted by mutational status) differentially associated with sun exposure and moles?

Is there a mechanism by which BRAF mutations could arise related to sun exposure?

GEM Study Design

Interpretation of Results

Risk of second or higher order melanoma among persons with a first diagnosis of melanoma

approximates

Risk of first primary melanoma among persons who were previously unaffected

Begg. Int J Epidemiol, 2006

Sunlight Exposure in GEM

Ecologic level	Residence history linked to latitude, zenith angle, ozone column, surface elevation, cloud cover
Individual level	Recreational, occupational, vacations, sunburns

Strong Melanoma Risk Factors

Ecologic level	Childhood sun exposure by residence OR ~ 2
Individual level	Lifetime beach activities & holidays OR ~ 1.5

Kricker et al. Cancer Causes Control, 2006

DNA repair genes

Nucleotide excision repair gene polymorphisms

XPD, HR23B, XPG, XPC, XPF, ERCC6

DNA repair genes

XPD 312OR = 1.5 (1.2-1.9), P = 0.004XPD 751OR = 1.4 (1.1-1.7), P = 0.004

Strongest for diagnosis before age 30.

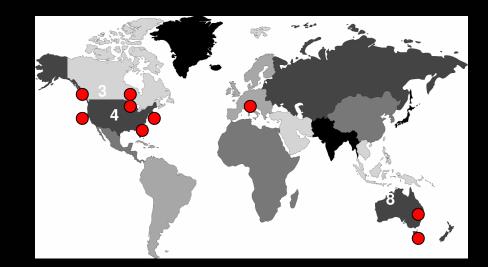
Number of XPD 312 + 751 haplotypes: trend P = 0.002

Millikan et al. Carcinogenesis 2006

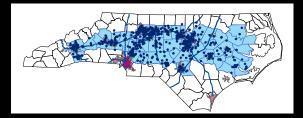
DNA repair genes

Increased risk with increasing number of variant alleles for all NER genes combined: trend P = 0.02

GEM Results


Somatic genetic markers

(tumor blocks)


BRAF, RAS

Nested GEM Study

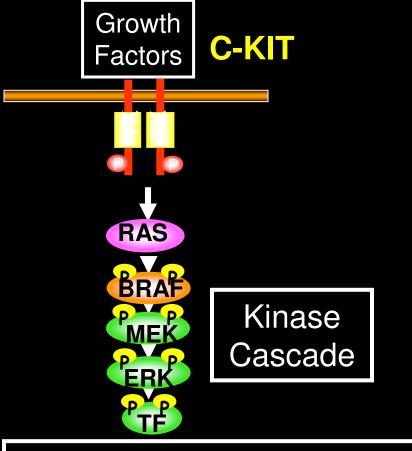
214 cases in North Carolina, 2000

NC Cases (N=214)

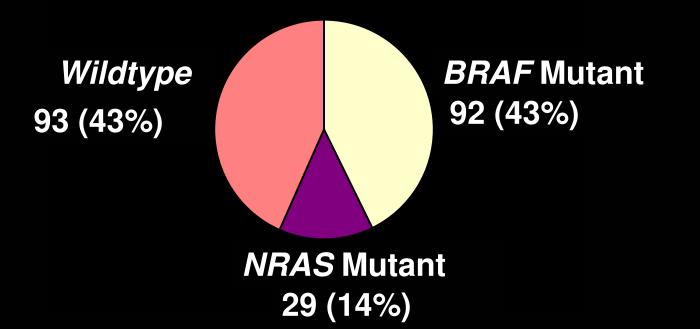
Mean 51.8 years; 55% male

55.5% thin (< 0.75 mm)

