

CAGRID 1.0
PROGRAMMER’S GUIDE

Center for Bioinformatics

December 15, 2006

i

caGrid Development and Management Teams
Scott Oster (Lead Architect)1 Ian Foster2 Avinash Shanbhag9

Stephen Langella1 Patrick McConnell3

Shannon Hastings1 David Wellborn4

David Ervin1 Val Bragg4

Tahsin Kurc1 Vinay Kumar5

Joel Saltz1 Joshua Phillips5

Ravi Madduri2 Ram Chilukuri5

Jarek Gawor2 Srini Akkala5

Frank Siebenlist2 Manav Kher6

Mike Wilde2 Wendy Erickson-Hirons7

Raj Kettimuthu2 Arumani Manisundaram8

Bill Allcock2 George Komatsoulis9
1Ohio State University -
Biomedical Informatics
Department

2University of Chicago/Argonne
National Laboratory

3Duke Comprehensive Cancer
Center

4ScenPro, Inc. 5SemanticBits, LLC. 6Science Application
International Corporation
(SAIC)

7Northern Taiga Ventures, Inc.
(NTVI)

8Booz Allen Hamilton 9National Cancer Institute
Center for Bioinformatics
(NCICB)

Other Acknowledgements

GeneConnect – Project - Washington University

GridIMAGE – Project - Ohio State University

caBIO – Project - National Cancer Institute Center for Bioinformatics (NCICB)

caArray – Project - National Cancer Institute Center for Bioinformatics (NCICB)

caTRIP – Project – Duke Comprehensive Cancer Center

GenePattern – Project – Broad Institute

geWorkbench – Columbia University

caBiocondutor – Project – Fred Hutchinson Cancer Research Center

Terpsys – Systems Team - National Cancer Institute Center for Bioinformatics (NCICB)

caGrid 1.0 Programmer’s Guide

 ii

Contacts and Support
NCICB Application Support http://ncicbsupport.nci.nih.gov/sw/

Telephone: 301-451-4384

Toll free: 888-478-4423

LISTSERV Facilities Pertinent to caGrid

LISTSERV URL Name

cagrid_users-
l@list.nih.gov

https://list.nih.gov/archives/cagrid_users-l.html caGrid Users
Discussion Forum

iii

Table of Contents
Chapter 1 About This Guide ... 1

Purpose... 1
Release Schedule ... 1
Audience .. 1
Getting Help .. 1
How to Use This Guide.. 1
Relevant Documents... 2
Document Text Conventions... 2

Chapter 2 Overview of caGrid .. 5
Introduction... 5
Standards Compliant.. 6
Model Driven .. 6
Semantically Discoverable... 8
Security and Manageability... 9
Revolutionary Development ... 12

Chapter 3 caGrid Metadata Infrastructure.. 15
Metadata API Usage Overview .. 15
Discovery API Usage Overview ... 24
caDSR Grid Service Usage Overview .. 45
EVS API Usage Overview.. 57

Chapter 4 caGrid Security.. 65
Dorian Overview .. 65
Grid Grouper Overview .. 69

Chapter 5 caGrid Data Services .. 75
Overview.. 75
Manipulating CQL Query Results.. 76
Utility Classes.. 78
CQL Query Syntax.. 81
Domain Model Conformance.. 82
Results Validation... 82
CQL Query Processors ... 83

caGrid 1.0 Programmer’s Guide

 iv

Federated Query Processor Usage Overview ... 84
API Details ... 88

Chapter 6 Reference Implementations .. 99
Overview.. 99
Objective... 100
Goals ... 100
Assumptions.. 100
High-Level Process ... 100
Deliverables ... 101
Test Bed .. 101
caArray Gridification ... 102
caBioconductor.. 102
caTRIP... 103
GenePattern ... 104
GeneConnect ... 105
geWorkbench... 106
GridIMAGE ... 107

Chapter 7 WS-Enumeration... 109
Overview.. 109
Client API... 109

Chapter 8 Workflow Management Service... 121
Overview.. 121
Workflow Architecture .. 121
WorkflowFactoryService API.. 123
WorkflowManagementService API.. 125
Security in WorkflowFactory and Context Services .. 128
Service Selection.. 128
Provenance Tracking.. 128
WS-RF Resources in Workflows ... 128

Chapter 9 caGrid Global Model Exchange ... 131
Overview.. 131
GME Client .. 134

Appendix A References.. 137
Scientific Publications... 137
Technical Manuals/Articles ... 140

v

caBIG Material... 141
caCORE Material... 141

Glossary..141

Index………………………………………………………………………………………………………145

 Chapter 1 About This Guide

1

Chapter 1 About This Guide

Purpose
The cancer Biomedical Informatics Grid, or caBIG™, is a voluntary virtual informatics
infrastructure that connects data, research tools, scientists, and organizations to leverage
their combined strengths and expertise in an open environment with common standards and
shared tools. The current test bed architecture of caBIG™, is dubbed caGrid. The software
embodiment and corresponding documentation of this architecture constitute the caGrid 1.0
release. This guide describes the APIs provided by caGrid.

Release Schedule
This guide has been updated for the caGrid 1.0 release. It may be updated between
releases if errors or omissions are found. The current document refers to the 1.0 version of
caGrid, released in December 2006 by caBIG.

Audience
The primary audience of this guide is the programmer who wants to learn about the APIs
provided by caGrid and/or requires access to one or more caGrid APIs. For additional
information about using caGrid, see the caGrid User’s Guide.

This guide assumes that you are familiar with the java programming language and/or other
programming languages, database concepts, and the Internet. If you intend to use caGrid
resources in software applications, it assumes that you have experience with building and
using complex data systems.

Getting Help
NCICB Application Support

http://ncicbsupport.nci.nih.gov/sw/

Telephone: 301-451-4384

Toll free: 888-478-4423

How to Use This Guide
This guide is divided into sections that each describes a different caGrid API. The following list
briefly describes the contents of each chapter.

• Chapter 1, this chapter, provides an overview of the guide.

• Chapter 2 provides an overview of the cancer Biomedical Informatics Grid, or caBIG™, a
voluntary virtual informatics infrastructure that connects data, research tools, scientists,

caGrid 1.0 Programmer’s Guide

 2

and organizations to leverage their combined strengths and expertise in an open
federated environment with widely accepted standards and shared tools.

• Chapter 3 describes the caGrid metadata infrastructure and describes the Discovery API,
caDSR Grid Service, and EVS APIs.

• Chapter 4 describes using Dorian and Grid Grouper as part of caGrid security.

• Chapter 5 describes the caGrid Data Services infrastructure.

• Chapter 6 describes Reference Implementations, where caBIG-developed projects are
aim to adopt the caGrid 1.0 infrastructure before it is released.

• Chapter 7 describes the client-side APIs for enumerations.

• Chapter 8 describes the architecture and APIs for interacting with caGrid workflow.

• Chapter 9 describes the caGrid Global Model Exchange (GME).

Relevant Documents
This Programmer’s Guide addresses caGrid Application Programming Interfaces (API) and API
examples. Additional information about caGrid architecture, design, user-oriented overview and
examples, and tool-specific guides can be found in:

Document Location

caGrid 1.0 User’s Guide http://gforge.nci.nih.gov/frs/?group_id=25

caGrid 1.0 Design Documents
and Tool-specific Guides

https://gforge.nci.nih.gov/plugins/scmcvs/cvswe
b.php/cagrid-1-
0/Documentation/docs/?cvsroot=cagrid-1-0

Document Text Conventions
The following table shows how text conventions are represented in this guide. The various
typefaces differentiate between regular text and menu commands, keyboard keys, and text that
you type.

Convention Description Example
Bold & Capitalized
Command
Capitalized command >
Capitalized command

Indicates a Menu command

Indicates Sequential Menu
commands

Admin > Refresh

TEXT IN SMALL CAPS Keyboard key that you press Press ENTER

TEXT IN SMALL CAPS + TEXT
IN SMALL CAPS

Keyboard keys that you press
simultaneously

Press SHIFT + CTRL and then
release both.

Special typestyle

Used for filenames, directory
names, commands, file listings,
source code examples and
anything that would appear in a
Java program, such as

URL_definition ::=
url_string

 Chapter 1 About This Guide

3

Convention Description Example
methods, variables, and
classes.

Boldface type
Options that you select in dialog
boxes or drop-down menus.
Buttons or icons that you click.

In the Open dialog box,
select the file and click
the Open button.

Italics Used to reference text that you
type.

Enter antrun.

Note:
Highlights a concept of
particular interest

Note: This concept is used
throughout the installation
manual.

Hyperlink Links text to another part of the
document or to a URL

Overview

Table 1-1 Document Conventions

caGrid 1.0 Programmer’s Guide

 4

 Chapter 2 Overview of caGrid

5

Chapter 2 Overview of caGrid

This chapter provides an overview of the cancer Biomedical Informatics Grid, or caBIG™, a
voluntary virtual informatics infrastructure that connects data, research tools, scientists, and
organizations to leverage their combined strengths and expertise in an open federated
environment with widely accepted standards and shared tools.

Topics in this chapter include:

• Introduction on this page

• Standards Compliant on page 6

• Model Driven on page 6

• Semantically Discoverable on page 8

• Security and Manageability on page 9

• Revolutionary Development on page 12

Introduction
The cancer Biomedical Informatics Grid, or caBIG™, is a voluntary virtual informatics
infrastructure that connects data, research tools, scientists, and organizations to leverage their
combined strengths and expertise in an open federated environment with widely accepted
standards and shared tools. The underlying service oriented infrastructure that supports
caBIG™ is referred to as caGrid. Driven primarily by scientific use cases from the cancer
research community caGrid provides the core enabling infrastructure necessary to compose the
Grid of caBIG™. It provides the technology that enables collaborating institutions to share
information and analytical resources efficiently and securely, and allows investigators to easily
contribute to and leverage the resources of a national-scale, multi-institutional environment

The caGrid 0.5 "test bed" infrastructure was released in September 2005 and included the initial
set of software tools to effectively realize the goals of caBIG™. The grid technologies and
methodologies adopted for caBIG™, and implemented in caGrid, provide a loosely coupled
environment wherein local providers are given freedom of implementation choices and ultimate
control over access and management. The technologies harmonize on community accepted
virtualizations of the data they use, and make them available using standardized service
interfaces and communication mechanisms. While caGrid enables numerous complex usage
scenarios, in its simplest base, its goals are to: enable universal mechanisms for providing
interoperable programmatic access to data and analytics to caBIG™, create a self-describe
infrastructure wherein the structure and semantics of data can be programmatically determined,
and provide a powerful means by which resources available in caBIG™ can be
programmatically discovered and leveraged. Additional information about the caGrid 0.5 effort,
and a good overview of the motivation of the grid approach of caBIG™, can be found in the
Bioinformatics Journal article at

caGrid 1.0 Programmer’s Guide

 6

http://bioinformatics.oxfordjournals.org/cgi/content/full/22/15/1910.

Building on the foundation of caGrid 0.5, caGrid 1.0 has been extensively enhanced based on
feedback and input from early adopters of the caGrid 0.5 infrastructure and additional
requirements from the various caBIG™ Domain Workspaces. The release of caGrid version 1.0
represents a major milestone in the caBIG™ program towards achieving the program goals. It
provides the implementation of the required core services, toolkits, and wizards for the
development and deployment of community provided services, APIs for building client
applications, and some reference implementations of applications and services available in the
production grid.

Standards Compliant
As a primary principle of caBIG™ is open standards, caGrid is built upon the relevant
community-driven standards of the World Wide Web Consortium (W3C http://www.w3.org/) and
OASIS (http://www.oasis-open.org). It is also informed by the efforts underway in the Open Grid
Forum (OGF http://ogf.org/). The Open Grid Forum (OGF) is a community of users, developers,
and vendors leading the global standardization effort for grid computing. The OGF community
consists of thousands of individuals in industry and research, representing over 400
organizations in more than 50 countries. As such, while the caGrid infrastructure is built upon
the 4.0 version of the Globus Toolkit (GT4 http://globus.org/toolkit/), it shares a Globus goal to
be programming language and toolkit agnostic by leveraging existing standards. Specifically,
caGrid services are standard WSRF v1.2 services and can be accessed by any specification-
compliant client.

caGrid 1.0 also represents an increased involvement in relevant working groups, standards
bodies, and organizations involved in the standardization and adoption of grid technologies. The
caGrid team consists of several members involved in both the development of the Globus
toolkit, and authors on some of the relevant specifications. Furthermore, some of the
components developed by caGrid have been published in peer-reviewed articles, have been
vetted by the grid community in several invited talks, and are undergoing an incubation process
to become part of the Globus toolkit itself.

Model Driven
Extending beyond the basic grid infrastructure, caBIG™ specializes these technologies to better
support the needs of the cancer research community. A primary distinction between basic grid
infrastructure and the requirements identified in caBIG and implemented in caGrid is the
attention given to data modeling and semantics. caBIG™ adopts a model-driven architecture
best practice and requires that all data types used on the grid are formally described, curated,
and semantically harmonized. These efforts result in the identification of common data
elements, controlled vocabularies, and object-based abstractions for all cancer research
domains. caGrid leverages existing NCI data modeling infrastructure to manage, curate, and
employ these data models. Data types are defined in caCORE UML and converted into
ISO/IEC 11179 Administered Components, which are in turn registered in the Cancer Data
Standards Repository (caDSR). The definitions draw from vocabulary registered in the
Enterprise Vocabulary Services (EVS), and their relationships are thus semantically described.

 Chapter 2 Overview of caGrid

7

caGrid 1.0 represents a significant improvement in its leveraging of these technologies and the
corresponding information they make available. caGrid 1.0 provides grid service access to both
the EVS and caDSR, and its new service metadata standards include significant additions of
information extracted from the caDSR and EVS.

In caGrid, both the client and service APIs are object oriented, and operate over well-defined
and curated data types. Clients and services communicate through the grid using respectively
grid clients and grid service infrastructure. The grid communication protocol is XML, and thus
the client and service APIs must transform the transferred objects to and from XML. This XML
serialization of caGrid objects is restricted in that each object that travels on the grid must do so
as XML, which adheres to an XML schema registered in the Global Model Exchange (GME). As
the caDSR and EVS define the properties, relationships, and semantics of caBIG™ data types,
the GME defines the syntax of their XML materialization. Furthermore, caGrid services are
defined by the Web Service Description Language (WSDL). The WSDL describes the various
operations the service provides to the grid. The inputs and outputs of the operations, among
other things, in WSDL are defined by XML schemas. As caBIG™ requires that the inputs and
outputs of service operations use only registered objects, these input and output data types are
defined by the XSDs that are registered in GME. In this way, the XSDs are used both to
describe the contract of the service and to validate the XML serialization of the objects that it
uses. Figure 2-1 details the various services and artifacts related to the description of and
process for the transfer of data objects between client and service.

caGrid 1.0 Programmer’s Guide

 8

Service

Core Services

Client
XSDWSDL

Grid
Service

Service Definition

Data Type
Definitions

Service
API

Grid
Client

Client
API

Registered In

Object Definitions

Semantically
Described In

XMLObjects
Serialize To

Validates
Against

Client Uses

Cancer Data
Standards
Repository

Enterprise
Vocabulary

Services

Objects

Global
Model

Exchange

GME
Registered In

Object
Definitions

Objects

Figure 2-1 caGrid data description infrastructure

Semantically Discoverable
As caBIG™ aims to connect data and tools from 50+ disparate cancer centers and many other
institutions, a critical requirement of its infrastructure is that it supports the ability of researchers
to discover these resources. caGrid enables this ability by taking advantage of the rich structural
and semantic descriptions of data models and services that are available. Each service is
required to describe itself using caGrid standard service metadata. When a grid service is
connected to the caBIG™ grid, it registers its availability and service metadata with a central
indexing registry service (Index Service). This service can be thought of as the “yellow pages”
and “white pages” of caBIG™. A researcher can then discover services of interest by looking
them up in this registry. caGrid 1.0 provides a series of high-level APIs and user applications for
performing this lookup, which greatly facilitate the discovery process.

As the Index Service contains the service metadata of all the currently advertised and available
services in caBIG™, the expressivity of service discovery scenarios is limited only by the
expressivity of the service metadata. For this reason, caGrid provides standards for service
metadata to which all services must adhere. At the base is the common Service Metadata
standard that every service in caBIG™ is required to provide. This metadata contains
information about the service-providing cancer center, such as the point of contact and the
institution’s name. Data Services, as a standardized type of caGrid services, also provide an
additional Domain Model metadata standard. Both of these standards leverage the data models
registered in caDSR and link them to the underlying semantic concepts registered in EVS. The
Data Service Metadata details the domain model from which the Objects being exposed by the

 Chapter 2 Overview of caGrid

9

service are drawn. Additionally, the definitions of the Objects themselves are described in terms
of their underlying concepts, attributes, attribute value domains, and associations to other
Objects being exposed. Similarly, the common Service Metadata details the Objects, used as
input and output of the services operations, using the same format as the Data Service
metadata. In addition to detailing the Objects definitions, the Service Metadata defines and
describes the operations or methods the service provides, and allows semantic concepts to be
applied to them. In this way, all services fully define the domain objects they expose by
referencing the data model registered in caDSR, and identify their underlying semantic concepts
by referencing the information in EVS. The caGrid metadata infrastructure and supporting APIs
and toolkits are defined with extensibility in mind, encouraging the development of additional
domain or application specific extensions to the advertisement and discovery process.

As shown in Figure 2-2, the caGrid discovery API and tools allow researchers to query the Index
Service for services satisfying a query over the service metadata. That is, researchers can
lookup services in the registry using any of the information used to describe the services. For
instance, all services from a given cancer center can be located, data services exposing a
certain domain model or objects based on a given semantic concept can be discovered, as can
analytical services that provide operations that take a given concept as input.

Figure 2-2 caGrid Discovery Overview

Security and Manageability
Security is an especially important component of caBIG™ both for protecting intellectual
property and ensuring protection and privacy of patient related and sensitive information. caGrid

caGrid 1.0 Programmer’s Guide

 10

1.0 provides a complete overhaul of federated security infrastructure to satisfy caBIG™ security
needs, incorporating many of the recommendations made in the caBIG™ Security White Paper
and culminating in the creation of the Grid Authentication and Authorization with Reliably
Distributed Services (GAARDS) infrastructure. GAARDS provides services and tools for the
administration and enforcement of security policy in an enterprise Grid. GAARDS was
developed on top of the Globus Toolkit and extends the Grid Security Infrastructure (GSI) to
provide enterprise services and administrative tools for:

1) Grid user management

2) Identity federation

3) Trust management

4) Group/VO management

5) Access control policy management and enforcement

6) Integration between existing security domains and the grid security domain

Figure 2-3 GAARDS Security Infrastructure

Figure 2-3 illustrates the GAARDS security infrastructure, in order for users/applications to
communicate with secure services, they need grid credentials. Obtaining grid credentials
requires having a Grid User Account. Dorian provides two methods for registering for a grid user
account: 1) registering directly with Dorian 2) having an existing user account in another trusted
security domain. In order to use an existing user account to obtain grid credentials, the existing
credential provider must be registered in Dorian as a Trusted Identity Provider. It is anticipated
that the majority of grid user accounts will be provisioned based on existing accounts. The

 Chapter 2 Overview of caGrid

11

advantages to this approach are: 1) users can use their existing credentials to access the grid 2)
administrators only need to manage a single account for a given user. To obtain grid
credentials, Dorian requires proof (a digitally signed SAML assertion) that proves that the user
locally authenticated. The GAARDS Authentication Service provides a framework for issuing
SAML assertions for existing credential providers such that they may be used to obtain grid
credentials from Dorian. The Authentication Service also provides a uniform authentication
interface in on which applications can be built. Figure 2-3 illustrates the process for obtaining
grid credentials, wherein the user/application first authenticates with their local credential
provider via the Authentication Service and obtains a SAML assertion as proof they
authenticated. They then use the SAML assertion provided by the Authentication Service to
obtain grid credentials from Dorian. Assuming the local credential provider is registered with
Dorian as a trusted identity provider and that the user’s account is in good standing, Dorian will
issue grid credentials to the user. It should be noted that the use of the Authentication Service is
not required; an alternative mechanism for obtaining the SAML assertion required by Dorian can
be used. If s user is registered directly with Dorian and not through an existing credential
provider, they may contact Dorian directly for obtaining grid credentials.

Once a user has obtained grid credentials from Dorian they may invoke secure services. Upon
receiving grid credentials from a user, a secure service authenticates the user to ensure that the
user has presented valid grid credentials. Part of the grid authentication process is verifying that
grid credentials presented were issued by a trusted grid credential provider (i.e. Dorian, other
certificate authorities). The Grid Trust Service (GTS) maintains a federated trust fabric of all the
trusted digital signers in the grid. Credential providers such as Dorian and grid certificate
authorities are registered as trusted digital signers and regularly publish new information to the
GTS. Grid services authenticate grid credentials against the trusted digital signers in a GTS
(shown in Figure 2-3).

Once the user has been authenticated, a secure grid service next determines if a user is
authorized to perform what they requested. Grid services have many different options available
to them for performing authorization. It is important to note that all authorizing decisions are
made by the local provider, but GAARDS provides some services and tools which facilitate
some common authorization mechanisms. The GAARDS infrastructure provides two
approaches which can each be used independently or can be used together. It is important to
note any other authorization approach can be used in conjunction with the GAARDS
authentication/trust infrastructure. The Grid Grouper service provides a group-based
authorization solution for the Grid, wherein grid services and applications enforce authorization
policy based on membership to groups defined and managed at the grid level. Grid services can
use Grid Grouper directly to enforce their internal access control policies. Assuming the
authorization policy is based on membership to groups provisioned by Grid Grouper; services
can determine whether a caller is authorized by simply asking grid grouper whether the caller is
in a given group. The caCORE Common Security Module (CSM), an existing component many
providers are already using, is a more centralized approach to authorization. CSM is a tool for
managing and enforcing access control policy centrally. CSM supports access control policies
which can be based on membership to groups in Grid Grouper. Grid services that use CSM for
authorization simply ask CSM with a user can perform a given action. Based on the access

caGrid 1.0 Programmer’s Guide

 12

control policy maintained in CSM, CSM decides whether or not a user is authorized. In Figure
2-3, the grid services defer the authorization to CSM. CSM enforces its group based access
control policy by asking Grid Grouper whether the caller is a member of the groups specified in
the policy, and enforces any other local data access policies defined in CSM.

Revolutionary Development
caGrid 1.0 represents a complete rewrite of caGrid to better support the requirements and
current standards. Building on lessons learned from caGrid 0.5 and feedback from the
community, it provides a large number of additional features, services, and vast improvements
in caGrid technologies beyond what is described above. One such example is the development
of a unified grid service authoring toolkit, dubbed Introduce. Introduce is an extensible
framework and graphic workbench which provides an environment for the development and
deployment of caBIG™ compatible grid enabled data and analytical services. The Introduce
toolkit reduces the service developer’s responsibilities, by abstracting away the need to manage
the low level details of the WSRF specification and integration with the Globus Toolkit, allowing
them to focus on implementing their business logic. Developers with existing caBIG™ Silver
compatible services need only follow simple a wizard-like process for creating the “adapter”
between the grid and their existing system. At the same time, extremely complex and powerful
new services can be created. All caGrid developed core services were implemented with the
Introduce toolkit.

Another significant feature provided by caGrid 1.0 is the addition of service support for
orchestration of grid services using the industry standard Business Process Execution
Language (BPEL). caGrid provides a workflow management service, enabling the execution
and monitoring of BPEL-defined workflows in a secure grid environment. It is expected this work
will provide the groundwork for a large number of powerful applications, enabling the harnessing
of data and analytics made available as grid services. Another such higher-level support service
made available in caGrid 1.0, is the federated query infrastructure. The caGrid Federated Query
Infrastructure provides a mechanism to perform basic distributed aggregations and joins of
queries over multiple data services. Working in collaboration with the Cancer Translational
Research Informatics Platform (caTRIP) project, a caBIG™ funded project, an extension to the
standard Data Service query language was developed to describe distributed query scenarios,
as well as various enhancements to the Data Service query language itself. The Federated
Query Infrastructure contains three main client-facing components: an API implementing the
business logic of federated query support, a grid service providing remote access to that engine,
and a grid service for managing status and results for queries that were invoked asynchronously
using the query service.

Numerous improvements to the handling of large data sets and distributed information
processing have been made. Support for the implantation of the WS-Enumeration
(http://www.w3.org/Submission/WS-Enumeration/) standard has been implemented and added
to the Globus Toolkit. This standard and its corresponding implementation provide the capability
for a grid client to enumerate over results provided by a grid service (much like a grid-enabled
cursor). This provides the framework necessary for clients to access large results from a
service. This support has been integrated into the caGrid Data Service tooling providing a
mechanism for iterating query results. Another aspect of caGrid expected to facilitate data

 Chapter 2 Overview of caGrid

13

exchange in the grid is the initial work on the implementation of a grid wide object identifier
framework. This work has been enabled by the integration of the Handle System® from
Corporation for National Research Initiatives. caGrid 1.0 represents the initial release of this
effort, and future improvements and support are planned for a future release. Additionally, the
initial effort to standardize a “bulk data transport” interface for large data has been started in
caGrid 1.0, which is intended to provide uniform mechanism by which clients may access data
sets form arbitrary services. This initial work currently supports access via WS-Enumeration,
WS-Transfer, and GridFTP. Additional enhancements and tooling are expected in a future
release of caGrid, based on feedback from the user community.

Lastly, caGrid 1.0 represents a significant improvement in quality of caGrid, as a significant
effort was placed on the development of unit, system, and integration testing. Several hundred
unit tests are executed every time something is added to the caGrid code base, and a variety of
builds and tests are run each night. Interested users may view results of these tests on a
centralized dashboard (http://vandelay.bmi.ohio-state.edu:8081/caGrid-1.0/Dashboard/),
execute these test frameworks locally, or leverage the testing framework during the
development of their own services.

caGrid 1.0 Programmer’s Guide

 14

 Chapter 3 caGrid Metadata Infrastructure

15

Chapter 3 caGrid Metadata Infrastructure

This chapter describes the caGrid metadata infrastructure and describes the Discovery API,
caDSR Grid Service, and EVS APIs.

