

CAGRID 1.0
USER’S GUIDE

Center for Bioinformatics

December 15, 2006

i

caGrid Development and Management Teams
Scott Oster (Lead Architect)1 Ian Foster2 Avinash Shanbhag9

Stephen Langella1 Patrick McConnell3

Shannon Hastings1 David Wellborn4

David Ervin1 Val Bragg4

Tahsin Kurc1 Vinay Kumar5

Joel Saltz1 Joshua Phillips5

Ravi Madduri2 Ram Chilukuri5

Jarek Gawor2 Srini Akkala5

Frank Siebenlist2 Manav Kher6

Mike Wilde2 Wendy Erickson-Hirons7

Raj Kettimuthu2 Arumani Manisundaram8

Bill Allcock2 George Komatsoulis9
1Ohio State University -
Biomedical Informatics
Department

2University of Chicago/Argonne
National Laboratory

3Duke Comprehensive Cancer
Center

4ScenPro, Inc. 5SemanticBits, LLC.
6Science Application
International Corporation
(SAIC)

7Northern Taiga Ventures, Inc.
(NTVI)

8Booz Allen Hamilton
9National Cancer Institute
Center for Bioinformatics
(NCICB)

Other Acknowledgements

GeneConnect – Project - Washington University

GridIMAGE – Project - Ohio State University

caBIO – Project - National Cancer Institute Center for Bioinformatics (NCICB)

caArray – Project - National Cancer Institute Center for Bioinformatics (NCICB)

caTRIP – Project – Duke Comprehensive Cancer Center

GenePattern – Project – Broad Institute

geWorkbench – Columbia University

caBiocondutor – Project – Fred Hutchinson Cancer Research Center

Terpsys – Systems Team - National Cancer Institute Center for Bioinformatics (NCICB)

caGrid 1.0 User’s Guide

 ii

Contacts and Support
NCICB Application Support http://ncicbsupport.nci.nih.gov/sw/

Telephone: 301-451-4384

Toll free: 888-478-4423

LISTSERV Facilities Pertinent to caGrid

LISTSERV URL Name

cagrid_users-
l@list.nih.gov

https://list.nih.gov/archives/cagrid_users-l.html caGrid Users
Discussion Forum

iii

Table of Contents
Chapter 1 About This Guide..1

Purpose ...1
Release Schedule..1
Audience..1
Getting Help...1
Using This Guide ...1
Document Text Conventions ...2

Chapter 2 Overview of caGrid User Roles ..3
Overview..3
Relevant Documents ...3
User Role Definitions ...3

Service Developer ...3
Client Application Developer ...4
Service Administrator ..5

Chapter 3 Developing Analytical and Data Services..7
Overview..7
External Middleware Systems and Tools ..8
Introduce Graphical Development Environment..9
Discovery Tools: Support for Strongly-Typed Service Methods..10
Service Creation ..10

General ..10
caBIG...11

Service Modification...12
Types...13
Operations ...14
Resource Properties..15
Service Properties ...15
Service Level Security ...16
Service Contexts ...17

Deployment..19
Using the Introduce Client ...19
Creating a Basic Analytical Service...20
Creating a Grid Service Using a Data Extension ..34
Creating a Data Service Using the caCORE SDK ..41

caGrid 1.0 User’s Guide

 iv

Chapter 4 Developing Client Applications...49
Overview..49
caGrid Client APIs ...50

Secure Communication ...50
What is an EPR? ...51
Obtaining an EPR for a Service ..51
Inspecting a Service’s Metadata ...53
Invoking Operations on a Service ...54

Client Application Case Study: caTRIP ...55
caTRIP Discovery Example...55
caTRIP Metadata Example..56
caTRIP Invocation Example ..56

Chapter 5 Security Administration..59
Overview..59
GAARDS Administration User Interface ..61
Grid Trust Fabric..62

GTS and the Globus Toolkit ..64
Bootstrapping the Trust Fabric ..66
GTS Software Prerequisites..67
Building the GTS ...67
Configuring the GTS..67
Deploying the GTS ..68
Managing Trust Fabric Administrators ..69
Managing Trust Levels ..71
Managing Certificate Authorities ...74
Managing a Federated Grid Trust Fabric ..79
Syncing With the Trust Fabric ...83

Grid User Management ...86
Dorian Software Prerequisites...89
Building Dorian ..90
Configuring Dorian...90
Deploying Dorian ...95
Setting the Default Administrator Account...95
Logging onto the Grid ..95
Managing Grid Proxies ..96
Managing Trusted Identity Providers...97
Grid User Account Management ...101
Local Dorian Identity Provider ...104

Grid Grouper..108
Grid Grouper Software Prerequisites ..109
Building Grid Grouper..110
Configuring Grid Grouper ..110
Deploying Grid Grouper...111
Grid Grouper Administration..111

v

Administrating Stems...112
Administrating Groups ...117

Authentication Management..122
Configuring the Service ...122
Deploying to the Container ..123
Configuring the CSM ...123

Authorization Management..125
JAAS Configuration ...125
ApplicationSecurityConfig.xml ...125
hibernate.cfg.xml ...126
Web Applications Classpath..127
CSM Administration...130

Chapter 6 Workflow Services ..135
Overview..135
The Business Process Execution Language (BPEL) ..135
Creating a Workflow ..136
Creating a Simple Workflow Using Example Services ..136

Submitting the Workflow..136
Executing the Workflow...137
Query the Status of the Workflow..137
Terminating a Workflow...137
Pausing a Workflow...137
Resuming a Paused Workflow ..137

Appendix A References.. 139
Scientific Publications ..139
Technical Manuals/Articles..142
caBIG Material ...143
caCORE Material...143

Glossary…………………………………………………………………………………………………..145

Index………………………………………………………………………………………………………149

 Chapter 1 About This Guide

1

Chapter 1 About This Guide

Purpose
The cancer Biomedical Informatics Grid, or caBIG™, is a voluntary virtual informatics
infrastructure that connects data, research tools, scientists, and organizations to leverage their
combined strengths and expertise in an open environment with common standards and shared
tools. The current test bed architecture of caBIG™, is dubbed caGrid. The software embodiment
and corresponding documentation of this architecture constitute the caGrid 1.0 release.

This User Guide addresses caGrid from the perspective of three user roles: service developer,
client application developer, and service administrator.

Release Schedule
This guide has been updated for the caGrid 1.0 release. It may be updated between releases if
errors or omissions are found. The current document refers to the 1.0 version of caGrid,
released in December 2006 by caBIG.

Audience
The primary audience of this guide is the caGrid service developer, client application developer,
and service administrator. For additional information about installing and using caGrid, see the
caGrid Technical Guide.

This guide assumes that you are familiar with the java programming language and/or other
programming languages, database concepts, and the Internet. If you intend to use caGrid
resources in software applications, it assumes that you have experience with building and using
complex data systems.

Getting Help
NCICB Application Support

http://ncicbsupport.nci.nih.gov/sw/

Telephone: 301-451-4384

Toll free: 888-478-4423

Using This Guide
This guide is divided into sections depending on the context of the user. The following list briefly
describes the contents of each chapter.

• Chapter 1 ,this chapter, provides an overview of the guide.

caGrid 1.0 User’s Guide

 2

• Chapter 2 describes the three primary caGrid roles for whom this guide is written.

• Chapter 3 provides an overview and examples using the Introduce toolkit for service
development.

• Chapter 4 introduces the client applications for caGrid services.

• Chapter 5 describes the caGrid security infrastructure, which provides services and tools
for to administer and enforce security policy.

• Chapter 6 describes the caGrid implementation of a workflow, which provides a grid
service for submitting and running workflows that are composed of other grid services.

• Appendix A provides references relevant to caGrid.

Document Text Conventions
The following table shows how text conventions are represented in this guide. The various
typefaces differentiate between regular text and menu commands, keyboard keys, and text that
you type.

Convention Description Example
Bold & Capitalized
Command
Capitalized command >
Capitalized command

Indicates a Menu command

Indicates Sequential Menu
commands

Admin > Refresh

TEXT IN SMALL CAPS Keyboard key that you press Press ENTER

TEXT IN SMALL CAPS + TEXT
IN SMALL CAPS

Keyboard keys that you press
simultaneously

Press SHIFT + CTRL and then
release both.

Special typestyle

Used for filenames, directory
names, commands, file listings,
source code examples and
anything that would appear in a
Java program, such as
methods, variables, and
classes.

URL_definition ::=
url_string

Boldface type
Options that you select in dialog
boxes or drop-down menus.
Buttons or icons that you click.

In the Open dialog box,
select the file and click the
Open button.

Italics Used to reference text that you
type.

Enter antrun.

Note:
Highlights a concept of
particular interest

Note: This concept is used
throughout the installation
manual.

Hyperlink Links text to another part of the
document or to a URL

Overview

Table 1-1 Document Conventions

 Chapter 2 Overview of caGrid User Roles

3

Chapter 2 Overview of caGrid User Roles

This chapter addresses caGrid from the perspective of three user roles: the Service Developer,
the Client Application Developer, and the Service Administrator. Topics for each of these roles
are then described in separate chapters in this guide.

Topics in this chapter include:

• Overview on this page

• Relevant Documents on page 3

• User Role Definitions on page 3

Overview
This guide is intended to provide a user-oriented overview of how various activities can be
accomplished using the caGrid software distribution. Some common roles caGrid users assume
are described in the following sections. The rest of this guide’s content describes how various
activities required of these roles can be accomplished with the software. While some of the
content provides specific examples and step by step information, it should not be used as a
stand alone “tutorial” for caGrid. Additional accompanying document is listed below.

Relevant Documents
This User Guide addresses caGrid from the perspective of three user roles. Additional
information about caGrid architecture, design, application programming interfaces (APIs) and
API examples, and tool-specific guides can be found in:

Document Location

caGrid 1.0 Programmer’s Guide http://gforge.nci.nih.gov/frs/?group_id=25

caGrid 1.0 Design Documents
and Tool-specific Guides

https://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.p
hp/cagrid-1-
0/Documentation/docs/?cvsroot=cagrid-1-0

User Role Definitions
caGrid is primarily an infrastructure or middleware, providing services, APIs, and toolkits for
caBIG developers. caGrid provides the common grid infrastructure upon which the Gold
compliant grid services and tools are built. While some “end user” tools are provided, the
primary consumers of the software are intended to be application or service developers, or
service administrators.

Service Developer
caGrid users interested in providing data or analysis routines to caBIG, do so by creating and
deploying grid services. As such, these users are assuming the role of “Service Developer.” The
primary tool provided to facilitate the development of grid services in caGrid is Introduce. An

caGrid 1.0 User’s Guide

 4

overview and examples of using this tool can be found in Chapter 3 Developing Analytical and
Data Services. While the aim of this toolkit is to facilitate the creation of caBIG compliant grid
services, its use is neither sufficient nor necessary for compliance. Introduce makes the service
creation process straightforward, and automatically takes care of most of the caBIG service
requirements, but users should still expect to undergo a compatibility review before claiming
caBIG compatibility. Service developers may also choose to develop services without making
use of Introduce, but they should be sure to meet all service requirements and specifications.

The Service Developer role can be subdivided into two roles, depending on the type of
functionality the user is trying to “grid enable.” caGrid makes the distinction, in terms of tooling
provided and requirements, between Data Services and Analytical Services. Both require that
the data types being consumed or produced by the service meet certain requirements, such as
being registered in the caDSR and GME. Analytical Services are generally any service that
meets the basic service requirements, and is not a data providing service. Services providing
data resources to the grid are required to be developed as Data Services, which in addition to
meeting basic service requirements, must implement a standard query operation and language,
and expose standardized data service metadata. Service Developers creating Data Services
are referred to as Data Service Developers. Service Developers creating Analytical Services are
referred to as Analytical Service Developers. It is possible for a Data Service to also provide
additional capabilities or operations, so some Service Developers may assume both roles when
creating their service.

Typical activities of this role include: creation of a grid service, modification or customization of a
grid service, and the deployment of a grid service. Service Developers are the primary
“producers” of content in the grid of caBIG (in the respect that they provide access to the
information or capability, not that they necessarily produce the content itself).

Analytical Service Developer
As described above, Service Developers that wish to create grid services that aim to provide
some analytical routine or other business logic are referred to as Analytical Service Developers.

Details about the caGrid support for Analytical Service Developers can primarily be found in the
first section of Chapter 3 of this guide.

Data Service Developer
Service Developers that wish to create grid services that allow access to existing data providing
resources, such as a caBIG Silver compliant data system, are referred to as Data Service
Developers. A Data Service Developer’s primary responsibility is to provide clients query access
to the underlying data, using a standard query language. These developers may also wish to
provide additional capabilities in their service, such as read or update capabilities, and
additional more specialized means of query.

Details about the caGrid support for Data Service Developers can primarily be found in the
second section of Chapter 3 of this guide, but developers wishing to provide additional
capabilities (beyond query) in their service may be interested in the entire section.

Client Application Developer
The counterpart to Service Producers are the Client Application Developers, who are the
consumers of the content to which the Service Providers provide access. All grid services are
accessed by making use of a client API or service interface; the developers responsibility for
assembling these APIs or interfaces into meaningful applications (or other frameworks) are

 Chapter 2 Overview of caGrid User Roles

5

referred to as Client Application Developers.

caGrid provides a plethora of tools and APIs for Client Application Developers, and this
document is far from an exhaustive list. However, a general overview of the basic concepts of
creating client applications and some common examples, are shown in Chapter 4 Developing
Client Applications. It is highly recommended that Client Application Developers also peruse the
caGrid Programmer’s Guide to understand the types of functionalities caGrid makes available to
them.

Service Administrator
The final type of role caGrid users may assume is that of Service Administrator. caGrid is
composed of a number of complex core services that require proper administration, and also
provides a great deal of capability for Service Developers to configure services to integrate with
existing systems for performing such functions as authentication and authorization. The
individuals responsible for the proper management and configuration of these services are
referred to as Service Administrators. Overviews, step by step examples, and configuration
examples for such activities can be found in Chapter 5 Security Administration.

caGrid 1.0 User’s Guide

 6

 Chapter 3 Developing Analytical and Data Services

7

Chapter 3 Developing Analytical and Data Services

This chapter provides an overview and examples using the Introduce toolkit for service
development.

Topics in this chapter include:

• Overview on this page

• External Middleware Systems and Tools on page 8

• Introduce Graphical Development Environment on page 9

• Discovery Tools: Support for Strongly-Typed Service Methods on page 10

• Service Creation on page 10

• Service Modification on page 12

• Deployment on page 19

• Using the Introduce Client on page 19

• Creating a Basic Analytical Service on page 20

• Creating a Grid Service Using a Data Extension on page 34

• Creating a Data Service Using the caCORE SDK on page 41

Overview
The Introduce toolkit is designed to support the three main steps of service development (Figure
3-1):

1) Creation of Basic Service Structure. The service developer describes at the highest level
some basic attributes about the service such as service name and service namespace. Once
the user has set these basic service configuration properties, Introduce creates the basic
service implementation to which the developer can add application-specific methods and
security options through the service modification steps.

2) Service Modification. The modification step allows the developer to add, remove, and modify
service methods, properties, resources, service contexts, and service/method level security. In
this step, the developer creates strongly-typed service interfaces using well-defined, published
schemas, which are registered in a publicly available grid service registry like the Mobius GME,
as the type definitions of the input and output parameters of the service methods.

3) Deployment. The developer can deploy the service that has been created with Introduce to a
Grid service container (e.g., a Globus or Tomcat service container).

caGrid 1.0 User’s Guide

 8

Figure 3-1 Overall service development process

A service developer can access the functions required to execute these three steps through the
Graphical Development Environment (GDE) of Introduce. The runtime support behind the GDE
functionality is provided by the Introduce engine, which consists of the Service Creator, Service
Synchronizer, and Service Deployer components. The toolkit provides an extension framework
that allows Introduce to be customized and extended for custom service types and discovery of
custom data types. In the following sections, the GDE, the Introduce engine, and the extension
framework are described in greater detail.

External Middleware Systems and Tools
Introduce assumes the availability of two external components to implement its functions: 1) A
Grid runtime environment that provides the support for compiling, advertising, and deploying
Grid services; 2) A repository of data types that is accessible locally or remotely so that the
toolkit can pull the common data types for strongly-typed services. The current implementation
of Introduce leverages several open-source, middleware systems such as the Globus Toolkit
(GT), Apache Axis, and the Mobius Global Model Exchange (GME) service. However, it is
designed as a modular system, in which the specific implementations of external components
can be replaced.

The GT and Apache Axis implement the core Grid/Web Service support. The Introduce toolkit
uses the GT as the underlying Grid runtime environment. It generates the service layout, the
service description (WSDL), and the service files such that they are compliant with the GT and
Axis and can be readily deployed.