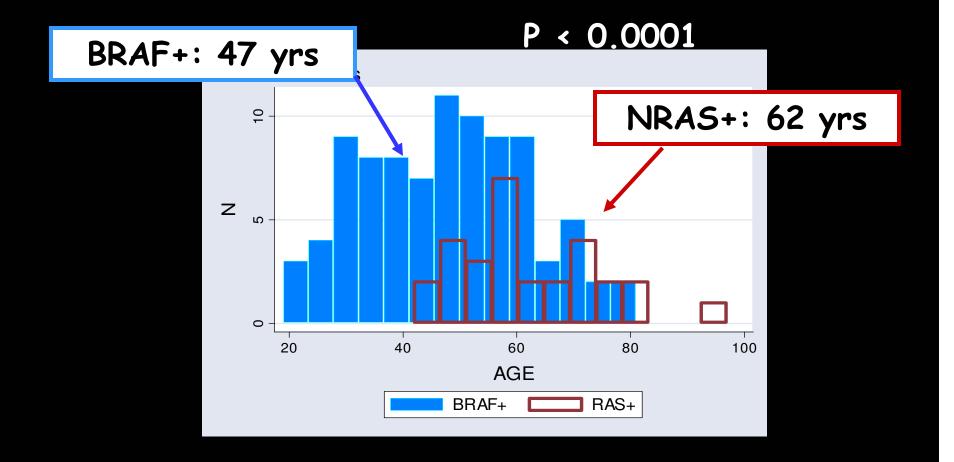
79.7% SSM, 4.5% NM, 10.4% LMM, 5.5% other


Mutually Exclusive

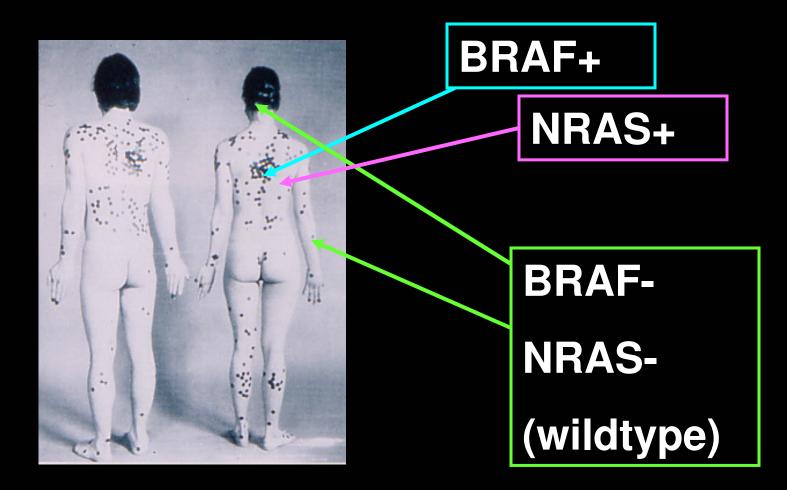
BRAF-NRAS+ BRAF-NRAS-(wildtype)



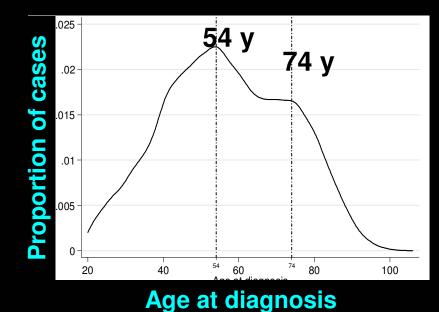
MAPK Kinase Pathway Activation


Cell Proliferation & Survival

Prevalence

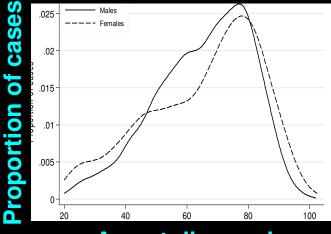

NRAS+ Decade older than BRAF+

Thomas et al., CEBP 2007


Anatomic Site

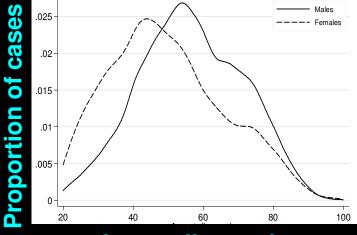
Thomas et al. Cancer Epidemiol Biomarkers Prev 2007

Similar Evidence in SEER


Age-density distribution

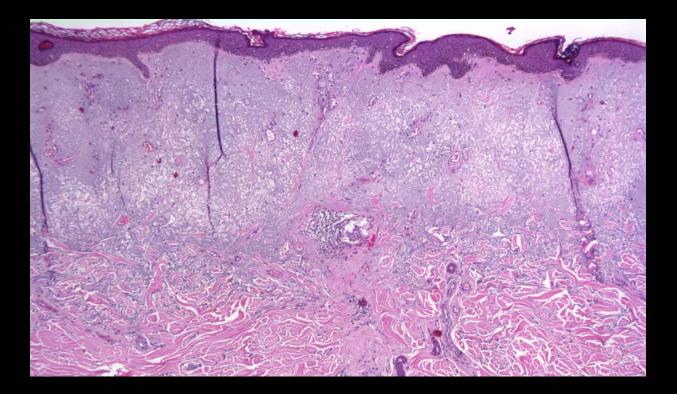
2000-2004

(n=48,673)