Topics in this chapter include:

• Metadata API Usage Overview on this page

• Discovery API Usage Overview on page 24

• caDSR Grid Service Usage Overview on page 45

• EVS API Usage Overview on page 57

Metadata API Usage Overview
The following link provides a reference to the technical architecture and design document(s) for
caGrid Metadata:

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/cagrid-1-
0/Documentation/docs/metadata/caGrid-metadata-infrastructure-design.doc?cvsroot=cagrid-1-0

All caGrid services are expected to expose a standard set of service metadata. Details about
this design and the specifics of the metadata can be found in the caGrid Metadata Design
Document. This section describes the high-level API, which can be used to access and
manipulate instances of this metadata. All the standard metadata models are representations,
which can be used to programmatically interact with the models. Figure 3-1 and Figure 3-2 are
the Standard Service (ServiceMetadata) and Data Service (DomainModel) metadata models
respectively. The APIs described here can be used access these models from services, and
serialize and deserialize them to and from XML. These methods complement the Discovery API.
Once an EPR (End Point Reference) is returned from the Discovery API, these methods can be
used to access and inspect the full metadata.

caGrid 1.0 Programmer’s Guide

 16

pd Serv ice Model

serv ice::Serv ice

XSDattribute
+ description: java.lang.String
+ name: java.lang.String
+ version: java.lang.String

common::PointOfContact

XSDattribute
+ affil iation: java.lang.String
+ email: java.lang.String
+ firstName: java.lang.String
+ lastName: java.lang.String
+ phoneNumber: java.lang.String [0..1]
+ role: java.lang.String

serv ice::Operation

XSDattribute
+ description: java.lang.String
+ name: java.lang.String

serv ice::Output

XSDattribute
+ dimensionali ty: int
+ isArray: boolean
+ qName: QName

serv ice::InputParameter

XSDattribute
+ dimensionality: int
+ index: int
+ isArray: boolean
+ isRequired: boolean
+ name: java.lang.String
+ qName: QName

serv ice::Fault

XSDattribute
+ description: java.lang.String
+ name: java.lang.String

common::UMLClass

XSDattribute
+ className: java.lang.String
+ description: java.lang.String
+ id: java.lang.String
+ packageName: java.lang.String
+ projectName: java.lang.String
+ projectVersion: java.lang.String

common::UMLAttribute

XSDattribute
+ dataTypeName: java.lang.String
+ description: java.lang.String
+ name: java.lang.String
+ publicID: long
+ version: float

serv ice::Serv iceContext

XSDattribute
+ description: java.lang.String
+ name: java.lang.String

serv ice::ContextProperty

XSDattribute
+ description: java.lang.String
+ name: java.lang.String

serv ice::CaDSRRegistration

XSDattribute
+ registrationStatus: java.lang.String
+ workflowStatus: java.lang.String

common::SemanticMetadata

XSDattribute
+ conceptCode: java.lang.String
+ conceptDefinition: java.lang.String
+ conceptName: java.lang.String
+ order: int [0..1]
+ orderLevel: int [0..1]

common::ValueDomain

XSDattribute
+ longName: java.lang.String
+ unitOfMeasure: java.lang.String [0..1]

common::Enumeration

XSDattribute
+ permissibleValue: java.lang.String
+ valueMeaning: java.lang.String

+inputParameter 1

+umlClass 0..1

+umlClass 1

+umlAttributeCollection 0..*

+service 1

+serviceContextCollection 1..*

+serviceContext 1

+operationCollection 0..*

+umlClass

1

+semanticMetadataCollection

0..*

+umlAttribute

1

+semanticMetadataCollection

0..*

+service

1

+pointOfContactCollection

0..*

+operation

1

+inputParameterCollection

0..*

+output 1

+umlClass 0..1

+operation 1

+faultCollection 0..*

+enumeration 1

+semanticMetadataCollection 0..*

+serviceContext

1

+contextPropertyCollection

0..*

+service

1

+caDSRRegistration

0..1
+service

1

+semanticMetadataCollection 0..*

+operation

1

+semanticMetadataCollection

0..*

+umlAttribute

1+valueDomain

0..1

+valueDomain 1

+semanticMetadataCollection

0..*

+valueDomain

1

+enumerationCollection

0..*

+operation 1

+output 0..1

Figure 3-1 Service Model

 Chapter 3 caGrid Metadata Infrastructure

17

cd Data Model

common::UMLClass

XSDattribute
+ className: java.lang.String
+ description: java.lang.String
+ id: java.lang.String
+ packageName: java.lang.String
+ projectName: java.lang.String
+ projectVersion: java.lang.String

data::DomainModel

XSDattribute
+ projectDescription: java.lang.String
+ projectLongName: java.lang.String
+ projectShortName: java.lang.String
+ projectVersion: java.lang.String

common::UMLAttribute

XSDattribute
+ dataTypeName: java.lang.String
+ description: java.lang.String
+ name: java.lang.String
+ publicID: long
+ version: float

data::UMLAssociationEdge

XSDattribute
+ maxCardinality: int
+ minCardinality: int
+ roleName: java.lang.String

data::UMLAssociation

XSDattribute
+ bidirectional: boolean

data::
UMLClassReference

XSDattribute
+ refid: java.lang.String

data::
UMLGeneralization

common::ValueDomain

XSDattribute
+ longName: java.lang.String
+ unitOfMeasure: java.lang.String [0..1]

common::SemanticMetadata

XSDattribute
+ conceptCode: java.lang.String
+ conceptDefinition: java.lang.String
+ conceptName: java.lang.String
+ order: int [0..1]
+ orderLevel: int [0..1]

common::Enumeration

XSDattribute
+ permissibleValue: java.lang.String
+ valueMeaning: java.lang.String

data::UMLClass

XSDattribute
+ allowableAsTarget: boolean = true

+umlAttribute 1

+valueDomain 0..1

+umlClass

1

+semanticMetadataCollection 0..*

+umlAttribute 1

+semanticMetadataCollection

0..*

+umlAssociation

1

+umlClassReference 1

+domainModel

1

+exposedUMLAssociationCollection 0..*

+umlAssociation 1

+targetUMLAssociationEdge 1
+umlClass 1

+umlAttributeCollection 0..*

+umlAssociation1

+sourceUMLAssociationEdge1

+umlGeneralization 1

+subClassReference 1

+umlGeneralization 1

+superClassReference 1

+domainModel

1

+umlGeneralizationCollection

0..*

+valueDomain

1

+semanticMetadataCollection 0..*

+valueDomain

1

+enumerationCollection

0..*

+enumeration 1

+semanticMetadataCollection

0..*

+domainModel 1

+exposedUMLClassCollection 0..*

Figure 3-2 Data Service metadata model

The ResourcePropertyHelper API, not detailed here, is the lower level API, which can be used
to directly gather information about ResourceProperties (which is how metadata is exposed in
caGrid). The MetadataUtils, described here, leverage this API, and expose some of its
exceptions. The possible exceptions generated by the metadata utility methods are detailed in
Figure 3-3.

caGrid 1.0 Programmer’s Guide

 18

Figure 3-3 Metadata Exceptions

A non-discerning client may simply opt to catch ResourcePropertyRetrievalException, as it is
the base-checked exception. An additional non-checked exception, InternalRuntimeException,
can also be thrown but is solely used to represent an internal logic error in the APIs. It is not
expected clients can “recover” from such an exception. As such, clients should not attempt to
catch this runtime exception for any other reason than to mask the problem.

QueryInvalidException - is thrown if an invalid XPath query is issued. Problems originating from
remote services are thrown in the subclass, RemoteResourcePropertyRetrievalException.
During general use of the metadata utilities, this is the most likely exception clients may see, as
it is thrown if a service is not properly exposing the proper metadata. Clients leveraging the
lower level resource property APIs should take care to appropriately address each type of
exception if they are communicating with services. For example, even though it is a caBIG
requirement to expose the standard service metadata, clients should properly handle the case
where it is not present. Asking for specific metadata that a service does not provide would yield
an InvalidResourcePropertyException.

API Details

gov.nih.nci.cagrid.metadata.MetadataUtils

Member Function Documentation

static ServiceMetadata gov.nih.nci.cagrid.metadata.MetadataUtils.getServiceMetadata
(EndpointReferenceType serviceEPR) throws InvalidResourcePropertyException,
RemoteResourcePropertyRetrievalException, ResourcePropertyRetrievalException
[static]

Obtain the service metadata from the specified service.

Parameters:
serviceEPR

 Chapter 3 caGrid Metadata Infrastructure

19

Returns:

Exceptions:
InvalidResourcePropertyException
RemoteResourcePropertyRetrievalException
ResourcePropertyRetrievalException

static DomainModel gov.nih.nci.cagrid.metadata.MetadataUtils.getDomainModel
(EndpointReferenceType serviceEPR) throws InvalidResourcePropertyException,
 RemoteResourcePropertyRetrievalException, ResourcePropertyRetrievalException
[static]

Obtain the data service metadata from the specified service.

Parameters:
serviceEPR

Returns:

Exceptions:
InvalidResourcePropertyException
RemoteResourcePropertyRetrievalException
ResourcePropertyRetrievalException

static void gov.nih.nci.cagrid.metadata.MetadataUtils.serializeServiceMetadata
(ServiceMetadata metadata, Writer writer) throws Exception [static]

Write the XML representation of the specified metadata to the specified writer. If either is
null, an IllegalArgumentException will be thrown.

Parameters:
metadata
writer

Exceptions:
Exception

caGrid 1.0 Programmer’s Guide

 20

static ServiceMetadata
gov.nih.nci.cagrid.metadata.MetadataUtils.deserializeServiceMetadata (Reader
xmlReader) throws Exception [static]

Create an instance of the service metadata from the specified reader. The reader must point
to a stream that contains an XML representation of the metadata. If the reader is null, an
IllegalArgumentException will be thrown.

Parameters:
xmlReader

Returns:

Exceptions:
Exception

static void gov.nih.nci.cagrid.metadata.MetadataUtils.serializeDomainModel
(DomainModel domainModel, Writer writer) throws Exception [static]

Write the XML representation of the specified metadata to the specified writer. If either is
null, an IllegalArgumentException will be thrown.

Parameters:
domainModel
writer

Exceptions:
Exception

static DomainModel gov.nih.nci.cagrid.metadata.MetadataUtils.deserializeDomainModel
(Reader xmlReader) throws Exception [static]

Create an instance of the data service metadata from the specified reader. The reader must
point to a stream that contains an XML representation of the metadata. If the reader is null,
an IllegalArgumentException will be thrown.

Parameters:
xmlReader

Returns:

Exceptions:
Exception

 Chapter 3 caGrid Metadata Infrastructure

21

API Usage Examples

This section describes typical usage of the Metadata API. The exception handling shown in the
code examples is not recommended practice, and is simplistic for demonstration purposes. The
MetadataUtils class is the primary means of accessing and manipulating service metadata. It
provides a number of static utility methods that can be directly invoked. This API provides an
abstraction layer over lower-level APIs, specializing them to deal with the standard metadata
types. Clients wishing to work with custom (or non-standard) metadata, need to use the lower-
level APIs, and can consult the source code of the MetadataUtils class for guidance.

Accessing Metadata from a Service

In order to access a service’s metadata, an End Point Reference pointing to the service must be
provided. This can be obtained as a direct result of an invocation of a discovery method from
the Discovery API, or manually constructed by specifying the service’s Address. Examples of
both can be found in the Discovery API Usage Overview starting on page 24.

As caBIG requires that standard metadata be made publicly available, client credentials are not
necessary for invocation of these methods.

The first example, shown in Figure 3-4, demonstrates accessing a service’s standard
ServiceMetadata, which is common to all caGrid services. As described above, the first step is
to obtain an appropriate EPR (line 1). Given this EPR, the MetadataUtils’s getServiceMetadata
method, shown on line 4 in Figure 3-4, can be used to obtain the bean representation of the
metadata. Upon successful completion of this method, the fully populated bean can be
inspected to obtain the information of interest. Several exceptions, subclassed from the base
ResourcePropertyRetrievalException, can be thrown by this operation. A non-discriminating
client may choose to simply handle this base exception. Additional details on the other
exceptions, and why they may be thrown, are described in the Metadata API Usage Overview
on page 15, as well as the javadoc of the APIs.

caGrid 1.0 Programmer’s Guide

 22

Figure 3-4 Accessing standard service metadata

The process for accessing data service DomainModel metadata, shown in Figure 3-5, is the
same as accessing standard metadata. Once the metadata is obtained, in line 3, it can be
inspected, as shown in line 4 where the long name of the project being exposed by the data
service is printed to the console.

Figure 3-5 Accessing standard data service metadata

Processing Metadata as XML

In addition to accessing metadata from services, the MetadataUtils provide the capability to read
and write metadata instances as XML documents. This can not only be useful for storage and
display of metadata, but also grid service’s expose metadata as XML, and these methods
provide a way to inspect the metadata in object (bean) form.

In Figure 3-6, example code is shown that saves an instance of standard service metadata to a
file named seviceMetadata.xml. The metadata instance, defined in line 1, can be acquired

 Chapter 3 caGrid Metadata Infrastructure

23

using code similar to that shown in Figure 3-6, or by some other mechanism. The
serializeServiceMetadata method can be then passed this instance, and an instance of the
java.io.Writer interface, as shown on line 11. Any Writer implementation works, but the example
below shows using a FileWriter, on line 5, to write the metadata to the specified file. After the
MetadataUtils have been used to write the metadata to XML, the Writer used should be closed,
as shown on line 18. Though not shown, a similar method, serializeDomainModel, exists for
writing data service metadata to XML; its usage pattern is the same.

Figure 3-6 Serializing metadata to a file

As a complement to the serialization methods described and shown above, deserialization
methods also exist which read XML representations of metadata and return appropriately
populated metadata beans. In Figure 3-7, example code is shown which populates a new
ServiceMetadata instance from an XML representation stored in a file named
serviceMetadata.xml. This code, used in conjunction with the previous example,
reconstitutes the original metadata instance. Similar to the serialization methods that use a
java.io.Writer, the deserialization methods use a java.io.Reader to read the XML representation.
In the example below, a FileReader is used on line 4. This Reader is then passed to the
deserializeServiceMetadata method on line 11, and the populated ServiceMetadata instance is
returned. As with the Writer instance in the serialization methods, the Reader instance should
be closed once used (as shown on line 18). Though not shown, a similar method,
deserializeDomainModel, exists for reading data service metadata from XML; its usage pattern
is the same.

caGrid 1.0 Programmer’s Guide

 24

Figure 3-7 Deserializing metadata from a file

Discovery API Usage Overview
The Discovery API provides an abstraction over the standard query operations used to query
the Index Service. It provides a number of operations that can be used to discover services of
interest. The basic process of use is to construct an instance of the DiscoveryClient, optionally
specifying the End Point Reference (EPR) of the Index Service to query, and then invoking the
appropriate discovery methods. Each method returns an array of EPRs of the matching
appropriate services. These returned EPRs can then be used to invoke the services, or ask
them for their metadata for further discrimination. It is worth noting that the Index Service, as an
aggregated source of distributed information, inherently operates on out of date information. It is
possible that services that are running do not yet have their metadata aggregated in the Index
Service, and it is possible that services present in the Index Service have recently been taken
down. caGrid attempts to strike a balance between performance and reliability of information in
the Index Service. The information returned by the Discovery API should be accurate within a
few minutes, but applications building upon it should be aware of this, and should not assume a
service in the Index Service will always be available when it is invoked.

The DiscoveryClient uses the lower level “metadata utils” project to communicate with the Index
Service. It exposes the exceptions generated from this lower level API, instead of wrapping
them with discovery-specific exceptions. The possible exceptions which discovery methods can
throw are detailed below in Figure 3-8. A non-discerning client may simply opt to catch
ResourcePropertyRetrievalException, as it is the base checked exception. An additional non-
checked exception, InternalRuntimeException, can also be thrown, but it is solely used to
represent an internal logic error in the APIs and so it is not expected clients can “recover” from

 Chapter 3 caGrid Metadata Infrastructure

25

such an exception. As such, clients should not attempt to catch this runtime exception for any
other reason than to mask the problem. Generic problems caused by the DiscoveryClient itself
are thrown in the base ResourcePropertyRetrievalException. A subclass of it,
QueryInvalidException, is thrown if an invalid XPath query is issued. Unless the DiscoveryClient
is extended, it is not expected that clients should encounter this. Problems originating from
remote services are thrown in the subclass, RemoteResourcePropertyRetrievalException.
During general use of the metadata utilities, this is the most likely exception clients may see, as
it is thrown if a service is not properly exposing the proper metadata. In the context of the
DiscoveryClient, it is not expected clients should experience any exceptions unless there is an
issue with the Index Service. However, clients leveraging the lower level APIs should take more
care to appropriately address each type of exception if they are communicating with other
(community provided) services. For example, even though it is a caBIG requirement to expose
the standard service metadata, clients should properly handle the case where it is not present.
Asking for specific metadata that a service does not provide would yield an
InvalidResourcePropertyException.

Figure 3-8 Metadata exceptions

While the methods in the API are designed around the caGrid standard metadata, it is also
acceptable to have services register additional domain or application specific metadata to the
Index Service. The Discovery API is designed for easy extensibility, such that additional
application or domain specific discovery scenarios can be provided to compliment such
additional metadata. The “business logic” of the DiscoveryClient, consists almost entirely of
constructing appropriate XPath queries over the appropriate metadata, and leveraging lower-
level APIs to actually invoke the queries. These lower-level APIs are made available to
extenders of the client, such that they need only construct appropriate XPath queries to
implement additional discovery scenarios.

The DiscoveryClient uses commons-logging to log general and debugging information. If
configured to DEBUG level, the client prints out the XPaths it is sending to the Index Service,
which may facilitate the creation of new discovery operations, or help track down problems.

As with most Globus clients, a properly configured client-config.wsdd file must be accessible by
the underlying Axis engine. The simplest way to do this is to either run with your

caGrid 1.0 Programmer’s Guide

 26

$GLOBUS_LOCATION as the “working directory,” add $GLOBUS_LOCATION to your
classpath, or copy $GLOBUS_LOCATION/client-config.wsdd to your working directory or
classpath. If you don’t do this, you will most likely see an exception similar to that shown in
Figure 3-9, when you run the DiscoveryClient.

Figure 3-9 Common DiscoveryClient exception

API Details

gov.nih.nci.cagrid.discovery.client.DiscoveryClient

DiscoveryClient represents the base discovery API. The client should be constructed passing a
URL of an Index Service. Services can then be discovered by calling the discover methods and
passing in the necessary criteria. The methods all return an EndPointReferenceType[]. See the
main method for examples. This should be extended to provide specialized service-type
discovery (beyond data services).

Constructor Documentation

gov.nih.nci.cagrid.discovery.client.DiscoveryClient.DiscoveryClient () throws
MalformedURIException

Uses the Default Index Service

Exceptions:
MalformedURIException if the Default Index Service is invalid

DiscoveryClient.java.gov.nih.nci.cagrid.discovery.client.DiscoveryClient.DiscoveryClient
(EndpointReferenceType indexEPR)

Uses the specified Index Service

Parameters:
iemndexEPR the EPR to the Index Service to use

Member Function Documentation

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.getAllServices (boolean

gov.nih.nci.cagrid.metadata.exceptions.RemoteResourcePropertyRetrievalException:

org.xml.sax.SAXException:SimpleDeserializer encountered a child element, which is NOT

 Chapter 3 caGrid Metadata Infrastructure

27

requireMetadataCompliance) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Query the registry for all registered services

Parameters:
requireMetadataCompliance if true, only services providing the standard metadata will be
returned. Otherwise, all services registered will be returned, regardless of whether or not any
metadata has been aggregated.

Returns:
EndpointReferenceType[] contain all registered services

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesBySearchString
(String searchString) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches ALL metadata to find occurrence of the given string. The search string is case-
sensitive.

Parameters:
searchString the search string.

Returns:
EndpointReferenceType[] matching the criteria

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

caGrid 1.0 Programmer’s Guide

 28

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByResearchCenter
(String centerName) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches research center info to find services provided by a given cancer center.

Parameters:
centerName research center name

Returns:
EndpointReferenceType[] matching the criteria

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByPointOfContact
(PointOfContact contact) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have the given point of contact associated with them. Any
fields set on the point of contact are checked for a match. For example, you can set only the
lastName, and only it will be checked, or you can specify several fields and they all must be
equal.

Parameters:
contact point of contact

Returns:
EndpointReferenceType[] matching the criteria

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

 Chapter 3 caGrid Metadata Infrastructure

29

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByName (String
serviceName) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have a given name.

Parameters:
serviceName The service's name

Returns:
EndpointReferenceType[] matching the criteria

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByConceptCode
(String conceptCode) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services based on the given concept code.

Parameters:
conceptCode A concept code the service is based upon.

Returns:
EndpointReferenceType[] matching the criteria

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

caGrid 1.0 Programmer’s Guide

 30

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByOperationName
(String operationName) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have a given operation.

Parameters:
operationName The operation's name

Returns:
EndpointReferenceType[] matching the criteria

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByOperationInput
(UMLClass clazzPrototype) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have an operation defined that takes the given UMLClass as
input. Any fields set on the UMLClass are checked for a match. For example, you can set
only the packageName, and only it will be checked, or you can specify several fields and
they all must be equal.
NOTE: Only attributes of the UMLClass are examined (associated objects (e.g.
UMLAttributeCollection and SemanticMetadataCollection) are ignored).

Parameters:
clazzPrototype The prototype UMLClass

Returns:
EndpointReferenceType[] matching the criteria

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

 Chapter 3 caGrid Metadata Infrastructure

31

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByOperationOutput
(UMLClass clazzPrototype) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have an operation defined that produces the given UMLClass.
Any fields set on the UMLClass are checked for a match. For example, you can set only the
packageName, and only it will be checked, or you can specify several fields and they all
must be equal.
NOTE: Only attributes of the UMLClass are examined (associated objects (e.g.
UMLAttributeCollection and SemanticMetadataCollection) are ignored).

Parameters:
clazzPrototype The prototype UMLClass

Returns:
EndpointReferenceType[] matching the criteria

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByOperationClass
(UMLClass clazzPrototype) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have an operation defined that produces the given UMLClass
or takes it as input. Any fields set on the UMLClass are checked for a match. For example,
you can set only the packageName, and only it will be checked, or you can specify several
fields and they all must be equal.

caGrid 1.0 Programmer’s Guide

 32

Note: Only attributes of the UMLClass are examined (associated objects (e.g.
UMLAttributeCollection and SemanticMetadataCollection) are ignored).

Parameters:
clazzPrototype The prototype UMLClass

Returns:
EndpointReferenceType[] matching the criteria

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByOperationConcep
tCode (String conceptCode) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have an operation based on the given concept code

Parameters:
conceptCode The concept to look for

Returns:
EndpointReferenceType[] matching the criteria

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

 Chapter 3 caGrid Metadata Infrastructure

33

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByDataConceptCod
e (String conceptCode) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have an operation defined that produces the or takes as input,
a Class with an attribute , attribute value domain , enumerated value meaning, or the class
itself based on the given concept code.

Parameters:
conceptCode The concept to look for

Returns:
EndpointReferenceType[] matching the criteria

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverServicesByPermissibleValue
(String value) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches to find services that have an operation defined that produces or takes as input, a
Class with an attribute allowing the given value.

Parameters:
value The permissible value to look for

Returns:
EndpointReferenceType[] matching the criteria

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException

caGrid 1.0 Programmer’s Guide

 34

RemoteResourcePropertyRetrievalException

String
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.createPermissibleValuePredicatedUM
LClass (String value, boolean isDataService) [protected]

Creates a UMLClass step that is predicated to contain either an attribute, attribute value
domain, enumerated value meaning, or the class itself based on that concept.

Parameters:
conceptCode the code to look for

Returns:

String
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.createConceptPredicatedUMLClass
(String conceptCode, boolean isDataService) [protected]

Creates a UMLClass step that is predicated to contain either an attribute, attribute value
domain, enumerated value meaning, or the class itself based on that concept.

Parameters:
conceptCode the code to look for

Returns:

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.getAllDataServices () throws
RemoteResourcePropertyRetrievalException, QueryInvalidException,
ResourcePropertyRetrievalException

Query the registry for all registered data services

Returns:
EndpointReferenceType[] contain all registered services

Exceptions:
ResourcePropertyRetrievalException

 Chapter 3 caGrid Metadata Infrastructure

35

QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverDataServicesByDomainMode
l (String modelName) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches to find data services that are exposing a subset of given domain (short name or
long name).

Parameters:
modelName The model to look for

Returns:
EndpointReferenceType[] matching the criteria

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverDataServicesByModelConce
ptCode (String conceptCode) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches to find data services that expose a Class with an attribute , attribute value domain
, enumerated value meaning, or the class itself based on the given concept code.

Parameters:
conceptCode The concept to look for

Returns:

caGrid 1.0 Programmer’s Guide

 36

Exceptions:
RemoteResourcePropertyRetrievalException
QueryInvalidException
ResourcePropertyRetrievalException

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverDataServicesByExposedClas
s (gov.nih.nci.cagrid.metadata.dataservice.UMLClass clazzPrototype) throws
RemoteResourcePropertyRetrievalException, QueryInvalidException,
ResourcePropertyRetrievalException

Searches for data services that expose the given class. Any fields set on the UMLClass are
checked for a match. For example, you can set only the packageName, and only it will be
checked, or you can specify several fields and they all must be equal.
Note: Only attributes of the UMLClass are examined (associated objects (e.g.
UMLAttributeCollection and SemanticMetadataCollection) are ignored).

Parameters:
clazzPrototype The prototype UMLClass
clazzPrototype

Returns:

Exceptions:
RemoteResourcePropertyRetrievalException
QueryInvalidException
ResourcePropertyRetrievalException

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverDataServicesByPermissibleV
alue (String permissibleValue) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException

Searches for data services that expose a class with an attribute allowing the given value.

 Chapter 3 caGrid Metadata Infrastructure

37

Parameters:
value The permissible value to look for

Returns:

Exceptions:
RemoteResourcePropertyRetrievalException
QueryInvalidException
ResourcePropertyRetrievalException

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverDataServicesByAssociations
WithClass (gov.nih.nci.cagrid.metadata.dataservice.UMLClass clazzPrototype) throws
RemoteResourcePropertyRetrievalException, QueryInvalidException,
ResourcePropertyRetrievalException

Searches for data services that expose an association to or from the given class. Any fields
set on the UMLClass are checked for a match. For example, you can set only the
packageName, and only it will be checked, or you can specify several fields and they all
must be equal.
Note: Only attributes of the UMLClass are examined (associated objects (e.g.
UMLAttributeCollection and SemanticMetadataCollection) are ignored).

Parameters:
clazzPrototype

Returns:

Exceptions:
RemoteResourcePropertyRetrievalException
QueryInvalidException
ResourcePropertyRetrievalException

caGrid 1.0 Programmer’s Guide

 38

static String gov.nih.nci.cagrid.discovery.client.DiscoveryClient.buildPOCPredicate
(PointOfContact contact) [static, protected]

Builds up a predicate for a PointOfContact, based on the prototype passed in.

Parameters:
contact the prototype POC

Returns:
"*" if the prototype has no non-null or non-whitespace values, or the predicate necessary to match
all values.

static String gov.nih.nci.cagrid.discovery.client.DiscoveryClient.buildUMLClassPredicate
(UMLClass clazz) [static, protected]

Builds up a predicate for a UMLClass, based on the prototype passed in.
Note: Only attributes of the UMLClass are examined (associated objects (e.g.
UMLAttributeCollection and SemanticMetadataCollection) are ignored).

Parameters:
clazz the prototype UMLClass

Returns:
"*" if the prototype has no non-null or non-whitespace values, or the predicate necessary to match
all values.

static String
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.buildDataUMLClassPredicate
(gov.nih.nci.cagrid.metadata.dataservice.UMLClass clazz) [static, protected]

 Chapter 3 caGrid Metadata Infrastructure

39

static String gov.nih.nci.cagrid.discovery.client.DiscoveryClient.addNonNullPredicate
(String name, String value, boolean isAttribute) [static, protected]

Parameters:
name the element or attribute name to check
value the value to add the predicate filter against if this is null or whitespace only, no predicated is
added.
isAttribute whether or not name represents an attribute or element

Returns:
"" or the specified predicate (prefixed with " and ")

EndpointReferenceType []
gov.nih.nci.cagrid.discovery.client.DiscoveryClient.discoverByFilter (String
xpathPredicate) throws RemoteResourcePropertyRetrievalException,
QueryInvalidException, ResourcePropertyRetrievalException [protected]

Applies the specified predicate to the common path in the Index Service's Resource
Properties to return registered services' EPRs that match the predicate.