Introduce uses the Mobius GME service as a repository of XML schemas to support the
development of strongly-typed services; it also has the ability for custom data type discovery
plug-ins, which are described later. The GME is one of the core services provided in the Mobius
framework. It implements support for coordinated management of XML schemas in a distributed
environment. In the GME, all schemas are registered under namespaces and can be versioned.
The concept of versioning schemas is formalized in the GME; any change to a schema is
reflected as either a new version of the schema or a totally new schema under a different name
or namespace. In this way, data types can evolve while allowing clients and services to make
use of old versions of the data type, if necessary. Namespaces enable distributed and
hierarchical management of schemas; two groups can create and manage schemas under
different namespaces without worrying about affecting each other’s services, clients, and

 Chapter 3 Developing Analytical and Data Services

9

programs. In the Grid environment, data elements and objects are exchanged as XML
documents conforming to a schema. In such a setting, the schema describes the structure of a
simple or complex data element (data object) that is consumed or produced by a service and is
exchanged between two endpoints in the environment.

Introduce Graphical Development Environment
The Introduce Graphical Development Environment (GDE) is the graphical user interface that
can be used to create, modify, and deploy a service (see Figure 2). It is designed to be very
simple to use, enable using community excepted data types, and provide easy configuration of
service metadata, operations, and security. It also allows customized plug-ins to be added for
such things as repositories of data types and for creating custom or common service types.

Figure 3-2 Introduce Graphical Development Environment (GDE)

The interface contains several screens and options for the service developer to:

• create a new service

• modify an existing service

• discover and use published data types in order to create strongly-typed service methods

caGrid 1.0 User’s Guide

 10

• configure service metadata and deploy the service.

Discovery Tools: Support for Strongly-Typed Service Methods
Using the Introduce GDE, developers can obtain the types that they want to use for the service
parameters and return types from any data type discovery plug-in. Utilizing common and
standard data types, which are defined outside of any application-specific service, enables the
creation of strongly typed grid service interfaces. This increases service-to-service
interoperability. Once a data type is chosen through the GDE, the data type is retrieved, written
into the schema area of the service, and imported for use in the service WSDL description so
that Java beans can be generated and the data types can be programmatically used.

The Introduce toolkit comes with a set of pre-installed discovery plug-ins, such as the Mobius
GME and a basic file system browser that can be used to locate local schemas. In the caGrid
release of Introduce, a caDSR discovery tool plugin is also provided. This tool will be the main
way for caGrid users to view and download data types to be used for creating services. The
GME plug-in enables developers to browse, upload, and download schemas published in a
GME. These schemas represent the valid data types that can be used during service creation.
Using the GME plug-in, a developer can take a schema, create an editable view of the schema,
and then submit the schema to the GME. If the namespace of the schema is not managed by
the GME to which the schema is submitted, the plug-in attempts to add the namespace to the
GME before submitting the schema. Once the schema has been uploaded, it can be used by
anyone in the Grid through the Introduce toolkit. The GME plug-in browser window enables
browsing through all the GME published types by namespace and schema name. It presents a
quick view of the schema and the option to download the schema bundle. The schema bundle
contains the schema and all other schemas that are referenced by that schema.

In the caGrid Introduce installation, a discovery plug-in for using caDSR is provided. This plug-in
enables the use of types from the caDSR when describing and building grid services. For more
information on how the caDSR and the GME work together to provide grid usable data types,
please refer to the caGrid Metadata Design document.

Service Creation

General
The service creation component, shown in Figure 3-3, enables a developer to create a new grid
service. Using the creation interface, the service developer can provide basic information about
the service such as:

• Creation Directory: the location where the grid service is generated.
• Service Name: the name that will be used to generate the service. The service name

must be a valid java identifier.
• Package Name: the base package to be used when generating the grid service source

code.
• Namespace: the namespace to be used when defining the WSDL of the service.

 Chapter 3 Developing Analytical and Data Services

11

Figure 3-3 Introduce GDE Service Creation Component

The developer also has the ability to add service extensions. A service extension is an Introduce
plug-in that is designed to add customizations to the service. For example, service extensions
might add pre-defined operations, resources/resource properties, or security settings. They
enable the development of custom service types with predefined methods, which must be
implemented. They also enable Introduce to run the custom code implemented in the plug-in,
which makes modifications to the underlying service being created. This capability allows the
specialization of Introduce to support domain specific common scenarios, further abstracting the
individual service developer from responsibilities related to the deployment of grid technologies
in a production environment. Once the information has been entered and extensions, if any,
have been selected, the user selects the create button. The Introduce creation engine
generates the service, and after the service is generated, it is compiled and the Modification
component is displayed.

caBIG
Introduce, when delivered with caGrid, has a button for creating a caGrid service. A custom
screen opens for creating either an analytical service or a data service. This screen is similar to
the general screen creation described in the previous section, except that in this screen,
Introduce extensions are added to the service automatically. By using this screen to create a
caGrid compatible service, a series of extensions are added to the service to support caGrid
metadata, security, and data service components if necessary. If a data service is created, a
series of screens aids in describing the data service to create (Figure 3-4).

caGrid 1.0 User’s Guide

 12

Figure 3-4 Introduce caGrid Service Creation Component

Service Modification
Service modification can be performed on any new or previously modified Introduce generated
service. The service developer can perform a series of operations in order to begin to customize
the grid service or modify the existing grid service. The overall flow in the modification of a grid
service is to first use the namespaces tab to be sure that all the data types that are desired to
be used in the grid service have been selected and added to the service. Next, the developer
can choose to either add/remove or modify operations, metadata in the form of resource
properties, service properties, security setting, and service contexts. The following sections
describe how each of the components of the modification viewer can be used to modify the grid
service. By selecting the “Modify Service” button on the main menu, a prompt displays to
choose the service to be modified. Once the desired directory containing the service to be
modified is selected, the modification viewer component is launched. The modification viewer
has six main areas where modifications can occur on the service:

• Types

• Operations

• Metadata

• Service Contexts

• Security

• Service Properties

 Chapter 3 Developing Analytical and Data Services

13

Types
The first task in the modification of a grid service is to discover the data types that are desired to
be used as the input and output types of methods of the service and the data types for
describing the resource properties of the service. Adding a data types to the service is
equivalent to copying schemas into the schema location of the service and importing the
schemas into the WSDL file so that the types can be referenced by the service. This is done via
the “Types” tab of the Graphical Service Modification Environment (Figure 3-5).

Figure 3-5 Types tab in the Modify Services Interface

This tab shows the current types the service is using, and provides access to the data type
discovery components (such as the Mobius GME), for selecting and configuring additional
types. The “Select Type” frame enables several ways to locate data types and bring them into
the service. Currently there are three main discovery mechanisms (GME, Globus, and File
System) that are included with Introduce. However, this is extensible via the Discovery
Extension described in the Creating a Grid Service Using a Data Extension starting on page 34.

Once a set of data types from a namespace are brought into the service, the user has the ability
to describe how these data types are mapped into there respective java classes. This can, by
default, be done automatically by Introduce via Axis. By default, Axis creates new java beans for

caGrid 1.0 User’s Guide

 14

each data type and also provides a serializer and deserializer for those objects. If, for example,
a set of objects already exist for this particular data type, then a user can decide to provide their
own classes and serialization/deserialization factories.

Operations
Using the Operations tab of the GDE Service Modification interface, a developer can add,
remove, or modify operations on the service (Figure 3-6).

Figure 3-6 Operations tab of the GDE Service Modification interface

For each operation, the developer needs to set the input parameters, return type, and any fault
types that can be thrown from each service method. The security configuration of the operation
should also be set if desired. The input and output types can be selected from the types tree on
the left. This tree represents the available data types that can be used by this service. If any
input parameter or output type is to be an array, the array checkbox must be checked in the
table on the right. Also, once an input parameter is added, the name of the parameter is
defaulted. This name can be edited by the developer by selecting the cell in the name column
and editing the text. There are two ways to add faults, either choose a type from the types tree,
which extends WSRF BaseFaultType, or create a new fault, which tells Introduce to create a
new fault type to extend the BaseFaultType.

The implementation of a described operation may already exist in another class that is provided
by a jar file. You can tell Introduce not to stub this methods server side implementation but

 Chapter 3 Developing Analytical and Data Services

15

instead call this provided method implementation directly in the class provided. In order to use
this functionality the “Provided” checkbox must be selected and the Class name attribute must
be filled out in the “Provider” tab. The jar file that contains the provided Class that implements
this operation must also be copied into the lib directory of the service. This ensures that the
operation is located at the time the operation is called on the service.

Operations can also be imported from other services. Importing an operation enables the
service to implement the exact same operation signature. This enables the service to have an
operation that has the exact same WSDL signature of the operation being imported. This
enables either client to call this operation on either service. Importing can be done in two ways:
(1) from an Introduce generated service, or (2) from a WSDL file. For case 1, importing from an
Introduce service, the developer browses and selects the Introduce generated service that
contains the operation to be imported. Once the Introduce service is selected, a list of services
that contain this method are available to select. Select the service from which you want to
import the operation. The methods signature is imported and the developer is prompted to copy
the WSDL and XSD files needed to import the method into the schema<servicename> directory
of the service. For case 2, if a method is described in another WSDL but the developer wants to
implement this exact method from this WSDL, the developer must have the WSDL and
corresponding XSDs in the schema/<servicename> directory of the service. Then the developer
can browse those WSDL files and select the port type they wish to import the operation from.
Importing a method across services assures not only that each service has completely protocol
compatible methods but also that each service’s method can be invoked by the same base
client. This enables the notion of basic inheritance in grid services.

Resource Properties
Service state information and metadata in the form of resource properties can be added,
removed, and configured via the “Metadata” tab of the GDE Service Modification interface. The
metadata elements that are added to the service can be populated by a file statically or
managed dynamically within the service. Also, these metadata entities can be registered with an
index service so that users can use the metadata to locate the service.

Service Properties
Service properties are key value pairs that are set at deployment time and are available to the
server side implementation of the service. This enables passing in configuration variables to the
server side of the service at deployment. These key value pair properties are declared in the
Service Properties tab of the GDE Service Modification interface (Figure 3-7), and a default
value can be given there as well. The properties are confirmed and/or can be changed at
deployment time. The variables can then be accessed inside the user’s implementation of the
operations.

caGrid 1.0 User’s Guide

 16

Figure 3-7 Service Properties tab of the GDE Service Modification interface

Service Level Security
Service level security configuration can be set at this time as well via the Security tab of the
GDE Service Modification interface (Figure 3-8). The service level security can be superseded
by method level security. For example, if a service does not have any service level security
constraints but a particular method needs to be secured, the secure method level configuration
takes precedence over the service level security configuration.

 Chapter 3 Developing Analytical and Data Services

17

Figure 3-8 Security tab of the GDE Service Modification interface

Service Contexts
An advanced feature that can be enabled at modification time is the addition or removal of
service contexts. Contexts can be added via the Service Contexts tab of the GDE Service
Modification interface (Figure 3-9). Service contexts define additional conceptual contexts of
operations needed to support the desired service functionality.

caGrid 1.0 User’s Guide

 18

Figure 3-9 Service Contexts tab of the GDE Service Modification interface

This is enabled by using WSRF capabilities of the Globus Toolkit. As an example, if an
operation on the main service enables the user to query a database, that operation might create
a resource in another context and return the handle to that context to the user as opposed to the
full query result set. This secondary context can then enable the user to iterate through the
query results. This is accomplished by operations or resource properties to this secondary
service context which will be responsible for iteratively giving results to the user. It should be
noted that multiple instances of these contexts can be created and executed concurrently; one
for each query that comes in, for example. This style of grid service is supported by the WSRF
specifications. Though the details of the WSRF-implementation of these concepts are
abstracted away from developers its worth noting how they are realized, and this is described in
detail in other sections. Introduce makes it easier for service developers to create such complex
services, via the GDE, without having to fully understand the underlying service
implementations.

 Chapter 3 Developing Analytical and Data Services

19

Deployment
The Deployment component of the GDE (Figure 3-10) allows the service developer to deploy the
implemented grid service, which has been created with Introduce, to a Grid service container.
The toolkit currently supports deploying a service to either a Globus or Tomcat Grid service
container; however, support for other deployment options can easily be added to the GDE. The
deployment window allows the service deployer to populate service configuration properties,
which the service will have access to at runtime. Then the service is deployed to the selected
container.

Figure 3-10 Introduce GDE service deployment component

Using the Introduce Client
Introduce generates a client API for the service that is described within the graphical editing
environment (see Operations on page 14). This client API can be used in order to leverage this
type of service from another application or service. The API contains four constructors that can
use used, each of which is different depending on whether one has a handle or just an address
and the need for security to be used.

Once a client handle is constructed, each of the operations that were created in the service is
available as operations to this newly constructed client instance. Figure 3-11 contains an
example snippet of code that creates a new client handle to a service called “HelloWorld”.
Figure 3-12 calls the “echo” operation.

caGrid 1.0 User’s Guide

 20

Figure 3-11 New client handle to service “HelloWorld”

Figure 3-12 Call to “echo” operation

Creating a Basic Analytical Service
This section provides specific steps showing how to use the Introduce Grid Service Authoring
Toolkit to build a basic analytical grid service. The example used is that of a book store. The
latter steps illustrate more advanced tools for configuring metadata, setting grid level and
method level security, and setting deployment options.

The following steps are outlined:

/**

 * Takes in the url of the service to connect to as a string

 */

HelloWorldClient(String url)

/**

 * Takes in the url of the service to connect to as a string and

 * a proxy to be used to represent the credentials or the caller

 */

HelloWorldClient(String url, GlobusCredential proxy)

/**

 * Takes in the epr which refers to the service or resource

 */

HelloWorldClient(EndpointReferenceType epr)

/**

 * Takes in the epr which refers to the service or resource and

 * a proxy to be used to represent the credentials or the caller

 */

HelloWorldClient(EndpointReferenceType epr, GlobusCredential proxy)

try {

 HelloWorldClient client = new
HelloWorldClient(“http://localhost:8080/wsrf/services/HelloWorld”);

 client.echo(“Testing)”;

} catch (Exception e) {

 System.out.println("Problem creating handle to or calling service" +
e.getMessage(), e);

}

 Chapter 3 Developing Analytical and Data Services

21

• Example One: Create a Basic Service
• Example Two: Create or Locate Data Types
• Example Three: Add Methods to the Service
• Example Four: Implement the Methods
• Example Five: Deploy the Service
• Example Six: Implement a Simple Client
• Example Seven: Start the Globus Container and Run the Client
• Example Eight: Populating caGrid Service Metadata

Example One: Create a Base Grid Service
This example provides instructions to create a base grid service, add data types, add a method,
and implement that method. To create a base service, use the following steps:

1. To launch the Introduce Grid Service Authoring Toolkit, invoke ant introduce from the top
level of the Introduce release.

2. Select Create Service from the toolbar or select Tools->Create Service from the toolbar.
The Create a Grid Service window displays (Figure 3-13).
Note: If you are a caGrid user, use the create caGrid service instead.

3. Select a directory to place the service. This example uses “C:\BookStore”.
4. Enter a name for the service. This example uses “BookStore”.
5. Enter a Java package for the generated code. This example uses “osu.lib.bookstore”.
6. Enter a namespace for the generated WSDL. This example uses

“http://bookstore.osu.lib/BookStore”.
7. Click the Create button at the bottom of the window. It may take several minutes for

Introduce to create the service.

caGrid 1.0 User’s Guide

 22

Figure 3-13 Create a base grid service

Example Two: Create or Locate Data Types
This example provides instructions to create or locate data types to add to an existing base grid
service, which was created in the previous example Creating a Basic Analytical Service

In Introduce, new data types can be obtained in three ways:

• create a data type and upload it from the file system

• download a data type from the GME

• import a data type from Globus, or in the case of caGrid users, there is a caDSR plug-in.

In this example, data types are downloaded using the file system browser. Use the following
steps to upload a data type to the GME and obtain it for the service being built with Introduce.

1. Download the schema file from the following location and save it to an accessible location
on the file system: http://bmi.osu.edu/~hastings/introduce/tutorial/bookstore.xsd
The schema is now accessible for Introduce. The following steps outline how to import the
schema via the File System Discovery Tool.

2. Note: The Modify Service window automatically after grid service is initially created. If this is
the case, go to step 3.

Select Modify Service from the toolbar or select Tools->Modify Service to open the Select
Directory window. Select the root directory where the grid service for the book store

 Chapter 3 Developing Analytical and Data Services

23

example is located. The directory for this tutorial is C:\BookStore. The Modify Service
Interface window opens.