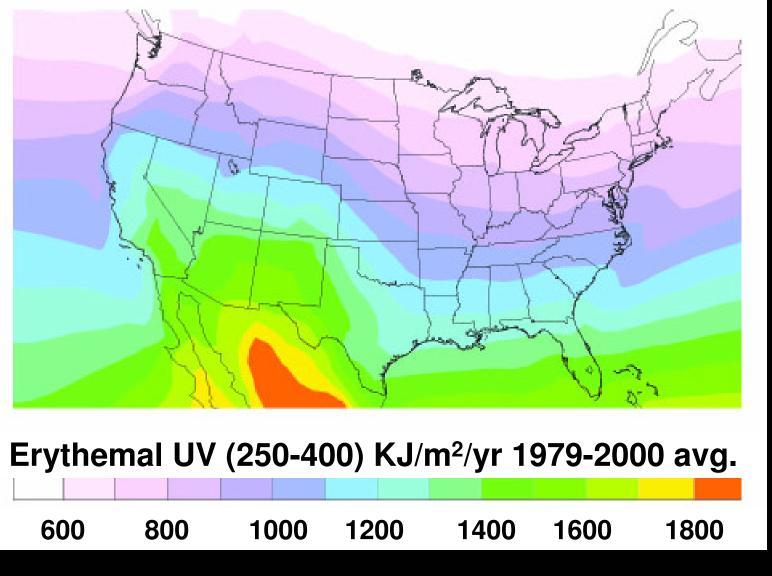

Lachiewicz et al. JID 2007

Age at diagnosis

Age at diagnosis


North Carolina GEM Cases Tumor characteristics

BRAF +	• SSM, NM
	 Low solar elastosis
NRAS +	• SSM, NM
BRAF –	• LMM
RAS –	 High solar elastosis


Histologic Evidence of Solar Elastosis

Homogenization of the superficial dermis

Erythemal UV Irradiance

Ambient Erythemal UV Exposure

Ambient Annual UV	<i>BRAF</i> + vs WT Age-adj OR (95% CI)	<i>NRAS</i> + vs WT Age-adj OR (95% CI)
Lifetime		
Low UV	1.0	1.0
High UV	2.0 (1.0-4.0)	1.1 (0.4-2.7)
Early life		
Low UV	1.0	1.0
High UV	<mark>2.6</mark> (1.2-5.3)	0.9 (0.4-2.2)

Thomas et al. Cancer Epidemiol Biomarkers Prev 2007

Age of Ambient Erythemal UV Exposure				
High UV irradiance	BRAF+ vs Wt Age-adj OR (95%	6 CI)	NRAS+ vs WT Age-adj OR (95%	
Birth year	2.0 (1.0-4.1)		0.9 (0.4-2.2)	
Age 10	<mark>1.9</mark> (1.0-3.9)		0.8 (0.3-1.9)	
Age 20	<mark>2.7</mark> (1.3-5.7)		0.8 (0.3-1.9)	
Age 30	1.0 (0.5-1.9)		0.7 (0.3-1.8)	
Age 40	1.4 (0.6-3.3)		1.3 (0.5-3.4)	
Age 50	1.2 (0.4-3.8)		<mark>2.5</mark> (0.7-8.5)	
Age 60	1.1 (0.2-7.0)		<mark>2.0</mark> (0.4-9.8)	