Parameters:
xpathPredicate predicate to apply to the "Entry" in Index Service

Returns:
EndpointReferenceType[] of matching services @

Exceptions:
ResourcePropertyRetrievalException
QueryInvalidException
RemoteResourcePropertyRetrievalException

String gov.nih.nci.cagrid.discovery.client.DiscoveryClient.translateXPath (String

caGrid 1.0 Programmer’s Guide

 40

xpathPredicate) [protected]

Adds the common Index RP Entry filter, and translates the xpath to IndexService friendly
XPath.

Parameters:
xpathPredicate

Returns:
the modified xpath

EndpointReferenceType gov.nih.nci.cagrid.discovery.client.DiscoveryClient.getIndexEPR
()

Gets the EPR of the Index Service being used.

void gov.nih.nci.cagrid.discovery.client.DiscoveryClient.setIndexEPR
(EndpointReferenceType indexEPR)

Sets the EPR of the Index Service to use.

Parameters:
indexEPR the EPR of the Index Service to use.

static void gov.nih.nci.cagrid.discovery.client.DiscoveryClient.main (String[] args)
[static]

testing stub

Parameters:
args optional URL to Index Service to query.

 Chapter 3 caGrid Metadata Infrastructure

41

gov.nih.nci.cagrid.discovery.XPathUtils

Member Function Documentation

static String gov.nih.nci.cagrid.discovery.XPathUtils.translateXPath (String
prefixedXpath, Map namespaces) [static]

This utility takes an XPath that uses namespace prefixes (such as /a:B/a:C) and converts it
to one without prefixes, by using the appropriate operators instead (such as /*[namespace-
uri()='http://DOMAIN.COM/SCHEMA' and local-name()='B']/*[namespace-
uri()='http://DOMAIN.COM/SCHEMA' and local-name()='C']). The only conceivable use for
this function is to write sane XPath and convert it to the insane XPath Globus index service
supports.

Note: This is not perfect. The known limitations are: 1) its overly aggressive, and will replace
QName-looking string literals, 2) it won't work if you have namespaces attributes 3) it will
silently not replace any QNames that you haven't supplied a prefix mapping for

Parameters:
prefixedXpath An xpath [optionally] using namespace prefixes in nodetests
namespaces A Map<String,String> keyed on namespace prefixes to resolve in the xpath, where
the value is the actual namespace that should be used.

Returns:
a converted, conformant, xpath

API Usage Examples

This section describes typical usage of the Discovery API. The exception handling shown in the
code examples is not recommended practice, and is simplistic for demonstration purposes.
Additional examples can be found in the source code of the discovery project, in the main of the
DiscoveryClient itself, as well as in the test source directory.

The main method of the DiscoveryClient can be run from the project’s source folder by entering
ant runClient. The discovery unit tests can also be run by entering ant test. The unit tests do not
actually communicate with the Index Service; rather they simulate it with a Mock object.

Configuring an Index Service

The first step in using the Discovery API is constructing an instance of the DiscoveryClient.
There are three constructors that can be used. The first, shown in line 7 of Figure 3-10, takes no
arguments, and indicates that the “default” Index Service should be used for discovery queries.
A second constructor, shown in line 5 of Figure 3-10, takes a String as an argument, and the
String is expected to represent the service URL of the Index Service to query. The final
constructor, not shown, takes an EndPointReferenceType, which can be used to directly

caGrid 1.0 Programmer’s Guide

 42

indicate the Index Service Resource to query. The standard caGrid Index Service installation is
stateless, and so a resource unqualified EPR can be used, but most clients can just use the
shortcut String constructor.

Figure 3-10 DiscoveryClient constructor example

The Index Service to use can also be reconfigured at runtime, by invoking the setIndexEPR
method, shown in line 11 of Figure 3-11. Just as specifying the Index Service in the constructor
generates an exception if the Address is not valid, so will the setter method.

Figure 3-11 Configuring Index Service code

Discovering Services

Once a DiscoveryClient is configured, it can be continually used to discover services of interest.
While the client is technically thread safe as long as the Index Service is not reconfigured during
use, it is recommended a new DiscoveryClient instance is used in each thread context where
discovery operations are performed, as it is an extremely light weight object.

The simplest discovery scenario, shown in Figure 3-12, is to query the Index Service for all
registered services. The boolean value specified in line 3, indicates whether services should be
ignored if they do not expose the caGrid standard metadata. In most application scenarios, a
value of “true” is used, but specifying “false” is useful for identifying all services that are
attempting to register. It is common for a service running behind a firewall to maintain
registration status with the Index Service, but not have caGrid metadata aggregated, as the
Index Service is not able to communicate with the inaccessible service

 Chapter 3 caGrid Metadata Infrastructure

43

Figure 3-12 Discovering all services

There are numerous discovery operations which take some form of text input, and all are case
sensitive. The simplest discovery operation that takes some form of input is the basic string
search operation, discoverServicesBySearchString, which is shown in Figure 3-13. This is a full
text search that examines all registered metadata values for the specified input. It is not likely
this operation will be useful for programmatic discovery (as it is a completely unstructured
query), but it is useful for applications that take direct input from the user (such as a web form),
and makes a good starting point for applications that provide capability to “drill down” and
examine the full metadata of the satisfying services.

Figure 3-13 Discovering by Search String

Beyond the full text search operation, there are many discovery operations that take a search
string as input, but perform a more structured search and are more useful for programmatic
discovery. For example, services providing a named operation can be discovered using the
method discoverServicesByOperationName, or Data Services exposing a given model can be
discovered, as shown below in Figure 3-14, using the discoverDataServicesByDomainModel
method. This operation, and all methods named like discoverDataServices* only return services
that implement the standard Data Service operations.

Figure 3-14 Discovering Data Services by Model Name

Another potentially useful method for discovering services or displaying information about
available services on the grid is the discoverServicesByResearchCenter method, shown below
in Figure 3-15.

caGrid 1.0 Programmer’s Guide

 44

Figure 3-15 Discovering by Research Center

There are several discovery methods that support semantic discovery by allowing search on
concept code. The simplest of these methods, discoverServicesByConceptCode, shown below
in Figure 3-16, searches for services based on concepts applied to the services itself. There is a
concept representing “Grid Service” in the ontology and derived concepts such as “Analytical
Grid Service” and “Data Grid Service.” By determining these concept codes, or any other
specialized concepts, this operation provides a simple way to discover services of a certain
“type.” Similarly, there is a method to discover services by the semantics of the operations they
provide using the discoverServicesByOperationConceptCode method. At the time of this writing,
services operations are not yet semantically annotated, but are expected to be soon. Finally,
two methods: discoverDataServicesByModelConceptCode and
discoverServicesByDataConceptCode provide the capability to discover services based on the
information about the data types they operate over. Both examine the semantic information of
the UML Classes used by the services. The first, discoverDataServicesByModelConceptCode,
locates Data Services that are exposing access to data based on the concept. The second,
discoverServicesByDataConceptCode, locates services that directly produce or consume data
based on the concept. In both cases, the concept is considered a match if the Class is based on
the concept or one of its attributes, attribute value domains, or enumerated value meanings.
These methods are all based on direct concept matching; not only ontological operations.
However, these methods coupled with the EVS grid service, provide a powerful ability to
traverse the caBIG ontology for information of interest, and discover services providing this
information, or the ability to manipulate it.

Figure 3-16 Discovering Services by Concept Code

Beyond the simple String based discovery methods, some discovery methods take complex
objects as input, such as a PointOfContact or UMLClass. In these cases, the objects act as a
prototype (or “query by example” as in the caCORE APIs), and can be as partially populated as
desired. For example, the method show below in Figure 3-17,
discoverServicesByPointOfContact, searches for services which are associated with a person
with the information described by the supplied PointOfContact instance; in this case services
associated with “Scott Oster” are located. There are many other fields in PointOfContact that
are not populated in this example, and are ignored.

 Chapter 3 caGrid Metadata Infrastructure

45

Figure 3-17 Discover Services by Point of Contact

There are many discovery methods that take a UMLClass prototype to discover services based
on data types; an example is shown below in Figure 3-18. This method,
discoverServiceByOperationInput, locates services that provide an operation that takes, as
input, an instance of the specified data type. In the example below, services provide operations
taking caBIO’s Gene instances as input. Again, this object can be as partially populated as
desired (such as only specifying the package name, or being more explicit in specifying the
exact project name and version).

Figure 3-18 Discover Services by Input

caDSR Grid Service Usage Overview
The following link provides a reference to the technical architecture and design document(s) for
caGrid Metadata:

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/cagrid-1-
0/Documentation/docs/cadsr/caGrid-cadsr-design.doc?cvsroot=cagrid-1-0

The caGrid caDSR Grid Service provides access to information in the caDSR that is relevant to
caGrid, and has capabilities to generate caGrid standard metadata instances. Specifically, the
service provides operations to access UML-like information stored in the caDSR. It also has
operations to generate Data Service metadata for a described subset of a given project
registered in caDSR. Finally, it has an operation that augments a description of an Analytical
Service, via a partially populated service metadata instance, with the necessary UML-like and
semantic information, extracted from caDSR, to describe the service and its operations.

The caDSR Grid Service is a simple, stateless service, created with Introduce. The service
exposes three main categories of operations. The first are operations that expose access to the

caGrid 1.0 Programmer’s Guide

 46

UML-like view of caDSR registered items like findProjects, findPackagesInProject,
findClassesInPackage, findAttributesInClass, etc. These provide basic discovery and access to
the UML information in the caDSR. While these operations are stateless, they take sufficient
context during each invocation to enable traversal of all registered projects. Aside from the
operations to locate Projects, each operation takes a description of the caDSR Project of
interest. Each operation in turn throws an InvalidProjectException if the Project specified is not
valid.

The second set of operations enables clients to generate caGrid standard Data Service
metadata. There are four operations that take variations of information specifying what data is to
be exposed by the Data Service for which the metadata is being created. Each operation throws
an InvalidProjectException if the Project specified is not valid or if it ambiguously identifies more
than one Project (for example is a version is not specified, yet there are multiple versions of a
given Project registered in caDSR). The first operation, generateDomainModelForProject, takes
only the project description, and generates a model that describes the entire domain model
being exposed for the project. The second, generateDomainModelForPackage, additionally
takes an array of Strings that represent UML package names in the Project to expose. The
method generates a model that describes exposing all UML Classes in UML Packages with a
name specified in the array. Any associations to UML Classes outside of the specified packages
are not exposed. The third method, generateDomainModelForClasses, also takes an array of
Strings that represent the fully qualified UML Class names to be exposed in the model. Any
association between classes not specified is omitted. The final method,
generateDomainModelForClassesWithExcludes, also takes an additional array of Strings that
represent the fully qualified UML Class names to be exposed in the model, but also takes an
array of UMLAssociationExcludes to be used to exclude specific associations from the model (in
addition to the already excluded associations that reference classes not specified in the array of
class names). The UMLAssociationExclude Class allows the client to specify a
sourceRoleName, sourceClassName, targetRoleName, and targetClassName. Any UML
Association that would otherwise be included in the computed subset of the DomainModel is
omitted if it meets the criteria described by any of the UMLAssociationExcludes. The value of
any attribute of the UMLAssociationExclude can be the wildcard “*”, which indicates it should
match anything. As such, specifying an exclude with “*” as the value for all attributes effectively
omits all associations from the DomainModel. By using no wildcards, a single association can
be omitted, and by using a combination of some values and some wildcards, groups of
associations can be omitted. For example, specifying an exclude instance with a
sourceClassName value of “gov.nih.nci.cabio.domain.Gene” and wildcards for all other
attributes would effectively omit any associations from the DomainModel where
gov.nih.nci.cabio.domain.Gene was the source of the association. Using these methods, in
combination with the operations for finding all Projects, Packages, Classes, and Associations,
Data Service metadata exposing any subset of Classes and Associations can be created.

The final type of operation is the operation, annotateServiceMetadata, which provides clients
the ability to augment a ServiceMetadata (standard caGrid service metadata) skeleton instance
with the information extracted from caDSR. The caGrid common service metadata specifies
information about a grid service and its operations. For more information on the model, consult
the caGrid metadata design document. The annotateServiceMetadata operation takes this
model and populates the UML and semantically oriented components by querying the caDSR

 Chapter 3 caGrid Metadata Infrastructure

47

appropriately. Specifically, it populates the semantically annotated UML Class information
(similar to the type used in Data Service Domain Model metadata) for each input and output
type of every operation the service provides. It does this by examining the XML Qualified Name
(QName) of each type used in the signature of the operation and locating its UML equivalent in
caDSR. In caGrid every grid service operation is required to use data types which are XML
representations of UML Classes registered in the caDSR. There is a one to one mapping of
UML Class to XML QNames (XML elements). The caGrid Metadata Design Document and
caDSR Grid Service Design Document can be consulted for more information on how this
binding (XML QName to caDSR type) occurs, and what restrictions it places on the models.

The primary data types used by the caDSR grid service are those which are defined in caCORE
3.1 in the gov.nih.nci.cadsr.domain model, which represents the caDSR information and the
gov.nih.nci.cadsr.umlproject.domain, which represents a UML-like view of information in the
caDSR. The umlproject model, shown below in Figure 3-19, is the main model, but it associates
with and extends a few classes from the caDSR base model, so it is used as well. As is evident
from the figure below, the model provides a UML-like view of the caDSR registered projects.
One class of note is the SemanticMetadata class which is associated to many UML-like classes,
and provides a link to the semantic content of those items. Specifically, it exposes information
about the EVS-maintained concepts.

caGrid 1.0 Programmer’s Guide

 48

Figure 3-19 UML project model

In addition to the existing caCORE-defined types, the caDSR grid service defines two new data
types for exclusive use by its exposed operations. The first is the UMLAssociationExclude,
described above as the type used to specify UML Associations which should be excluded from
a generated DomainModel. The second is an alternative representation of a UML Association,
namely the UMLAssocation class. This has the same semantics as the
UMLAssociationMetadata class in the umlproject model, but uses an alternate syntactic
representation which is more suitable to transport over the grid.

 Chapter 3 caGrid Metadata Infrastructure

49

Figure 3-20 caDSR Grid Service Types

Finally the service also makes use of the ServiceMetadata and DomainModel caGrid metadata
models, as it provides operations to manipulate them. For more information on these models,
consult the caGrid Metadata Design Document.

Security Considerations

The caDSR grid service requires no grid credentials for any operations. Its typical deployment is
in a service container using an open communication channel. However, even if it is deployed to
a container making use of transport level security (https), it will not require credentials from the
user, and can be communicated with anonymously.

API Details

The caDSRServiceClient is the main client interface to the caDSR grid service (Figure 3-21).

caGrid 1.0 Programmer’s Guide

 50

Figure 3-21 CaDSRServiceClient Inheritance Graph

gov.nih.nci.cagrid.cadsr.client.CaDSRServiceClient

Constructor Documentation

CaDSRServiceClient (String url) - throws MalformedURIException, RemoteException

CaDSRServiceClient (String url, GlobusCredential proxy) - throws MalformedURIException,
RemoteException

CaDSRServiceClient (EndpointReferenceType epr) - throws MalformedURIException,
RemoteException

CaDSRServiceClient (EndpointReferenceType epr, GlobusCredential proxy) - throws
MalformedURIException, RemoteException

Member Function Documentation

Access to caGrid Service Security Metadata:

• gov.nih.nci.cagrid.metadata.security.ServiceSecurityMetadata
getServiceSecurityMetadata ()

o throws RemoteException
o Description: Returns the caGrid service security metadata

Navigation and discovery of UML-like information:

• gov.nih.nci.cadsr.umlproject.domain.Project[] findAllProjects ()

 Chapter 3 caGrid Metadata Infrastructure

51

o throws RemoteException
o Description: Returns all Projects registered in the caDSR

• gov.nih.nci.cadsr.umlproject.domain.Project[] findProjects (java.lang.String context)
o throws RemoteException
o Description: Returns all Projects registered in the caDSR under the given

context
• gov.nih.nci.cadsr.umlproject.domain.UMLPackageMetadata[] findPackagesInProject

(gov.nih.nci.cadsr.umlproject.domain.Project project)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns all Packages in the given Project

• gov.nih.nci.cadsr.umlproject.domain.UMLClassMetadata[] findClassesInProject
(gov.nih.nci.cadsr.umlproject.domain.Project project)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns all Classes in the given Project

• gov.nih.nci.cadsr.umlproject.domain.UMLClassMetadata[] findClassesInPackage
(gov.nih.nci.cadsr.umlproject.domain.Project project, java.lang.String packageName)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns all Classes in the given Package

• gov.nih.nci.cadsr.umlproject.domain.UMLAttributeMetadata[] findAttributesInClass
(gov.nih.nci.cadsr.umlproject.domain.Project project,
gov.nih.nci.cadsr.umlproject.domain.UMLClassMetadata clazz)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns all Attributes of the given Class

• gov.nih.nci.cadsr.umlproject.domain.SemanticMetadata[]
findSemanticMetadataForClass (gov.nih.nci.cadsr.umlproject.domain.Project project,
gov.nih.nci.cadsr.umlproject.domain.UMLClassMetadata clazz)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns the semantic information about the given Class

• gov.nih.nci.cadsr.domain.ValueDomain findValueDomainForAttribute
(gov.nih.nci.cadsr.umlproject.domain.Project project,
gov.nih.nci.cadsr.umlproject.domain.UMLAttributeMetadata attribute)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns the Value Domain information for the given Attribute

• gov.nih.nci.cagrid.cadsrservice.UMLAssociation[] findAssociationsForClass
(gov.nih.nci.cadsr.umlproject.domain.Project project,
gov.nih.nci.cadsr.umlproject.domain.UMLClassMetadata clazz)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns all Associations of the given Class

• gov.nih.nci.cagrid.cadsrservice.UMLAssociation[] findAssociationsInPackage
(gov.nih.nci.cadsr.umlproject.domain.Project project, java.lang.String packageName)

caGrid 1.0 Programmer’s Guide

 52

o throws RemoteException,
gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException

o Description: Returns all Associations in the given Package
• gov.nih.nci.cagrid.cadsrservice.UMLAssociation[] findAssociationsInProject

(gov.nih.nci.cadsr.umlproject.domain.Project project)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns all Associations in the given Project

• gov.nih.nci.cadsr.domain.Context findContextForProject
(gov.nih.nci.cadsr.umlproject.domain.Project project)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Returns the Context of the given Project

caGrid standard metadata generation and manipulation:

• gov.nih.nci.cagrid.metadata.dataservice.DomainModel
generateDomainModelForProject (gov.nih.nci.cadsr.umlproject.domain.Project
project)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Generates standard Data Service metadata for the given Project

• gov.nih.nci.cagrid.metadata.dataservice.DomainModel
generateDomainModelForPackages (gov.nih.nci.cadsr.umlproject.domain.Project
project, java.lang.String[] packageNames)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Generates standard Data Service metadata for the given Packages

• gov.nih.nci.cagrid.metadata.dataservice.DomainModel
generateDomainModelForClasses (gov.nih.nci.cadsr.umlproject.domain.Project
project, java.lang.String[] fullClassNames)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Generates standard Data Service metadata for the given Classes

• gov.nih.nci.cagrid.metadata.dataservice.DomainModel
generateDomainModelForClassesWithExcludes
(gov.nih.nci.cadsr.umlproject.domain.Project project, java.lang.String[]
fullClassNames, gov.nih.nci.cagrid.cadsrservice.UMLAssociationExclude[]
associationExcludes)
o throws RemoteException,

gov.nih.nci.cagrid.cadsr.stubs.types.InvalidProjectException
o Description: Generates standard Data Service metadata for the given Classes,

excluding the specified (if any) Associations
• gov.nih.nci.cagrid.metadata.ServiceMetadata annotateServiceMetadata

(gov.nih.nci.cagrid.metadata.ServiceMetadata serviceMetadata)
o throws RemoteException
o Description: Annotates the given standard service metadata instance with

semantically annotated UML class information for all operations inputs and
outputs

 Chapter 3 caGrid Metadata Infrastructure

53

API Usage Examples

This section describes typical usage of the caDSR Grid Service Client API. The exception
handling shown in the code examples is not recommended practice, and is simplistic for
demonstration purposes.

Examining a Project’s Information Model

The example shown below in Figure 3-22, shows simple logic that can be used to list out the
Projects, Packages, Classes, and Attributes registered in the caDSR. It is a simplified extract of
the main method of the CaDSRServiceClient, and can run in full from the project by typing “ant
runClient.” The first step in communicating with the service, as with all caGrid services, is to
construct an instance of the client, passing the URL of the service. This can be seen in line 1 of
the example. Next in line 4, the example asks the caDSR for all of the registered Projects, and
then loops over them in line 6. For each returned Project, the caDSR is then asked for the
Packages registered in that Project, shown in line 9. This demonstrates the basic process which
is used to navigate the UML-like information in the caDSR, wherein context of the previous
operation (in this case a Project), is passed to a successive operation which provides more
detailed information. This can be seen again in line 15, line 22, and line 31, where respectively
the Classes in a Package, Attributes in a Class, and Associations in a Class are accessed. The
result of running this example is a printout out of a “tree like” view of all caDSR registered
Projects. While generally one does not want to navigate all information in the caDSR, this basic
model can be followed to find whatever information is desired (first locating the Project of
interest, then passing it to operations which provide more detail).

caGrid 1.0 Programmer’s Guide

 54

Figure 3-22 Navigating projects registered in the caDSR

Generating Data Service Metadata

As described above, there are four operations which provide the ability to generate instances of
caGrid standard Data Service metadata. Three examples of using this capability are shown
below, wherein the resulting DomainModel is written to a local file, and some basic information
about the model is printed to the screen. It should be noted that most users will not need to
make use of these APIs, as the Introduce toolkit automatically does this for them when creating
a Data Service, using the appropriate information based on the configuration of the service.

The first example, shown in Figure 3-23, demonstrates how to create metadata which describes
an entire Project being exposed; in this case the 3.1 version of caCORE. Lines 4-6 demonstrate

 Chapter 3 caGrid Metadata Infrastructure

55

the construction of a “prototype” Project instance, which describes the Project being exposed.
Then, in line 8, this is passed to the generateDomainModelForProject operation of the caDSR
grid service, and the resulting metadata instance is returned. This is the simplest of the Data
Service metadata generation operations, and does not allow and configuration or restriction of
the model. However, the resulting object could then be manipulated by the client appropriately.

The following lines (10-19) are common to all the following examples and show how the
DomainModel can be written to a local file (lines 10-13), and how the model can be inspected as
a Java Bean. Line 17 shows how the descriptions of the Associations of the model are
accessed, and line 19 shows how the descriptions of the exposed Classes can be accessed.

Figure 3-23 Generating a Domain Model for a Whole Project

The next example, shown in Figure 3-24, demonstrates how a metadata instance that describes
exposing a subset of a Project can be created. In this case, on line 9, an array of package
names, containing only caBIO, is constructed and passes to the
generateDomanModelForPackages operation. This operation restricts the returned model to
only contain Classes that are in the specified package(s), and Associations between those
Classes.

caGrid 1.0 Programmer’s Guide

 56

Figure 3-24 Generating a domain model for a package

The final example, shown in Figure 3-25, demonstrates the most powerful domain model
generation operation, which allows the explicit specification of the Classes which are being
exposed and the restriction of Associations between those Classes. Shown in lines 8 and 9, an
array of Class names is constructed, in this case the generated model will specify the Data
Service is only exposing 4 classes: Gene, Chromosome, Taxon, and Tissue. If we generated a
model using these Classes, all Associations between them would be included. However, in the
example some of these Associations are specified to be excluded from the model, signifying
clients may not query over these associations. Lines 10 and 11, first show the construction of an
AssociationExclude that explicitly specifies to exclude the Association from Gene to
Chromosome where Gene is the source, with the role “geneCollection” and Chromosome is the
target with “chromosome” as the role. This only matches a single association in the model. Next,
in lines 12-13, a broader exclude is constructed which specifies that an Association with Tissue
as the target should be excluded. Both these restrictions are then added to an array, in lines 14
and 15, and passed to the service with the Project and Class names on line 16.

 Chapter 3 caGrid Metadata Infrastructure

57

Figure 3-25 Generating a restricted domain model

EVS API Usage Overview
The following link provides a reference to the technical architecture and design document(s) for
the EVS API:

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/cagrid-1-
0/Documentation/docs/evs/EVS%20Grid%20Service%20Design%20and%20Implementation.do
c?cvsroot=cagrid-1-0

getMetaSources

This API provides a list of vocabularies presented by the NCI Metathesaurus. The NCI
Metathesaurus maps terms from one standard vocabulary to another, facilitating collaboration,
data sharing and data pooling for clinical trials and scientific data services. The Metathesaurus
is based on the National Library of Medicine’s (NLM) Unified Medical Language System (UMLS)
and is composed of over 70 biomedical vocabularies.

Input:

None

Output:

gov.nih.nci.evs.domain.Source[]

caGrid 1.0 Programmer’s Guide

 58

Exception:

RemoteException

Examples of Use

Following is example of java client code invoking the API:

 EVSGridServiceClient client = new EVSGridServiceClient(endpoint);

 gov.nih.nci.evs.domain.Source[] sources = client.getMetaSources();

where endpoint provides Endpoint Reference (EPR) to the EVS core grid service deployed on
caGrid 1.0

getVocabularyNames

This API provides a list of vocabularies whose concepts are programmatically accessible to the
users via the Description Logic representation. All the vocabularies that are accessible via the
caCORE 3.1 EVS API are supported by this API.

Input:

None

Output:

gov.nih.nci.cagrid.evs.service.DescLogicConceptVocabularyName []

Exception:

RemoteException

Examples of Use

Following is example of java client code invoking the API:

 EVSGridServiceClient client = new EVSGridServiceClient(endpoint);

gov.nih.nci.cagrid.evs.service.DescLogicConceptVocabularyName[] dlcNames =

client.getVocabularyNames();

where endpoint provides Endpoint Reference (EPR) to the EVS core grid service deployed on
caGrid 1.0

searchDescLogicConcept

This API provides access to concepts and terms that are published by the vocabularies using
the Description Logic representation and exposed via the caCORE 3.1 EVS API.

The input to the API (EVSDescLogicConceptSearchParams) consists of appropriate vocabulary
to query for concepts (vocabularyName), the concept name or code to search (searchTerm) and
a tuning parameter (limit) to restrict the amount of objects returned by the API.

The API returns an array of Description Logic concepts with most of the attributes populated
and the user can navigate associated data based on the caCORE 3.1 EVS domain model.

 Chapter 3 caGrid Metadata Infrastructure

59

Input:

gov.nih.nci.cagrid.evs.service.EVSDescLogicConceptSearchParams

Output:

gov.nih.nci.evs.domain.DescLogicConcept[]

Exception:

RemoteException

InvalidInputExceptionType

Examples of Use

Following is example of java client code invoking the API:

EVSDescLogicConceptSearchParams evsSearchParams = new

EVSDescLogicConceptSearchParams();

 evsSearchParams.setVocabularyName("NCI_Thesaurus");

 evsSearchParams.setSearchTerm(searchTerms[count]);

 evsSearchParams.setLimit(100);

EVSGridServiceClient client = new EVSGridServiceClient(endpoint);

DescLogicConcept[] dlc= client.searchDescLogicConcept(evsSearchParams);

where endpoint provides Endpoint Reference (EPR) to the EVS core grid service deployed on
caGrid 1.0.

API-Specific Considerations

The API has following restrictions:

1. Instances of gov.nih.nci.evs.domain.EdgeProperties are not populated currently by the
API. These objects are used to specify relationship between a concept and its immediate
parent when a DefaultMutableTree is generated. And, the EVS 1.0 grid service is not
required to support the generation of a Tree.