3. This step imports the schema 1_BookStore into the service. From the Modify Service
Interface window, verify the Types tab is active and then browse to the Select Type section
located on the right side of the window. In the Select Type window, select the File System
tab. Browse to the schema file that you saved in the previous step. Click the Add button
(Figure 3-14).
Note: The types BookStore and Book should display in the Data Types section on the left
side of the window.

Figure 3-14 Modify Service Interface

4. Click the Save button at the bottom of the Modify Service Interface window.

Example Three: Add Methods to the Service
This example provides instructions to add to a service. The added methods have an input
parameter, an output parameter, and throw exceptions. Use the following steps to add method
to the service:

1. Open the BookStore service to be modified.
Note: Refer to steps 2 and 3 on page 23 of Example Two: Create or Locate Data Types for
instruction.

caGrid 1.0 User’s Guide

 24

2. Click on the Operations tab in the Modify Service Interface window (Figure 3-15 Operations
Tab).

Figure 3-15 Operations Tab

3. On the Operations tab, click Add on the right hand side of the window. The Build/Modify
Operations window opens.

4. In the Build/Modify Operations window, in the Method Name field, enter addBook where
newMethod displays. Select the Inputs tab (if it is not already) and select Book from the
Data Types tree. Click Add in the lower right hand portion of the window (Figure 3-16).

 Note: The input for the getBook method will be of type string.

 Chapter 3 Developing Analytical and Data Services

25

Figure 3-16 Add Input Parameter

5. Select the Output tab in the Build/Modify Operation window. By default, the output type is
void. For the addBook method, leave the output as void (Figure 3-17).

 Note: For the method getBook, the output type will be of type Book. Double click the data
type to set the output type.

caGrid 1.0 User’s Guide

 26

Figure 3-17 Add Output Parameter

6. Finally, select the Faults tab from the Build/Modify Operations window. At the bottom of the
Faults window, enter BookAlreadyExists in the Fault Type Name field. Click Add New
Fault. The fault populates values for Namespace and Name in the Faults window (Figure
3-18).

7. Click Done. The Modify Service Interface screen displays.

 Chapter 3 Developing Analytical and Data Services

27

Figure 3-18 Add Fault

8. Use steps 1 through 7 to add the second method getBook with string as the input
parameter, Book as the output parameter, and BookDoesNotExist as the fault.

9. Refer to Figure 8 to verify the methods have been added properly. Click Save when
finished.

caGrid 1.0 User’s Guide

 28

Figure 3-19 Added Methods

Example Four: Implement the Methods
The one aspect that Introduce does not automatically generate when creating a grid service is
the actual implementation for the created methods. This example provides trivial
implementations to the methods created in the previous section. addBook is a method that
takes in type Book and returns type void. getBook is a method that takes in type String and
returns type Book. The implementations here demonstrate the process but have no functional
purpose. Use the following steps to provide implementations to created methods.

1. Browse to the location of the Bookstore service at C:\BookStore and locate the folder
C:\BookStore\src\osu\lib\bookstore\service. This folder contains the file BookStoreImpl.java,
which was automatically generated by Introduce.

2. The two methods, addBook and getBook, are located in this file and need to be
implemented. Open BookStoreImpl.java with a Java editor or text editor. Copy and paste the
following code to implement the addBook operation:

if(book.getISBN().equals("1234")){

 throw new osu.lib.bookstore.stubs.types.BookAlreadyExistsType();

 }

 else if(book.getISBN().equals(""))

 {

 throw new RemoteException("Invalid ISBN.");

 }

 Chapter 3 Developing Analytical and Data Services

29

3. Copy and paste the following code for getBook:
bookstore.Book book = null;

 book.setAuthor("Shannon Hastings");

 book.setDuey("1.1.1.1");

 book.setISBN("1234");

 book.setPDate("01-06-1999");

 book.setPublisher("Generic Publisher");

 book.setSection("1");

 book.setTitle("Programming Grid Services for Dummies");

 if(string.equals(book.getISBN())){

 return book;

 }

 else

 throw new osu.lib.bookstore.stubs.types.BookDoesNotExistType();

4. Refer to Figure 3-20 to validate the previous steps.

caGrid 1.0 User’s Guide

 30

Figure 3-20 BookStoreImpl.java

5. Save the changes.

Example Five: Deploy the Service
Deploying a service creates a Gar file that is then extracted into a container. Introduce allows a
service to be deployed to either Tomcat or Globus. The example provides instruction on
deploying to Globus. For more information, refer to the Introduce Technical Guide.

Note: Environmental variables need to be set for Globus (GLOBUS_LOCATION) and Tomcat
(CATALINA_HOME) in order to use Introduce to deploy a service.
1. Click Deploy Service or select Tools->Deploy Service from the Introduce window main

menu. The Select Directory window opens. Select the directory that contains
BookStore service (C:/BookStore for this example).

2. Click Open. The Deploy Grid Service window opens.
3. Select GLOBUS_LOCATION under the Deployment Location section.
4. Enter osu for the service.deployment.prefix under Deployment Properties (Figure 3-21).

Click Deploy.

 Chapter 3 Developing Analytical and Data Services

31

Figure 3-21 Deploy Grid Service

Example Six: Implement a Simple Client
In order to test the service created in this example, a simple client can be created to make
remote calls to the deployed service. Introduce creates a template that can easily be filled in to
accomplish this task. Use the following steps to fill in the template.

1. From the BookStore directory (C:/BookStore for this example), open the following file with
either a java editor or text editor:

C:\BookStore\src\osu\lib\bookstore\client\BookStoreClient.java

2. Copy and paste the following code into the main method of the Bookstore client as shown in
Figure 3-22:

//Setup the call to addBook

 bookstore.Book book = null;

 book.setAuthor("Shannon Hastings");

 book.setDuey("1.1.1.1");

 book.setISBN("1234");

 book.setPDate("01-06-1999");

 book.setPublisher("Generic Publisher");

 book.setSection("1");

 book.setTitle("Programming Grid Services for Dummies");

 try{

 client.addBook(book);

} catch(osu.lib.bookstore.stubs.types.BookAlreadyExistsType b) {

 System.out.println("The Book Store already has that book.");

 } catch (Exception e){

System.out.println("An unexpected error has occurred in the
call for addBook.");

caGrid 1.0 User’s Guide

 32

 }

 //setup the call to getBook

book = null;

 String isbn = ("1234");

 try{

 book = client.getBook(isbn);

 } catch (osu.lib.bookstore.stubs.types.BookDoesNotExistType f) {

 System.out.println("The book requested does not exist.");

 } catch (Exception g) {

 System.out.println("An unexpected error has occurred in the call for
getBook.");

 }

 Chapter 3 Developing Analytical and Data Services

33

Figure 3-22 BookStoreClient.java

3. Save the changes.
4. To rebuild your code, run ‘ant all’ from the location of the BookStore service. The location

for the example is C:\BookStore.

Example Seven: Start the Globus Container and Run the Client
This example has progressed to a point where something can be run and tested for correctness.
As a summary, the example has shown how to create a service with two implemented methods,
deploy that service to Globus, and implement a client to make remote calls into the BookStore
service. Before the client can be run, the Globus container must be started to expose its
deployed services.

caGrid 1.0 User’s Guide

 34

1. From the Globus location’s bin directory, enter globus-start-container.bat –nosec. The
container opens and the BookStore service is ready to receive remote calls from the
client.

2. Run the client by executing ant runClient from the top level of the Introduce created
service directory.

Example Eight: Populating caGrid Service Metadata

CaGrid users, before deploying there services to the grid, should populate the service
metadata. Most of this information is automatically populated by the Introduce toolset.
However, in order to fill out information that is specific to the developer and deplorer of the
service, the service metadata needs to be modified by using the following steps.

1. Open the service by selecting Introduce > ModifyService. In the modification screen
that opens, select the Metadata tab.

2. Browse to ServiceMetadata and select the Edit button. An editor window opens to
enable the metadata to be edited. Populate the specific information related to the
project/institution of the ResearchCenterInfo element.

Creating a Grid Service Using a Data Extension
This section provides the steps to set up a simple grid service using the Data Service extension
in the Introduce toolkit. A Custom CQL query processor for the grid service is written, the
service is deployed to a Tomcat container, and the service is invoked in a test.

The following steps are outlined:

• Example One: Create a new grid service with the Data Service Extension
• Example Two: Configure the Data Service Extension
• Example Three: Implement the CQL Query Processor and the Data Service Client
• Example Four: Deploy the Data Service
• Example Five: Invoke the Data Service

Example One: Create a new Grid Service with the Data Service Extension

In this section, a new grid service is set up using the Introduce toolkit. The new service is
created with the Data Service extension allowing the modification of Data Service settings within
the Introduce toolkit.

1. Launch the Introduce Grid Service Authoring Toolkit.
2. Select Create Service from the toolbar or select Tools->Create caBIG Service from the

menu bar. The Create caBIG Service screen displays (Figure 3-23).
3. Choose a directory in which to place the service. This tutorial uses

C:\DataServiceTutorial.
4. Enter the Service Name. This tutorial uses DataServiceTutorial.
5. Choose a Package. This tutorial uses osu.lib.dataservicetutorial.
6. Choose a Namespace. This tutorial uses

http://dataservicetutorial.osu.lib/DataServiceTutorial.
7. In the Customize Service section of the dialog, select the Data Service radio button.
8. Click the Create button at the bottom of the Creation screen.

 Chapter 3 Developing Analytical and Data Services

35

9. In the configuration dialog that opens, select the Custom Data Source radio button and
select OK. It may take a few minutes for Introduce to create the service.

Figure 3-23 Create caBIG Service dialog

Example Two: Configure the Data Service Extension

Next, the parameters and settings specific to the Data Service are configured. As a result of
adding the Data Service Extension when creating the service, a tab is available in the Introduce
service modification view where these settings are available.

1. When Introduce is finished creating the service, the Modify Service window opens.
Select the Data Service Tab (Figure 3-24).

2. Select caDSR Domain model from Domain Model Source region. Supplied Domain
Model is for users who have already generated a domain model and No Domain Model
is for testing purposes.

3. Next, the correct package of data types is added. In the Select Data Type region, select
the Project drop-down and select caCOREs (version: 3). In the Package drop-down,
select gov.nih.nci.cadsr.domain. Finally, click Add Package.

4. A schema resolution dialog opens informing you that the default schema for the selected
package is not yet in the service. Click the OK button to load it. In the new dialog, select
the Global Model Exchange tab. From the Namespace drop-down, select caCORE.
From the Name field, select 3.1/gov.nih.nci.cadsr.domain. Click the Load Schemas
button to close the dialog.

caGrid 1.0 User’s Guide

 36

Figure 3-24 Schema Resolution dialog

5. In the UML Class Selection region, a new group should display (Figure 3-25). Expand
the gov.nih.nci.cadsr.domain group and check the Question data type. Doing so
specifies that the Question data type may be used in a CQL Query. In the case of this
tutorial, it is the data type the client requests to be returned.

Figure 3-25 Data Service Domain Model tab

 Chapter 3 Developing Analytical and Data Services

37

6. Now select the Query Processor tab. Notice the Selected Class textbox. This is the
class that serves as the query processor for CQL queries made to the data service.
Later in the tutorial, a method in this class is filled in to implement the processor.

7. Select the Details tab (Figure 3-26). Select the Question data type in the Exposed
Class Configuration region. Right click on the Serializer column and select the SDK
Serialization option. This specifies the proper serialization and deserialization of the
Question object for the queries. The same serializer and deserializer should be used for
any objects generated by the caCORE SDK.

8. Verify the Targetable option is checked. This allows queries to return this data type as
the result. Data types with this option unselected are available for use in CQL queries
but cannot be returned.

9. Finally, check the Validate CQL Syntax and Validate Domain Model boxes to enable
error checking on the CQL queries processed at runtime.

Figure 3-26 Data Service Details tab

10. Click Save at the bottom of the window. Introduce rebuilds the service with the new
parameters and creates a Domain Model containing the selected data types. This
process may take a few minutes depending on the internet connection.

11. Select File->Exit to close the Introduce toolkit.

caGrid 1.0 User’s Guide

 38

Example Three: Implementing the CQL Processor and the Grid Service Client

This part of the tutorial implements the CQL processor and the data service client. The CQL
Processor is responsible for determining what object is requested by the client, finding it in
some data storage facility, and returning it to the client. Only one method is required to be
implemented for the processor. This method takes a CQLQuery object containing the query
information and returns a CQLResults object that contains the object or objects to be returned to
the client.

1. In the folder
C:\DataServiceTutorial\src\gov\nih\nci\cagrid\dataservicetutoria
l\stubs\cql\, open the file StubCQLQueryProcessor.java.

2. Replace the contents of the processQuery method with the code below:
 CQLQueryResults results;

 Mappings mappings = null;

 try {

String filename =
ServiceConfigUtil.getClassToQnameMappingsFile();

 mappings = (Mappings) Utils.deserializeDocument(

filename, Mappings.class);

 } catch (Exception ex) {

 throw new QueryProcessingException(

"Error getting class to qname mappings: " +
ex.getMessage(), ex);

 }

 String targetName = cqlQuery.getTarget().getName();

 ArrayList resultObjects = new ArrayList();

 Question question = new Question();

 question.setDefaultValue("What is the meaning of life?");

 resultObjects.add(question);

 try

 {

 results = CQLResultsCreationUtil.createObjectResults(

resultObjects, targetName, mappings);

 } catch(Exception ex) {

 throw new QueryProcessingException(

"Error creating object results: " +
ex.getMessage(), ex);

 }

return results;

 Chapter 3 Developing Analytical and Data Services

39

3. Save StubCQLQueryProcessor.java.
4. Now open the file DataServiceTutorialClient.java located in the folder

C:\DataServiceTutorial\src\gov\nih\nci\cagrid\dataservicetutorial
\client\. This code directs the client’s actions for the grid service. In this tutorial, the
client simply sends a CQL Query requesting a Question object in return. It then prints out
the defaultValue field of the object returned to it by the CQL Processor. Replace the
contents of the method main with the code below:

 System.out.println(

"Running the DataServiceTutorial Service Client");

 try{

 if(!(args.length < 2)){

 if(args[0].equals("-url")){

 DataServiceTutorial client = new

DataServiceTutorial(args[1]);

CQLQuery query = new CQLQuery();

gov.nih.nci.cagrid.cqlquery.Object target =

new gov.nih.nci.cagrid.cqlquery.Object();

 target.setName(Question.class.getName());

 query.setTarget(target);

 CQLQueryResults results = client.query(query);

 Iterator iter = new
CQLQueryResultsIterator(results,

 DataServiceTutorial.class.getResourceAsStream(

"client-config.wsdd"));

 while (iter.hasNext()) {

 Object o = iter.next();

 System.out.println(

((Question)o).getDefaultValue());

 }

 System.out.println("Query Complete.");

 } else {

 usage();

 System.exit(1);

 }

 } else {

 usage();

caGrid 1.0 User’s Guide

 40

 System.exit(1);

 }

 } catch (Exception e) {

 e.printStackTrace();

 System.exit(1);

5. Save DataServiceTutorialClient.java

Example Four: Deploy the Grid Service

A grid service may be deployed to either a Globus or a Tomcat container. In this tutorial, Tomcat
is used.

1. Open a Command prompt and change to the C:\DataServiceTutorial directory.
2. Rebuild the data service code with the command: ant all
3. Verify that the command resulted in a Build Successful message.
4. Deploy the data service with the command: ant deployTomcat

Note: To deploy to a Globus container, replace the command deployTomcat with
deployGlobus.

Example Five: Test the Grid Service

Now that the service has been deployed to Tomcat, the service may be tested. An ant script
located in the grid service directory runs the client and invokes the service.

1. Using a command prompt, change to the Catalina Home directory. Do this by entering
cd %CATALINA_HOME%.

2. Enter /bin/startup.bat to start the Tomcat server. Wait for a new Tomcat console window
to display and finish loading Tomcat.

3. At the original command prompt, change directories to C:\DataServiceTutorial\
and enter the command ant runClient.

4. The result of the run should produce the following output:
C:\DataServiceTutorial>ant runClient

Buildfile: build.xml

setGlobus:

checkGlobus:

 [echo] Globus: C:\progs\Globus

defineClasspaths:

runClient:

 [echo] Connecting to service:
http://localhost:8080/wsrf/services/cagrid/Da

taServiceTutorial

 [java] JVM args ignored when same JVM is used.

 [java] Running the DataServiceTutorial Service Client

 [java] What is the meaning of life?

 Chapter 3 Developing Analytical and Data Services

41

 [java] Query Complete.