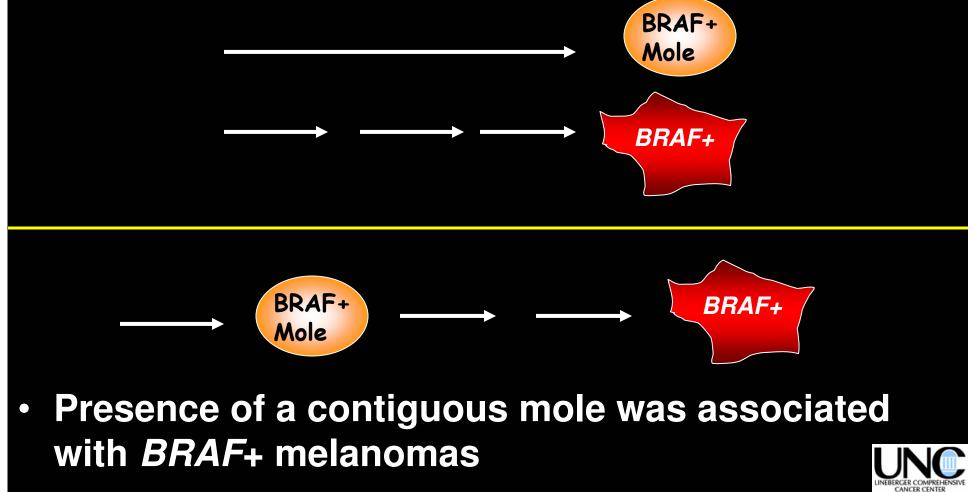
BRAF and **NRAS** Mutations in Moles

- About 70% of moles have *BRAF* mutations
- Some moles have *NRAS* mutations
- Great majority of moles do not progress to melanoma

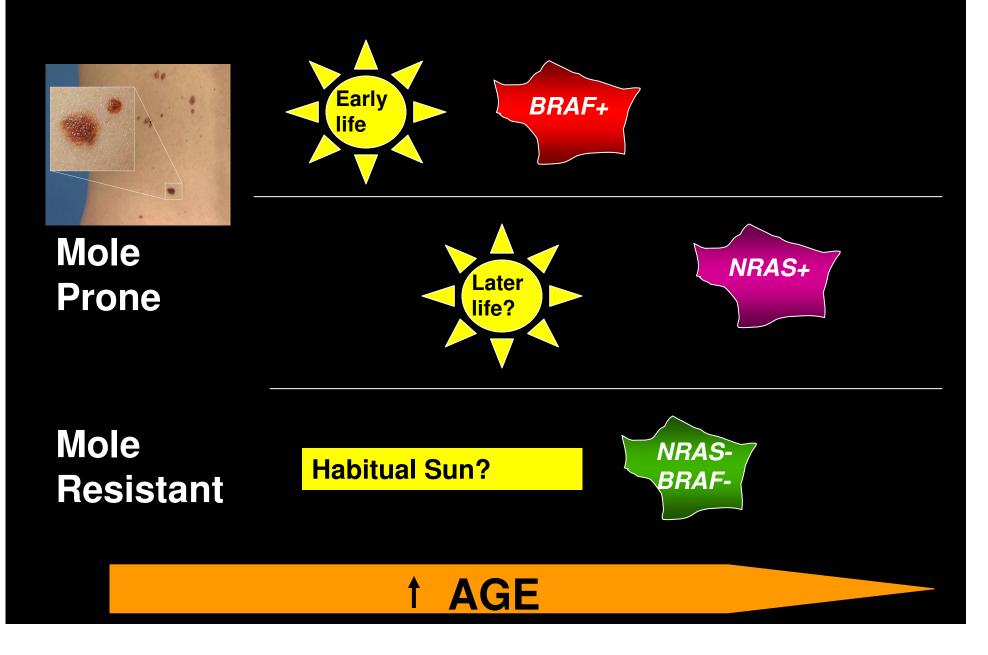
Pollock Nat Genet 2002; Kumar JID 2003; Yazdi JID 2003

Associations with Moles

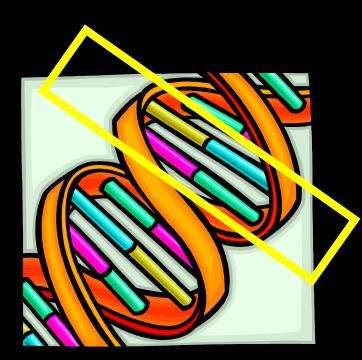
	BRAF+ vs WT	NRAS+ vs WT
Characteristic	Age-adj OR (95% CI)	Age-adj OR (95% CI)
Back mole counts		
0-4	1.0	1.0
5-14	<mark>2.4</mark> (1.1-5.5)	1.2 (0.4-3.7)
> 14	3.2 (1.4-7.0)	1.7 (0.6-4.8)
P _{trend}	0.006	0.34
Mole density diagrar	ns	
None	1.0	1.0
Low	2.3 (1.0-5.2)	2.7 (0.8-8.6)
Medium to high	3.8 (1.4-10.4) [♥]	2.7 (0.8-8.6) 3.3 (0.7-14.9)
P _{trend}	0.009	0.10