2. Instances of gov.nih.nci.evs.domain.Qualifier are not populated by the caGrid EVS 1.0
service.

3. Instances of gov.nih.nci.evs.domain.TreeNode are not populated by the caGrid EVS 1.0
service.

Exception Handling

The API validates inputs and throws InvalidInputExceptionType if any of the following invalid
values are present in the input to the API:

1. If the input instance EVSDescLogicConceptSearchParams is null.

2. If the value of the tuning parameter(limit) is less than or equal to zero.

caGrid 1.0 Programmer’s Guide

 60

3. If vocabulary name (vocabularyName) is not set (null or empty string) or the vocabulary
name is not present in the list of available vocabularies supported by caCORE 3.1 EVS
API for concepts based on Description Logic representation.

getHistoryRecords

This API provides complete History for concepts tracings the evolution of the concept as they
are created, merged, modified, split, or retired. This history mechanism is provided completely
for the NCI Thesaurus, published by the NCI EVS team while for all other vocabularies that
provide concepts based on Description Logic representation, a dummy value for History is
provided.

The input to the API (EVSHistoryRecordsSearchParams) consists of appropriate vocabulary to
query for concepts (vocabularyName) and a valid concept code to search (conceptCode).

The API returns an array of History records for the specified Description Logic Concept with
attributes populated and the user can navigate associated data based on the caCORE 3.1 EVS
domain model.

Input:

gov.nih.nci.cagrid.evs.service.EVSHistoryRecordsSearchParams

Output:

gov.nih.nci.evs.domain.HistoryRecord[]

Exception:

RemoteException

InvalidInputExceptionType

Examples of Use

Following is example of java client code invoking the API:

 EVSHistoryRecordsSearchParams evsHistoryParams = new

EVSHistoryRecordsSearchParams();

 evsHistoryParams.setVocabularyName("NCI_Thesaurus");

 evsHistoryParams.setConceptCode("C16612");

 EVSGridServiceClient client = new EVSGridServiceClient(endpoint);

 HistoryRecord[] historys = client.getHistoryRecords(evsHistoryParams);

where endpoint provides Endpoint Reference (EPR) to the EVS core grid service deployed on
caGrid 1.0

 Chapter 3 caGrid Metadata Infrastructure

61

API-Specific Considerations

None

Exception Handling

The API validates inputs and throws InvalidInputExceptionType if any of the following invalid
values are present in the input to the API:

1. If the input instance EVSHistoryRecordsSearchParams is null.

2. If the concept code (conceptCode) is not set (null or empty string) or an invalid concept code
is passed to the API... All concept codes are expected to start with the letter “C”.

3. If vocabulary name (vocabularyName) is not set (null or empty string) or the vocabulary
name is not present in the list of available vocabularies supported by caCORE 3.1 EVS API
for concepts based on Description Logic representation.

searchMetaThesaurus

This API provides access to concepts that are supported by the NCI Metathesaurus. The input
to the API (EVSMetaThesaurusSearchParams) consist of a search term or a concept unique
identifier (CUI) (searchTerm), a valid Metathesaurus source (source) and tuning parameters to
control the amount of results (limit, shortResponse and score). The API returns an array of
concepts from the Metathesaurus with all the attributes populated and the user can navigate
associated data based on the caCORE 3.1 EVS domain model.

Input:

gov.nih.nci.cagrid.evs.service.EVSMetaThesaurusSearchParams

Output:

gov.nih.nci.evs.domain.MetaThesaurusConcept[]

Exception:

RemoteException

InvalidInputExceptionType

Examples of Use

Following is example of java client code invoking the API:

EVSMetaThesaurusSearchParams evsMetaThesaurusSearchParam = new

EVSMetaThesaurusSearchParams();

 evsMetaThesaurusSearchParam.setLimit(100);

 evsMetaThesaurusSearchParam.setSource("*");

caGrid 1.0 Programmer’s Guide

 62

 evsMetaThesaurusSearchParam.setCui(false);

 evsMetaThesaurusSearchParam.setShortResponse(false);

 evsMetaThesaurusSearchParam.setScore(false);

 EVSGridServiceClient client = new EVSGridServiceClient(endpoint);

 MetaThesaurusConcept[] metaConcept =

client.searchMetaThesaurus(metaParams);

where endpoint provides Endpoint Reference (EPR) to the EVS core grid service deployed on
caGrid 1.0

API-Specific Considerations

The API has following constraints:

• The source input to the API has to be a valid metathesaurus source abbreviation
(present in the list from the API getMetaSources. A value of “*” indicates that the
search term will be queried against ALL available sources

• Search term refers to the concept “name” to be searched in the appropriate source or all
sources as indicated above

• The appropriate settings of the tuning parameters to indicate whether the search term is
a Concept Unique Identifier (CUI) or a regular search term. If the search term is a CUI,
then, the search term is validated to adhere to the following restrictions:

o The CUI begins with the letter “C”
o The CUI has a maximum length of 8 characters

Exception Handling

The API validates inputs and throws InvalidInputExceptionType if any of the following invalid
values are present in the input to the API:

1. If the input instance EVSMetaThesaurusSearchParams is null.

2. If the search term (searchTerm) is not set (null or empty).

3. If the search term is a CUI, then if an invalid CUI is passed to the API. All CUIs are expected
to start with the letter “C” and are 8 characters long.

4. If the value of the tuning parameter (limit) is less than or equal to zero.

5. If the Metathesaurus source abbreviation (source) is not set (null or empty string) or the
source is not present in the list of available vocabularies supported by caCORE 3.1 EVS API
(“*” is valid source abbreviation indicating ALL sources)

searchSourceByCode

This API provides access to concepts that are supported by the NCI Metathesaurus. The input
to the API (EVSSourceSearchParams) consists of a concept unique identifier (CUI) (code) and
a valid Metathesaurus source (source). The API returns an array of concepts from the
Metathesaurus with all the attributes populated and the user can navigate associated data
based on the caCORE 3.1 EVS domain model.

 Chapter 3 caGrid Metadata Infrastructure

63

Input:

gov.nih.nci.cagrid.evs.service.EVSSourceSearchParams

Output:

gov.nih.nci.evs.domain.MetaThesaurusConcept[]

Exception:

RemoteException

InvalidInputExceptionType

Examples of Use

Following is example of java client code invoking the API:

 EVSSourceSearchParams evsSourceParam = new EVSSourceSearchParams();

 evsSourceParam.setCode("0000001800");

 evsSourceParam.setSourceAbbreviation("AOD2000");

 EVSGridServiceClient client = new EVSGridServiceClient(endpoint);

 MetaThesaurusConcept[] mC = client.searchSourceByCode(evsSourceParam);

where endpoint provides Endpoint Reference (EPR) to the EVS core grid service deployed on
caGrid 1.0

API-Specific Considerations

The API will take following input:

• A valid Meta Thesaurus source abbreviation (present in the list from the API
getMetaSources. The ALL sources value of “*” is not permitted for this API.

• A valid value for “code”. Some of the concepts in the Meta Thesaurus do not have code
associated with them and are displayed in the NCI Meta Thesaurus Browser with the
value of “NOCODE”. The “NOCODE” value is not valid input for the API.

Exception Handling

The API validates inputs and throws InvalidInputExceptionType if any of the following invalid
values are present in the input to the API:

1. If the input instance EVSSourceSearchParams is null.

2. If the concept code (code) is not set (null or empty) or has value “NOCODE”.

3. If the Metathesaurus source abbreviation (source) is not set (null or empty string) or the
source is not present in the list of available vocabularies supported by caCORE 3.1 EVS
API.

caGrid 1.0 Programmer’s Guide

 64

 Chapter 4 caGrid Security

65

Chapter 4 caGrid Security

This chapter describes using Dorian and Grid Grouper as part of caGrid security.

Topics in this chapter include:

• Dorian Overview on this page

• Grid Grouper Overview on page 69

Dorian Overview
Managing users and provisioning accounts in the grid is complex, the Globus Toolkit
implements support for security via its Grid Security Infrastructure (GSI). The GSI utilizes X509
Identity Certificates for identifying a user. An X509 Certificate with its corresponding private key
forms a unique credential or so-called “grid credential” within the Grid. Since Grid credentials
are long term credentials and are not directly used in authenticating users to the grid, rather a
short term credential called a grid proxy is used. Grid Proxies consist of a private key and
corresponding long term certificate signed by the long term grid credential private key. A grid
proxy is an extension to traditional X509 certificates providing the ability to delegate you
credentials to other services, for example in the case of workflow. Although this approach is
very effective and secure, it is difficult to manage in a multi-institutional environment. Using the
base Globus toolkit, the provisioning of grid credentials is a manual process, which is far too
complicated for users. The overall process is further complicated if a user wishes to
authenticate from multiple locations, as a copy of their private key and certificate has to be
present at every location. Not only is this process complicated, securely distributing private keys
is error prone and poses a security risk. There are also many complexities in terms of
provisioning user accounts in an environment consisting of tens of thousands of users from
hundreds of institutions, each of which most likely has a user account at their home institution. A
practical solution to this problem, both from the point of view of the users’ and their institutions,
is to allow those users to authenticate with the grid through the same mechanism in which they
authenticate with their institution. Dorian is a grid user management service that (1) hides the
complexities of creating and managing grid credentials from the users and (2) provides a
mechanism for users to authenticate using their institution’s authentication mechanism,
assuming a trust agreement is in place between Dorian and the institution.

Dorian provides a complete Grid-enabled solution, based on public key certificates and SAML,
for managing and federating user identities in a Grid environment. Grid technologies have
adopted the use of X509 identity certificates to support user authentication. The Security
Assertion Markup Language (SAML) has been developed as a standard for exchanging
authentication and authorization statements between security domains. Note that Grid
certificates and SAML assertions serve different purposes. SAML is mainly used between
institutions for securely exchanging authentication information coming from trusted identity
providers. The primary use of the certificates is to uniquely identify Grid users, facilitate
authentication and authorization across multiple resource providers, and to enable secure

caGrid 1.0 Programmer’s Guide

 66

delegation of credentials such that a service or a client program can access resources on behalf
of the user. A salient feature of Dorian is that it provides a mechanism for the combined use of
both SAML and Grid certificates to authenticate users to the Grid environment through their
institution’s authentication mechanism.

One of the challenges in building an identity management and federation infrastructure is to
create an architecture that incorporates multiple differing authentication mechanisms used by
various institutions. In addressing this challenge we identify two possible approaches. The first
is to build an infrastructure that would allow pluggable authentication modules, wherein a
module would be developed for each authentication mechanism. In this architecture, a user’s
authentication information would be routed to the appropriate module that contains the logic for
authenticating the user with its institution. Although this approach solves the problem, it requires
at least one module be developed for each authentication mechanism. This would require the
Grid infrastructure administrators to become intimately familiar with each institution’s
authentication mechanisms, and would increase the system’s complexity with each new module
added.

Another approach would be for the infrastructure to accept an institutionally supplied, standard
“token” as a method of authentication. In this approach users would first authenticate with their
institution’s identity management system. Upon successfully authentication the institution’s
identity management system issues a token which can then be given to the federated grid
identity management system in exchange for grid credentials. The benefit of this approach over
the first is that it does not require writing a plug-in every time a new institutional authentication
mechanism comes online. It does, however, require every institutional authentication system to
agree upon and be able to provide a common token. As SAML has been adopted by many
institutions, we have chosen that token format as the basis of the second approach for Dorian.

The Security Assertion Markup Language (SAML) is an XML standard for exchanging
authentication and authorization data between security domains. Generally the exchange of
authentication and authorization data is made between an Identity Provider (IdP) and another
party. An institution’s authentication system or identity management system is an example of an
IdP. Dorian uses SAML authentication assertions as the enabling mechanism for federating
users from local institutions to the grid.

Figure 4-1 illustrates an example usage scenario for Dorian. To obtain grid credentials or a
proxy certificate, users authenticate with their institution using the institution’s conventional
mechanism. Upon successfully authenticating the user, the local institution issues a digitally
signed SAML assertion, vouching that the user has authenticated. The user then sends this
SAML assertion to Dorian in exchange for grid credentials. Dorian will only issue grid credentials
to users that supply a SAML assertion from a Trusted Identity Provider. Dorian’s grid service
interface provides mechanisms for managing trusted identity providers; this will be discussed in
greater detail later in this document. For example, in Figure 4-1, where a Georgetown user
wishes to invoke a grid service that requires grid credentials, they first supply the application
with their username and password to the Georgetown Authentication Service as they would
normally do. The application client authenticates the Georgetown user with the Georgetown
Authentication Service, receives a signed SAML assertion which it subsequently passes to
Dorian in exchange for grid credentials. These credentials can then be used to invoke the grid
services. This illustrates how Dorian can leverage an institution’s existing authentication

 Chapter 4 caGrid Security

67

mechanism and bring its users to the grid.

Figure 4-1 Dorian

To facilitate smaller groups or institutions without an existing IdP, Dorian also has its own
internal IdP. This allows users to authenticate to Dorian directly, thereby enabling them to
access the grid. It provides administrators with facilities for approving and managing users. All
of the Dorian IdP’s functionality is made available through a grid service interface. Details of the
Dorian IdP are provided later in this document. Figure 4-1 illustrates a scenario of a client using
the Dorian IdP to authenticate to the Grid. In this scenario, the unaffiliated User wishes to invoke
a grid service. Given that this unaffiliated user has registered and been approved for an
account, she is able to authenticate with the Dorian IdP by supplying their username and
password. Upon successfully authenticating the user, the Dorian IdP issues a SAML Assertion
just like institutional IdPs, which can be presented to Dorian in exchange for grid credentials.
The credentials can be used to invoke the grid service.

Creating a Grid Proxy Programmatically

Figure 4-2 provides an example of how to create a grid proxy programmatically with Dorian. In
order to create a grid proxy using Dorian you must first obtain a signed SAML Assertion from an
Identity Provider Trusted by Dorian. caGrid’s Authentication Service provides a common
interface and client tooling for exposing a local Identity Provider, such that a user may

caGrid 1.0 Programmer’s Guide

 68

authenticate using their local credentials and obtain a SAML assertion using a common client or
AuthenticationClient. Although it is not required to obtain the SAML Assertion from a caGrid
Authentication Service, it is the recommended approach and the approach used in Figure 4-2.
Besides obtaining a SAML assertion, Dorian also requires the specification of a proxy lifetime
and a delegation path length in order to create a grid proxy. The proxy lifetime specifies the
amount of time that the proxy is valid for. A proxy lifetime is specified in terms of hour, minutes,
and seconds. The delegation path length specifies how many times a proxy can be delegated to
other services. Once you have obtained a SAMLAssertion and specified a ProxyLifetime and
delegation path length, you can use Dorian’s IFSUserClient to create a proxy with Dorian.

Figure 4-2 Programmatically creating a grid proxy with Dorian

try{

 String authURI = "http://some.service.uri";

 String dorianURI = "http://some.dorian.uri";

 //Create an instance of my institution provided credentials

 Credential localCredential = new Credential();

 BasicAuthenticationCredential userPass = new BasicAuthenticationCredential();

 userPass.setUserId("MyUserId");

 userPass.setPassword("MyPassword");

 localCredential.setBasicAuthenticationCredential(userPass);

 //User the caGrid common authentication client to authenticate with the local

 //IdP and obtain a SAML Assertion

 AuthenticationClient auth = new AuthenticationClient(authURI,
localCredential);

 SAMLAssertion saml = auth.authenticate();

 //Specify the lifetime of the desired proxy

 ProxyLifetime lifetime = new ProxyLifetime();

 lifetime.setHours(12);

 lifetime.setMinutes(0);

 lifetime.setSeconds(0);

 Chapter 4 caGrid Security

69

Grid Grouper Overview
Grid Grouper provides a group based authorization solution for caGrid, where grid services and
applications enforce authorization policy based on membership to groups defined and managed
at the grid level. Grid Grouper is built on top of Grouper an internet2 initiative focused on
providing tools for group management. Grouper is a java object model which currently supports:
basic group management by distributed authorities; subgroups; composite groups (whose
membership is determined by the union, intersection, or relative complement of two other
groups); custom group types and custom attributes; trace back of indirect membership;
delegation. Applications interact with Grouper by embedding the Grouper’s java object model
within applications. Grouper does not provide a service interface for accessing groups. Grid
Grouper (Figure 4-3) is a grid enabled version of Grouper, providing a web service interface to
the Grouper object model. Grid Grouper make groups managed by Grouper available and
manageable to applications and other services in the grid. Grid Grouper provides an almost
identical object model to the Grouper object model on the grid client side. Applications and
services can use the Grid Grouper object model much like they would use the Grouper object
model to access and manage groups as well as enforce authorization policy based on
membership to groups. Grid Grouper provides a fully functional administrative UI for accessing
and administrating groups in Grid Grouper.

Figure 4-3 Grid Grouper

In Grouper/Grid Grouper groups are organized into namespaces or stems. Each stem can have

caGrid 1.0 Programmer’s Guide

 70

a set of child stems and set of child groups with exception to the root stem which cannot have
any child groups. The Stem hierarchy in Grid Grouper is publicly visible to anyone accessing the
service; however the ability to view a group within a stem publicly depends on the privileges for
the group. A Stem can have two types of privileges associated with it, the “Stem Privilege” and
the “Create Privilege”. Users with the “Stem Privilege” can create, modify, and remove child
stems. Users with the “Create Privilege” can create, modify, and remove child groups.

In Grouper/Grid Grouper groups are compromised of a set of metadata describing the group, a
set of members in the groups, and a set of privileges assigned to users for protecting access to
the group. Grid Grouper provides three mechanisms for adding members to a group: 1) Directly
adding a member 2) Adding a subgroup to a group 3) Making a group a composite of other
groups. Directly adding a user as a member to a groups is straight forward, these members are
referred to as “Immediate Members”. Adding a subgroup to a group makes all the members of
the subgroup members of the group in which the subgroup was added. Members in a group
whose membership is granted by membership in a sub group are referred to as “Effective
Members”. A group can also be set to be a Composite group. A composite group consists of a
set operation (Union, Intersection, Complement) on two other groups. For example a composite
group consisting of the Intersection of Group X and Group Y would contain all the members that
are both member of Group X and Group Y. Members whose membership is granted through a
composite group are referred to as “Composite Members”.

To protect access to groups in Grid Grouper, users can be assigned the following privileges on
a group: View, Read, Update, Admin, Optin, and Optout. Users with the View privilege can see
that the group exists. Users with the Read privilege can read basic information about the group.
Users with the Update Privilege can manage memberships to the group as well as administer
View, Read, and Update privileges. Users with the Admin privilege can modify/administer
anything on the group: metadata, privileges, and memberships. Users with the Optin privilege
can add themselves as a member to a group; similarly users with the Opout privilege can
remove themselves from a group. By default Grid Grouper grants Read and View privileges to
all users on each group.

Initially grid grouper has a root stem with on child stem named “Grouper Administration”
(grouperadministration). The Grouper Administrative stem contains one group named “Grid
Grouper Administrators” (grouperadministration:gridgrouperadministrators). The “Grid Grouper
Administrators” is the super user group for Grid Grouper, all members of this group will have
admin privileges on all the stems and groups within Grid Grouper. This group is initially empty,
but at least one administrative user must be added during Grid Grouper installation. This can be
done using the GridGrouperBootstrapper command line tool.

Grid Grouper Object Model

The Grid Grouper object model provides an API for applications and services to access groups
managed by Grid Grouper. The object model can be used to enforce access control policies in
applications. For example the object model can be used for determining membership to a group
in an application that allows access to a specific area of the application if the user is a member
of a specified group. The Grouper object model can also be used to administrate Grid Grouper.
As a testament to this the Grid Grouper Admin UI application was built on top of the Grid
Grouper object model. The Grid Grouper object model consists of several objects: GridGrouper,

 Chapter 4 caGrid Security

71

Stem, Group, Member, Membership, NamingPrivilege, and AccessPrivilege. The GridGrouper
object corresponds to an instance of a Grid Grouper service; it provides high level operations
such as finding stems and groups or determining whether or not a user is a member of a group,
etc. The Stem object represents an instance of a stem within Grid Grouper. The Stem object
provides operations for managing the stem: viewing metadata, managing child stems, managing
child groups, managing stem privileges, etc. The Group object models a group instance within
Grid Grouper, providing operations for managing metadata, managing privileges, and managing
members. In the remainder of this section we will provide several code examples of performing
common tasks with the Grid Grouper object model.

Determining if a Subject is a Member of a Group

try {

 String uri ="https://localhost:8443/wsrf/services/cagrid/GridGrouper";

 String user = "/O=OSU/OU=BMI/OU=caGrid/OU=Dorian/OU=cagrid05/CN=jdoe";

 String group = "MyStem:MyGroup";

 //Create a Grid Grouper Instance

 GrouperI grouper = new GridGrouper(uri);

 //Determiner if the user is a member of the group.

 boolean isMember = grouper.isMemberOf(user, group);

 if(isMember){

 System.out.println("The user "+user+" is a member of "+group);

 }else{

 System.out.println("The user "+user+" is NOT a member of "+group);

 }

} catch (Exception e) {

 e.printStackTrace();

}

caGrid 1.0 Programmer’s Guide

 72

List All Members of a Group

try {

 String uri = "https://localhost:8443/wsrf/services/cagrid/GridGrouper";

 String group = "MyStem:MyGroup";

 // Create a Grid Grouper Instance

 GrouperI grouper = new GridGrouper(uri);

 Obtain a handle to the group object.

 GroupI mygroup = grouper.findGroup(group);

 Set s = mygroup.getMembers();

 Iterator itr = s.iterator();

 //Iterate over and print out the members of the group

 while (itr.hasNext()) {

 Member m = (Member) itr.next();

 System.out.println("The user " + m.getSubjectId()

 + " is a member of " + mygroup.getDisplayExtension());

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 Chapter 4 caGrid Security

73

Add a Member to a Group

try {

 //Group Administrators Grid Credentials

 GlobusCredential adminProxy = ProxyUtil.getDefaultProxy();

 String uri = "https://localhost:8443/wsrf/services/cagrid/GridGrouper";

 String newMember = "/O=OSU/OU=BMI/OU=caGrid/OU=Dorian/OU=cagrid05/CN=jdoe";

 String group = "MyStem:MyGroup";

 // Create a Grid Grouper Instance

 GrouperI grouper = new GridGrouper(uri,adminProxy);

 // Obtain a handle to the group object

 GroupI mygroup = grouper.findGroup(group);

 //Add the member to the group

 mygroup.addMember(SubjectUtils.getSubject(newMember));

 System.out.println("Successfully added the user " + newMember + " as a member of the
group " + group);

} catch (Exception e) {

 e.printStackTrace();

}

caGrid 1.0 Programmer’s Guide

 74

Removing a Member from a Group

try {

 //Group Administrators Grid Credentials

 GlobusCredential adminProxy = ProxyUtil.getDefaultProxy();

 String uri = "https://localhost:8443/wsrf/services/cagrid/GridGrouper";

 String member = "/O=OSU/OU=BMI/OU=caGrid/OU=Dorian/OU=cagrid05/CN=jdoe";

 String group = "MyStem:MyGroup";

 // Create a Grid Grouper Instance

 GrouperI grouper = new GridGrouper(uri,adminProxy);

 // Obtain a handle to the group object

 GroupI mygroup = grouper.findGroup(group);

 //Remove the member to the group

 mygroup.deleteMember(SubjectUtils.getSubject(member));

 System.out.println("Successfully removed the user " + member + "from the group " +
group);

} catch (Exception e) {

 e.printStackTrace();

}

 Chapter 5 caGrid Data Services

75

Chapter 5 caGrid Data Services

This chapter describes the caGrid Data Services infrastructure.

Topics in this chapter include:

• Overview on this page

• Manipulating CQL Query Results on page 76

• Utility Classes on page 78

• CQL Query Syntax on page 81

• Domain Model Conformance on page 82

• Results Validation on page 82

• CQL Query Processors on page 83

• Federated Query Processor Usage Overview on page 84

• API Details on page 88

Overview
The caGrid Data Services infrastructure provides generic client classes for invoking the base
methods of a data service. These classes provide developers with a consistent means of
accessing a data service without requiring the client class generated specifically for a service
instance by the Introduce toolkit.

Two client classes are provided. The first is the gov.nih.nci.cagrid.data.client.DataServiceClient
class. This class provides access to the query() method of any caGrid data service. This class
is able to invoke any data service’s query method because that method is provided to each
service by a pre-defined WSDL and implementation class. This ensures that the messages
necessary for the query invocation are in a consistent namespace and follow the same
definition. A sample usage of this class is provided below:

import gov.nih.nci.cagrid.common.Utils;
import gov.nih.nci.cagrid.cqlquery.CQLQuery;
import gov.nih.nci.cagrid.cqlquery.Object;
import gov.nih.nci.cagrid.cqlresultset.CQLQueryResults;
import gov.nih.nci.cagrid.data.DataServiceConstants;

public class SampleDataServiceInvocation {

 public static void main(String[] args) {
 try {
 DataServiceClient client = new DataServiceClient(args[0]);
 CQLQuery query = new CQLQuery();
 Object target = new Object();
 target.setName("some.class.name");

caGrid 1.0 Programmer’s Guide

 76

 query.setTarget(target);
 CQLQueryResults results = client.query(query);
 Utils.serializeDocument("myResults.xml", results,
 DataServiceConstants.CQL_RESULT_COLLECTION_QNAME);
 } catch (Exception ex) {
 ex.printStackTrace();
 System.exit(1);
 }
 }

}

This small sample will create a new data service client using a URL specified on the command
line and submit a query to it for all objects of the type “some.class.name”. The results will be
stored on disk in an XML document named “myResults.xml”. The DataServiceConstants
class used in this example provides static Strings and QNames used throughout the data
service infrastructure. The constant CQL_RESULT_COLLECTION_QNAME is the QName which
defines the XML type for result sets returned from the data service’s query method.

The other client class provided with the data service infrastructure is the
gov.nih.nci.cagrid.data.enumeration.client.EnumerationDataServiceClien
t class. This class provides uniform access to the enumerationQuery() method of a caGrid
Data Service when the WS-Enumeration feature is enabled at service creation time. This client
cannot be used with data services that do not have this feature enabled, and will throw an
exception when the method is invoked against such services. Its usage is similar to that of the
base data service client, but the query method returns an EnumerateResponse object, which
contains an EnumerationContext. This can be used in conjunction with the Globus provided
WS-Enumeration client implementation classes.

The client classes provided with the data service infrastructure, as well as any other clients
generated by the Introduce toolkit, should not be assumed to be thread safe. Each thread
communicating with a data service should have its own instance of the client class. Since client
instances are unique, multiple data service clients may be used within the same thread or JVM
to communicate with multiple data services simultaneously.

Manipulating CQL Query Results
Iteration

When a query is performed using the standard caGrid Data Service client’s query method, a
CQLQueryResults object is returned. This object is a container for both the results themselves
and some information pertaining to their type. This container can contain object results, attribute
name / value pairs, caBIG identifiers (not yet implemented), or a count of the total number of
items in the result set. The difficulty of manipulating a container which may have such a wide
variety of result types stored in it is handled by an iterator class provided with the data service
infrastructure.

The class gov.nih.nci.cagrid.data.utilities.CQLQueryResultsIterator
implements the java.util.Iterator interface, and so can be used in a while() loop like
any other iterator over a Java collection. Depending on what the query to the data service asked

 Chapter 5 caGrid Data Services

77

for, calls to the next() method of this iterator will return different types of objects.