BUILD SUCCESSFUL

Total time: 6 seconds

Creating a Data Service Using the caCORE SDK
This section provides the steps to set up a simple grid service using the Data Service extension
and the caCORE data source in Introduce. The caGrid data service is set up with the help of the
caCORE SDK wizard, deployed to a Tomcat container, and invoked as a test on the service.
The sample service uses the caCORE SDK query processor provided with caGrid 1.0 to request
Gene data types meeting certain criteria. These values, once returned, are output to the
command line.

The following steps are outlined:

• Example One: Create a new grid service with the Data Service Extension
• Example Two: Use the caCORE SDK Wizard
• Example Three: Implement the Grid Service Client
• Example Four: Deploy the Grid Service
• Example Five: Test the Grid Service

Example One: Create a New Grid Service with the Data Service Extension

In this section, a new grid service is set up using the Introduce toolkit. The new service is
created with the Data Service extension using the caCORE SDK Wizard.

1. Launch the Introduce Grid Service Authoring Toolkit.
2. Select Create caBIG Service from the toolbar or select Tools->Create caBIG Service

from the menu. The Create caBIG Service screen opens (Figure 3-27).
3. Select a directory in which to place the generated service. This tutorial uses

C:\DataServiceSDKTutorial.
4. Enter the Service Name. This tutorial uses DataServiceSDKTutorial.
5. Select a Package Name. This tutorial uses osu.lib.datadervicesdktutorial.
6. Select a Namespace. This tutorial uses

http://dataservicetutorial.osu.lib/DataServiceTutorial.
7. Select the Data Service radio button from the Customize Service section.
8. Click the Create button located at the bottom of the Creation screen.
9. In the configuration dialog that opens, select the caCORE SDK Data Source radio

button and select OK.
10. It may take a few minutes for Introduce to create the service.

caGrid 1.0 User’s Guide

 42

Figure 3-27 Create caBIG Service dialog

Example Two: Using the caCORE SDK Wizard

The caCORE Wizard steps through five screens to enter information about the grid service.
Once complete, the service is fully ready to be deployed and tested.

1. After selecting the caCORE SDK Data Source option, a dialog displays explaining the
five screens of the wizard (Figure 3-28).

 Chapter 3 Developing Analytical and Data Services

43

Figure 3-28 caCORE SDK Wizard, step 1

2. Click the Next: client.jar button to continue to the next screen of the wizard.
3. The second screen of the wizard is where jar files are added to the Data Service. Click

the Add Jars button to open a file dialog. Find the client.jar file generated by the
caCORE SDK and click Open to add it to the list (Figure 3-29).

Figure 3-29 caCORE SDK Wizard, step 2

4. The third screen of the wizard specifies the configuration options for the caCORE SDK
data source (Figure 3-30). The first of these options is the service URL for the data
source application. For this tutorial enter
http://cabio.nci.nih.gov/cacore31/http/remoteService in the Service
URL textbox. This URL is that of the NCI’s caBIO data source. The Case Insensitive
Queries option is for data services that have a backend that might require queries to be
performed without regard to case. Leave this option off for now. This screen also allows
CSM Security to be enabled and the CSM Context Name to be changed if necessary.
This tutorial does not use CSM Security.

caGrid 1.0 User’s Guide

 44

Figure 3-30 caCORE Wizard, step 3

5. The fourth screen of the wizard is used to select the Domain Model (Figure 3-31). In this
tutorial, the domain model is loaded from a file. Select the Domain Model from File
radio button and click the Browse button on the right to navigate to the domain model
file provided with this tutorial. Click Next: Schemas to proceed.

Figure 3-31 caCORE Wizard, step 4

6. In the fifth screen, the caBIO schema must be resolved manually to the file provided with
the tutorial (Figure 3-32). Click the Resolve button for the caBIO package to open the
Schema Resolution Dialog (Figure 3-33). In the dialog, select the Browse button under
the File System tab and select the caBIO schema file provided with the tutorial. Then
click Load Schemas to close the dialog, and click Done to close the wizard.

 Chapter 3 Developing Analytical and Data Services

45

Figure 3-32 caCORE Wizard, step 5

Figure 3-33 Schema Resolution dialog

Example Three: Implementing the Grid Service Client

This example implements the actions of the client to invoke the Data Service created in
an earlier step. To do this, some code is added to the
DataServiceSDKTutorialClient.java file to query the data service and output the
results for verification.

caGrid 1.0 User’s Guide

 46

1. Open the file DataServiceSDKTutorialClient.java located in the folder
C:\DataServiceSDKTutorial\src\gov\nih\nci\cagrid\dataservicesdktu
torial\client\. Replace the contents of the method main with the code below:

System.out.println("Running the Grid Service Client");

try{

if(!(args.length < 2)){

 if(args[0].equals("-url")){

DataServiceSDKTutorialClient client =

new
DataServiceSDKTutorialClient(args[1]);

 gov.nih.nci.cagrid.cqlquery.CQLQuery query =

new
gov.nih.nci.cagrid.cqlquery.CQLQuery();

 gov.nih.nci.cagrid.cqlquery.Object target =

new
gov.nih.nci.cagrid.cqlquery.Object();

 target.setName(gov.nih.nci.cabio.domain.Gene.class.getName());

 gov.nih.nci.cagrid.cqlquery.Attribute att =

new
gov.nih.nci.cagrid.cqlquery.Attribute();

 att.setName("symbol");

 att.setValue("BRCA%");

 att.setPredicate(gov.nih.nci.cagrid.cqlquery.Predicate.LIKE);

 target.setAttribute(att);

 query.setTarget(target);

 gov.nih.nci.cagrid.cqlresultset.CQLQueryResults
results =

client.query(query);

 java.util.Iterator iter = new

gov.nih.nci.cagrid.data.utilities.CQLQue
ryResultsIterator(

results,

 DataServiceSDKTutorialClient.class.getResourceAsStream(

"client-config.wsdd"));

 while (iter.hasNext()) {

 Object o = iter.next();

 Chapter 3 Developing Analytical and Data Services

47

 System.out.println(

((gov.nih.nci.cabio.domain.Gene)
o).getFullName());

 }

 System.out.println("Query Complete.");

 } else {

 usage();

 System.exit(1);

 }

 } else {

 usage();

 System.exit(1);

 }

} catch (Exception e) {

 e.printStackTrace();

 System.exit(1);

}

2. Save the file DataServiceSDKTutorialClient.java.

Example Four: Deploy the Grid Service

A grid service may be deployed to either a Globus or a Tomcat container. In this example,
Tomcat is used.

1. Open a Command prompt and change the directory to
C:\DataServiceSDKTutorial.

2. Compile the grid service with the command: ant all.
3. Verify that the command resulted in a Build Successful message.
4. Deploy the grid service to Tomcat with the command: ant deployTomcat.

Note: To deploy to a Globus container, simply replace the command deployTomcat with
deployGlobus.

Example Five: Test the Grid Service

Now that the service has been deployed to the Tomcat directory, the service may be invoked.
An ant script located in the grid service directory runs the client and invokes the service.

1. Using a command prompt, change to the Catalina Home directory by entering cd
%CATALINA_HOME%.

2. Enter bin/startup.bat to start the Tomcat server. Wait for a new Tomcat console window
to open and finish loading Tomcat.

caGrid 1.0 User’s Guide

 48

3. At the original command prompt, change directories to
C:\DataServiceSDKTutorial\ and enter the command: ant runClient.

4. The result of the run should produce the following output:
C:\DataServiceSDKTutorial>ant runClient

Buildfile: build.xml

setGlobus:

checkGlobus:

 [echo] Globus: C:\progs\Globus

defineClasspaths:

 runClient:

[echo] Connecting to service:
http://localhost:8080/wsrf/services/cagrid/Da

taServiceSDKTutorial

 [java] JVM args ignored when same JVM is used.

 [java] Running the Grid Service Client

 [java] Breast cancer 2, early onset

 [java] Breast cancer 1, early onset

 [java] Query Complete.

BUILD SUCCESSFUL

 Chapter 4 Developing Client Applications

49

Chapter 4 Developing Client Applications
This chapter introduces the client applications for caGrid services.

Topics in this chapter include:

• Overview on this page
• caGrid Client APIs on page 50
• Client Application Case Study: caTRIP on page 55

Overview
Extending beyond the basic grid infrastructure, caBIG specializes grid technologies to better
support the needs of the cancer research community. A primary distinction between basic grid
infrastructure and the requirements identified in caBIG and implemented in caGrid is the
attention given to data modeling and semantics. caBIG adopts a model-driven architecture best
practice and requires that all data types used on the grid are formally described, curated, and
semantically harmonized. These efforts result in the identification of common data elements,
controlled vocabularies, and object-based abstractions for all cancer research domains. caGrid
leverages existing NCI data modeling infrastructure to manage, curate, and employ these data
models. Data types are defined in caCORE UML and converted into ISO/IEC 11179
Administered Components, which are in turn registered in the Cancer Data Standards
Repository (caDSR). The definitions draw from vocabulary registered in the Enterprise
Vocabulary Services (EVS), and their relationships are thus semantically described.

In caGrid, both the client and service APIs are object-oriented, and operate over well-defined
and curated data types. Clients and services communicate through the grid using respectively
Globus grid clients and service infrastructure. The grid communication protocol is XML, and thus
the client and service APIs must transform the transferred objects to and from XML. This XML
serialization of caGrid objects is restricted in that each object that travels on the grid must do so
as XML, which adheres to an XML schema registered in the Global Model Exchange (GME). As
the caDSR and EVS define the properties, relationships, and semantics of caBIG data types,
the GME defines the syntax of the XML serialization of them. Furthermore, Globus services are
defined by the Web Service Description Language (WSDL). The WSDL describes the various
operations the service provides to the grid. The inputs and outputs of the operations, among
other things, in WSDL are defined by XML schemas (XSDs). As caBIG requires that the inputs
and outputs of service operations use only registered objects, these input and output data types
are defined by the XSDs, which are registered in GME. In this way, the XSDs are used both to
describe the contract of the service and to validate the XML serialization of the objects that it
uses. Figure 4-1 details the various services and artifacts related to the description of and
process for the transfer of data objects between client and service.

caGrid 1.0 User’s Guide

 50

Figure 4-1 Data Description Overview

caGrid Client APIs
caGrid services are standard WSRF (Web Service Resource Framework) services typically
implemented using the Globus toolkit version 4. While it is expected most clients and services
will not only use Globus, but will also use the caGrid-provided tools that build on Globus, it is
worth noting that caGrid uses on open specification for all communication between client and
service. This enables interoperability between toolkits and programming languages, when
needed. The extent of the caGrid user and programmer documentation focuses on the Java
APIs provided by caGrid and, in some cases, Globus. Users interested in lower level
specifications can consult the caGrid Specifications.

Secure Communication
Grid security can be complex and a detailed discussion on it is out of the scope of this
document. The Globus documentation (http://www.globus.org/toolkit/docs/4.0/security/) and
tutorials (http://gdp.globus.org/gt4-tutorial) provide a good overview and details on the topic. For
the most part, caGrid clients and users need not concern themselves with all the details, but
should have a basic understanding of what is happening “under the hood”, and should
understand how to “log in” and obtain credentials for secure communication with services.

caGrid builds on GSI (Globus Security Infrastructure), and uses Public Key Cryptography (PKI).
Both services and clients may optionally have credentials (certificates), and authenticate and
authorize each other. Services and corresponding clients generated from the Introduce toolkit
attempt to automatically configure security appropriately, and this behavior is sufficient for most
users, however it can be overridden (either by manually configuring this client “stub” or by
overriding the provided configureStubSecurity method). Introduce clients attempt to

 Chapter 4 Developing Client Applications

51

communicate anonymously with services, as long as the service allows it (as advertised via its
caGrid ServiceSecurityMetadata). If a service does not allow anonymous communication, client
credentials must be used to authenticate the service. Introduce-created clients attempt to use
the default Globus credentials, if present (via a grid-proxy-init, or logging in with Dorian and
specifying setting the credentials as the defaults). Alternatively, Introduce-created clients have
constructors, which take credentials (GlobusCredential), and also have an appropriate setter
method (setProxy), which can be used after construction. Some services have different security
requirements for different operations, so it may not be immediately obvious whether or not
credentials are required. As such, when communicating with secure services it is good practice
to have a valid grid proxy set as default, or specified on the client; the client APIs will only use it
if necessary. For additional information on how to obtain grid credentials and access your grid
proxy, see Chapter 5 Security Administration. For additional information on lower-level security
details (such as how clients may perform authorization of services, or configure the
communication channel), see GTS and the Globus Toolkit on page 64.

What is an EPR?
As caGrid is a service-oriented architecture, the majority of the APIs made available are either
tools and utilities, or client APIs for communicating with services. There are a number of caGrid-
provided “core” services, as well as community provided Data and Analytical services. In order
for a client to communicate with a service, it must first know its network end point, or address. In
WSRF, this end point is referred to as an End Point Reference, or EPR. A detailed discussion of
WSRF and EPRs is out of the scope of this document, but suffice it to say an EPR contains the
information necessary to communicate with a service, and optionally identify a resource in that
service. EPRs generally take two forms: a resource-qualified end point and a non-resource
qualified end point (basically the URL of the service). In caGrid, all services can be
communicated, at least initially, using the later, which means clients that know the URL of the
service may manually create an appropriate EPR instance. Complex services that manage state
on behalf of the client (such as the workflow service and federated query service) have some
operations that return a resource-qualified EPR, which can then be used to communicate with
an appropriate service-side resource. However, again note, the initial communication with the
service originates with a simple URL. Some caGrid APIs that communicate with services will
provide convenience methods that take a string representation of a URL and “under the hood”
construct an appropriate EPR. Other methods may require an EPR instance, but it can generally
be constructed by just specifying the URL. For client applications, the source of the EPR is
either created from a well-known URL (such as the address of the Index Service), or discovered
at runtime using the Discovery API.

Obtaining an EPR for a Service
As mentioned above, the first step in communicating with a caGrid service is obtaining an
appropriate EPR (though Introduce-generated clients do provide the shorthand constructors that
simply take a string representation of the service’s URL). Often the address of a service of
interest is not a “well known” value, and is something that is discovered at runtime. caGrid
provides the means to discover services of interest by querying a live registry of available
caGrid services. All caGrid services are required to publish standard metadata (described in the
caGrid Metadata Design Document) that describes their functionality. This information is
aggregated in the aforementioned registry (Index Service), and can be used to find out
information about the currently running services, including their current EPRs. Building on this
information, a Discovery API is provided with caGrid that facilitates the querying of this

caGrid 1.0 User’s Guide

 52

information toward the aim of discovering service EPRs. An overview of this process is shown in
Figure 4-2.

Core Services

Grid
Service

Uses Terminology
Described In

Cancer Data
Standards
Repository

Enterprise
Vocabulary

Services

References Objects
Defined in

Index Service

Service
Metadata Publishes

Subscribes To
and Aggregates

Queries Service
Metadata Aggregated In

Registers To

Discovery
Client API

Figure 4-2 caGrid Advertisement and Discovery Overview

The Discovery API is intended to be used by any applications or services that wish to consume
of data, analytics, and core services provided by caGrid. While there are still cases when
interacting with a particular instance of a service is desired, the Discovery API provides a means
by which applications can locate services by the information or capabilities they provide. One of
the key advantages of the grid approach to caBIG is the dynamic discovery of available
resources.

In order to make use of the Discovery API, the discovery process must be “bootstrapped” using
a well-known service address of an Index Service. The default constructor of the
DiscoveryClient, the main interface to the Discovery API, should default to the official NCI Index
Service. However, this behavior can be modified by using the constructor that takes the Index
Service URL, or by calling the appropriate setter method (setIndexEPR). Additional details on
this, as well as all Discovery API information, can be found in the Discovery section of the
caGrid 1.0 Programmer’s Guide.

The simplest discovery scenario, shown in Figure 4-3, is to just query the Index Service for all
registered services. The boolean value specified in line 3, indicates whether services should be
ignored if they do not expose the caGrid standard metadata. In most application scenarios, a
value of “true” is used, as services without standard metadata are either: not compliant, not
properly configurable, or inaccessible (e.g. behind a misconfigured firewall).

Figure 4-3 Discovering All Services

 Chapter 4 Developing Client Applications

53

As shown in the example on line 3, the method returns an array of EPRs. This is true of all
discovery operations. The EPRs in the array represent the services matching the specified
criteria (in this case just that it is a valid caGrid service), and can be used to create clients to
invoke operations on the corresponding services (detailed later).

There are many discovery operations available in the DiscoveryClient. They provide a range of
capabilities from “full text search” suitable for a freeform webpage-like interface, simple text-
based criteria such as specifying operation names or concept code, and complex criteria (“query
by example”) such as specification of point of contact information or UML class criteria.