Multivariate Model


		<i>BRAF</i> + vs Wt	<i>NRAS</i> + vs Wt
Characteristic		Age-adj OR (95% CI)	Age-adj OR (95% CI)
Age at diagnosis (per 10 yrs)		0.8 (0.7-1.0)	1.4 (1.1-1.9)
Back mole counts			
0-4		1.0	1.0
5-14		<mark>2.8</mark> (1.2-6.4)	1.1 (0.4-3.3)
> 14	V	3.4 (1.5-7.8)	1.9 (0.6-5.5)
P trend		0.004	0.27
Early life UV			
Low UV		1.0	1.0
High UV		<mark>2.6</mark> (1.2-5.6)	0.9 (0.4-2.2)

Are Moles Causal Intermediates for Some BRAF+ Melanomas?


 Mole-prone individuals are more likely to have BRAF+ melanoma

Melanoma Models

Tandem BRAF Mutations

10% of melanomas; rare in other BRAF-mutant tumors

Tissue-specific UV exposure?

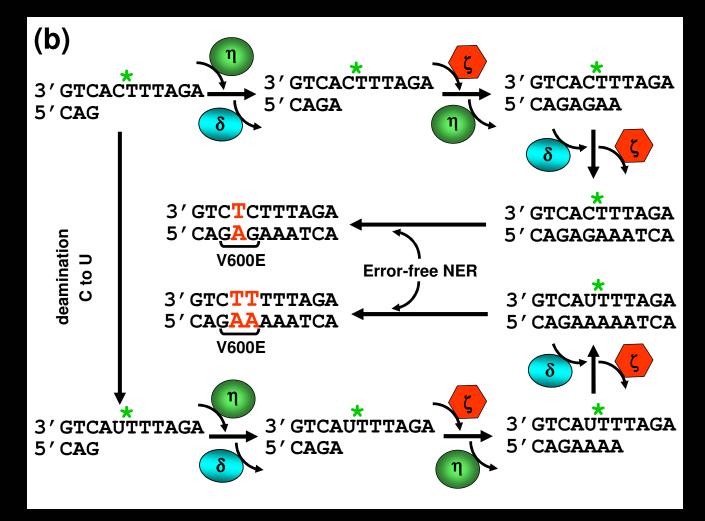
Proposed mechanism: Nearby potential pyrimidine dimer sites Specialized DNA polymerases

J Invest Dermatol 122:1245-50 (2004) and 126:1693-6 (2006)

BRAF Mutations in Melanomas

Wild-type: 3' CGATGACACTTTAGA 5' GCTACAGTGAAATCT

* Di-pyrimidines, potential sites for photoproduct formation



Mutagenic bypass of UVB-induced DNA lesions?

3' CGATGACTCTTTAGA 5' GCTACAGAGAAATCT t1799a Mutant 3' CGATGACTTTTTAGA 5' GCTACAGAAAATCT tg1799aa Tandem Mutant

Inaccurate Polymerization?

Thomas NE, Berwick M, Cordeiro-Stone M, JID 2006

Answers

<u>Childhood</u> & <u>adult</u> sun exposure increase melanoma risk

Common NER polymorphisms increase melanoma risk

> OR with high waterside sun exposure

Melanomas pathways are differentially associated with sun exposure, modified by nevus propensity

BRAF mutations could arise from a mechanism involving nearby potential pyrimidine dimer sites, specialized DNA polymerases, and powerful selection

Future Plans

 7 GEM sites participating in somatic tumor BRAF NRAS analysis
 ~1000 cases for analysis of risk and outcome

Relationship of XPD polymorphisms with NRAS and BRAF somatic mutations is being examined

Collaborators

UNC-GEM Melanoma Group

Robert Millikan Kathleen Conway Pam Groben **David Olilla Bill Kaufmann** Marila Cordeiro-Stone **Norman Sharpless** Sharon N. Edmiston **Audrey Alexander Honglin Hao Anne Lachiewicz Jessica Tse** Janiel Shields

GEM Melanoma Group

Marianne Berwick Colin Begg Klaus Busam Bruce Armstrong

NCAR - Atmospheric Chemistry Division

Julia Lee-Taylor

Univ New Mexico Charles Wiggins

Dianne Mattingly This research was supported, in part, by:

- NCI
- NIEHS
- Center for Environmental Health & Susceptibility
- Lineberger Comprehensive Cancer Center
- Dermatology Foundation