• If the query was for object results, then:

o the iterator returns objects of the type specified as the target for the query.

o objects that need custom serialization and/or deserialization require that the iterator be
configured with an InputStream to the client-config.wsdd file containing the
type mappings for the objects.

o alternatively, the iterator can be configured to return only the XML representation of
those objects.

• If the query was for attribute results, including distinct attributes, then:

o the iterator returns an array of TargetAttribute types. These types contain the
name of the attribute and its value. The value is null if the value was null on the object
satisfying the query. Each array of TargetAttributes corresponds to one object
instance that satisfied the CQL query criteria.

• If the query was for a count of object instances, then:

o the iterator returns a single java.lang.Long value.

An example usage of this iterator is below:
import gov.nih.nci.cagrid.cqlquery.CQLQuery;
import gov.nih.nci.cagrid.cqlresultset.CQLQueryResults;
import gov.nih.nci.cagrid.data.utilities.CQLQueryResultsIterator;

import java.util.Iterator;

public class SampleDataServiceInvocation {

 public static void main(String[] args) {
 try {
 DataServiceClient client = new DataServiceClient(args[0]);
 CQLQuery query = new CQLQuery();
 // build up the query
 CQLQueryResults results = client.query(query);
 Iterator iter = new CQLQueryResultsIterator(results,
 SampleDataServiceInvocation.class.getResourceAsStream(

"client-config.wsdd"));
 while (iter.hasNext()) {
 java.lang.Object result = iter.next();
 // do something with the result object
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 System.exit(1);
 }
 }

}

caGrid 1.0 Programmer’s Guide

 78

Utility Classes

Utilities

The caGrid data services infrastructure includes several utility classes which can be used to
ease development and use of data services. These classes are found in the
gov.nih.nci.cagrid.data.utilities package distributed with the data service
infrastructure.

CastorMappingUtil

This class provides a function for rewriting a castor mapping XML file so that all classes in a
specified package will have their namespace set to the one specified. This class is used
internally in the data service extension to the Introduce toolkit to change the mapping file
provided with caCORE services if the service developer specifies a schema other than the one
expected by caCORE.

The class has only one public static method:

public static String changeNamespaceOfPackage(String mapping, String packageName,
String namespace)

• mapping - this parameter is the full XML text of the castor mapping file

• packageName - the name of the package to change the namespace mapping of

• namespace - the namespace to remap the package’s classes to

This method returns a String containing the modified text of the castor mapping file.

CQLResultsCreationUtil

This class provided convenience methods for creating CQLQueryResults objects for object
results, attribute results, and a counting result. A convenience method for identifier results may
be added in the future. The class provides three public static methods, one for each type of
results currently supported.

public static CQLQueryResults createObjectResults(List objects, String targetName,
Mappings classToQname)

• objects – a list of Java objects to be placed in a new CQLQueryResults object

• targetName - the name of the class targeted by the query which produced these
object results. All items in the objects list should be of this type.

• classToQname – a mapping from class name to QName. This is a generated Java
bean from the XML schema for the data service infrastructure and contains an array of
name/value pairs that map class names to QNames.

public static CQLQueryResults createAttributeResults(List attribArrays, String
targetClassname, String[] attribNames)

 Chapter 5 caGrid Data Services

79

• attribArrays - a List of Object arrays. Each array should have one value for one
attribute of an object. These values may be null. The values must be in an order
corresponding the ordering of attribute names

• targetClassname - the name of the class targeted by the query which produced
these attribute results. All attribute arrays should have some from this type.

• attribNames - the names of the attributes returned by the query. These should be in
the same ordering used by the attribute arrays.

public static CQLQueryResults createCountResults(long count, String targetClassname)

• count - the number of resulting items (objects, attribute sets) from a query

• targetClassname - the name of the class which was the target of the query

DataServiceIterator

The data service iterator is an interface which provides for a query to be submitted to a data
service and an Iterator over the result set to be returned. There are two implementations of this
interface, one for the standard data service, and one for data services with enumeration
enabled.

DataServiceHandle

The data service handle is the implementation of the data service iterator class for a base
caGrid Data Service. It has three constructors, all of which take a DataServiceClient instance.
The default constructor needs only this parameter. The other two constructors should be used
when custom serialization and deserialization of types has been specified for the service. The
extra parameter can be either the filename of a wsdd file containing this mapping information, or
an InputStream to the same information.

EnumDataServiceHandle

The enum data service handle is the implementation of the data service iterator class for a WS-
Enumeration enabled caGrid Data Service. It has two constructors, both of which take an
enumeration data service client. The default constructor needs only this parameter. The second
constructor takes an IterationConstraints instance, which contains information about how
data should be requested from the enumeration data service.

DomainModelUtils

The domain model utils provide a means to extract useful information from a domain model.

public static UMLClass getReferencedUMLClass(DomainModel model,
UMLClassReference reference)

To save on document size, domain models do not duplicate class information when an

caGrid 1.0 Programmer’s Guide

 80

association is defined, but rather use class references based on ID values. These reference
values can be traced back to their original UML Class instance with this function.

public static UMLClass[] getAllSuperclasses(DomainModel model, String className)

Superclasses of a UML Class can be determined by traversing UML class references and
generalization information. There are two methods which perform this task in the Domain Model
Utils class. One uses a class name and the other extracts the name from an UMLClass
instance and passes it to the other.

 Chapter 5 caGrid Data Services

81

WsddUtil

The wsdd utility class contains functions to set parameters on a wsdd file. This class is used
internally to the Introduce data service extension to edit the wsdd files and change the castor
mapping file name.

public static void setGlobalClientParameter(String clientWsddFile, String key, String value)

• clientWsddFile - the name of the client side wsdd file to edit. When edits are complete,
the changed file is saved to the same location.

• key - the key of the parameter. This is the name by which the parameter can be
accessed.

• value - the value stored in the parameter

public static void setServiceParameter(String serverWsddFile, String serviceName, String
key, String value)

• serverWsddFile - the name of the server side wsdd file to edit. When edits are complete,
the changed file will be saved to the same location

• key - the key of the parameter. This is the name by which the parameter can be
accessed

• value - the value stored in the parameter

CQL Query Syntax
The caGrid Data Service infrastructure provides mechanisms to validate CQL queries for
syntactic correctness. While the Axis engine prevents malformed XML from ever being turned
into CQL objects, it does not handle XML that doesn’t conform to certain schema restrictions.
For this reason, CQL syntax validation can be enabled on a caGrid data service. This
mechanism will reject invalid queries before they ever reach a CQL Query Processor
implementation, saving the processor’s developer from having to handle them. This same
validation can be performed either on the client side or offline completely by using the query
validation utilities. For syntax validation, the interface
gov.nih.nci.cagrid.data.cql.validation.CqlStructureValidator is provided,
as are two implementations of this interface. The interface provides the
validateCqlStructure() method, which takes a single CQLQuery instance parameter, and
will throw a MalformedQueryException if an error is encountered. The default
implementation of this interface is the
gov.nih.nci.cagrid.data.cql.validation.ObjectWalkingCQLValidator class.
As its name suggests, this class walks through the CQL object model, seeking out
inconsistencies with the published CQL schema. This class also has a main() method, which
allows it to be run from the command line with a list of CQL query XML files specified as
arguments. The data service infrastructure uses this class by default when query validation is
enabled. This can be changed for any other class which implements the
CqlStructureValidator interface by editing the value of the

caGrid 1.0 Programmer’s Guide

 82

dataService_cqlValidatorClass service property in a generated data service.

Domain Model Conformance
The Data Service infrastructure also provides mechanisms to validate a structurally sound CQL
query against a Domain Model to ensure its restrictions are supported by the domain model’s
exposed structure. Doman Model validation may be enabled for a caGrid data service, and will
be performed on every query submitted to the service before it is passed to the CQL query
processor. The interface
gov.nih.nci.cagrid.data.cql.validation.CqlDomainValidator is provided, along
with a single implementation. The interface provides the validateDomainModel() method,
which takes a single CQLQuery instance parameter, and will throw a
MalformedQueryException if an error is encountered. The lone implementation provided
with the caGrid Data Service infrastructure is the
gov.nih.nci.cagrid.data.cql.validation.DomainModelValidator class. Like the
CQL validation instance, this class has a main() method, which allows it to be run from a
command line. The arguments should be first a domain model XML file, then a list of CQL query
files to be validated. The data service infrastructure uses this class when domain model
validation is enabled. This implementation may be substituted for another by editing the value of
the dataService_domainModelValidatorClass service property in a generated data
service.

Results Validation
The data service infrastructure also provides a means to both validate the results of a CQL
query against a known set of targets, and determine what target data types are allowed to be
returned by a caGrid Data Service. Every data service exposes a schema through its WSDL
which enumerates the data types which may be returned by the data service. This schema
appears in generated services under the schemas/<ServiceName> directory as
<ServiceName>_CQLResultTypes.xsd. The utility class
gov.nih.nci.cagrid.data.utilities.validation.CQLQueryResultsValidator
has been provided to both retrieve this file and verify that a CQLQueryResults instance
conforms to this schema. An instance of this class can be constructed with either the full path to
a data service’s WSDL file, or an endpoint reference to a running data service

The validator exposes two public methods:

public void saveRestrictedCQLResultSetXSD(File fileLocation) throws
SchemaValidationException

• fileLocation - a file into which the restriction XSD will be saved

This method locates the restriction XSD file and saves its contents into the file specified.

public void validateCQLResultSet(CQLQueryResults resultSet) throws
SchemaValidationException

• resultSet - a set of results generated by a query into a caGrid Data Service. The object
contents of this result set will be processed against the restriction XSD

The CQLQueryResultsValidator class also has a main() method, which takes two

 Chapter 5 caGrid Data Services

83

arguments. The first argument is a URL to a caGrid Data Service, which will be used to
retrieve the result restriction schema. The second argument should be the filename of a
CQLQueryResults instance serialized to an XML document.

CQL Query Processors

Overview

The CQL query processor is the portion of all caGrid data services that links the provided grid
interface to the backend data resource. A query processor implementation is reflect-loaded at
runtime when a query is submitted to the data service. All query processor extend from a
common base class, and must implement a method to process CQL and return a
CQLResultSet. The CQL query processor is instantiated several times without actually
processing a query so that various parts of the data service infrastructure and Introduce toolkit
extension can extract information from it. For this reason, the constructor for a CQL query
processor implementation should be as simple as possible.

Implementation

CQL Query Processors are designed to be configurable at runtime by a set of properties. These
properties are modifiable via the data service extension to the Introduce toolkit, or manually by
editing a configuration file once a service has been built. The base CQL query processor class
provides a method to retrieve required configuration parameters and their associated default
values.

 public Properties getRequiredParameters()

This method is provided by default and returns an empty java.util.Properties object.
CQL implementers who require properties should override this method to return a populated
Properties object. If a property is optional, set its value to be an empty string. All property
keys must start with a lowercase letter, and be valid Java identifiers. That means there cannot
be any spaces or punctuation in the key.

The query processor base class has two protected methods which provide access to any user
configured parameters and an input stream to the server side wsdd configuration file.
getConfiguredParameters() returns a java.util.Properties instance containing all
the keys defined in the properties returned by getRequiredParameters(), but with either
the default or a user configured value specified for each. The method
getConfiguredWsddStream() returns an InputStream instance which will read in the
contents of the server side wsdd configuration file. The return values of these methods are
populated just before the call to process a CQL query is made, and so will return null at any
other time.
/**
 * Processes the CQL Query
 * @param cqlQuery
 * @return The results of processing a CQL query

caGrid 1.0 Programmer’s Guide

 84

 * @throws MalformedQueryException
 * Should be thrown when the query itself does not conform to the
 * CQL standard or attempts to perform queries outside of
 * the exposed domain model
 * @throws QueryProcessingException
 * Thrown for all exceptions in query processing not related
 * to the query being malformed
 */
 public abstract CQLQueryResults processQuery(CQLQuery cqlQuery)

 throws MalformedQueryException, QueryProcessingException;

The only method which is required to be implemented by CQL query processors is the
processQuery() method. This is the method which executes the CQL query against its data
source and generates an appropriate set of results. There are utilities (discussed earlier) to
make generation of this result set a simpler process. At the time this method is called, the return
values of getConfiguredParameters() and getConfiguredWsddStream() will be non-
null.

The processQuery() method throws both a MalformedQueryException and a
QueryProcessingException. Malformed query exceptions should be thrown under
conditions where the query is somehow incorrect syntactically, or uses features of the CQL
language which are not yet supported in the query processor implementation. If query syntax
validation is enabled in the data service infrastructure, then it may be assumed that all queries
reaching the processQuery() method are at least well formed CQL. Query processing
exceptions should be thrown when some error occurs which prevents successful resolution of
the query request. These conditions may include database errors, file system problems, or
misconfiguration of properties.

Federated Query Processor Usage Overview
The caGrid Federated Query Infrastructure provides a mechanism to perform basic distributed
aggregations and joins of queries over multiple data services. As caGrid data services all use a
uniform query language, CQL, the Federated Query Infrastructure can be used to express
queries over any combination of caGrid data services. Federated queries are expressed with a
query language, DCQL, which is an extension to CQL to express such concepts as joins,
aggregations, and target services. The infrastructure is composed of a core engine and grid
services which provide access to and management of the use of the core engine.

DCQL, the language used to express federated queries, is an extension to CQL, the language
used to express single data service queries. Both CQL and DCQL use a declarative approach to
describe the desired data by identifying the nature of the instance data with respect to its
containing UML information model. That is, a query can be seen as identifying a class in a UML
model, and restricting its instances to those which meet criteria defined over that class’s UML
attributes and UML associations.

The primary additions to CQL, which DCQL provides, are the introduction of the ability to specify
multiple target services (aggregations), and the ability to specify object restrictions through
relationships to Objects on remote data services (joins). The other primary difference between
the languages is that CQL is context dependent, meaning the language must be interpreted
against the service receiving the query, and DCQL itself specifies the context of the queries (by

 Chapter 5 caGrid Data Services

85

identifying the target services). As such, services accepting DCQL (such as the FQP service),
generally don’t expose any local data. Details on DCQL can be found in the Federated Query
Processor design document.

An example DCQL query, represented in XML, is shown below in Figure 5-1. In this fictitious
example, a PersonRegistry Data Service is joined with a StudyRegistry Data Service. The query
specifies Persons in the PersonRegistry should be returned which have an “ssn” that is equal to
that of a Participant’s “patientSSN” and the Participant should have an “age” greater than 18.
The specification of the target service can be seen on line 18 in the example (in this case only
one service is targeted, though may could have been listed). Additionally, the “join” is specified
starting on line 6, wherein the second target service is identified, and the join condition is
defined. The join condition creates a link between the containing Object (in this case, Person),
and an Object (in this case Participant, as defined on line 10) in the second target service. The
condition specifies a predicate to be evaluated against an attribute in each of the two linked
Objects (in this case Person.ssn and Participant.patientSSN). It is worth noting that as DCQL is
a recursive language, the ForeignObject defined on line 10 could have also specified a join to a
third Data Service, or other more complex criteria.

Figure 5-1 Example DCQL Query

The Federated Query Engine is a simple but powerful design. The main functionality of the
engine is to process a DCQL query by converting it into regular CQL queries to the targeted
data services, appropriately aggregating results. As such, all of the actual “joining” of data is
offloaded to the remote data services. This allows the engine to be reused as a client API as no
databases or complex service infrastructure is needed; it’s simply a client-side querying tool.
The engine requires no special support from data services. Each service which is contacted to
satisfy the distributed query is only sent one or more standard, but potentially complex, CQL
queries. It is possible to construct a DCQL query which is essentially a standard CQL query,
with the addition of specifying one or more target data services. In this case, the engine simply

caGrid 1.0 Programmer’s Guide

 86

“forwards” that query on to the targeted services, and aggregates their results. Details on the
implementation and query processing logic of the engine can be found in the Federated Query
Processor design document.

The Federated Query Processing Infrastructure contains three main client-facing components:
an API implementing the business logic of federated query support, a grid service providing
remote access to that engine, and a grid service for managing status and results for queries that
were invoked asynchronously using the query service.

Federated Query Engine

For clients not wishing to use the grid service, the FederatedQueryEngine is the client-facing
entry point to the engine. It provides two methods which accept DCQL queries, and return the
results. Each of the two methods provides a different variant on how results are represented.
The first method is the executeAndAggregateResults method, which returns the standard
CQLQueryResults (the same result type returned by data services’ query method). Each
CQLResult obtained from each targeted data service is merged into an aggregate list, and a
master CQLQueryResults object is constructed which contains them all. The information about
which result came from which data service is lost in this scenario, but this provides the ability to
reuse existing data service tooling and APIs when that information is not relevant.

In cases where it is important to know from which data service a given result came, the second
query method called execute can be used. This method returns a new type called
DCQLQueryResultsCollection. The DCQLQueryResultsCollection contains a list of
DCQLResult, wherein each DCQLResult specifies a CQLQueryResults object, and the data
service URL from which it came. That is, the result type is a collection of tuples containing the
standard data service results, and that service’s URL.

Both query methods will throw a RemoteDataServiceException in the event a queried data
service returns invalid results (such as the wrong target class type), or if a data service itself
throws an exception when being queried, or if there is any problem querying the data service.
Additionally, a FederatedQueryProcessingException, which is the parent class of
RemoteDataServiceException, may be thrown if there is a problem processing the query itself.

Federated Query Processor Service

The Federated Query Processor service is main service interface to the federated query engine.
It provides three query execution operations. The first two are: execute which takes a DCQL
query and returns a DCQLQueryResultsCollection, and executeAndAggregateResults which
returns a CQLQueryResults. These are both simple grid service wrappers for the corresponding
methods in the FederatedQueryEngine API. The third operation, executeAsynchronously,
provides asynchronous, non-blocking, access to the execute method, and returns a
FederatedQueryResultsReference. The FederatedQueryResultsReference is a typed container
for an EPR to the Federated Query Results service. The Federated Query Results service client
API can be used to subsequently retrieve the DCQLQueryResultsCollection.

 Chapter 5 caGrid Data Services

87

Federated Query Results Service

The Federated Query Results service is the service responsible for providing access to query
results and processing status for asynchronously executed queries. The service can only be
contacted with a resource-qualified EPR, provided by the Federated Query Processor service.
Whenever the query processor service is requested to execute an asynchronous query, a
Resource is created and an EPR, which identifies that Resource in the results service, is
returned. The Federated Query Results service’s only purpose is to expose information about,
and management of, these Resource instances. This Resource contains the current status of
the query it corresponds to, any exceptions which occurred during processing, and eventually
the results of the query. It supports standard WSRF Resource Lifetime behavior. As such, it
exposes, as Resource Properties, the current time (as believed by the local system), and the
termination time of the Resource. Once created, the resource will be terminated/destroyed by
the service once its termination time is past. This lifetime is initially controlled by a setting in the
grid service. The client can also immediately destroy the resource with the Destroy operation, or
change its termination time with the SetTerminationTime operation. Both of these operations are
standardized operations for resources supporting Resource Lifetime and as such corresponding
common Resource Lifetime clients may be used (though the Federated Query Results client
API also makes these operations available).

In addition to the operations and resource properties necessary to support Resource Lifetime on
the resource, the service also provides the getResults and isProcessingComplete operations.
The isProcessingComplete operation returns a simple Boolean value, indicating whether or not
the query processing has completed. Once the query processing has completed, the results can
be accessed via the getResults operation, which returns a DCQLQueryResultsCollection. If the
operation is invoked prior to the processing being complete, a ProcessingNotCompleteFault
fault will be thrown. If the processing is complete, but an exception occurred, a
FederatedQueryProcessingFault will be thrown, and its cause will be the exception that
occurred during query processing.

Security Considerations

The Federated Query Processor services support two deployment scenarios. The first is an
insecure deployment, wherein no security (authentication or authorization) is enforced by the
container. In this scenario, no encryption is used and no protection of query results is enforced.
That is, anonymous communication is used over an open channel, and it is possible for one
client to manipulate the query resources of another, given it knows the EPR.

The recommended second scenario is when the services are deployed securely, such as with
transport level security (https). Deployments using transport level security ensure integrity and
privacy of the communication channel (and obviously the data traveling over it). In this scenario,
no authorization is performed by the query service, but any query results created via
asynchronous queries are protected such that only the issuer of the query can view or
manipulate the results. In this scenario, clients should use credentials to ensure proper
protection of query results.

caGrid 1.0 Programmer’s Guide

 88

The services do not make use of delegated credentials, and as such, remote data services are
accessed either or anonymously, or with the Federated Query Processor’s credentials
(depending on the deployment scenario and the settings of the remote data services). While
future work may enable this feature, clients needing this capability (credentialed access of data
services) now may leverage the federated query engine directly using the API.

API Details

gov.nih.nci.cagrid.fqp.client.FederatedQueryProcessorClient

The FederatedQueryProcessorClient is the main client interface to the federated query service
(Figure 5-2).

Figure 5-2 FederatedQueryProcessor Inheritance Model

Constructor Documentation

o FederatedQueryProcessorClient (String url)
o throws MalformedURIException, RemoteException

o FederatedQueryProcessorClient (String url, GlobusCredential proxy)
o throws MalformedURIException, RemoteException

o FederatedQueryProcessorClient (EndpointReferenceType epr)
o throws MalformedURIException, RemoteException

o FederatedQueryProcessorClient (EndpointReferenceType epr, GlobusCredential proxy)
o throws MalformedURIException, RemoteException

 Chapter 5 caGrid Data Services

89

Member Function Documentation

Access to caGrid Service Security Metadata:

• gov.nih.nci.cagrid.metadata.security.ServiceSecurityMetadata
getServiceSecurityMetadata ()

o throws RemoteException
o Description: Returns the caGrid service security metadata

Distributed Query Methods:

• gov.nih.nci.cagrid.cqlresultset.CQLQueryResults executeAndAggregateResults
(gov.nih.nci.cagrid.dcql.DCQLQuery query)

o throws RemoteException,
gov.nih.nci.cagrid.fqp.stubs.types.FederatedQueryProcessingFault

o Description: Executes the DCQL query, aggregating and returning them as
standard data service results

• gov.nih.nci.cagrid.dcqlresult.DCQLQueryResultsCollection execute
(gov.nih.nci.cagrid.dcql.DCQLQuery query)

o throws RemoteException,
gov.nih.nci.cagrid.fqp.stubs.types.FederatedQueryProcessingFault

o Description: Executes the DCQL query, aggregating and returning them as
standard data service results

• gov.nih.nci.cagrid.fqp.results.client.FederatedQueryResultsClient
executeAsynchronously (gov.nih.nci.cagrid.dcql.DCQLQuery query)

o throws RemoteException, org.apache.axis.types.URI.MalformedURIException
o Description: Executes the DCQL query asynchronously, returning a results

client which can be used to access the results

caGrid 1.0 Programmer’s Guide

 90

gov.nih.nci.cagrid.fqp.results.client.FederatedQueryResultsClient

Figure 5-3 FederatedQueryResultsClient Inheritance Model

Constructor Documentation

o FederatedQueryResultsClient (String url)
o throws MalformedURIException, RemoteException

o FederatedQueryResultsClient (String url, GlobusCredential proxy)
o throws MalformedURIException, RemoteException

o FederatedQueryResultsClient (EndpointReferenceType epr)
o throws MalformedURIException, RemoteException

o FederatedQueryResultsClient (EndpointReferenceType epr, GlobusCredential proxy)
o throws MalformedURIException, RemoteException

Member Function Documentation

Access to caGrid Service Security Metadata:

• gov.nih.nci.cagrid.metadata.security.ServiceSecurityMetadata
getServiceSecurityMetadata ()

o throws RemoteException
o Description: Not used.

Resource Lifetime Methods:
o org.oasis.wsrf.lifetime.DestroyResponse destroy (org.oasis.wsrf.lifetime.Destroy params)

o throws RemoteException

 Chapter 5 caGrid Data Services

91

o Description: Destroys the corresponding resource and query results.
o org.oasis.wsrf.lifetime.SetTerminationTimeResponse setTerminationTime

(org.oasis.wsrf.lifetime.SetTerminationTime params)
o throws RemoteException
o Description: Sets the time at which the resource and corresponding query results

should be destroyed.

Query Results Methods:
o gov.nih.nci.cagrid.dcqlresult.DCQLQueryResultsCollection getResults ()

o throws RemoteException,
gov.nih.nci.cagrid.fqp.results.stubs.types.ProcessingNotCompleteFault,
gov.nih.nci.cagrid.fqp.stubs.types.FederatedQueryProcessingFault,
gov.nih.nci.cagrid.fqp.stubs.types.InternalErrorFault

1. Description: Returns the query results, if processing is complete. If processing is not
complete, throws ProcessingNotCompleteFault. If processing is complete, but threw an
exception, that exception is then rethrown.

o boolean isProcessingComplete ()
o throws RemoteException
o Description: Returns true if and only if processing of the query is complete.

gov.nih.nci.cagrid.fqp.processor.FederatedQueryEngine

Constructor Documentation

gov.nih.nci.cagrid.fqp.processor.FederatedQueryEngine.FederatedQueryEngine ()

 Default constructor

Member Function Documentation

DCQLQueryResultsCollection

gov.nih.nci.cagrid.fqp.processor.FederatedQueryEngine.execute (DCQLQuery

dcqlQuery) throws FederatedQueryProcessingException

Call Federated Query Processor, and send the generated CQLQuery to each targeted
service, placing each result into a single DCQLQueryResults object.

Parameters:
dcqlQuery

caGrid 1.0 Programmer’s Guide

 92

Returns:

Exceptions:
FederatedQueryProcessingException

CQLQueryResults

gov.nih.nci.cagrid.fqp.processor.FederatedQueryEngine.executeAndAggregateResult

s (DCQLQuery dcqlQuery) throws FederatedQueryProcessingException

Call Federated Query Processor, and send the generated CQLQuery to each targeted
service, aggregating the results into a single CQLQueryResults object.

Parameters:
dcqlQuery

Returns:

Exceptions:
FederatedQueryException

API Usage Examples

The examples below show various uses of the federated query infrastructure; both execution
the grid services and the engine’s stand alone API. The exception handling is omitted from the
examples for demonstration purposes. Additionally, the result processing shown is simplistic.
The results returned from the federated query APIs, DCQLResultsCollection instances, are
simple container objects for standard Data Service results, CQLQueryResults. A DCQLResult is
just a CQLQueryResult and the address of the service which created the result. Additional
details on how Data Service results can be processed can be found in the Data Service section
of this document.

Executing a Blocking Query

The first example, shown below in Figure 5-4, demonstrates the simplest case of executing a
query using the Federated Query Processor grid service, via the
FederatedQueryProcessorClient. An instance of the client is constructed on lines 1 and 2,
wherein the address of the service is provided. Next, a query document is created by loading it
from a file (in this case the “exampleDCQL.xml” file) on the local file system. The caGrid

 Chapter 5 caGrid Data Services

93

common utilities are used to accomplish this on lines 4 and 5. Though not shown, DCQL
queries can also be constructed programmatically, just as CQL queries can. On line 7, the
service is requested to perform the query as described in the DCQLQuery; this operation will
block until the processing is complete. The result of the invocation is a DCQLResultsCollection,
which contains an array of DCQLResult. Lines 10-16 loop over these results, and then print out
the URL of service which yielded the result, and the number of data instances it produced.