While there are many discovery methods that take a UMLClass prototype, to discover services
based on data types, an example is shown below in Figure 4-4. This method,
discoverServiceByOperationInput, locates services that provide an operation that takes, as
input, an instance of the specified data type. The example below shows services that provide
operations that take caBIO’s Gene instances as input. This prototype object can be as partially
populated as desired (such as only specifying the package name, or being more explicit in
specifying the exact project name and version).

Figure 4-4 Discover Services by Input

Additionally, there are methods to discover services by “type.” For example, there are several
methods named like discoverDataServices*, which only return services that implement the
standard Data Service operations. Services may also be discovered by identifying the concept
code matching the service type of interest, and invoking the discoverServicesByConceptCode
method, which searches for services based on concepts applied to the service. There is a
concept representing “Grid Service” in the ontology and derived concepts such as “Analytical
Grid Service” and “Data Grid Service.” It is expected additional concepts will be derived in the
future, as driven by the community.

Inspecting a Service’s Metadata
Depending on how specific the discovery criteria which was used to discover services, it is
possible there will be many services returned, and it may be necessary to find out additional
information about the matching services in order to select which one should be used.

The Metadata API provides the ability to obtain a Java bean representation of standard
metadata by simply providing an EPR of the service of interest (such as those returned from the
discovery methods). The main interface to this API is the MetadataUtils class, which contains a
number of static methods. An example of using this API, shown below in Figure 4-5,
demonstrates accessing a service’s standard ServiceMetadata, which is common to all caGrid
services. As described above, the first step is to obtain an appropriate EPR (line 1). Given this
EPR, the MetadataUtils’s getServiceMetadata method, shown on line 4 in Figure 4-5, can be

caGrid 1.0 User’s Guide

 54

used to obtain the bean representation of the metadata. Upon successful completion of this
method, the fully populated bean can be inspected to obtain the information of interest. Several
exceptions, sub classed from the base ResourcePropertyRetrievalException, can be thrown by
this operation. A non-discriminating client may choose simply to handle this base exception.
Additional details on the other exceptions, and why they may be throw, is described in the
Metadata section of the caGrid 1.0 Programmer’s Guide.

Figure 4-5 Accessing Standard Service Metadata

Given an instance of ServiceMetadata, all information required by caGrid standard metadata
can be inspected. This and all of its fields are standard, logic-less Java beans, and can be
inspected by invoking the appropriate getters. Additionally, the Metadata API provides the
capability to write the instances to XML for storage or display.

Details of the content of the metadata can be found in the caGrid Metadata design document,
as well as an overview in the Metadata section of the caGrid 1.0 Programmer’s Guide, but it is
worth noting, as shown in Figure 4-2, a majority of the standard metadata is derived from
extracting information from the caDSR and EVS. As such, the caDSR grid service, and the EVS
grid service can also be used, respectively, to find out additional information about the data
types and semantics relevant to the service. For example, many aspects described in the
metadata (services, operations, classes, attributes, etc) have associated SemanticMetadata
items, which describe the semantics of the item, including its EVS-maintained concept code.
This code can be used to locate the concept in EVS and navigate the ontology, determining
further semantic relevance. As another example, the metadata about each operation’s input and
output define the caDSR registered Project from which they came. The caDSR grid service can
be used to find out additional information about that Project, and the rest of its model.

Invoking Operations on a Service

The end goal of discovering services and inspecting their metadata is generally to select an
appropriate service and invoke operations it provides. This may be the execution of analytical
routines, querying for data, or invocation of a core caGrid service.

While the grid makes it possible to dynamically invoke services for which a client has no APIs

 Chapter 4 Developing Client Applications

55

(and this is true for caGrid services), this is generally not the procedure clients or applications
follow (clients interested in this, however, may search the web for “dynamic service invocation”).
Generally, the API for the service is already available, and just “bound” to the particular service
of interest at runtime. For example, to query any caGrid Data Service, a common client API can
be used, regardless of the type of data it exposes. Applications built to query data services
generally would build against this API. For Analytical Services, however, it is more likely a client
API specific to a type of analytical service would be used, and, again, instances of that service
would be bound to it at runtime. In both cases, the application developer would just make use of
a pre-provided client API. The caGrid infrastructure makes this process as simple as using a
using a local API; each provided client APIs takes a service’s EPR or address in its constructor,
and then the API’s methods can simply be invoked. The APIs take care of all of the grid
communication, handling security, and XML serialization and deserialization. All caGrid core
service APIs are provided with caGrid, and when a service is built using Introduce, a client API
for that service is also created. It is expected a common location for service clients will be
available for caBIG (on GForge). All the examples that show the communication with services
provided in this document or the caGrid 1.0 Programmer’s Guide are examples of such APIs. In
the absence of these client APIs, more limited “stub” client APIs can also be generated by the
grid tools by downloading the service’s WSDL (the Globus documentation provides some details
on this).

One instance where a client or application may wish to invoke operations on a service without
having previously downloaded a client API is the construction of a workflow. The caGrid
workflow infrastructure provides the mechanism to describe service invocations using a
workflow language (BPEL), and request the workflow service perform the invocation. Further
details on the workflow infrastructure can be found in the caGrid 1.0 Programmer’s Guide.

Client Application Case Study: caTRIP
The Cancer Translational Research Informatics Platform (caTRIP) project aims to solve the
difficult translational research problem of outcomes analysis. This involves the querying of a
number of different data elements, such as pathology biomarkers, as well as dates of diagnosis,
treatment, and death. A number of different grid services can be queried in a metadata-driven
manner, including caTissue CORE, CAE, the Duke Tumor Registry, and the caIntegrator SNP
database. These services are exposed as caGrid 1.0 grid services. This section describes how
to interact with the Tumor Registry Service from a client perspective. Three specific examples
are provided: Discovery, Metadata, and Invocation.

caTRIP Discovery Example

Discovery is performed by querying the Index Service for a list of Endpoint References (Figure
4-6). The Discovery Client is identified by the Index Service Endpoint Reference constructed
from a URL; here the caTRIP Index Service is pointed to. It provides a number of utility methods
for querying the Index Service. The example shows getting all of the services and then querying
by the Domain Model of Tumor Registry (Figure 4-7)

caGrid 1.0 User’s Guide

 56

Figure 4-6 caTRIP Discovery Example

Figure 4-7 Results from the caTRIP Discovery Example

caTRIP Metadata Example

Service-level metadata can be retrieved from any caGrid 1.0 grid service. This includes
information such as the publisher of the service, the methods exposed, and the domain model
used. The service is identified by an Endpoint Reference and metadata is retrieved using the
MetadataUtils class (Figure 4-8). The service-level metadata can be retrieved, as well as the
domain model. This example demonstrates getting the display name of the hosting research
center, as well as the domain model project name (Figure 4-9).

Figure 4-8 caTRIP Metadata Example

Figure 4-9 Results from the caTRIP Metadata Example

caTRIP Invocation Example

A service client can be constructed by passing in a URL to the endpoint of the service or an
EPR (Figure 4-10). The client exposes all of the methods exposed by the service. Input
parameters should be constructed and passed into the desired method, and the output of the

 Chapter 4 Developing Client Applications

57

method is returned (Figure 4-11). This example demonstrates querying the Tumor Registry
service for all patients and then displaying the race of each patient (Figure 4-12).

Figure 4-10 Two constructors for the caTRIP Tumor Registry data service client

Figure 4-11 caTRIP Invocation Example

Figure 4-12 Abbreviated results from the caTRIP Invocation Example

caGrid 1.0 User’s Guide

 58

Chapter 5 Security Administration

59

Chapter 5 Security Administration
This chapter describes the caGrid security infrastructure, which provides services and tools for
to administer and enforce security policy.

Topics in this chapter include:

• Overview on this page

• GAARDS Administration User Interface on page 61

• Grid Trust Fabric on page 62

• Grid User Management on page 86

• Grid Grouper on page 108

• Authentication Management on page 122

• Authorization Management on page 125

Overview
The Grid Authentication and Authorization with Reliably Distributed Services (GAARDS)
infrastructure serves as the caGrid 1.0 Security Infrastructure (Figure 5-1). GAARDS provides
services and tools for the administration and enforcement of security policy in an enterprise
Grid. GAARDS was developed on top of the Globus Toolkit and extends the Grid Security
Infrastructure (GSI) to provide enterprise services and administrative tools for: 1) grid user
management, 2) identity federation, 3) trust management, 4) group/VO management, 5) Access
Control Policy management and enforcement, and 6) Integration between existing security
domains and the grid security domain.

caGrid 1.0 User’s Guide

 60

Figure 5-1 GAARDS Security Infrastructure

Figure 5-1 illustrates the GAARDS security infrastructure. In order for users/applications to
communicate with secure services, grid credentials are required, which include a Grid User
Account. Dorian is a grid user management service that (1) hides the complexities of creating
and managing grid credentials from the users and (2) provides a mechanism for users to
authenticate using their institution’s authentication mechanism, assuming a trust agreement is in
place between Dorian and the institution. Dorian provides two methods for registering for a grid
user account: 1) register directly with Dorian 2) have an existing user account in another
security domain. It is anticipated that most users will use their existing locally provided
credentials for obtaining grid credentials and only users that are un-affiliated with an existing
credential provider should register directly with Dorian. In order to use an existing user account
to obtain grid credentials, the existing credential provider must be registered in Dorian as a
Trusted Identity Provider. It is anticipated that the majority of grid user accounts will be
provisioned based on existing accounts. The advantages to this approach are: 1) users can use
their existing credentials to access the grid and 2) administrators only need to manage a single
account for a given user. To obtain grid credentials, Dorian requires proof or a SAML assertion
(see the Dorian Design Guide for more details) that proves that the user is locally authenticated.
The GAARDS Authentication service provides a framework for issuing SAML assertions for
existing credential providers such that they may be used to obtain grid credentials from Dorian.
The authentication service also provides a uniform authentication interface in which applications
can be built. Figure 5-1 illustrates the process for obtaining grid credentials.

Chapter 5 Security Administration

61

1. The user/application first authenticates with their local credential provider via the
authentication service and obtains a SAML assertion as proof they authenticated.

2. They then use the SAML assertion provided by the authentication service to obtain grid
credentials from Dorian. Assuming the local credential provider is registered with Dorian as
a trusted identity provider and that the user’s account is in good standing, Dorian issues grid
credentials to the user. It should be noted that the use of the authentication service is not
required; an alternative mechanism for obtaining the SAML assertion required by Dorian can
be used. If as user is registered directly with Dorian and not through an existing credential
provider, they may contact Dorian directly for obtaining grid credentials.

Once a user has obtained grid credentials from Dorian, they may invoke secure services. Upon
receiving grid credentials from a user, a secure service authenticates the user to ensure that the
user has presented valid grid credentials. Part of the grid authentication process is verifying that
grid credentials presented were issued by a trusted grid credential provider (for example, Dorian
or other certificate authorities). The Grid Trust Service (GTS) maintains a federated trust fabric
of all the trusted digital signers in the grid. Credential providers such as Dorian and grid
certificate authorities are registered as trusted digital signers and regularly publish new
information to the GTS. Grid services authenticate grid credentials against the trusted digital
signers in a GTS (shown in Figure 5-1).

Once the user has been authenticated, a secure grid service determines if a user is authorized
to perform what they requested. Grid services have many different options available to them for
performing authorization. The GAARDS infrastructure provides two approaches that can each
be used independently or can be used together. It is important to note any other authorization
approach can be used in conjunction with the GAARDS authentication/trust infrastructure. The
Grid Grouper service provides a group-based authorization solution for the Grid, wherein grid
services and applications enforce authorization policy based on membership to groups defined
and managed at the grid level. Grid services can use Grid Grouper directly to enforce their
internal access control policies. Assuming the authorization policy is based on membership to
groups provisioned by Grid Grouper; services can determine whether a caller is authorized by
simply asking Grid Grouper whether the caller is in a given group.

The Common Security Module (CSM) is a more centralized approach to authorization. CSM is a
tool for managing and enforcing access control policy centrally. Access control policies can be
based on membership to groups in Grid Grouper. Grid services that use CSM for authorization
simply ask CSM if a user can perform a given action. Based on the access control policy
maintained in CSM, CSM decides whether or not a user is authorized. In Figure 5-1, the grid
services defer the authorization to CSM. CSM enforces its group based access control policy by
asking Grid Grouper whether the caller is a member of the groups specified in the policy.

GAARDS Administration User Interface
The GAARDS Administration User Interface (Admin UI) is for administrating Dorian, Grid
Grouper, and the Grid Trust Service (GTS). The Common Security Module (CSM) is
administered through a separate interface called the CSM User Provisioning Tool (UPT). The

caGrid 1.0 User’s Guide

 62

GAARDS Admin UI can be launched by typing “ant security” from the installation directory. The
GAARDS Admin UI is pre-configured to run with a default list of settings bound to the
distribution being used. The default configuration can be modified by editing the UI configuration
file ([Installation Directory]/projects/security-ui/etc/security-ui-conf).
The remainder of this chapter describes how to administer each of the GAARDS services.

Grid Trust Fabric
As grid computing technologies gain acceptance and adoption, the transition from highly
specialized grids with only a few institutional participants to a grid environment with hundreds of
institutions is becoming a reality. Security is of primary importance in the grid and the support
for secure communication, authentication, and authorization is a critical requirement, specifically
in settings where sensitive data (e.g., patient medical information) must be accessed and
exchanged. Also needed are mechanisms to establish and manage “trust” in the grid so that
asserted identities and privileges can be verified and validated with the required level of
confidence. Within collaboration, it is clear that different institutions have tiered levels of
confidence in the users and service management policies of various other institutions. While
generally all institutions want to collaborate in some fashion, they have services with varying
security policy enforcement requirements. The interconnections between clients and services
that are able to securely communicate in the larger grid, form conceptual overlays of trust, which
are herein referred to as the “trust fabric” of the grid. Figure 5-2 shows an example trust fabric
composed of four trust groups (Trust Groups A-D), over a worldwide grid. The establishment,
provisioning, and management of the trust fabric are critical to the scalability, maintenance and
security of the grid and other web service environments.

Chapter 5 Security Administration

63

Figure 5-2 Example Grid Trust Fabric

Many components of the grid rely on having trust agreements in place. For example, when a
user wants to access a service, they are authenticated based on an identity assigned to them.
In the grid, clients and services authenticate with one another using X509 identity certificates.
Grid Identities are assigned to users by authorities. When a grid-identity is asserted by an
authority in the form of an X509 identity certificate, it is digitally signed by that authority. Relying
parties make authentication decisions based on whether or not the certificate presented is
signed by a trusted certificate authority (CA). Thus, authentication requires a trust agreement
between the consumers of X509 identity certificates and the certificate authorities that issue
them.

In a grid environment, there may exist tens or even hundreds of certificate authorities, each
issuing hundreds if not thousands of certificates. To further complicate the situation, in a
dynamic multi-institutional environment, the status of identities may be updated frequently.
Identities and credentials can be revoked, suspended, reinstated, or new identities can be
created. In addition, the list of trusted authorities may change. In such settings, certificate
authorities frequently publish Certificate Revocation Lists (CRL), which specify “black listed”
certificates that the authority once issued but no longer accredits. For the security and integrity
of the grid, it is critical to be able to perform authentication and validate a given identity against

caGrid 1.0 User’s Guide

 64

the most up-to-date information about the list of trusted certificate authorities and their
corresponding CRLs.

Each institution normally manages its own security infrastructure with its own CAs, and all
clients and services within such an administrative domain need to be configured to trust the
local trust roots. If collaborations span administrative domains, then participating entities have to
be configured to trust the trust roots defined in the different organizations within the limits of
their own local policies. The required trust root configurations to participate in such Virtual
Organizations (VO) are complex, error prone, and security-policy sensitive. By centralizing the
configuration management and provisioning collaborating clients and services “on demand”, one
can ensure that the correct and up-to-date trust-root information is made available. In this
scenario, the central provisioning server becomes a trusted entity itself, and clients need to be
configured to trust its provisioning information. In order to facilitate the trust in the provisioning
servers, they should be locally known to the clients, which requires local provision servers to
aggregate and to front-end remote ones.

The Grid Trust Service (GTS) is a Web Services Resource Framework compliant federated
infrastructure enabling the provisioning and management of a grid trust fabric. The salient
features of the GTS can be summarized as follows:

• It provides a complete grid-enabled federated solution for registering and managing
certificate authority certificates and CRLs, facilitating the enforcement of the most recent
trust agreements.

• It allows the definition and management of trust levels, such that certificate authorities may
be grouped and discovered by the level of trust that is acceptable to the consumer.

• The federated nature of the GTS, coupled with its ability to create and manage arbitrary
arrangements of authorities into trust levels, allows it to facilitate the curation of numerous
independent trust overlays across the same physical grid.

• The GTS can also perform validation for a client, allowing a client to submit a certificate and
trust requirements in exchange for a validation decision, which allows for a centralized
certificate verification and validation.

This section is concerned with the administration of the Grid Trust Service (GTS) and only
provides a brief overview of the GTS, for more information on the GTS, see the GTS Design
Document.

GTS and the Globus Toolkit

The Globus Toolkit implements support for security via its Grid Security Infrastructure (GSI).
GSI utilizes X509 Identity Certificates for identifying a user. An X509 certificate with its
corresponding private key constitutes a unique credential or so-called “Grid credential” that is
used to authenticate both users and services within the grid. Under the current Globus release
(4.0.3), the authentication process ensures that the X509 Identity provided by the peer was
issued by a trusted certificate authority (CA). However, one limiting issue with the current
mechanisms is that trusted CAs and their CRLs are maintained locally on the file system of
each Globus installation. When a client authenticates with a service, Globus locates the root CA
and CRL of the client’s Identity Certificate on the local file system. Once located, the Globus
runtime validates the Identity Certificate against the CA certificate and CRLs. Although this
approach is effective, it is difficult to provision CA certificates and CRLs in a large multi-

Chapter 5 Security Administration

65

institutional environment, as one has to ensure that all CA and CRL information must be copied
to every installation and kept current with the dynamically changing environment. The GTS
solves this problem by providing a Grid Service framework for creating, managing, and
provisioning of a federated Grid trust fabric. Through its service interface, the GTS provides the
ability to register and manage certificate authorities. Using the GTS, Grid entities (services and
clients) can discover the certificate authorities in the environment, decide whether or not to trust
a certificate authority, and determine the levels of trust assigned to a certificate authority.

Figure 5-3 illustrates how the GTS can be used to enable the Globus Toolkit to authenticate
users against the latest trusted certificate authorities. To accomplish this, the GTS provides a
framework called SyncGTS, which is embedded in the Globus runtime to automatically
synchronize the local trust certificate store with the latest trust fabric maintained in the GTS.
Figure 5-3 illustrates how authentication and certificate validation can be performed by
leveraging the SyncGTS framework. When a Grid service is invoked, Globus authenticates the
client by validating that the Grid proxy provided is signed by a trusted certificate authority. The
certificate is validated against a local store as is seen in the figure. In Figure 5-3, the Dorian
certificate authority has been registered with the GTS as a trusted certificate authority and
Globus has been configured to synchronize its local trusted certificate store with the GTS. Thus
when the OSU user invokes a Grid service using her Dorian-obtained proxy, she will be
successfully authenticated by Globus.

caGrid 1.0 User’s Guide

 66

Figure 5-3 GTS Integration with Globus

Bootstrapping the Trust Fabric

As deployments leveraging the GTS to maintain the trust fabric are effectively delegating this
responsibility to the GTS, it is imperative the GTS instance(s) can be trusted. Traditionally, a
trust “bootstrapping” approach is adopted wherein clients and services communicating with the
GTS are manually configured to trust its CA. Additionally, by default, the GTS clients perform
identity authorization against the specific GTS with which they are communicating. This ensures
the service providing the information about the trust fabric (the GTS) has a certificate signed by
a trust authority, and that it is probably the specific instance the client intended to communicate
with. There are multiple possible deployment options for assigning certificates to GTS instances.
One possible way is that each GTS instance has a self-signed certificate (i.e., serving as its own
CA). In such a deployment, clients and services are manually configured to trust the self-signed
certificates of the GTS instances they intend to interact with. Alternatively, there can be one (or
a few) trusted root-CA(s), which are used to assign the certificates to each GTS instance.
Installations in the grid are then bootstrapped to trust this authority or a small set of authorities.
Note that even if the clients are pre-configured with the trusted CAs, the GTS infrastructure can
be used as a distribution mechanism of the CA’s CRLs. To examine the advantages and
disadvantages of each approach, see the GTS Design Document. For the purpose of this guide,

Chapter 5 Security Administration

67

it is assume that a reasonable approach has been selected for your distribution and the CA
certificates required for bootstrapping are included in your distribution. It is also assumed that
SyncGTS provided with your distribution will configure Globus to trust the bootstrapping CAs
before syncing.

GTS Software Prerequisites

Table 5-1 lists the software prerequisites for GTS.

Software Version Description

Java SDK

jsdk1.5 or higher The GTS is written in Java and requires the Java
SDK. After installing, set up an environmental
variable pointing to the Java SDK directory and
name it JAVA_HOME.

Mysql Mysql 4.1.x or higher For persisting the trust fabric and other information.

Ant Ant 1.6.5 The GTS service along with the Globus Toolkit in
which the GTS is built on, uses Jakarta Ant for
building and deploying.

Globus Globus 4.0.3 The GTS is built on top of the Globus Toolkit. The
GTS requires the ws-core installation of the Globus
Toolkit.

Tomcat

(Only
required if
deploying to
Tomcat)

Tomcat 5.0.30 The GTS can be optionally deployed as a Grid
Service to a Tomcat deployed Globus Toolkit.

Table 5-1GTS Software Prerequisites

Building the GTS

To build the GTS, enter ant clean all from the GTS installation directory. Depending on the
distribution obtained, you may be required to build from the root distribution directory to ensure
that the GTS is provided with all of its dependencies.

Configuring the GTS

The GTS is configured through a single configuration file, which is located at
GTS_INSTALLATION_DIRECTORY/etc/gts-conf.xml (Figure 5-12). The GTS uses a
Mysql Database as its backend data store; you must provide the GTS with the connection
details for your Mysql database. The database element in the GTS configuration is used to
specify the connection information for your Mysql database. In the majority of cases, you will
only need to specify the hostname of your database server, the port that the server runs on, and
the username and password of a database user. When the GTS is first initialized, it creates a

caGrid 1.0 User’s Guide

 68

database, named with the value of the gts-internal-id element. The GTS also proceeds to setup
its database schema in the database it created. In order to do so, the GTS needs to be
configured with a database user that has the appropriate permissions. If you do not wish to
provide the GTS with such a user you may create the database manually and provide the GTS
with a user who has the permission to modify the database schema. In this scenario the GTS
will not create the database but will proceed to setup its database schema in the database that
was manually created.

Figure 5-12 GTS Configuration File

Deploying the GTS

The GTS can be deployed to either a HTTPS secure Globus container or an HTTPS secure
Tomcat container. It is assumed that both the GTS and the container to which it is being
deployed have been properly configured prior to deployment. The GTS can be deployed to a
Globus container by entering ant deployGlobus from the GTS installation directory. Likewise the
GTS can be deployed to a Tomcat container by entering ant deployTomcat from the GTS

<gts>

 <resource name="GTSConfiguration"

 class="gov.nih.nci.cagrid.gts.service.GTSConfiguration">

 <gts-config>

 <gts-internal-id>GTS</gts-internal-id>

 <sync-authorities hours="0" minutes="2" seconds="0"/>

 <database>

 <name/>

 <driver>com.mysql.jdbc.Driver</driver>

 <urlPrefix>jdbc:mysql:</urlPrefix>

 <host>localhost</host>

 <port>3306</port>

 <username>root</username>

 <password></password>

 <pool>1</pool>

 </database>

 </gts-config>

 </resource>

</gts>

Figure 5-11 Figure 5-10 Figure 5-9 Figure 5-8 Figure 5-7 Figure 5-6 Figure 5-5 Figure 5-4

Chapter 5 Security Administration

69

installation directory. It is important to note that you must add an initial administrator to the GTS
before starting your container, please refer to next section Managing Trust Fabric Administrators
section for further directions.

Managing Trust Fabric Administrators

Many of the operations provided by the GTS provide a means of administrating the trust fabric
and are therefore restricted to GTS administrators or to administrators of individual certificate
authorities. The GTS allows for the assignment of two types of permissions: GTS Administrators
and Trusted CA Administrators. GTS Administrators are “super users” and can perform any
operation on a GTS (i.e., manage certificate authorities, manage trust levels, manage
permissions, etc). Trusted CA Administrator permission corresponds to a specific CA giving a
user with this permission the ability to update the CRL for the corresponding CA. The GTS
provides two methods for managing administrators: command line and the GAARDS UI. The
command line approach only allows “GTS Administrators” to be added and is intended for
bootstrapping the GTS with an initial administrator. The command line approach should be used
to add an administrator before the GTS is started for the first time. An administrator can be
added via the command line by entering ant addAdmin from the GTS distribution directory. The
program prompts for the grid identity of the administrator to be added; entering it and pressing
the ENTER key adds the requested user to the GTS as an administrator.

The GAARDS UI enables the remote management of GTS administrators. To manage
administrators, the GTS requires grid credentials of a GTS administrator. To obtain grid
credentials click the Login button on the toolbar in the GAARDS UI. For more information on
obtaining grid credentials please refer to the Logging onto the Grid on page 95.

Once grid credentials are obtained, manage GTS administrators using the GAARDS UI with the
following steps.

1. To start click the Trust Management button on the toolbar. A menu window opens.
Select Manage Access Control and click the Select button.

2. The GTS Access Management window opens (Figure 5-13). To list the permissions
assigned to an individual GTS, select the GTS service URI from the Service drop down.
If the service URI you want is not in the drop down, enter it.

3. From the Proxy drop down, select the credentials or proxy to use to authenticate to the
GTS. You may also specify search criteria to limit the permissions listed.

4. Finally to list the permissions, click the List Permissions button. Figure 5-13 lists three
permissions. The first two give the entity with the grid identity listed super user rights to
the GTS. The third permission gives the entity with the grid identity rights to administrate
the Trusted Certificate Authority listed, mainly the ability to update the Certificate
Revocation List (CRL).

caGrid 1.0 User’s Guide

 70

Figure 5-13 GTS: Access Management Window

Adding a GTS Administrator

Administrators or permissions can be added by clicking the Add Permission button, which
opens the Add Permission window shown in Figure 5-14. To add permission, use the following
steps.

1. Select the service URI of the GTS in which you want to add permission. If the service
URI you want to select is not in the drop down, enter it. From the Proxy drop down,
select the credentials or proxy to use to authenticate to the GTS. In the Grid Identity
text box, enter the grid identity of the entity being assigned the permission. From the
Trusted Authority drop down, select the trusted certificate authority in which this
permission will apply. Selecting “*” or all trusted authorities makes the permission apply
to all trusted certificate authorities, giving the entity specified super user right to the GTS.
Selecting a specific Trusted Certificate Authority gives the grid identity specified the right
to update the CRL for the certificate authority selected.

2. Once your selection is made, click the Add Permission button to add/apply the
permission to the GTS.

Chapter 5 Security Administration

71

Figure 5-14 GTS: Adding Administrators Window

Removing a GTS Administrator

To remove an administrator, select the desired permission to remove from the GTS Access
Management window (Figure 5-13) and click the Remove Permission button.

Managing Trust Levels

A trust level specifies the level of confidence with which a given certificate authority is trusted in
the grid in which it is deployed. The trust level concept in the grid is similar to obtaining an
identification card, for example obtaining a passport requires extensive documentation and a
thorough background check where as obtaining a library card requires much less
documentation and background check. In the grid, one can assume that certificate authorities
are trusted with different levels of confidence. There are multiple types and instances of
certificate authorities. Some authorities may be used to assert identities; other authorities may
be used to assert digitally signed documents. Even certificate authorities asserting the same
thing may have differing levels of trust associated with them, as they may employ different
policies for issuing and validating identities. For example, a certificate authority may require that
anyone applying for a certificate present official documentation about their real identity. The CA
issues a certificate to the applicant after these documents are reviewed by the CA staff. Another
certificate authority may automatically issue certificates based on an online application
submitted by the applicant; the applicant may have been requested to log on to the system
using a user id and password. In these cases, the first certificate authority has a stricter policy
for issuing certificates; thus, it is reasonable to expect that the first certificate authority should be
trusted more than the second certificate authority .

Trust levels can be created and managed remotely through the GAARDS UI. To manage trust
levels the GTS requires grid credentials of a GTS administrator. To obtain grid credentials, click
the Login button on the toolbar in the GAARDS UI. For more information on obtaining grid

caGrid 1.0 User’s Guide

 72

credentials, refer to Logging onto the Grid on page 95.

Once you have grid credentials, use the following steps to manage trust levels using the
GAARDS UI.

1. To start, click the Trust Management button on the toolbar. From the menu window that
opens, select Manage Trust Levels and click the Select button. The GTS Trust Level
Management window opens (Figure 5-15).

2. To list the trust levels of an individual GTS, select the GTS service URI from the Service
drop down. If the service URI you wish to select is not in the drop down, enter it. From
the Proxy drop down, select the credentials or proxy to use to authenticate to the GTS.

3. Finally, click the List Trust Levels button and the trust levels for the selected GTS are
listed as in Figure 5-15. The GTS Trust Level Management interface enables GTS
administrators to add, remove, and update trust levels.

 Figure 5-15 GTS Trust Level Management

Viewing/Modifying Trust Levels

To view or modify a trust level, use the following steps.

1. Select the trust level in which you wish to view or modify and click the View/Modify
Trust Level button. The View/Modify window opens. (Figure 5-16) for the trust level you
selected.

2. The View/Modify window lists the name of the trust level, whether or not the selected

Chapter 5 Security Administration

73

GTS is the authority for the trust level, the authority GTS, the source GTS, when the
trust level was last updated, and a description of the trust level. Since the trust fabric can
be federated; a GTS can inherit trust levels from other GTSs. The GTS in which a trust
level originates is considered the authority GTS. The Is Authority listing in Figure 5-16
specifies whether the selected GTS is the authority for the trust level. The Authority
GTS listing specifies the URL of the authority GTS or the GTS in which the trust level
originated. The Source GTS listing specifies the URL of the GTS in which the selected
GTS discovered or obtained the trust level from.

For more details on the federated nature of GTS and on managing a federated trust fabric,
refer to Managing a Federated Grid Trust Fabric on page 79.

The Description listing in Figure 5-16 specifies a human readable description of the trust
level. Description is the only field of a trust level that the GTS allows an administrator to
modify. To modify the Description, simply make the desired changes and click the Update
Trust Level button.

Figure 5-16 GTS: View/Modify Trust Level

Adding Trust Levels

To add a new trust level to a GTS, use the following steps.

1. Click the Add Trust Level button from the GTS Trust Level Management Window
(Figure 5-15). The Add Trust Level window opens (Figure 5-17).

2. To add a trust level, first select the URL of the GTS to which the trust level will be added.
Then specify the name and description of the trust level.

3. Finally click the Add Trust Level button to submit the new trust level to the GTS.

caGrid 1.0 User’s Guide

 74

Figure 5-17 GTS: Add Trust Level

Removing Trust Levels

To remove a trust level, select the trust level to remove from the GTS Trust Level
Management window (Figure 5-15) and click the Remove Trust Level button.

Managing Certificate Authorities

The ultimate goal of the GTS is to provide a framework for provisioning trusted certificate
authorities to both clients and services in the grid such that they may confidently know which
certificate authorities to trust when deciding whether to accept credentials, assertions, and other
digitally signed documents. Thus management of certificate authorities within the GTS or trust
fabric is critical. The GAARDS UI facilitates the management of certificate authorities within the
trust fabric. Certificate Authorities are managed through the Trusted Certificate Authority
Management Window (Figure 5-18). Although you may browse trusted certificate authorities
without being a GTS administrator, you must be a GTS administrator to manage the trusted
certificate authorities. Thus depending on what you are planning to do you may be required to
provide grid credentials of a GTS administrator.

To obtain grid credentials, click the Login button on the toolbar in the GAARDS UI. For more
information on obtaining grid credentials, refer to Logging onto the Grid on page 95.

Chapter 5 Security Administration

75

Figure 5-18 GTS: Trusted Certificate Authority Management

To manage certificate authorities, use the following steps.

1. Launch the Trusted Certificate Authority Management window and click the Trust
Management button on the toolbar.

2. Select the Manage Trusted Authorities option from the menu window that opens and
click the Select button.

3. The Trusted Certificate Authority Management window provides a method of
discovery/searching for trusted certificate authorities in a GTS. The GTS supports a wide
array of search criteria for discovery trusted certificate authorities. To discover trusted
certificate authorities, simply select the GTS you wish to search and specify your search
criteria.

4. Finally, click Find Trusted Authorities button. Once the search is complete, the Trusted
Certificate Authorities meeting your search criteria is listed in the table below the
progress bar. The certificate authorities are listed by name and by the subject
distinguished name (DN) in the CA certificate.