Figure 5-4 Executing a Distributed Query

Executing a Non-Blocking Query

The next example, shown in Figure 5-5, illustrates the capability of the federated query service
infrastructure to execute queries in the background, and allow clients to process the results later
(suitable for long running queries, or distributed processing of results). It begins to diverge from
the example above when it invokes executeAsynchronously on line 8 (as opposed to execute,
as shown in Figure 5-4). This operation returns a new instance of the
FederatedQueryResultsClient, which can be used to access the results once they are
completed. This instance is returned before the service actually starts processing the query. The
FederatedQueryProcessorClient abstracts the details that an EPR was actually returned by the
service, and it directly provides the caller the appropriate API to communicate with the stateful
service container the not yet populated query results. Lines 10-15 demonstrate checking the
status of the processing, printing out a “.” to the screen each second until the processing is
complete. Future versions of the service will support subscriptions and notifications of query
status and completion. The isProcessingComplete operation will return false until the query
results are available, or the processing is terminated by failure. Once processing is complete,
the results can be accessed via the getResults operation, shown on line 17. This returns a
DCQLQueryResultsCollection, just as execute did in Figure 5-4. At this point, in terms of result
processing, there is no longer a difference between asynchronous (this example) and
synchronous (the previous example) query logic. However, to further demonstrate how to

caGrid 1.0 Programmer’s Guide

 94

process the results, the example below loops over each DCQLResult (as before), and prints out
the service which yielded it (on line 23). It then, on line 24-27, accesses the standard Data
Service query result type, and constructs a CQLQueryResultsIterator iterate over each Object
result. This iteration, shown on lines 29-33, prints the XML representation of each Object, as the
iterator was constructed to use “xml only” by passing true to the second argument of its
constructor on line 27.

Figure 5-5 Executing a Non-Blocking Distributed Query

Removing Query Results

As mentioned above, the Federated Query Results grid service is a stateful WSRF service, and
executing asynchronous queries with the Federated Query Processor service generates
Resources on it. These resources house the query results for clients, and can be accessed
multiple times. The example shown below in Figure 5-6, demonstrates how, after the client is
done with the results, they should be removed from the service by invoking the destroy
operation, of the FederatedQueryResultsClient, shown on line 12. The results will eventually
“expire” and be automatically removed after a service-specified lifetime, unless their lifetime is
extended as shown in Figure 5-7, but it is good practice to manually release unneeded

 Chapter 5 caGrid Data Services

95

resources.

Figure 5-6 Destroying Query Results

Scheduling Removal of Query Results

As mentioned above, query results will expire after a service-configure default lifetime.
However, this can be controlled by the client by specifying a new termination time for the
resource. The example shown below in Figure 5-7, demonstrates how one client may request
the service to perform a federated query, set the lifetime of the yet to be created results, and
hand off an EPR to those results to some other processing thread or client. In this example, the
query is executed asynchronously just as before (on lines 7-8). However, rather than waiting on
completion of the results, the example uses, on line 13, the setTerminationTime operation of the
results client to request the results live on the service for 4 hours. This is accomplished by
creating a Resource Lifetime standard SetTerminationTime request, and providing it a Calendar
instance configured to be 4 hours later than the current time, as shown on lines 11 and 12. The
result of this operation is a Resource Lifetime standard SetTerminationTimeResponse, which
indicates the current time, as believed by the service, and the time at which the resource will be
destroyed. The example prints these out, as well as the value of the local Calendar instance, on
lines 18-23. Finally, the code demonstrates, on line 25, how an EPR to the result Resource can
be accessed from the client with the getEndPointReference method.

It should be noted that if the client’s system clock and the service’s system clock have
significant differences in believe of the current time, this example code could cause the resource
to terminate either earlier or later than expected. In cases where this may be an issue for
clients, the results service provides as a Resource Property, the current time as believed by the
service. A client could access this resource property, and construct the Calendar instance from
it, rather than using its local system clock.

caGrid 1.0 Programmer’s Guide

 96

Figure 5-7 Scheduling the Destruction of Query Results

Using the Engine Directly to Access Protected Data Services

The final example, shown below in Figure 5-8, demonstrates how the federated query
infrastructure can be used to locally execute federated queries (as opposed to requesting the
service to execute them). While most clients will opt to use the service interfaces, there are
many reasons why a client may wish to invoke the engine locally, such as minimizing data
movement. The most common reason to use the engine locally is if the Data Services being
targeted requires authorization to access the data of interest. The federated query processor
service infrastructure does not currently have the capability to assume the identity of the client
requesting the query; it queries Data Services either anonymously, or with its own credentials
(depending on deployment scenarios). When executing the engine locally, the client has the
ability to use credentials when it queries data services. When executing locally, the engine will
make use of the “default” Globus credentials if the Data Service being accessed does not allow
anonymous access. Consult the caGrid security documentation on how to get and set default
Globus credentials.

Using the engine locally is very similar to using the processor service. The engine can be
constructed, as shown on line 1, by instantiating a FederatedQueryEngine. This has the same
query execution methods as the grid service, except it does not provide asynchronous
execution (as this is easily done locally). The example below shows the ability of the engine to
aggregate DCQL results and return them as standard Data Service Results, shown on line 4. It
then uses the CQLQueryResultsIterator to print the XML representation of the results, just as in
Figure 5-5.

 Chapter 5 caGrid Data Services

97

Figure 5-8 Invoking the FederatedQueryEngine Locally

caGrid 1.0 Programmer’s Guide

 98

 Chapter 6 Reference Implementations

99

Chapter 6 Reference Implementations

This chapter describes Reference Implementations, where caBIG-developed projects are aim to
adopt the caGrid 1.0 infrastructure before it is released.

Topics in this chapter include:

• Overview on this page • caArray Gridification on page 102

• Objective on page 100 • caBioconductor on page 102

• Goals on page 100 • caTRIP on page 103

• Assumptions on page 100 • GenePattern on page 104

• High-Level Process on page 100 • GeneConnect on page 105

• Deliverables on page 101 • geWorkbench on page 106

• Test Bed on page 101 • GridIMAGE on page 107

Overview
The primary goal of caGrid is to provide a middleware to share applications and data in the
Cancer Research community. Based on the use cases collected in the inception phase, the
caGrid team implemented an automated process to virtualize caBIG resources like data and
analytical tools. The implementation includes advertisement, discovery, query, and invocation
with secure or without secure services. Current grid technologies are very rich in functionality
but, because of the complexity, are difficult to use; caGrid project is using grid and service
oriented concepts to leverage Globus as the core infrastructure to virtualize caBIG resources.

The reference implementations consist of grid services and leverage core caGrid services in
their applications. The overall objectives of having reference implementation are to gather
feedback on features, identify bugs in the caGrid software, and provide grid examples to other
caBIG development projects. Feedback on features was gathered through informal meetings
with the development project teams, as well as using the bug tracker on GForge. This process
is separate from the initial use case and requirements gathering that take place at the beginning
of caGrid development. Bugs will be identified by both the development project teams in their
use of the software, as well as by the caGrid team as the reference implementation services are
incorporated into system and quality assurance tests. The reference implementation projects
will be provided on GForge and be downloadable by other caBIG project developers.

This chapter describes the goals, process, objectives, and description of each reference
implementation. Reference implementation projects are listed in Table 11-1:

Project Institution Service Type

caArray NCICB Data

caGrid 1.0 Programmer’s Guide

 100

Project Institution Service Type

caBioconductor Fred Hutchinson Cancer Research
Center

Analytical

caTRIP Duke Comprehensive Cancer Center Data

GenePattern Broad Institute Analytical

GeneConnect Washington University Data

geWorkbench Columbia University Analytical

GridIMAGE Ohio State University Analytical

Table 6-1 Reference implementation projects

Objective
Virtualize caBIG reference implementations by using the process implemented in the caGrid
project.

Goals
1. To have at least four caBIG applications virtualized with caGrid infrastructure, which

should include at least two data services and two analytical services.

2. Test and update the virtualization process to expose caBIG resources available to caBIG
community.

3. To validate compatibility document and provide recommendations.

Assumptions
1. Reference implementations have their domain models registered in the caDSR.
2. Reference implementations have exposed at least one caGrid service and it is

advertising to the production index service.
3. Reference implementations have begun the silver compliance process.
4. The caGrid team has reference implementation schedules to plan the testing.
5. Access to computational resources in the research center where we are testing

reference implementations.
6. Reference implementations leverage caGrid 1.0 beta or later codebase.

High-Level Process
For each institution that provides the reference implementations, the research center team with
the assistance of the caGrid team will perform the following tasks:

1. Install the base technology stack (Java, Globus, Tomcat)
2. Test the Globus installation
3. Test connectivity with NCICB
4. Install caGrid
5. Test caGrid

 Chapter 6 Reference Implementations

101

6. Register the UML domain model
7. Construct one or more caGrid services
8. Plug business logic into the grid skeleton
9. Test and document

Deliverables
• caGrid resources virtualized by caGrid infrastructure

• caGrid virtualization process updates and improved based on lessons learned from
testing caBIG resource virtualization.

Test Bed
The following deployment diagram (Figure 6-1) represents the infrastructure for the reference
implementation. The diagram shows core services and Cancer research services. Core services
are security, schema management (GME), and registry (Index services). Cancer research
services are caBIO, caArray, PIR and rProteomics. Cancer research services are visualized
using the caGrid infrastructure. caDSR and EVS systems can be accessed with the
caBIO/caCORE service and with the caCORE client in a cancer research infrastructure.

Note: caDSR and EVS systems can be accessed by the Cancer research services either
directly by using caCORE API’s or indirectly by using respective business service layers.

Figure 6-1 caGrid 1.0 Reference Implementation test bed

caGrid 1.0 Programmer’s Guide

 102

caArray Gridification

Introduction

NCICB's caArray project is a microarray database with open interfaces, strong security, and a
user interface that is designed to make MIAME 1.1 level annotations as easy as possible. Its N-
tier architecture will allow integration with other NCICB data sources: clinical data, animal
models, genomic data, ontologies and controlled vocabularies. The caArray database can be
deployed locally at the NCI designated cancer centers and other affiliated organizations. The
system will allow day to day management and analysis of microarray data, and facilitates data
exchange between research centers. The data can be easily migrated to the central caArray
database at the NCI when the data is published.

caArray consists of a microarray database, web-portal and API for accessing microarray data. It
is a standards based data repository of microarray experiment data using MIAME standard. The
MIAME standard describes the Minimum Information about a Microarray Experiment that is
needed to enable the interpretation of the experiment results unambiguously and, potentially, to
reproduce the experiment.

Functionality Exposed to the Grid
caArray is a data service. All objects within the MAGE-OM which are exposed by the API are
accessible.

Project Information

Institution: NCICB

Project team:

• Joshua Phillips (joshua.phillips@semanticbits.com)

• Vinay Kumar (vinay.kumar@semanticbits.com)

Project link: http://caarraydb.nci.nih.gov/caarray/

caBioconductor

Introduction

Bioconductor is a collection of open-source software components based on the R programming
language. Bioconductor is used for gene expression and other high-throughput analysis in
molecular biology. R packages are collections of algorithms grouped to facilitate particular
analyses.

The caBioconductor module allows R package developers to expose the functionality of their
package as analytic services on caGRID. The primary concern of the project is the development
of tools for converting existing Bioconductor packages to caGRID analytic services. As proof of
concept, the caBioconductor team is exposing portions of three Bioconductor packages as

 Chapter 6 Reference Implementations

103

caGrid 1.0 analytical services.

Functionality Exposed to the Grid
caBioconductor is an analytical service. It exposes functions for normalization of gene
expression data derived from the Affymetrix platform (caAffy; based on the ‘expresso’
functionality of the affy Bioconductor package), mass-spec peak identification (caPROcess;
based on the workflow of PROcess), and DNA copy number variation (caDNAcopy, based on
the workflow of DNAcopy).

Project Information

Institution: Fred Hutchinson Cancer Research Center

Project team:

• Martin Morgan (mtmorgan@fhcrc.org)

• Nianhua Li (nli@fhcrc.org)

• Robert Gentleman (rgentlem@fhcrc.org)

• Seth Falcon (sfalcon@fhcrc.org)

• Duncan Temple Lang (duncan@wald.ucdavis.edu)

Project link: http://gforge.nci.nih.gov/projects/bioconductor/

caTRIP

Introduction

The Cancer Translational Research Informatics Platform (caTRIP) project aims to solve the
difficult translational research problem of outcomes analysis. This involves the querying of a
number of different data elements, such as pathology biomarkers, as well as dates of diagnosis,
treatment, and death. A number of different grid services will be queried in a metadata-driven
manner, including caTissue CORE, CAE, the Duke Tumor Registry, and the caIntegrator SNP
database.

caTRIP is divided into three major components: domain services, distributed query engine, and
graphical user interface. The domain services are implemented using the individual domain
models from a number of existing tools, including caTissue CORE, CAE, caTIES, and
caIntegrator. The caTRIP team has created a new domain model to capture and expose Tumor
Registry data. These domain models and tools will be used to expose data from Duke’s legacy
systems, namely MAW3, the Tumor Registry, and GEMS datasets. The domain services
themselves will be exposed as grid services, with users being authenticated by a Duke Identity
Provider and authorized by custom modules potentially plugged into the CSM. A distributed
query engine has been developed and incorporated into caGrid 1.0 to digest a CDE/Object
based distributed query into individual queries that will be sent to each domain service. The

caGrid 1.0 Programmer’s Guide

 104

engine will then perform joins based on common data elements across the results and return
resulting objects as its output. It will be exposed as a secure grid service that will delegate user
credentials to the federated domain services. The graphical user interface will be used to
compose, store, and retrieve queries. These queries will be built graphically using common data
elements. Results will be displayed to users in a tabular fashion and will support drill-down
features for data mining.

Functionality Exposed to the Grid
caTRIP consists of four data services. It exposes caTissue CORE, CAE, Tumor Registry, and
caIntegrator SNP services.

Project Information

Institution: Duke Comprehensive Cancer Center

Project team:

• Patrick McConnell (patrick.mcconnell@duke.edu)

• Ram Chilukuri (ram.chilukuri@semanticbits.com)

• Srini Akkala (srini.akkala@semanticbits.com)

• Bill Mason (bmason@5amsolutions.com)

• Sanjeev Agarwal (sanjeev.agarwal@semanticbits.com)

Project link: http://gforge.nci.nih.gov/projects/catrip/

GenePattern

Introduction

GenePattern is a flexible analysis platform developed to support multidisciplinary biomedical
research. GenePattern puts the power of sophisticated computational methods into the hands of
non-programming users. It also provides an environment for rapid development and deployment
of new analytic techniques.

GenePattern has a modular architecture that allows the inclusion of additional analytic or
visualization modules. To be integrated into GenePattern, modules must provide a command-
line interface allowing them to be called and have parameters passed to them from a normal
command line. This facilitates the independent development and testing of Modules external to
the GenePattern environment.

GenePattern has been publicly available since January 2003. Development of the GenePattern
Server and most of its modules has been supported by NIH grants outside of the caBIG system
and development of the GenePattern server and modules remains external to caBIG. Currently
GenePattern is in use by over 2600 individuals in 500+ organizations throughout the world.
While it is primarily used for micro array and proteomic analysis, GenePattern has also been
adapted for use in computational chemistry, materials science and other application areas.

 Chapter 6 Reference Implementations

105

The general approach for exposing GenePattern modules is to create an application proxy layer
that ‘speaks’ both caGRID protocols and the GenePattern web service protocol. The modules to
be exposed as caGRID analytical services include:

• Preprocess Dataset
• Gene Set Enrichment Analysis (GSEA)
• Comparative Marker Selection.

Functionality Exposed to the Grid
GenePattern is an analytical service. It exposes functionality for gene expression analysis.

Project Information

Institution: Broad Institute

Project team:

• Ted Liefeld (liefeld@broad.mit.edu)

• Jared Nedzel (jnedzel@broad.mit.edu)

Project link: http://gforge.nci.nih.gov/projects/genepattern/

GeneConnect

Introduction

The NCI caBIG™ project is creating a common, extensible informatics platform that integrates
diverse data types and supports interoperable analytic tools. This platform will allow research
groups to tap into the rich collection of emerging cancer research data while supporting their
individual investigations. However, it is very likely that joins cannot be performed across many
developer projects because they will use non-overlapping sets of genomic identifiers in their
object models. For example, while the Function Express project may use the Entrez Gene ID to
reference genes, the Cancer Molecular Pages project may employ the Ensembl Gene ID to
reference genes.

GeneConnect is the mapping service that will facilitate interoperability by interlinking VCDE
approved genomic identifiers (http://gforge.nci.nih.gov/frs/?group_id=108 and
https://cabig.nci.nih.gov/workspaces/VCDE/Data_Standards/GeneIdentifier.zip). These include:

• Ensembl Gene ID

• Ensembl Transcript ID

• Ensembl Protein ID

• Entrez Gene ID

• UniGene ID

• GenBank mRNA Accession Number

caGrid 1.0 Programmer’s Guide

 106

• GenBank Protein Accession Number

• RefSeq mRNA Accession Number

• RefSeq Protein Accession Number

• UniProtKB Primary Accession Number

To interlink all of these identifiers, database annotations will be used to construct pair wise
connections, and then all-to-all relationships will be calculated by traversing all possible
combinations of edges in the graph using every node as the starting point. Next, using
reciprocality calculations performed over the data sources, the set of non-commutable results
will be determined with each record given a confidence score based on the ratio of commutable
results (i.e. all the graphs whose identifier at each position is identical) to all possible
combinations for set of the genomic identifiers under question.

Functionality Exposed to the Grid
GeneConnect is a data service. It exposes functionality for searching the genomic identifiers
mapping space.

Project Information

Institution: Washington University

Project team:

• Rakesh Nagarajan (rakesh@wustl.edu)

• Sachin Lale (sachin_lale@persistent.co.in)

• Mahesh Nalkande (mahesh_nalkande@persistent.co.in)

• Madhurima Bhattacharjee (madhurima_b@persistent.co.in)

• Pratibha Dhok (Pratibha_dhok@persistent.co.in)

• Srikanth Adiga (Srikanth_adiga@persistent.co.in)

• Krunal Thakkar (krunal_thakkar@persistent.co.in)

Project link: http://gforge.nci.nih.gov/projects/geneconnect/

geWorkbench

Introduction

geWorkbench is an open source bioinformatics platform written in Java that makes
sophisticated tools for data management, analysis and visualization available to the community
in a convenient fashion. It evolved from a project which was originally sponsored by the National
Cancer Institute Center for Bioinformatics (NCICB). Some of the most fully developed
capabilities of the platform include access to caArray repositories through use of the MAGEOM
API, microarray data analysis, pathway analysis and reverse engineering, sequence analysis,
transcription factor binding site analysis, and pattern discovery. geWorkbench will integrate into

 Chapter 6 Reference Implementations

107

the caGrid framework by providing a simple user interface to connect interoperable grid-enabled
and client-side components into useful workflows, as well expose analytical services.

Functionality Exposed to the Grid
geWorkbench is an analytical service. It exposes functionality for gene expression analysis.

Project Information

Institution: Columbia University

Project team:

• Kiran Keshav (keshav@c2b2.columbia.edu)

• Aris Floratos (floratos@c2b2.columbia.edu)

Project link: http://gforge.nci.nih.gov/projects/geworkbench/

GridIMAGE

Introduction

 GridIMAGE enables (a) users to select images from multiple geographically distributed data
sources, (b) facilitate evaluation of selected images by human readers or computer-assisted
detection (CAD) algorithms, (c) provide a graphical user interface to review human and CAD
evaluations.

Functionality Exposed to the Grid
GridIMAGE is an analytical service. It exposes functionality for retrieving, analyzing, and storing
image data.

Project Information

Institution: Ohio State University

Project team:

• Tony Pan (tpan@bmi.osu.edu)

• Ashish Sharma (ashish@bmi.osu.edu)

• Metin Gurcan (gurcan@bmi.osu.edu)

Project link: http://bmi.osu.edu/

caGrid 1.0 Programmer’s Guide

 108

 Chapter 7 WS-Enumeration

109

Chapter 7 WS-Enumeration

This chapter describes the client-side APIs for enumerations.

Topics in this chapter include:

• Overview on this page

• Client API on this page

Overview
An overview of WS-enumeration is beyond the scope of this document. For more
information, see the following websites:

Specification:

http://www.w3.org/Submission/WS-Enumeration/

Schema:

http://schemas.xmlsoap.org/ws/2004/09/enumeration/enumeration.xsd

WSDL:

http://schemas.xmlsoap.org/ws/2004/09/enumeration/enumeration.wsdl

Client API
There are two main client-side APIs for enumerations. The ClientEnumeration API provides
basic functions for managing enumeration lifetime and retrieving its data. The
ClientEnumIterator API provides java.util.Iterator abstraction for retrieving enumeration data and
supports automatic data deserialization.

ClientEnumeration

The ClientEnumeration API provides basic functions for managing enumeration lifetime and
retrieving its data. ClientEnumeration must be initialized with a javax.xml.rpc.Stub instance that
is a Stub for the service that implements the WS-Enumeration operations and with an
EnumerationContextType object returned by the enumerate operation of the service or any
other operation that initiates an enumeration.

The javax.xml.rpc.Stub instance must define all of the WS-Enumeration operations except the
enumerate operation. Also, the Stub instance must be properly configured with the security
properties if calling a secure service.

IterationResult pull(IterationConstraints constraints)
Retrieves the next set of elements of the enumeration. The input parameter defines the

caGrid 1.0 Programmer’s Guide

 110

constraints for the operation such as the maximum number of elements to retrieve, the
maximum number of characters that the consumer can accept, and the maximum amount of
time in which the data needs to be returned. The return parameter contains the results of the
iteration and an end of sequence flag to indicate if there is more data to be returned. The results
of the iteration are of the javax.xml.soap.SOAPElement type.

This method calls the WS-Enumeration pull operation on the data service.

IterationResult pull()
Same as pull(IterationConstraints) function but uses default constraints (maximum number of
elements set to 1, no maximum characters limit and no time limit).

void release()
Explicitly releases the enumeration. In general, the enumeration context is automatically
released when a client finishes retrieving all the enumeration data or the enumeration expires if
it was configured with an expiration time or duration. In cases where no expiration time was set
for the enumeration or when not enumerating over the entire data the enumeration should be
released explicitly.

This method calls the WS-Enumeration release operation on the data service.

EnumExpiration renew(EnumExpiration expiration)
Sets a new expiration time/duration of the enumeration. The input parameter can be null to
configure the enumeration without an expiration time/duration (the enumeration will not expire).
The expiration time/duration cannot be in the past (as according to the service clock). The
service can choose to accept a different expiration time then specified. The return parameter
can also be null to indicate that the enumeration does not have an expiration time/duration.

This method calls the WS-Enumeration renew operation on the data service

EnumExpiration getStatus()
Gets the current expiration time/duration of the enumeration. The return parameter can be null
to indicate that the enumeration does not have an expiration time/duration.

This method calls the WS-Enumeration getStatus operation on the data service

ClientEnumIterator
The ClientEnumIterator API provide simple-to-use API for enumerating over data using the WS-
Enumeration operations. The ClientEnumIterator class implements the java.util.Iterator interface
but the implementation of these functions does not follow the Iterator contract exactly because
of the WS-Enumeration specification limitations. The ClientEnumIterator class uses the
ClientEnumeration API underneath and in contrast to the ClientEnumeration API offers
automatic data deserialization.

The ClientEnumIterator must be initialized with a javax.xml.rpc.Stub instance that is a Stub for
the service that implements the WS-Enumeration operations and with an

 Chapter 7 WS-Enumeration

111

EnumerationContextType object returned by the enumerate operation of the service or any
other operation that initiates an enumeration.

The javax.xml.rpc.Stub instance must define all of the WS-Enumeration operations except the
enumerate operation. Also, the Stub instance must be property configured with the security
properties if calling a secure service.

During iteration the ClientEnumIterator makes remote calls to the data service to retrieve the
next set of items (calls the WS-Enumeration pull operation). The frequency of these remote calls
is controlled by the maxElements setting of the IterationConstraints of the ClientEnumIterator. If
that number is small the ClientEnumIterator will make a lot of remote calls but will use a small
amount of memory (since it always keeps a few of the items in the memory). But if that number
is big the ClientEnumIterator will make fewer remote calls but will use more memory (since it
now keeps more items in the memory).

void setItemType(Class itemType)
Sets the type of the object returned by the next() operation. By default the objects returned by
the next() operation will be of the javax.xml.soap.SOAPElement type. If the item type is set, the
enumeration elements will be automatically deserialized into this type. This assumes the
enumeration elements are all of the same type.

void setIterationConstraints (IterationConstraints constraints)
Sets iteration constraints for the iterator. By default the constraints are not set and defaults are
assumed (maximum number of elements set to 1, no maximum characters limit and no time
limit).

Object next()
Returns the next object in the enumeration. The returned object can be null. If item type is set
(using the setItemType method) the current object will be automatically converted into that type
and returned. Otherwise, object of the javax.xml.soap.SOAPElement type is returned. If the
enumeration has ended (hasNext() returns false) or has been released on the client the
NoSuchElementException is raised. Also, in certain cases the NoSuchElementException can
also be raised even though hasNext() returned true. If deserialization is performed and it fails a
ConversionException is raised and the index of the iteration is not advanced (so that the user
can specify another item type or disable deserialization).

This method calls the WS-Enumeration pull operation on the data service.

boolean hasNext()
Tests if there are more elements in the enumeration to be returned. If it returns false, there are
no more elements to be returned. If true, there might be more elements to be returned. This
method can return true even though the next() operation consistently returns null. Also, this
method can return true even though the next() operation will throw NoSuchElementException.

caGrid 1.0 Programmer’s Guide

 112

Object convert(SOAPElement element)
Performs object conversion on the enumeration element. This function is called by the next()
function every time the next() function is called. It can be used to deserialize the enumeration
element into appropriate Java object. This function is meant to be overwritten by the subclasses
of the ClientEnumIterator to provide custom deserialization behavior. If deserialization fails a
ConversionException is thrown.

void release()
Explicitly releases the enumeration context.

This method calls the WS-Enumeration release operation on the data service. hasNext() will
return false and next() will throw NoSuchElementException after this method is called.