Adding Trusted Certificate Authorities

To add or register a certificate authority, the GTS requires the specification of the CA’s root

caGrid 1.0 User’s Guide

 76

certificate, a set of trust levels, a status, and an optional CRL. The CA’s root certificate is
required for validating certificates. The set of trust levels specifies the level of trust associated
with the CA. The status specifies the current state of the certificate authority and can be set to
“trusted” or “suspended”. Setting the status of a certificate authority allows it to be temporarily
added and removed from the trust fabric. For instance, if the security of a CA has been
compromised, its status can be set to “suspended” to quickly invalidate all certificates issued
and signed by the CA. For each trusted certificate authority, the GTS maintains a Certificate
Revocation List (CRL). The CRL contains a list of certificates that have been revoked by the CA.
To add a CA to the GTS, use the following steps.

1. Click the Add Trusted Authority button from the Trusted Certificate Authority
Management window (Figure 5-18). The Add Trusted Authority window opens (Figure
5-19).

2. To add a CA, you must provide the CA certificate in PEM format. Click the Import
Certificate button to prompt you to specify the location of the CA certificate. Once you
have specified the CA certificate, the Trusted Authority Name is set to the subject DN of
the certificate you specified. If you click Certificate tab, the details of the imported
certificate display.

3. Next specify the level of trust that should be placed in this certificate authority. Click the
Trust Levels tab. The trust levels supported by the GTS display. Select the trust levels
that you wish to assign to this CA. By default the status of the CA is set to “Trusted”.

4. To change this, click the Properties tab. Optionally, if the CA has a CRL, you may
import it. Like the CA certificate the CRL must be in PEM format. To import the CA’s
CRL, click the Import CRL button. This prompts you to specify the location of the CRL.
Click the Certificate Revocation List tab to show you the details of the CRL.

5. Once the required information is provided, submit the CA to the GTS by clicking the Add
Trusted Authority button.

Chapter 5 Security Administration

77

Figure 5-19 GTS: Add Trusted Authority

Viewing/Modifying Trusted Certificate Authorities

To view or modify a Trusted Certificate Authority, use the following steps.

1. From the Trusted Certificate Authority Management window (Figure 5-18), select the
certificate authority to view/modify and click the View/Modify Trusted Authority button.

2. The View/Modify Trusted Authority window opens (Figure 5-20), which is a window
containing four tabs.

• The Properties tab contains various metadata about the certificate authority including
the Trusted Authority Name, Status, Is Authority, Authority GTS, Source GTS, Expires,
and Last Updated. The “Trusted Authority Name” field specifies the subject
distinguished name (DN) in the CA’s certificate. The “Status” field specifies the current
state of the certificate authority; the status can be set to “trusted” or “suspended”.
Setting the status of a certificate authority allows it to be temporarily added and
removed from the trust fabric. For instance, if the security of a CA has been
compromised, its status can be set to “suspended” to quickly invalidate all certificates
issued and signed by the CA. The “Status” field can be modified. The remaining fields
in the “Properties” tab correspond to the federated nature of the GTS. For more details
on the federated nature of GTS and on managing a federated trust fabric, refer to

caGrid 1.0 User’s Guide

 78

Managing a Federated Grid Trust Fabric on page 79. The “Is Authority” field specifies
whether or not the GTS is the authority for the certificate authority. The “Authority
GTS” field specifies the URL of the authority GTS for the certificate authority. The
“Source GTS” listing specifies the URL of the GTS in which the GTS discovered or
obtained the certificate authority from. The “Expires” field specifies when the certificate
authority listing within the GTS expires, a certificate authority can expire if it was
discovered from another GTS and communication with the other GTS is lost. If the
GTS is the authority for the certificate authority it never expires. The “Last Updated”
field specifies that last time the certificate authority listing was updated.

• The Trust Levels tab contains a listing of all the trust level supported by the GTS. The
trust levels, in which the certificate authority is assigned, are selected in the listing.
The trust levels for the certificate authority can be modified by selecting an un-
selecting specific trust levels.

• The Certificate tab presents a graphical view of the certificate authority’s certificate,
and cannot be modified. The CRL represented in the Certificate Revocation List tab
can be modified by clicking the Import CRL button. This prompts you to specify the
location of the CRL on the file system. It is important to note that the CRL must be in
PEM format.

3. To update a certificate authority, select the desired changes and click the Update
Trusted Authority button.

Figure 5-20 GTS: View/Modify Trusted Authority

Chapter 5 Security Administration

79

Removing Trusted Certificate Authorities

To remove a Trusted Certificate Authority, select the certificate authority to remove from the
Trusted Certificate Authority Management window (Figure 5-18) and click the Remove
Trusted Authority button.

Managing a Federated Grid Trust Fabric

Redundancy and scalability are critical properties of a federated trust fabric. Serious
performance implications will occur if all entities in the grid are discovering and performing
validation against a trust fabric maintained in a central GTS. In order to enable a federated trust
fabric, each GTS can be administered to synchronize with a set of authoritative GTSs. GTSs
can inherit both trust levels and trusted certificate authorities from its authority GTSs.
Registering an authority GTS requires the specification of the following properties:

• a service’s uniform resource identifier (URI)

• priority

• whether or not to synchronize the trust levels

• time to live

• whether or not to perform authorization

• the authority service’s identity

The priority property is used for resolving conflicts between authority GTSs. For example, if
two authority GTSs have a listing for the same certificate authority, the authority GTS with the
highest priority is used for obtaining that certificate authority and its corresponding information
(e.g. it’s CRL). If contact to an authoritative GTS is lost for a significant amount of time, the
trust fabric within the subordinate GTS may become significantly out of date, which could be a
potential security risk. The time to live property specifies how long certificate authorities
obtained from authoritative GTSs are valid in the subordinate GTS. The time to live on a given
certificate authority record is reset after each synchronization with the authority GTS. If contact
with an authority GTS is lost, the time to live expires and the certificate authority is removed
from the subordinate’s trust fabric.

Figure 5-21 illustrates an example of how multiple GTSs can be deployed to create and
manage a federated trust fabric. In the example there are five GTSs: caGrid GTS, TeraGrid
GTS, OSU GTS, caGrid/TeraGrid GTS, and UT GTS.

• The caGrid GTS has no authority GTSs; it manages the certificate authorities A and S.

• The TeraGrid GTS has no authority GTSs; it manages the certificate authorities X and S.

• The OSU GTS has one authority GTS, the caGrid GTS. The OSU GTS inherits the
certificate authorities A and S from its authority the caGrid GTS. The OSU GTS manages
an additional certificate authority B. The OSU GTS is an example of how the global trust
fabric can be extended to include local trusted certificate authorities, in this case, and the
additional certificate authority CA B, which is trusted by OSU.

caGrid 1.0 User’s Guide

 80

• The caGrid/TeraGrid GTS has two authority GTSs: the caGrid GTS and the TeraGrid GTS.
The TeraGrid GTS inherits CA A from the caGrid GTS and CA X from the TeraGrid GTS.
Since the caGrid GTS has a higher priority then the TeraGrid GTS, it inherits CA S from
the caGrid GTS. The caGrid/TeraGrid GTS is an example of how two existing trust fabrics
from two different Grids can be joined together.

• Finally the UT GTS has one authority GTS, the TeraGrid GTS. The UT GTS inherits CA X
and CA S from the TeraGrid GTS. The UT GTS is an example of standing up a GTS for
better redundancy and scalability.

Federated Trust Fabric

caGrid
GTS

A
S

TeraGrid
GTS

X
S

OSU GTS

A (caGrid)
S (caGrid)

B

caGrid/
TeraGrid
A (caGrid)
S (caGrid)

X (TeraGrid)

UT GTS

X (TeraGrid)
S (TeraGrid)

Priority
1

Priority
1

Priority
2

Priority
1

Figure 5-21 Federated Grid Trust Fabric

The GAARDS UI facilitates the management of a federated trust fabric through the
administration of Authority GTSs. A GTS with an Authority GTS inherits its trust levels and
trusted certificate authorities. Authority GTS(s) are managed through the GTS Authority
Management window (Figure 5-22). You must be a GTS administrator to manage Authority
GTSs, thus grid credentials are required.

To obtain grid credentials, use the following steps.

1. Click the Login button on the toolbar in the GAARDS UI. For more information on
obtaining grid credentials, refer to Logging onto the Grid on page 95.

2. To launch the GTS Authority Management window, click the Trust Management
button on the toolbar. Select Manage Authorities from the menu window that opens
and click the Select button.

3. To list all the authorities for a GTS, select the GTS URI from the Service drop down.
Next select the grid credentials that should be used to authenticate to the GTS from the
Proxy drop down.

4. Finally, click the Find Authorities button to list all the Authority GTSs in the table below
the progress bar. Each Authority GTS is listed with its service URL and priority; the

Chapter 5 Security Administration

81

priority dictates how conflicts are resolved between authorities. For example if a GTS
has two authorities that manage the same certificate authority, the GTS inherits the
certificate authority from the Authority GTS with the higher priority (lowest number).

Figure 5-22 GTS: Authority Management

Adding an Authority GTS

To add an Authority GTS, use the following steps.

1. Click the Add Authority button, which opens the Add Authority window. Adding an
Authority GTS requires specifying the URI of the authority GTS.

2. Next specify a priority with respect to other Authority GTSs. Then specify whether or not
the GTS should synchronize or inherit the trust levels from its Authority GTS. Also
specify whether or not the GTS should perform authorization on the Authority GTS. If
performing authorization is chosen, the expected grid identity of the Authority GTS must
be provided. Finally, specify a time to live for trusted authorities inherited from the
authority GTS. For example, if the time to live specified is an hour, certificate authorities
inherited are removed from the local GTS trust fabric after an hour if contact to the
authority GTS is lost.

caGrid 1.0 User’s Guide

 82

Figure 5-23 GTS Add Authority

Updating an Authority GTS

To update an Authority GTS, use the following steps.

1. Click the Update Authority button on the GTS Authority Management window (Figure
5-22), which opens the Update Authority window.

2. You may update whether or not the GTS should synchronize or inherit the trust levels
from its Authority GTS. You may also update the authorization constraints for the
Authority GTS as well as the time to live for trusted certificate authorities obtained from
the authority GTS. You may not update the Authority GTS URI or priority However, the
priorities of Authority GTSs may be updated through the GTS Authority Management
window (Figure 5-22).

Chapter 5 Security Administration

83

 Figure 5-24 GTS: Update Authority

Prioritizing an Authority GTS

To prioritize the Authority GTSs, use the following steps.

1. In the GTS Authority Management window (Figure 5-22), select the desired Authority
GTS to change the priority of. Select the Increase Priority button to increase the priority
of the selected Authority GTS or select the Decrease Priority button to decrease the
priority of the selected Authority GTS. Remember the Authority GTS with the lowest
number has the highest priority.

2. Once the priorities of the Authorities GTSs are organized properly, select the Update
Priorities button to commit the priorities to the GTS.

Removing an Authority GTS

To remove Authority GTSs through the GTS Authority Management window (Figure 5-22),
select the desired Authority GTS to remove and click the Remove Authority button.

Syncing With the Trust Fabric

The Globus Toolkit facilitates the authentication of clients against a list of trusted certificate
authorities. This consists of validating the client’s certificate to ensure that it was issued and
signed by a trusted certificate authority. The Grid Trust Service (GTS) maintains the trusted
certificate authorities or trust fabric for caGrid. In order for Globus to authenticate users against
the trust fabric, both client and server caGrid installations must be synched with the trust fabric.

caGrid 1.0 User’s Guide

 84

The SyncGTS tool provides three methods for syncing with the trust fabric: 1) Command Line,
2) Service Based, and 3) Programmatic. For the purpose of this guide, directions are provided
for the command line and service based approaches.

Synchronization Description

SyncGTS uses an XML file to describe what and how to synchronize the local environment with
the trust fabric. This XML file is referred to as sync description and is located at:

 SyncGTS_Installation _Directory/etc/sync-description.xml

Figure 5-24 provides a graphical overview of the XML schema representing the sync
description. The root element SyncDescription contains four child elements: SyncDescriptor,
Excluded CAs, DeleteInvalidFiles, and NextSync.

Figure 5-25 SyncGTS: Sync Description

The SyncDescriptor element (Figure 5-26) provides details on which GTSs to sync with and the
criteria to sync on. The gtsServiceURI child element should contain the URI of the GTS to sync
with. Each time the SyncGTS, syncs it removes all previously discovered certificate authorities
from the trust list unless they are excluded or unless they were discovered earlier and the
expiration time attached to the sync has not yet expired. The Expiration child element specifies
how long certificate authorities discovered during this sync should be valid, providing such a
buffer is important in handling unexpected errors such as a short term network outage. The
TrustedAuthorityFilter child element specifies the criteria that must be met in order for a
certificate authority managed by a GTS to be trusted within the context of a local environment.

The following synchronization criteria may be specified per synchronization:

• Name – The name of the certificate authority within the GTS.
• CertificateDN – The Certificate Authority’s subject within its certificate.
• Trust Level(s) - A trust level specifies the level of confidence in which a given certificate

authority is trusted in the grid. Each certificate authority can be assigned a set of trust levels.
The TrustLevels element specifies a set of trust levels you require CAs to be assigned in
order to trust them.

• Lifetime – In a federated trust fabric GTSs inherit certificate authorities from other GTSs.
Certificate Authorities are inherited for a specified period of time which expires if not
renewed. This element allows you to specify whether or not you will accept those CAs
whose lifetime expired.

Chapter 5 Security Administration

85

• Status - Specifies the current state of the certificate authority; this allows a certificate
authority to be temporarily added and removed from the trust fabric. For instance, if the
security of a CA has been compromised, its status can be set to “suspended” to quickly
invalidate all certificates issued and signed by the CA.

• IsAuthority - Specifies whether or not the GTS is required to be the authority for candidate
certificate authorities.

• SourceGTS – Specifies which GTS must be the source of candidate certificate authorities.
• AuthorityGTS - Specifies which GTS must be the authority of candidate certificate

authorities.

Figure 5-26 SyncGTS: Sync Descriptor

The PerformAuthorization child element specifies whether or not to perform authorization
against the GTS being synced with, if performing authorization is request, the GTSIdentity
element should contain the grid identity of the GTS being synced with.

caGrid 1.0 User’s Guide

 86

Note that there can be multiple SyncDescriptor(s) in a sync description, SyncGTS will process
the SyncDescriptors in the order that they exist in the document. If a conflict is discovered
between SyncDescriptors, the information obtained from the SyncDescriptor appearing earliest
in the document is used. For example, if a certificate authority is discovered twice (through two
different SyncDescriptors), the certificate authority’s certificate and CRL obtained from the
earlier SyncDescriptor is included in the trust list.

As mentioned earlier, each time the SyncGTS syncs it removes all previously discovered
certificate authorities from the trust list unless they are excluded or unless they were discovered
earlier and the expiration time attached to the sync has not yet expired. The ExcludedCAs
element contains a list of all the CAs (by subject) that should never be removed. CAs listed in
the exclude list are generally those that are used for bootstrapping the trust fabric or are outside
the trust fabric. SyncGTS also provides the ability to remove any unexpected files that may exist
in the Globus trusted certificates directory, the DeleteInvalidFiles element allows this to be
specified. Finally, the NextSync element specifies how often (in seconds) the SyncGTS should
sync with the trust fabric. This element is only used if SyncGTS is asked to run constantly, such
as the service base approach.

Building SyncGTS

To build the SyncGTS, enter ant clean all from the SyncGTS installation directory. Depending
on the distribution obtained, you may be required to build from the root distribution directory to
ensure that the SyncGTS is provided with all of its dependencies.

Running SyncGTS

The SyncGTS command line utility can be used to sync once with the trust fabric, meaning your
environment will authenticate users and services against the trust fabric at the point in time in
which you last synced. This command line approach is recommended for clients and is not
recommended for servers. To sync once using the command line approach, enter the command
ant syncWithTrustFabric from the installation directory. Under the service-based approach, the
SyncGTS is deployed to a Globus service container and synchronizes with the GTS every X
seconds. The service-base approach is recommended for server environments that are
constantly inheriting changes in the trust fabric. To deploy the SyncGTS to a service container,
enter the following from the SyncGTS installation directory:
Deploy to a Globus Container:

ant deployGlobus

Deploy to a Tomcat Container:

ant deployTomcat

Grid User Management
Managing users and provisioning accounts in the grid is complex. The Globus Toolkit
implements support for security via its Grid Security Infrastructure (GSI). GSI utilizes X509
Identity Certificates for identifying a user. An X509 Certificate with its corresponding private key
forms a unique credential or so-called “grid credential” within the grid. Since grid credentials are

Chapter 5 Security Administration

87

long term credentials and are not directly used in authenticating users to the grid, a short term
credential called a grid proxy is used. Grid Proxies consist of a private key and corresponding
long term certificate signed by the long term grid credential private key. A Grid Proxy is an
extension to traditional X509 certificates providing the ability to delegate your credentials to
other services, for example in the case of workflow. Although this approach is effective and
secure, it is difficult to manage in a multi-institutional environment. Using the base Globus
toolkit, the provisioning of grid credentials is a manual process, which is far too complicated for
users. The overall process is further complicated if a user wishes to authenticate from multiple
locations, as a copy of their private key and certificate has to be present at every location. Not
only is this process complicated, securely distributing private keys is error prone and poses a
security risk. There are also many complexities in terms of provisioning user accounts in an
environment consisting of tens of thousands of users from hundreds of institutions, each of
which most likely has a user account at their home institution.