Examples

ClientEnumeration

The following example shows how to iterate over the data using ClientEnumeration API (Figure
7-1).

import org.globus.ws.enumeration.ClientEnumeration;

import org.globus.ws.enumeration.IterationResult;

import org.globus.ws.enumeration.IterationConstraints;

…

EnumerationServiceAddressingLocator locator =

 new EnumerationServiceAddressingLocator();

URL serviceURL =

 new URL(“http://127.0.0.1:8080/wsrf/services/EnumerationService”);

EnumerationPortType port =

 locator.getEnumerationPortTypePort(serviceURL);

// obtain the enumeration context from the service somehow

EnumerationContextType context = …

// create iteration constraints (return maximum of 10 elements)

 Chapter 7 WS-Enumeration

113

IterationConstraints constraints =

 new IterationConstraints(10, -1, null);

// create client enumeration

ClientEnumeration enumeration =

 new ClientEnumeration((Stub)port, context);

// iterate over the data

IterationResult iterResult;

do {

 // retrieve the enumeration data with given constraints

 iterResult = enumeration.pull(constraints);

 Object [] items = iterResult.getItems();

 if (items != null) {

 // display the enumeration data

 for (int i=0; i < items.length; i++) {

 System.out.println(items[i]);

 }

 }

} while (!iterResult.isEndOfSequence());

Figure 7-1 Client enumeration example

ClientEnumIterator

This example shows how to iterate over the data using ClientEnumIterator API (Figure 7-2).

import org.globus.ws.enumeration.ClientEnumIterator;

import org.globus.ws.enumeration.IterationConstraints;

…

EnumerationServiceAddressingLocator locator =

 new EnumerationServiceAddressingLocator();

caGrid 1.0 Programmer’s Guide

 114

URL serviceURL =

 new URL(“http://127.0.0.1:8080/wsrf/services/EnumerationService”);

EnumerationPortType port =

 locator.getEnumerationPortTypePort(serviceURL);

// obtain the enumeration context from the service somehow

EnumerationContextType context = …

// create iteration constraints (return maximum of 10 elements)

IterationConstraints constraints =

 new IterationConstraints(10, -1, null);

// create the client iterator

ClientEnumIterator iterator =

 new ClientEnumIterator((Stub)port, context);

iterator.setIterationConstraints(constraints);

// iterate over the data

try {

 while(iterator.hasNext()) {

 Object obj = iterator.next();

 }

} catch (NoSuchElementException e) {

 // next() can throw this exception even though

 // hasNext() returned true

}

Figure 7-2 ClientEnumIterator example

 Chapter 7 WS-Enumeration

115

Command Line Clients

ws-enumerate-start

Starts an enumeration. It calls the enumerate operation on the data service and prints out the
enumeration context to the console. The enumeration context then can be passed to ws-
enumerate or ws-enumerate-end clients.

ws-enumerate

Enumerates over the data. It calls the pull operation on the data service and prints out the
retrieved data to the console. The client requires an argument that is a filename that contains
the enumeration context (created either by ws-enumerate-start or other means).

The –n, --maxElements option can be used to configure the maximum number of elements to
retrieve from the data service at a time. The –r, --maxCharacters option can be used to
configure the maximum number of characters the client can accept at a time. The –n, --
maxTime option can be used to specify the maximum amount of time in which the enumeration
data has to be assembled. Any combination of these options can be specified at the same time.

ws-enumerate-end

Releases an enumeration. It calls the release operation on the data service. The client requires
an argument that is a filename that contains the enumeration context (created either by ws-
enumerate-start or other means).

Service

Service WSDL

The service that wishes to support enumerations must define the WS-Enumeration operations in
its WSDL. All operations except the enumerate operation must be defined in service WSDL. The
enumerate operation of WS-Enumeration specification is an optional operation and therefore it
is up to the service designer to decide if the service should define and implement this operation
or if the service will provide some other operation that will initiate an enumeration. Any operation
of the service can initiate an enumeration by returning an element of the
wsen:EnumerationContextType type to the client.

Service Implementation

The service must implement the enumerate operation of the WS-Enumeration specification or
provide some other operation that will initiate an enumeration and return an element of the
wsen:EnumerationContextType type to the client.

caGrid 1.0 Programmer’s Guide

 116

For all the other WS-Enumeration operations the service must be configured with the built-in
enumeration operation provider (EnumProvider). Of course, the service can choose to provide
its own implementation for the WS-Enumeration operations but will need to replicate a lot of the
built-in functionality.

The EnumProvider is configured in the same way as any other operation provider in the service
deployment description (WSDD) file. All the WS-Enumeration operations should have the same
security settings.

Enumeration Implementation Details

Internally, enumerations are managed and implemented just like any other WS-Resources. That
is, there are enumeration resources (EnumResource) which are managed by the enumeration
resource home (EnumResourceHome). The enumeration resources contain lifetime information
and have a reference to the iterator (EnumIterator) that provides the actual data iteration
functionality.

Types

There are two types of enumerations: transient and persistent. The transient enumerations live
only while the container is running and are not restored after a container restart. The persistent
enumerations are restored after a container restart. The type of enumeration has no impact on
how the data of the enumeration is stored or retrieved. For example, a transient enumeration
can query a database, retrieve data from a file, or have all the data in memory. It is entirely up to
the service developers to decide how the data is retrieved, if the data is static or dynamic, etc.

In general it is not recommended to keep the entire enumeration data in memory. If the data is
static, it is recommended to store the data in a database or a file, etc. and retrieve it in an
efficient way.

Visibility

The enumeration resources also contain visibility properties (VisibilityProperties) to restrict what
service and/or resource can access the particular enumeration resource. In general, an
enumeration created by service S is only accessible through service S. Similarly, an
enumeration created by resource R is only accessible through resource R.

Security

The service or resource through which the enumeration data is accessed can be configured with
a security descriptor to further control access to the data.

Example

This example shows how to create a transient enumeration on the server-side with the help of
the built-in WS-Enumeration operation provider (Figure 7-3).

import org.globus.ws.enumeration.EnumResourceHome;

import org.globus.ws.enumeration.EnumIterator;

import org.globus.ws.enumeration.EnumResource;

 Chapter 7 WS-Enumeration

117

import org.globus.ws.enumeration.EnumProvider;

…

// obtain enumeration resource home

EnumResourceHome enumHome = EnumResourceHome.getEnumResourceHome();

// create iterator for the data

EnumIterator iter = …;

// create transient enumeration resource for the iterator

// with visibility properties obtained from the context

EnumResource resource = enumHome.createEnumeration(iter, false);

// get resource key for the enumeration resource

ResourceKey key = enumHome.getKey(resource);

// create EnumerationContextType to be returned to the client

EnumerationContextType enumContext =

 EnumProvider.createEnumerationContextType(key);

Figure 7-3 Example of creating a transient enumeration on the server-side

API

EnumIterator

This API is used by the service developers to write their own EnumIterator implementations in
order the retrieve the enumeration data in a fast and efficient way.

A new EnumIterator instance must be created for each new enumeration. The implementations
should assume a single thread access. Only one client is allowed to access a particular
enumeration at a time. The implementation must keep track of the progress of the enumeration
(for example, store the index of the last item retrieved).

For persistent enumerations, the EnumIterator implementation must be fully serializable using
the Java serialization framework. That will enable the enumeration to be restored in case of a

caGrid 1.0 Programmer’s Guide

 118

container restart or in other conditions. An application should not keep references to the
EnumIterator objects it creates. Such references will prevent efficient memory management by
the EnumResourceHome.

IterationResult next(IterationConstraints constraints)
Retrieves the next set of items of the enumeration. The IterationConstraints define constraints
for this operation such as the maximum number of the items that can be returned, the maximum
number of characters of the items, and timeout in which the items must be returned. The
constraints can change between the calls. If the timeout value constraint is specified and the
data is not collected in that time, a TimeoutException should be raised. If there are no more
elements in the enumeration a NoSuchElementException is raised.

The IterationResult contains the result of the iteration that fulfills the specified constraints. It
must always be non-null. The IterationResult itself contains a list of enumeration items of
javax.xml.soap.SOAPElement type and a flag that indicates if an end of sequence has been
reached.

void release()
Release any resources associated with this enumeration. For example, close database
connections, delete files, etc. This method is called when the enumeration is explicitly released,
expires, or the user finished enumerating through all the data.

SimpleEnumIterator

The SimpleEnumIterator is a concrete implementation of the EnumIterator interface. It is a very
simple implementation that can enumerate over in-memory data passed either as an array of
objects or a list (java.util.List). The enumeration contents can be of
javax.xml.soap.SOAPElement type, simple types such as java.lang.Integer, etc. or Axis
generated Java beans.

The SimpleEnumIterator can only be used with transient type of enumerations.

IndexedObjectFileEnumIterator

The IndexedObjectFileEnumIterator is another concrete implementation of the EnumIterator
interface. It is a memory efficient implementation that can enumerate over data stored in an
indexed file created by IndexedObjectFileWriter. The indexed file format is optimized for
retrieving objects in a sequential and random manner. The IndexedObjectFileEnumIterator uses
the IndexedObjectFileReader to read the indexed file and quickly locate and retrieve the next
set of objects of the enumeration.

The IndexedObjectFileEnumIterator can be used with transient and persistent types of
enumerations.

IndexedObjectFileWriter

The IndexedObjectFileWriter is used to create an indexed file. The objects stored in the file will
be serialized using the Java serialization framework, therefore, only the objects that implement
the java.io.Serializable interface can be used.

 Chapter 7 WS-Enumeration

119

IndexedObjectFileReader

The IndexedObjectFileReader is used to read an indexed file created by the
IndexedObjectFileWriter. The objects stored in the file will be deserialized using the Java
serialization framework.

IndexedObjectFileUtils

The IndexedObjectFileUtils is a collection of utility functions that can be used to create indexed
files with the given data.

Other Implementation Details

WS-Enumeration WSDL and schema changes

The following changes have been made to the WS-Enumeration WSDL and schema files:

1. The WS-Addressing namespace used by the specification was changed to
http://schemas.xmlsoap.org/ws/2004/03/addressing in order to work with the existing
tooling.

2. The EnumerationEndOp operation was commented out as it violates WS-I Basic Profile
1.1 and is not supported by the tooling. Therefore, this part of WS-Enumeration
functionality is not supported by the current implementation.

3. Since the EnumerateOp operation in is an optional operation, it was moved into a
separate port type called DataSourceStart. All other operations remain in the
DataSource port type.

4. The EnumerationContextType type was simplified to an equivalent form in order to be
properly recognized by the tooling.

Other comments on the WS-Enumeration WSDL and schema files:

1. The schema file uses the xsd:union type which makes it hard for the tooling to figure out
which value was actually serialized. The xsd:choice type might be better for such cases.

2. Currently there is no way to ask the data service if it has any more elements without
actually retrieving some elements.

3. The EndOfSequence element in schema file should be defined with xsd:boolean type.
Right not it defaults to xsd:anyType.

caGrid 1.0 Programmer’s Guide

 120

 Chapter 8 Workflow Management Service

121

Chapter 8 Workflow Management Service

This chapter describes the architecture and APIs for interacting with caGrid workflow.

Topics in this chapter include:

• Overview on this page

• Workflow Architecture on this page

• WorkflowFactoryService API on page 123

• WorkflowManagementService API on page 125

• Security in WorkflowFactory and Context Services on page 128

• Service Selection on page 128

• Provenance Tracking on page 128

• WS-RF Resources in Workflows on page 128

Overview
caBIG aims to bring together disparate data and analytic resources into a “World Wide Web of
cancer research.” This will be achieved through common standards and software frameworks
for the federation of these resources into “grid” services. Many of the tasks in the collection and
analysis of cancer-related data on the grid involve the use of workflow. Here, we define
workflow as the connecting of services to solve a problem that each individual service could not
solve. caGrid implements workflow by providing a grid service for submitting and running
workflows that are composed of other grid services.

Workflow Architecture
The Workflow component leverages the same infrastructure stack as the caGrid toolkit (GT4,
Tomcat, Java, Ant, and Introduce) with the addition of the ActiveBPEL workflow engine. The
WorkflowFactoryService is a standard Introduce-built grid service that allows a workflow to be
created from a BPEL workflow document. An EPR is returned to a
WorkflowManagementService resource that can be used to start, stop, pause, resume, cancel,
and destroy the created workflow. The WorkflowManagementService is layered on top of the
ActiveBPEL workflow engine, which provides the primary functionality for running the BPEL-
defined workflow. See Figure 8-1 for an overview of this architecture.

The following actions are performed when a user invokes start on the workflow management
service:

• The input BPEL document is parsed and an exception is thrown if it is not well-
formed (with respect to schema compliance).

caGrid 1.0 Programmer’s Guide

 122

• The input arguments to the workflow are declared as an array of xsd:any. They are
parsed and cast to the types that they are meant to be.

• The service implementation invokes PDDGenerator to generate the deployment
descriptor for the workflow.

• The service implementation invokes BPRGenerator to generate the BPelArchive
(called bpr hereafter) that is ready to be deployed.

• The workflow management service is bootstrapped with the location of ActiveBPEL
admin service location.

• The service implementation invokes deployBpr operation on the admin service,
which is a vanilla Axis-based Web Service, to deploy the workflow created.

• The admin service responds with deployment summary reporting success if the
workflow is deployed successfully.

• Once the workflow is deployed successfully, it is deployed as a web service inside
ActiveBPEL.

• To start the workflow, a message is sent to the receiving partnerLink in the workflow.
• After the workflow successfully executes the results are returned to the client

app/user by a call to getWorkflowOutput

 Chapter 8 Workflow Management Service

123

caGrid (GT4)
Service 1

caGrid User

GT4 Axis
Security

GT4

Workflow
Management

Service
(WMS)

R
un

W
or

kF
lo

w

R
es

ul
t[]

ActiveBPEL Axis + https +
GT4 authz

ActiveBPEL Axis + https +
GT4 authz

ActiveBPEL
Bpel

Engine
Admin

de
pl

oy
Bp

r

R
es

ul
ts

[]

in
vo

ke
P

ro
ce

ss

caGrid (GT4)
Service 2

Inv
ok

e h
ttp

s Invoke https

text

tomcat

Figure 8-1 Overview of the architecture of the caGrid Workflow component

WorkflowFactoryService API
Workflows are created using the WorkflowFactoryService, which is a grid service that follows
the resource pattern. The returned object holds an EPR to a WorkflowManagementService,
which can be used to manipulate the create workflow.

Public WorkflowFactoryOutputType createWorkflow(WorkflowDescriptionType
wmsInputType) throws WorkflowException ()

Description:

This method creates a workflow resource from the BPEL document found in wmsInputType and
returns an EPR of the created resource to the client. The BPEL resource, along with the most
recent state, is persisted in a MySQL database and is recovered in the event of a container

caGrid 1.0 Programmer’s Guide

 124

crash.

WorkflowDescriptionType:

This is the input to createWorkflow, and it consists of workflowName, a String bpelDoc, an Array
of wsdlReferences, and an initial termination time for the workflow. If the termination time is not
specified the service defaults to 24hrs. Termination of the workflow invalidates the
WorkflowManagementService EPR and any running workflow is stopped.

<xsd:complexType name="WorkflowDescriptionType">
 <xsd:sequence>
 <xsd:element name="workflowName" type="xsd:string" minOccurs="1" maxOccurs="1"
/>
 <xsd:element name="bpelDoc" type="xsd:string" maxOccurs="1" />
 <xsd:element name="wsdlReferences" type="tns:WSDLReferences"
maxOccurs="unbounded" />
 <xsd:element name=”InitialTerminationTime” type=”xsd:dateTime”/>
 </xsd:sequence>
 </xsd:complexType>

<xsd:complexType name="WSDLReferences">
 <xsd:sequence>
 <xsd:element name="wsdlNamespace" type="xsd:anyURI"/>
 <xsd:element name="wsdlLocation" type="xsd:string"/>
 <xsd:element name="serviceUrl" type="xsd:anyURI"/>
 </xsd:sequence>
</xsd:complexType>

WorkflowFactoryOutputType:

This is the output of the createWorkflow method. An EPR is constructed by the factory and
returned to the client. At this point the workflow document is deployed in the workflow engine
and is also stored in a database, but it has not started. The EPR points to an instance of the
WorkflowManagementService, which should be used to start the workflow.

<xsd:complexType name="WorkflowFactoryOutputType">
 <xsd:annotation>
 <xsd:documentation>This type represents the output from a
workflow</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="WorkflowEPR" type="wsa:EndpointReferenceType" />
 </xsd:sequence>
 </xsd:complexType>

Faults:

UnableToDeployWorkflowFault: This fault is thrown if the workflow is unable to be deployed
(e.g. the BPEL document submitted fails pre-deployment validation).

InvalidBPELFault extends UnableToDeployWorkflowFault: This fault is thrown if the BPEL
document submitted fails pre-deployment validation (e.g. not valid XML).

Factory ResourceProperties:

We intend to provide aggregate resource properties on the factory service in our next iteration.

 Chapter 8 Workflow Management Service

125

Following are some of the examples of those:

• Total number of workflows

• ListOfWorkflowsSubmitted

WorkflowManagementService API
This service is used to manage the workflow resources created by the WorkflowFactoryService
(Figure 8-2). The service provides asynchronous execution of deployed workflows. The
following are the operations the service provides in addition to the standard WS-RF operations
such as destroy(), setTerminationTime(), etc.

Figure 8-2 Workflow service state diagram

Public WorkflowStatusType start(StartInputType input) throws WorkflowException,
StartCalledOnStartedWorkflowFault

Description:

This operation is used to start the workflow deployed using the factory with a set of input
parameters. The input parameters are modeled as an array of xsd:any elements. The output is
a void type.

<xsd:complexType name="StartInputType">
 <xsd:sequence>
 <xsd:element name="inputArgs" type="tns:WorkflowInputType" maxOccurs="1" />
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="WorkflowInputType">
 <xsd:sequence>
 <xsd:any maxOccurs="1" />

caGrid 1.0 Programmer’s Guide

 126

 </xsd:sequence>
 </xsd:complexType>

Faults:

StartCalledOnStartedWorkflowFault: This is thrown if start() is called on a workflow that is not in
any one of the terminal states (i.e. Done, Failed, Cancelled).

WorkflowException: Every other fault results in the service throwing this with a message
describing more details as to what went wrong.

Public WorkflowStatusType getStatus() throws WorkflowException

Description:

This operation is used to query for the status of the deployed workflow. WorkflowStatusType
includes a fault.

<xsd:simpleType name="WorkflowStatusType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Pending" />
 <xsd:enumeration value="Active" />
 <xsd:enumeration value="Done" />
 <xsd:enumeration value="Failed" />
 <xsd:enumeration value="Cancelled" />
 </xsd:restriction>
 </xsd:simpleType>

Public WorkflowStatusType pause() throws CannotPauseFault

Description:

This operation pauses the workflow until resume() or cancel() is invoked. This operation
translates to invoking an equivalent operation provided in the ActiveBPEL Admin interface.
When the pause operation is invoked, ActiveBPEL stops the execution of the workflow
document which means that there would no further service invocations or other activities.
However, this will not affect the invocations in progress when the pause() is invoked. This
operation returns the new state of the workflow resource (which always should be Active).

Public WorkflowStatusType resume() throws CannotResumeFault

Description:

This operation resumes a paused workflow. It translates to invoking an equivalent operation
provided in the ActiveBPEL Admin interface.

Public WorkflowOutputType getWorkflowOutput() throws WorkflowException

Description:

This operation is used to get the final output of a completed workflow. It will return a fault if the

 Chapter 8 Workflow Management Service

127

workflow is not yet completed. If ActiveBPEL allows for intermediate access of results, then this
operation can potentially return the last result that the workflow engine has for this workflow.
The output is modeled as a array of xsd:any elements.

<xsd:complexType name="WorkflowOutputType">
 <xsd:sequence>
 <xsd:any maxOccurs="1" />
 </xsd:sequence>
 </xsd:complexType>

Public void cancel() throws WorkflowException

Decription:

This operation terminates a workflow. It translates to invoking equivalent operation provided in
the ActiveBPEL Admin interface.

Resource Properties:

WorkflowStatusRP:

The status of a workflow is exposed as a Resource Property so clients can subscribe to it and
get notified when a state change happens. WorkflowStatusType is modeled as an Enum of
Strings with the following valid values:

• Pending (Created but Start has not been called)
• Active
• Done
• Paused
• Failed

The status also includes the latest fault a workflow execution throws.

<xsd:simpleType name="WorkflowStatusType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Pending" />
 <xsd:enumeration value="Active" />
 <xsd:enumeration value="Done" />
 <xsd:enumeration value="Failed" />
 <xsd:enumeration value="Cancelled" />
 <xsd:enumeration value="Paused" />
 </xsd:restriction>
 </xsd:simpleType>

WorkflowStartTimeRP:

This property denotes the time when start() operation is called on the resource.

caGrid 1.0 Programmer’s Guide

 128

WorkflowEndTimeRP:

This property denotes the time when workflow status is set to Done/Failed/Cancelled.

Public void destroy()

Description:

This is a standard WS-RF operation but mentioned here to clarify the semantics and what it
means to a Workflow Resource. If called, this method will delete a Workflow resource from the
database along with the intermediate results and subscriptions for notifications. This operation is
called by the GT4 framework when the lifetime of a resource is expired. The lifetime is set in the
initial create() call in the factory. Internally, destroy() removes all the database entries for a
particular workflow resource, all the subscriptions for notifications, and other temporary
resources both in memory and on the disk.

Security in WorkflowFactory and Context Services
Two types of deployment patterns for Workflow are needed in regards to security. One
deployment scenario would have the factory and the context service running with grid security
(using Transport level security and caGrid authorization) and would require a client present grid
credentials to submit and run workflows. Once a workflow resource is created by a user,
programmatic GridMap authorization is used to limit access to the resource to the creator of the
resource. Delegation of credentials is performed using the delegation service of the Globus
Toolkit. This deployment is used to orchestrate workflows that require secure access to any
services involved in the workflow. The other deployment does not have any security and is used
to orchestrate workflow between unsecured grid services.

Service Selection
A Custom invoke handler is written for ActiveBPEL that queries a pre-configured GT4 index
service to get the list of services. The query would be based on input and output types of the
service invocation. Once a list of service handles is obtained from the index service, the
dynamic endpoint for the service invocation is replaced by the first endpoint in the list.

Provenance Tracking
This is out of scope for this component during this release. No provenance tracking is exposed
via the workflow component.

WS-RF Resources in Workflows
A BPEL service can involve affecting state of a WS-RF resource. Additional support needs to be
added to ActiveBPEL to pass WS-A headers that contain EPRs and other relevant info to

 Chapter 8 Workflow Management Service

129

caGrid services.

caGrid 1.0 Programmer’s Guide

 130

Chapter 9 caGrid Global Model Exchange

131

Chapter 9 caGrid Global Model Exchange
This chapter describes the caGrid Global Model Exchange.

Topics in this chapter include:

• Overview on this page

• GME Client on page 134

Overview
The caGrid Global Model Exchange (GME) is dependent on several software packages/systems
that must be installed prior to installing and deploying the GME. The GME requires all of the
required software packages of the caGrid core (Table 9-1).

Software Version Description

Java SDK

jsdk1.5 or higher GME is written in Java therefore it requires the Java
SDK. After installing you will have to set up an
environmental variable pointing to the Java SDK
directory and name it JAVA_HOME.

Mysql Mysql 4.x or higher For persistence and cache of models, GME uses
the mysql database. Mysql can be downloaded from
http://www.mysql.com/products/mysql/. The GME
requires mysql version 4.X.

Ant Ant 1.6.5 GME along with the Globus Toolkit in which GME is
built on, uses Jakarta Ant for building and deploying.

Globus Globus 4.0.3 GME is built on top of the Globus Toolkit. GME
requires the ws-core installation of the Globus
Toolkit.

Tomcat

(Only
required if
deploying to
Tomcat)

Tomcat 5.0.30 GME can be optionally deployed as a Grid Service
to a Tomcat deployed Globus Toolkit.

Table 9-1 Software prerequisites for GME

Building the GME

GME is built when caGrid core is built. To build caGrid the following environment variables are
required:

 GLOBUS_LOCATION - The location of your globus 4.0.X installation.

CATALINA_HOME - The location of your Tomcat installation. (optional container)

If you have checked out caGrid Core from CVS, installed the required software packages, and

caGrid 1.0 Programmer’s Guide

 132

set the required environment variables, begin building caGrid Core by going into the caGrid
Core checkout directory and entering ant all.

Configuring and Deploying the GME

Configuration

GME requires two configuration files for configuring the service. One configuration file is for
configuring the Mobius GME and the other is for configuring the GME security preferences.

Each addresses a different GME set-up: connecting GME to other services, etc. The file gme-
globus-config.xml contains a basic setup for a GME server to run on the local machine
and provides an example of how the configuration files are structured. See the
http://projectmobius.org/docs/mobiusconfig.php for information on the elements in the top
resource block of the configuration files.

The localhost config files should never be used for more than single GME testing
purposes. If you are running multiple GMEs, customize the config files by assigning unique
service identifiers and making any other changes necessary to specify the service as unique.
When other services connect to a GME started as localhost, the GME identifies itself as
"localhost" to the connecting service. This can cause problems with service name resolution.

The GME server contains a single resource block that provides certain functionality and
information to other GME components. The resources defined in the block are instantiated by
the GME server at startup and are configured by the config file. The resource for the GME is:
GME Configuration <resource name="gmeConfig"... >. Each configuration element is listed
here, along with its children. Below this list, the purpose of the elements are described.

• policies

• performance-caching

• notification-policy

• root-database
<policies>

This element establishes parameters for how long the GME should keep old data and
what other hosts it should notify of its existence.

<performance-caching>

The <namespace-caching> and <schema-caching> sub-elements of this element tell
the GME how much namespace and schema data it should cache and for how long it
should maintain the cache.

<notification-policy>

This element contains a <notification-list> sub-element that specifies which
running GMEs it should notify upon instantiation.

<root-database>

This element configures the MySQL root database information. The children of this
element configure the database. Its "id" attribute is the base name of the MySQL
databases that will be created and used by the GME. If you configure multiple GMEs to

Chapter 9 caGrid Global Model Exchange

133

use a single MySQL installation, be sure to give a unique value to the "id" for each GME
or there will be problems with name collision in MySQL.

<name>

This element specifies the name of the database. For MySQL's root database, this
should be nothing.

<driver>

The driver class for accessing the MySQL database.
<urlPrefix>

The URL prefix for accessing the database.
<host>

The host the database lives on. Usually, this will be localhost.
<port>

The port from which the database can be accessed.
<username>

The username to log into the database with. This username must have privileges to
create and delete databases and tables.

<password>

The password to authenticate the username.
<pool>

This element determines how many connections to the database will be made
initially. When the GME needs to communicate with the database, it will get a
connection, and when it’s done, it releases it. Should the Database Manager run out
of available connections, it will make a new one, but this causes a slight delay. Set
the pool value in anticipation of how many concurrent database operations will be
needed.

Deployment

The GME_LOCATION/deploy.properties file allows the configuration of deployment
time properties of the service. The properties file contains two variables for configuring the
service name and the service path. These variables are defaulted during skeleton creation
time.
service.name=GlobalModelExchange

service.deployment.path=cagrid/GlobalModelExchange

service.deployment.host.default=localhost

Once GME is configured, it can be deployed to Globus running in Tomcat by entering ant
deployTomcat or ant deployGlobus from the GME_LOCATION directory. Once deployed starting
or restarting the container starts up the GME.

caGrid 1.0 Programmer’s Guide

 134

GME Backup and Restore

GME installations should run a backup script to make sure the integrity of the database can be
restored upon any failures. A general purpose script for this is provided in the tools directory.
There is a script for backup and one for restore. Each script has a short description inside
describing the usage of the script and what variables might need to be configured. This script
can be executed from a crontab and maintains five rolling backup caches of the GME
databases.

Important Notes

The default GME configuration is set to connect to a MySQL database on the localhost with no
password and username root. If you need to change this be sure to edit the gme config file in
the etc directory. The GME also dynamically creates its databases and tables. Make sure that
the database privileges are set correctly to enable this.

GME Client

GME Client API

The GME client API is a simple java based API that enables simple access to remote GMEs in
order to publish, retrieve, and discover models as well as manage GMEs. The client API comes
from the Mobius project and is included in the caGrid release. The communication factories
required to use the GME in the caGrid environment are built into the caGrid release jar and
deployed into the skeleton. Below is a code example of how to get a handle to a GME and
request a schema, and all it referenced schemas, to be retrieved and written to a place on the
file system.

For more information on other methods the GME API provides, refer to
http://projectmobius.org/docs/gmeapi.php or browse the Mobius GME source code, which is

GridServiceResolver.getInstance().setDefaultFactory(new GlobusGMEXMLDataModelServiceFactory());

List writtenNamespaces = null;

File directory = new File(CACHE_LOCATION);

try {

XMLDataModelService handle = (XMLDataModelService) GridServiceResolver.getInstance()

.getGridService(“http://dc04.bmi.ohio-state.edu:8080/ogsa/services/cagrid/gme”);

 writtenNamespaces = handle.cacheSchema(cagrid.nci.nih.gov/1/Gene,directory);

} catch (MobiusException e1) {

 e1.printStackTrace();

}

Chapter 9 caGrid Global Model Exchange

135

freely available at www.projectmobius.org.

GME Viewer

To launch the GME Viewer, run ant gmeViewer from the GME_LOCATION. This launches the
Mobius GME Viewer GUI configured to use Globus for communication. Once this tool is
launched, follow the Mobius GUI Documentation for using the GUI
(http://projectmobius.org/docs/gmeqs.php).

caGrid 1.0 Programmer’s Guide

 136

 Appendix A References

137

Appendix A References

Scientific Publications
[1] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V.

Nefedova, D. Quesnal, and T. S., "Data Management and Transfer in High Performance
Computational Grid Environments," Parallel Computing Journal, vol. 28, pp. 749-771,
2002.

[2] W. E. Allcock, I. Foster, and R. Madduri, "Reliable Data Transport: A Critical Service for
the Grid.," in Proceedings of Building Service Based Grids Workshop, Global Grid Forum
11. Honolulu, Hawaii, USA, 2004.

[3] G. Allen, T. Dramlitsch, I. Foster, T. Goodale, N. Karonis, M. Ripeanu, E. Seidel, and B.
Toonen, "Cactus-G Toolkit: Supporting Efficient Execution in Heterogeneous Distributed
Computing Environments," in Proceedings of the 4th Globus Retreat. Pittsburg, PA,
2000.

[4] H. Andrade, T. Kurc, A. Sussman, and J. Saltz, "Active Proxy-G: Optimizing the Query
Execution Process in the Grid," in Proceedings of the ACM/IEEE Supercomputing
Conference (SC2002). Baltimore, MD: ACM Press/IEEE Computer Society Press, 2002.

[5] J. Annis, Y. Zhao, J. Voeckler, M. Wilde, S. Kent, and I. Foster, "Applying Chimera
Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey," in Proceedings of the
ACM/IEEE Supercomputing Conference (SC2002). Baltimore, MD: ACM Press/IEEE
Computer Society Press, 2002.

[6] M. P. Atkinson and et.al., "Grid Database Access and Integration: Requirements and
Functionalities," Technical Document, Global Grid Forum. http://www.cs.man.ac.uk/grid-
db/documents.html, 2002.

[7] F. Berman, H. Casanova, J. Dongarra, I. Foster, C. Kesselman, J. Saltz, and R. Wolski,
"Retooling Middleware for Grid Computing," NPACI & SDSC enVision, vol. 18, 2002.

[8] M. Beynon, T. Kurc, A. Sussman, and J. Saltz, "Design of a Framework for Data-
Intensive Wide-Area Applications," in Proceedings of the 2000 Heterogeneous
Computing Workshop (HCW2000). Cancun, Mexico, 2000.

[9] H. Casanova, O. Graziano, F. Berman, and R. Wolski, "The AppLeS Parameter Sweep
Template: User-Level Middleware for the Grid," in Proceedings of the ACM/IEEE
Supercomputing Conference (SC2000): ACM Press/IEEE Computer Society Press,
2000.

[10] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kesselman,
P. Kunst, M. Ripeanu, B. Schwartzkopf, H. Stockinger, and B. Tierney, "Giggle: A
Framework for Constructing Scalable Replica Location Services," in Proceedings of the
ACM/IEEE Supercomputing Conference (SC2002): ACM Press/IEEE Computer

caGrid 1.0 Programmer’s Guide

 138

Computer Society Press, 2002, pp. 1-17.

[11] A. Chervenak, E. Deelman, C. Kesselman, B. Allcock, I. Foster, V. Nefedova, J. Lee, A.
Sim, A. Shoshahi, B. Drach, D. Williams, and D. Middleton, "High-performance remote
access to climate simulation data: a challenge problem for data grid technologies,"
Parallel Computing, vol. 29, pp. 1335-1356, 2003.

[12] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, "The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large
Scientific Datasets," Journal of Network and Computer Applications, vol. 23, pp. 187-
200, 2000.

[13] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn, A.
Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda, "Mapping Abstract Complex
Workflows onto Grid Environments," Journal of Grid Computing, vol. 1, pp. 25-39, 2003.

[14] E. Deelman, G. Singh, M. P. Atkinson, A. Chervenak, N. P. Chue Hong, C. Kesselman,
S. Patil, L. Pearlman, and M. Su, "Grid-Based Metadata Services," in Proceedings of the
16th International Conference on Scientific and Statistical Database Management
(SSDBM '04), 2004.

[15] I. Foster and C. Kesselman, "Globus: A Metacomputing Infrastructure Toolkit.,"
International Journal of High Performance Computing Applications, vol. 11, pp. 115--
128, 1997.

[16] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao, "Chimera: A Virtual Data System for
Representing, Querying, and Automating Data Derivation," in Proceedings of the 14th
Conference on Scientific and Statistical Database Management (SSDBM '02), 2002.

[17] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, "Condor-G: A
Computational Management Agent for Multi-institutional Grids," in Proceedings of the
Tenth International Symposium on High Performance Distributed Computing (HPDC-10):
IEEE Press, 2001.

[18] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Darlington, "ICENI: An Open Grid
Service Architecture Implemented with JINI," in Proceedings of the ACM/IEEE
Supercomputing Conference (SC2002). Baltimore, MD: ACM Press/IEEE Computer
Society Press, 2002.

[19] A. S. Grimshaw and W. Wulf, "The Legion: Vision of a Worldwide Virtual Computer,"
Communications of the ACM, vol. 40, pp. 39--45, 1997.

[20] S. Hastings, S. Langella, S. Oster, and J. Saltz, "Distributed Data Management and
Integration: The Mobius Project," Proceedings of the Global Grid Forum 11 (GGF11)
Semantic Grid Applications Workshop, Honolulu, Hawaii, USA., pp. 20-38, 2004.

[21] S. Langella, S. Oster, S. Hastings, F. Siebenlist, T. Kurc, and J. Saltz, "Dorian: Grid
Service Infrastructure for Identity Management and Federation," presented at The 19th
IEEE Symposium on Computer-Based Medical Systems, Special Track: Grids for
Biomedical Informatics, Salt Lake City, Utah., 2006.

[22] R. Oldfield and D. Kotz, "Armada: A Parallel File System for Computational Grid," in
Proceedings of the IEEE International Symposium on Cluster Computing and the Grid

 Appendix A References

139

(CCGrid2001). Brisbane, Australia: IEEE Computer Society Press, 2001.

[23] M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and H. Takagi, "Ninf: A
Network based Information Library for a Global World-Wide Computing Infrastructure,"
in Proceedings of the Conference on High Performance Computing and Networking
(HPCN '97) (LNCS-1225), 1997, pp. 491-502.

[24] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Mahohar, S. Pail,
and L. Pearlman, "A Metadata Catalog Service for Data Intensive Applications," in
Proceedings of the ACM/IEEE Supercomputing Conference (SC2003), 2003.

[25] G. Singh, E. Deelman, G. Mehta, K. Vahi, M. Su, B. Berriman, J. Good, J. Jacob, D.
Katz, A. Lazzarini, K. Blackburn, and S. Koranda, "The Pegasus Portal: Web Based Grid
Computing," in Proceedings of the 20th Annual ACM Symposium on Applied Computing.
Santa Fe, New Mexico, 2005.

[26] J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. A. Fernandes, and R. Sakellariou,
"Distributed Query Processing on the Grid.," presented at Proceedings of the Third
Workshop on Grid Computing (GRID2002), Baltimore, MD, 2003.

[27] D. Thain, J. Basney, S. Son, and M. Livny, "Kangaroo Approach to Data Movement on
the Grid," in Proceedings of the Tenth IEEE Symposium on High Performance
Distributed Computing (HPDC-10), 2001.

[28] L. Weng, G. Agrawal, U. Catalyurek, T. Kurc, S. Narayanan, and J. Saltz, "An Approach
for Automatic Data Virtualization," in Proceedings of the 13th IEEE International
Symposium on High-Performance Distributed Computing (HPDC-13). Honolulu, Hawaii,
2004, pp. 24-33.

[29] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, "The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration," Open Grid Service
Infrastructure Working Group Technical Report, Global Grid Forum.
http://www.globus.org/alliance/publications/papers/ogsa.pdf 2002.

[30] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling Scalable
Virtual Organizations.," International Journal of Supercomputer Applications, vol. 15, pp.
200-222, 2001.

[31] E. Cerami, Web Services Essentials: O'Reilly & Associates Inc., 2002.

[32] S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y. Nakamura, and R.
Neyama, Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and
UDDI: SAMS Publishing, 2002.

[33] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling, S.
Tuecke, and W. Vambenepe, "The WS-Resource Framework version 1.0," vol. 2004,
2004.

[34] J. Saltz, S. Oster, S. Hastings, T. Kurc, W. Sanchez, M. Kher, A. Manisundaram, K.
Shanbhag, and P. Covitz, "caGrid: Design and Implementation of the Core Architecture
of the Cancer Biomedical Informatics Grid," Bioinformatics. (in press). 2006.

caGrid 1.0 Programmer’s Guide

 140

[35] S. Langella, S. Hastings, S. Oster, T. Kurc, U. Catalyurek, and J. Saltz, "A Distributed
Data Management Middleware for Data-Driven Application Systems," in Proceedings of
the 2004 IEEE International Conference on Cluster Computing (Cluster 2004), 2004.

[36] K. Bhatia, S. Chandra, and K. Mueller, "GAMA: Grid Account Management Architecture,"
San Diego Supercomputer Center (SDSC), UCSD Technical Report. #TR-2005-3, 2005.

[37] I. Foster, C. Kesselman, S. Tuecke, V. Volmer, V. Welch, R. Butler, and D. Engert, "A
National Scale Authentication Infrastructure," IEEE Computer, vol. 33, pp. 60-66, 2000.

[38] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kesselman,
S. Meder, L. Pearlman, and S. Tuecke, "Security for Grid Services," presented at 12th
International Symposium on High Performance Distributed Computing (HPDC-12), 2003.

[39] H. Morohoshi and R. Huang, "A User-friendly Platform for Developing Grid Services over
Globus Toolkit 3," presented at The 2005 11th International Conference on Parallel and
Distributed Systems (ICPADS'05), 2005.

[40] S. Mizuta and R. Huang, "Automation of Grid Service Code Generation with AndroMDA
for GT3," presented at The 19th International Conference on Advanced Information
Networking and Applications (AINA'05), 2005.

[41] G. von Laszewski, I. Foster, J. Gawor, and P. Lane, "A Java Commodity Grid Kit,"
Concurrency and Computation: Practice and Experience, vol. 13, pp. 643-662, 2001.

[42] G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke, "CoG Kits: A Bridge
Between Commodity Distributed Computing and High Performance Grids," presented at
ACM Java Grande 2000 Conference, 2000.

[43] R. Buyya and S. Venugopal, "The Gridbus Toolkit for Service Oriented Grid and Utility
Computing: An Overview and Status Report," presented at the First IEEE International
Workshop on Grid Economics and Business Models (GECON 2004), New Jersey, USA,
2004.

[44] M. Humphrey and G. Wasson, "Architectural Foundations of WSRF.NET," International
Journal of Web Services Research, vol. 2, pp. 83-97, 2005.

[45] M. Smith, T. Friese, and B. Freisleben, "Model Driven Development of Service Oriented
Grid Applications," presented at Advanced International Conference on
Telecommunications and International Conference on Internet and Web Applications
and Services (AICT-ICIW '06), 2006.

Technical Manuals/Articles
National Cancer Institute. "caCORE 3.1 Technical Guide",
ftp://ftp1.nci.nih.gov/pub/cacore/caCORE3.1_Tech_Guide.pdf

Java Bean Specification: http://java.sun.com/products/javabeans/docs/spec.html

Foundations of Object-Relational Mapping: http://www.chimu.com/publications/objectRelational/

Object-Relational Mapping articles and products:

http://www.service-architecture.com/object-relational-mapping/

 Appendix A References

141

Hibernate Reference Documentation: http://www.hibernate.org/hib_docs/reference/en/html/

Basic O/R Mapping: http://www.hibernate.org/hib_docs/reference/en/html/mapping.html

Java Programming: http://java.sun.com/learning/new2java/index.html

Javadoc tool: http://java.sun.com/j2se/javadoc/

JUnit: http://junit.sourceforge.net/

Extensible Markup Language: http://www.w3.org/TR/REC-xml/

XML Metadata Interchange: http://www.omg.org/technology/documents/formal/xmi.htm

Global Grid Forum: http://www.gridforum.org

Globus: http://www.globus.org

Mobius: http://www.projectmobius.org

W3C: http://www.w3c.org

OGSA-DAI: http://www.ogsadai.org

Apache: http://www.apache.org

Globus Toolkit 3 Programmer's Tutorial:

http://gdp.globus.org/gt3-tutorial/singlehtml/progtutorial_0.4.3.html

XPath tutorial: http://www.w3schools.com/xpath/xpath_syntax.asp

Globus Security Overview:

http://www.ogsadai.org.uk/docs/OtherDocs/SECURITY-FOR-DUMMIES.pdf

High level Overview of Grid:

http://gridcafe.web.cern.ch/gridcafe/index.html

Overview of Globus Toolkit 3 and the OGSI architecture :

http://www-128.ibm.com/developerworks/grid/library/gr-gt3/

caBIG Material
caBIG: http://cabig.nci.nih.gov/

caBIG Compatibility Guidelines: http://cabig.nci.nih.gov/guidelines_documentation

caCORE Material
caCORE: http://ncicb.nci.nih.gov/NCICB/infrastructure

caBIO: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO

caDSR: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr

EVS: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary

CSM: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm

caGrid 1.0 Programmer’s Guide

 142

 Glossary

143

Glossary
Term Definition
{jboss-home} The base directory where JBoss is installed on the server

API Application Programming Interface

caArray cancer Array Informatics

caBIG cancer Biomedical Informatics Grid

caBIO Cancer Bioinformatics Infrastructure Objects

caCORE cancer Common Ontologic Representation Environment

caDSR Cancer Data Standards Repository

caMOD Cancer Models Database

cardinality Cardinality describes the minimum and maximum number of
associated objects within a set

CDE Common Data Element

CGAP Cancer Genome Anatomy Project

CMAP Cancer Molecular Analysis Project

CN Common Name

CS Classification Scheme

CSI Classification Scheme Item

CSM Common Security Module

CTEP Cancer Therapy Evaluation Program

CUI Concept Unique Identifier

CVS Concurrent Versions System

DAIS Data Access and Integration Services

DAML DARPA Agent Markup Language

DAO Data Access Objects

DARPA Defense Advanced Research Projects Agency

DAS Distributed Annotation System

DL Description Logic

EA Enterprise Architect

EBI European Bioinformatics Institute

EVS Enterprise Vocabulary Services

GAI CGAP Genetic Annotation Initiative

caGrid 1.0 Programmer’s Guide

 144

Term Definition

GEDP Gene Expression Data Portal

GGF Global Grid Forum

GME Mobius Global Model Exchange - DNS-like service for the universal
creation, versioning, and sharing of data descriptions

Grid Service Basically a Web Services with improved characteristics and standard
services like stateful and potentially transient services, Service Data,
Notifications, Service Groups, portType extension, and Lifecycle
management.

GSH Grid Service Handle

GSI Grid Security Infrastructure - represents the latest evolution of the
Grid Security Infrastructure. GSI in GT3 builds off of the functionality
present in early GT2 toolkit releases - X.509 certificates, TLS/SSL for
authentication and message protection, X.509 Proxy Certificates for
delegation and single sign-on.

HTTP Hypertext Transfer Protocol

ISO International Organization for Standardization

JAAS Java Authentication and Authorization Service

JAR Java Archive

Javadoc Tool for generating API documentation in HTML format from doc
comments in source code (http://java.sun.com/j2se/javadoc/)

JDBC Java Database Connectivity

JET Java Emitter Templates

JMI Java Metadata Interface

JSP JavaServer Pages

JUnit A simple framework to write repeatable tests
(http://junit.sourceforge.net/)

LDAP Lightweight Directory Access Protocol

LLT Lowest Level Term

LOINC Logical Observation Identifier Names and Codes

MAGE MicroArray and Gene Expression

MAGE-OM MicroArray Gene Expression - Object Model

MDA Model Driven Architecture
MedDRA Medical Dictionary for Regulatory Activities

metadata Definitional data that provides information about or documentation of
other data.

MGED Microarray Gene Expression Data

 Glossary

145

Term Definition

Mobius An array of tools and middleware components to coherently share
and manage data and metadata in a Grid and/or distributed
computing environment.

multiplicity Multiplicity of an association end indicates the number of objects of
the class on that end may be associated with a single object of the
class on the other end

NCI National Cancer Institute

NCICB National Cancer Institute Center for Bioinformatics

OGSA Open Grid Services Architecture - developed by the Global Grid
Forum, aims to define a common, standard, and open architecture
for grid-based applications.

OGSI Open Grid Services Infrastructure -gives a formal and technical
specification of what a Grid Service is. In other words, for a high-
level architectural view of what Grid Services are, and how they fit
into the next generation of grid applications

OIL Ontology Inference Layer

OilEd Ontology editor allowing you to build ontologies using DAML+OIL

OLLT Obsolete Lower Level Terms

OMG Object Management Group

ORM Object Relational Mapping

PT Preferred Term

RDBMS Relational Database Management System

SDE Service Data Element

SDK Software Development Kit

Semantic
connector

A development kit to link model elements to NCICB EVS concepts.

SOA Service Oriented Architecture: A discipline for building reliable
distributed systems that deliver application functionality as services
with the additional emphasis on loose coupling between interacting
services.

SOA Service Oriented Architecture
SOAP Simple Object Access Protocol

SOC System Organ Class

SPORE Specialized Programs of Research

SQL Structured Query Language

caGrid 1.0 Programmer’s Guide

 146

Term Definition

SSC Special Search Categories

UI User Interface

UID User Identification

UML Unified Modeling Language

UML Unified Modeling Language
UMLS Unified Medical Language System

UPT User Provisioning Tool

URL Uniform Resource Locators

VD Value Domain

Virtualization Make a computational or data resource available to caBIG
community - some people call "Gridification"

VO Virtual Organization

WAR Web Application Archive

Web Service Application to application communication using web based service
interfaces as describe by the Web Services 1.0 or 2.0 specification.

WSDD Web Service Deployment Descriptor
WSDL Web Services Description Language

WSDL Web Services Description Language

WSRF Web Services Resource Framework
XMI XML Metadata Interchange

(http://www.omg.org/technology/documents/formal/xmi.htm) - The
main purpose of XMI is to enable easy interchange of metadata
between modeling tools (based on the OMG-UML) and metadata
repositories (OMG-MOF) in distributed heterogeneous environments

XML Extensible Markup Language (http://www.w3.org/TR/REC-xml/) -
XML is a subset of Standard Generalized Markup Language
(SGML). Its goal is to enable generic SGML to be served, received,
and processed on the Web in the way that is now possible with
HTML. XML has been designed for ease of implementation and for
interoperability with both SGML and HTML

XML Extensible Markup Language
XPath XML query/traversal language adhering to the XPath specification

set forth by the W3C.

XQuery XML query/transformation language adhering to the XQuery
specification set forth by the W3C.

 Index

147

Index

addNonNullPredicate
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 39
annotateServiceMetadata, 46
API

caDSR grid service usage, 45
caDSR Grid Service usage examples, 53
caDSR Grid Services details, 49
Discovery API details, 26
Discovery usage examples, 41
Discovery usage overview, 24
EVS usage overview, 57
federated query processor details, 88
federated query processor examples, 92
GME client, 134
metadata, 15
metadata details, 18
metadata usage examples, 21
WS-enumeration client, 109
WS-enumeration usage examples, 112

BPEL, 121
buildDataUMLClassPredicate

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 38

buildPOCPredicate
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 38
buildUMLClassPredicate

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 38

caArray
exposure to Grid, 102

caBIG. See caGrid
references, 141

caBioconductor, 102
caCORE

references, 141
caDSR Grid Service

overview, 45
security considerations, 49

caDSR Grid Services
API details, 49
API usage examples, 53
examining project information model, 53
generating data service metadata, 54

caDSRServiceClient, 49
caGrid

infrastructure description, 8
overview, 5
reference implementation, 99
reference implementation test bed, 101

security infrastructure, 10
security overview, 65

caGrid document, 2
castor mapping, 78
caTRIP, 103
client, 75
CQL syntax validation, 81
CQLQueryResults, 76

creating, 78
createConceptPredicatedUMLClass

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 34

createPermissibleValuePredicatedUMLClass
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 34
Data Services

CQL query processors, 83
CQL query results, 76
CQL query syntax, 81
domain model conformance, 82
federated query processor overview, 83
overview, 75
results validation, 82
utility classes, 78

DataServiceConstants, 76
deserializeDomainModel, 23

gov::nih::nci::cagrid::metadata::MetadataUtils,
20

deserializeServiceMetadata, 23
gov::nih::nci::cagrid::metadata::MetadataUtils,

20
discoverByFilter

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 39

discoverDataServicesByAssociationsWithClass
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 37
discoverDataServicesByDomainModel, 43

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 35

discoverDataServicesByExposedClass
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 36
discoverDataServicesByModelConceptCode

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 35

discoverDataServicesByPermissibleValue
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 36
discoverServiceByOperationInput, 45
discoverServicesByConceptCode, 44

 148

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 29

discoverServicesByDataConceptCode
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 33
discoverServicesByName

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 29

discoverServicesByOperationClass
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 31
discoverServicesByOperationConceptCode, 44

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 32

discoverServicesByOperationInput
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 30
discoverServicesByOperationName, 43

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 30

discoverServicesByOperationOutput
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 31
discoverServicesByPermissibleValue

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 33

discoverServicesByPointOfContact
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 28
discoverServicesByResearchCenter, 43

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 28

discoverServicesBySearchString, 43
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 27
Discovery API

configuring index service, 41
details, 26
discovering services, 42
usage examples, 41

DiscoveryClient
definition, 24
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 26
Disovery API

overview, 24
Document conventions, technical guide, 2
domain model, 79
Domain Model, 82
enumerationQuery() method, 76
EVS API

getHistoryRecords, 60
getMetaSources, 57
getVocabularyNames, 58
searchDescLogicConcept, 58
searchMetaThesaurus, 61

searchSourceByCode, 62
usage overview, 57

execute
gov::nih::nci::cagrid::fqp::processor::Federate

dQueryEngine, 91
executeAndAggregateResults

gov::nih::nci::cagrid::fqp::processor::Federate
dQueryEngine, 92

FederatedQueryEngine
gov::nih::nci::cagrid::fqp::processor::Federate

dQueryEngine, 91
FileReader, 23
FileWriter, 23
GAARDS, 10
GeneConnect, 105
GenePattern, 104
generateDomainModelForClasses, 46
generateDomainModelForClassesWithExcludes,

46
generateDomainModelForPackage, 46
generateDomainModelForProject, 46, 55
getAllDataServices

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 34

getAllServices
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 26
getDomainModel

gov::nih::nci::cagrid::metadata::MetadataUtils,
19

getIndexEPR
gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 40
getServiceMetadata

gov::nih::nci::cagrid::metadata::MetadataUtils,
18

Getting help, 1
geWorkbench, 106
Global Model Exchange. See GME
GME

building, 131
client API, 134
configuring, 131
deploying, 133
overview, 7
software prerequisites, 131
viewer, 135

GME XE "Global Model Exchange" \t "See
GME" XE "GME:software prerequisites"
overview, 131

gov::nih::nci::cagrid::discovery::client::Discovery
Client
addNonNullPredicate, 39
buildDataUMLClassPredicate, 38
buildPOCPredicate, 38
buildUMLClassPredicate, 38

 Index

149

createConceptPredicatedUMLClass, 34
createPermissibleValuePredicatedUMLClass,

34
discoverByFilter, 39
discoverDataServicesByAssociationsWithCla

ss, 37
discoverDataServicesByDomainModel, 35
discoverDataServicesByExposedClass, 36
discoverDataServicesByModelConceptCode,

35
discoverDataServicesByPermissibleValue, 36
discoverServicesByConceptCode, 29
discoverServicesByDataConceptCode, 33
discoverServicesByName, 29
discoverServicesByOperationClass, 31
discoverServicesByOperationConceptCode,

32
discoverServicesByOperationInput, 30
discoverServicesByOperationName, 30
discoverServicesByOperationOutput, 31
discoverServicesByPermissibleValue, 33
discoverServicesByPointOfContact, 28
discoverServicesByResearchCenter, 28
discoverServicesBySearchString, 27
DiscoveryClient, 26
getAllDataServices, 34
getAllServices, 26
getIndexEPR, 40
main, 40
setIndexEPR, 40
translateXPath, 39

gov::nih::nci::cagrid::discovery::XPathUtils
translateXPath, 41

gov::nih::nci::cagrid::fqp::processor::FederatedQ
ueryEngine
execute, 91
executeAndAggregateResults, 92
FederatedQueryEngine, 91

gov::nih::nci::cagrid::metadata::MetadataUtils
deserializeDomainModel, 20
deserializeServiceMetadata, 20
getDomainModel, 19
getServiceMetadata, 18
serializeDomainModel, 20
serializeServiceMetadata, 19

Grid Grouper
overview, 69

GridIMAGE, 107
InternalRuntimeException, 18, 24
InvalidProjectException, 46
InvalidResourcePropertyException, 18, 25
ISO/IEC 11179, 6
main

gov::nih::nci::cagrid::discovery::client::Discov

eryClient, 40
Malformed query, 84
Metadata

accessing from service, 21
API details, 18
API usage examples, 21
API usage overview, 15
processing as XML, 22

PointOfContact, 44
processQuery() method, 84
properties, 83

optional, 83
QName, 76
query() method, 75
QueryInvalidException, 18, 25
Reader, 23
Reference Implementation

overview, 99
References

caBIG, 141
caBIG materials, 141
caCORE, 141
caCORE material, 141
scientific publications, 137
technical manuals, guides, 140

RemoteResourcePropertyRetrievalException,
18, 25

ResourcePropertyHelper, 17
ResourcePropertyRetrievalException, 18, 24, 25
serializeDomainModel, 23

gov::nih::nci::cagrid::metadata::MetadataUtils,
20

serializeServiceMetadata, 23
gov::nih::nci::cagrid::metadata::MetadataUtils,

19
ServiceMetadata, 23, 46
setIndexEPR

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 40

sourceClassName, 46
sourceRoleName, 46
target data types, 82
targetClassName, 46
targetRoleName, 46
Text conventions, technical guide, 2
thread, 76
translateXPath

gov::nih::nci::cagrid::discovery::client::Discov
eryClient, 39

gov::nih::nci::cagrid::discovery::XPathUtils, 41
UMLAssocation, 48
UMLAssociationExclude, 48
UMLAssociationExcludes, 46
UMLAssociationMetadata, 48

 150

UMLClass, 44
URL, 76
Workflow

architecture description, 121
overview, 121
security contexts, 128
WorkflowFactoryService API, 123
WorkflowManagementService API, 125

Writer, 23
wsdd parameters, 81
WS-Enumeration

client API, 109
command line clients, 115
overview, 109

WS-Enumeration feature, 76