A practical solution to this problem, both from the users’ point of view and their institutions is to
allow those users to authenticate with the grid through the same mechanism in which they
authenticate with their institution. Dorian is a grid user management service that (1) hides the
complexities of creating and managing grid credentials from the users and (2) provides a
mechanism for users to authenticate using their institution’s authentication mechanism,
assuming a trust agreement is in place between Dorian and the institution.

Dorian provides a complete grid-enabled solution, based on public key certificates and SAML,
for managing and federating user identities in a grid environment. Grid technologies have
adopted the use of X509 identity certificates to support user authentication. The Security
Assertion Markup Language (SAML) has been developed as a standard for exchanging
authentication and authorization statements between security domains. Note that grid
certificates and SAML assertions serve different purposes. SAML is mainly used between
institutions for securely exchanging authentication information coming from trusted identity
providers. The primary use of the certificates is to uniquely identify Grid users, facilitate
authentication and authorization across multiple resource providers, and enable secure
delegation of credentials such that a service or a client program can access resources on behalf
of the user. A salient feature of Dorian is that it provides a mechanism for the combined use of
both SAML and grid certificates to authenticate users to the grid environment through their
institution’s authentication mechanism.

One of the challenges in building an identity management and federation infrastructure is to
create an architecture that incorporates multiple differing authentication mechanisms used by
various institutions. In addressing this challenge two possible approaches are identified. The
first is to build an infrastructure that would allow pluggable authentication modules, wherein a
module would be developed for each authentication mechanism. In this architecture, a user’s
authentication information would be routed to the appropriate module that contains the logic for
authenticating the user with its institution. Although this approach solves the problem, it requires
at least one module be developed for each authentication mechanism. This would require the
Grid infrastructure administrators to become intimately familiar with each institution’s
authentication mechanisms, and would increase the system’s complexity with each new module
added.

caGrid 1.0 User’s Guide

 88

Another approach is for the infrastructure to accept an institutionally supplied, standard “token”
as a method of authentication. In this approach, users first authenticate with their institution’s
identity management system. Upon successfully authentication the institution’s identity
management system issues a token which can then be given to the federated grid identity
management system in exchange for grid credentials. The benefit of this approach over the first
is that it does not require writing a plug-in every time a new institutional authentication
mechanism comes online. It does, however, require every institutional authentication system to
agree upon and be able to provide a common token. As SAML has been adopted by many
institutions, the token format was chosen as the basis of the second approach for Dorian.

The Security Assertion Markup Language (SAML) is an XML standard for exchanging
authentication and authorization data between security domains. Generally the exchange of
authentication and authorization data is made between an Identity Provider (IdP) and another
party. An institution’s authentication system or identity management system is an example of an
IdP. Dorian uses SAML authentication assertions as the enabling mechanism for federating
users from local institutions to the grid.

Figure 5-27 illustrates an example usage scenario for Dorian. To obtain grid credentials or a
proxy certificate, users authenticate with their institution using the institution’s conventional
mechanism. Upon successfully authenticating the user, the local institution issues a digitally
signed SAML assertion, vouching that the user has authenticated. The user then sends this
SAML assertion to Dorian in exchange for grid credentials. Dorian only issues grid credentials to
users that supply a SAML assertion from a Trusted Identity Provider. Dorian’s grid service
interface provides mechanisms for managing trusted identity providers; this is discussed in
greater detail later in this guide. For example, in Figure 5-27 where a Georgetown user wishes
to invoke a grid service that requires grid credentials, they first supply the application with their
username and password to the Georgetown Authentication Service as they would normally do.
The application client authenticates the Georgetown user with the Georgetown Authentication
Service, receives a signed SAML assertion which it subsequently passes to Dorian in exchange
for grid credentials. These credentials can then be used to invoke the grid services. This
illustrates how Dorian can leverage an institution’s existing authentication mechanism and bring
its users to the grid.

Chapter 5 Security Administration

89

Figure 5-27 Dorian

To facilitate smaller groups or institutions without an existing IdP, Dorian also has its own
internal IdP. This allows users to authenticate to Dorian directly, thereby enabling them to
access the grid. It provides administrators with facilities for approving and managing users. All
of the Dorian IdP’s functionality is made available through a grid service interface. Details of the
Dorian IdP are provided later in this document. Figure 5-27 illustrates a scenario of a client
using the Dorian IdP to authenticate to the Grid. In this scenario, the unaffiliated User wishes to
invoke a grid service. Given that this unaffiliated user has registered and been approved for an
account, she is able to authenticate with the Dorian IdP by supplying their username and
password. Upon successfully authenticating the user, the Dorian IdP issues a SAML Assertion
just like institutional IdPs, which can be presented to Dorian in exchange for grid credentials.
The credentials can be used to invoke the grid service.

Dorian Software Prerequisites

Table 5-2 lists the software prerequisites for Dorian.

Software Version Description

Java SDK

jsdk1.5 or higher Dorian is written in Java therefore it requires the
Java SDK. After installing you will have to set up an
environmental variable pointing to the Java SDK

caGrid 1.0 User’s Guide

 90

Software Version Description

directory and name it JAVA_HOME.

Mysql Mysql 4.1.x or higher For persisting the user accounts and other
information.

Ant Ant 1.6.5 Dorian along with the Globus Toolkit requires
Jakarta Ant for building and deploying.

Globus Globus 4.0.3 Dorian is built on top of the Globus Toolkit. Dorian
requires the ws-core installation of the Globus
Toolkit.

Tomcat

(Only
required if
deploying to
Tomcat)

Tomcat 5.0.30 Dorian can be optionally deployed as a Grid Service
to a Tomcat deployed Globus Toolkit.

Table 5-2 Software prerequisites for Dorian

Building Dorian

To build Dorian, enter ant clean all from the Dorian installation directory. Depending on the
distribution obtained you may be required to build from the root distribution directory to ensure
that Dorian is provided with all of its dependencies.

Configuring Dorian

Dorian is configured through a single configuration file which is located at
DORIAN_INSTALLATION_DIRECTORY/etc/dorian-conf.xml. Dorian uses a Mysql
Database as its backend data store; you must provide Dorian with the connection details for
your Mysql database (Figure 5-30). The database element in the Dorian configuration file is
used to specify the connection information for your Mysql database. In the majority of cases you
will only need to specify the hostname of your database server, the port that the server runs on,
and the username and password of a database user. When Dorian is first initialized it creates a
database named with the value of the dorian-internal-id element. Dorian also proceeds to setup
its database schema in the database it created. In order to do so Dorian needs to be configured
with a database user that has the appropriate permissions. If you do not wish to provide Dorian
with such a user you may create the database manually and provide Dorian with a user who has
the permission to modify the database schema. In this scenario Dorian will not create the
database but will proceed to setup its database schema in the database that was manually
created.

Chapter 5 Security Administration

91

Figure 5-30 Dorian Database Configuration

Dorian Identity Provider Configuration

The Dorian Identity Provider is configured in the idp-config element, shown in Figure 5-31. The
uid-length element allows the minimum and maximum user id length to be specified. The
password-length element allows the minimum and maximum password length to be specified.
The registration-policy element specifies the registration policy to use. The registration policy
tells the Dorian IdP what to do when a new user registers.

The Dorian IdP supports two types of registration policies; manual and automatic. A manual
registration policy requires administrators to approve new accounts; an automatic registration
process automatically approves new accounts.

• To specify a manual registration policy set the class attribute of the registration-policy
element equal to gov.nih.nci.cagrid.dorian.service.idp.ManualRegistrationPolicy.

• To specify an automatic registration policy set the class attribute of the registration-policy
element equal to gov.nih.nci.cagrid.dorian.service.idp.AutomaticRegistrationPolicy.

 The asserting-credentials element specifies the configuration for the Dorian IdP’s signing
credentials or the credentials Dorian uses in signing SAML Assertions. Currently the DorianIdP
automatically generates a set of signing credentials which are signed by the Dorian certificate
authority. In the future the Dorian IdP may allow the signing credentials to be imported. With
that said the auto attribute is required to be set to true. The renew attribute specifies whether
or not the Dorian IdP should renew the signing credentials once they expire. The key-

<dorian-config>

 <dorian-internal-id>DORIAN</dorian-internal-id>

 <database>

 <name/>

 <driver>com.mysql.jdbc.Driver</driver>

 <urlPrefix>jdbc:mysql:</urlPrefix>

 <host>localhost</host>

 <port>3306</port>

 <username>root</username>

 <password></password>

 <pool>1</pool>

 </database>

</dorian-config>

Figure 5-29 Figure 5-28

caGrid 1.0 User’s Guide

 92

password attribute specifies the password to user in encrypting the private key of the signing
credentials; the private key will be stored in Dorian’s database.

Figure 5-31 Dorian IdP Configuration

Dorian Identity Management Configuration

The Identity Management aspects of Dorian are configured in the ifs-config element. The idp-
name element allows the specification of a minimum and maximum IdP name length. The
credential-valid element specifies how long a user’s long term grid credentials are valid for from
the time they are created. This lifetime of the grid credentials is limited by the lifetime of the
certificate authority, in cases where the lifetime of the grid credentials exceeds the lifetime of the
CA, the grid credentials will be issued with the same life time as the CA. The max-proxy-lifetime
element specifies the maximum amount of time that a user may request a proxy certificate to be
created for. The policies element specifies a list of user policies that are supported by the
Dorian. These policies designate how Dorian should handle users from a specified Identity
Provider. Policies generally dictate what to do when a new user is encountered and what to do
when a user’s long term certificate expires. Currently Dorian supports four policies:

1) Auto Approval / Auto Renewal – A new user is automatically registered and given access
to the grid. (user’s status is active) When a user’s whose long term certificate expires it is
automatically renewed.

2) Auto Approval / Manual Renewal – A new user is automatically registered and given
access to the grid. (user’s status is active) When a user’s whose long term certificate
expires, an administrator is required to manually renew it.

3) Manual Approval / Auto Renewal – A new user is automatically registered but not granted
access, and administrator is required to grant access. (user’s status is pending) When a
user’s whose long term certificate expires it is automatically renewed.

4) Manual Approval / Manual Renewal – A new user is automatically registered but not
granted access, and administrator is required to grant access. (user’s status is pending)
When a user’s whose long term certificate expires, an administrator is required to manually
renew it.

Besides the four policies released with Dorian, you may also create your own by providing an
implementation of the gov.nih.nci.cagrid.dorian.service.ifs.UserPolicy class. The gts-services
element specifies the GTS(s) in which Dorian should publish its certificate authority CRLS. In
order for Dorian to publish CRLS to a GTS, the Dorian Certificate Authority must be registered
in the GTS as a trusted authority. Dorian must also be granted permission within the GTS to
publish a CRL for its certificate authority.

<idp-config>

 <uid-length min="4" max="10"/>

 <password-length min="6" max="10"/>

 <registration-policy class="gov.nih.nci.cagrid.dorian.service.idp.ManualRegistrationPolicy"/>

 <asserting-credentials auto="true" renew="true" key-password="idpkey"/>

</idp-config>

Chapter 5 Security Administration

93

Figure 5-32 Dorian Identity Management Configuration

Dorian Certificate Authority Configuration

Dorian maintains its own certificate authority, which it uses to issue and revoke grid credentials.
Depending on your deployment requirements, Dorian can either be configured to use an
existing certificate authority or it can generate a new certificate authority. The dorian-ca-config
element in the Dorian configuration specifies the configuration details for Dorian’s certificate
authority. The auto-create element specifies to Dorian whether or not it should create a new
certificate authority. To instruct Dorian to create a new certificate authority set value of the
enabled element to true, if you wish Dorian to use an imported or existing certificate authority
set the value of the enabled attribute to false. If you have configured Dorian to create a new
certificate authority, you must also specify a time-valid element, which instruct Dorian how long
the new certificate authority should be valid for. You must also specify a Subject DN for the new
certificate authority; this can be done in the ca-subject element by specifying the Subject DN for
the value of the dn attribute. It is critical that the DN specified does not conflict with the DN of
any other certificate authorities in the grid. Figure 5-33 illustrates an example of a configuration
that specifies the creation of a new certificate authority.

<ifs-config>

 <idp-name-length min="4" max="255"/>

 <credentials-valid years="1" months="0" days="0" hours="0" minutes="0" seconds="0"/>

 <max-proxy-lifetime hours="12" minutes="0" seconds="0"/>

 <policies>

 <policy name="Manual Approval / Manual Renewal"
 class="gov.nih.nci.cagrid.dorian.service.ifs.ManualApprovalPolicy"/>

 <policy name="Manual Approval / Auto Renewal"
 class="gov.nih.nci.cagrid.dorian.service.ifs.ManualApprovalAutoRenewalPolicy"/>

 <policy name="Auto Approval / Manual Renewal"

 class="gov.nih.nci.cagrid.dorian.service.ifs.AutoApprovalPolicy"/>

 <policy name="Auto Approval / Auto Renewal"
 class="gov.nih.nci.cagrid.dorian.service.ifs.AutoApprovalAutoRenewalPolicy"/>

 </policies>

 <gts-services>

 <gts-service>https://cagrid01.bmi.ohio-state.edu:8442/wsrf/services/cagrid/GTS</gts-service>

 </gts-services>

</ifs-config>

caGrid 1.0 User’s Guide

 94

Figure 5-33 Dorian Certificate Authority Configuration (Auto Created)

Figure 5-34 illustrates an example of a configuration that specifies the use of an existing
certificate authority. If you have configured Dorian to user an existing certificate authority you
must import it before running Dorian for the first time. This can be done from the Dorian
installation directory by typing ant importCA, doing to will run a command line program that will
prompt you for the location of the certificate and private key of the certificate authority. It
should be noted that the import tool requires both the certificate and private key to be in PEM
format. You will be also asked to provide a password, if it is needed to decrypt the private key.

Figure 5-34 Dorian Certificate Authority Configuration (Imported)

Despite whether your configuration specifies to create a new certificate authority or use an
existing one, you should specify a password that Dorian should use for encrypting the CA
private key in the database; this is done in the ca-password element. It should be noted that the
ca-password element should be configured before importing a certificate authority, since the
import tool will used the ca password specified when encrypting the CA private key. The auto-
renewal element in the Dorian CA configuration instructs Dorian what to do when a certificate
authority expires. If auto renewal is enabled Dorian will renew the certificate authority when it
expires for the lifetime specified. If auto renewal is disabled, Dorian will allow the certificate
authority to expire, invalidating any grid user accounts that it manages.

<dorian-ca-config>

 <ca-password value="admin"/>

 <auto-create enabled="true"/>

 <time-valid years="5" months="0" days="0" hours="0" minutes="0" seconds="0"/>

 <ca-subject dn="O=OSU,OU=BMI,OU=caGrid,OU=Dorian,OU=localhost,CN= Dorian CA"/>

 </auto-create>

 <auto-renewal enabled="true" years="5" months="0" days="0" hours="0" minutes="0"
seconds="0"/>

</dorian-ca-config>

<dorian-ca-config>

 <ca-password value="admin"/>

 <auto-create enabled="false"/>

 <auto-renewal enabled="true" years="5" months="0" days="0" hours="0" minutes="0" seconds="0"/>

</dorian-ca-config>

Chapter 5 Security Administration

95

Deploying Dorian

Dorian can be deployed to either a HTTPS secure Globus container or an HTTPS secure
Tomcat container. It is assumed that both Dorian and the container Dorian is being deployed to
have been properly configured prior to deployment. Dorian can be deployed to a Globus
container by entering ant deployGlobus from the Dorian installation directory. Likewise Dorian
can be deployed to a Tomcat container by entering ant deployTomcat from the Dorian
installation directory.

Setting the Default Administrator Account

When Dorian is first run, it creates an administrative account with the username dorian within
the Dorian IdP. By default the dorian user will be able to administer both the Dorian IdP and all
aspects of the identity management and federation components of Dorian. The default
password for the dorian account is password, we recommend that you change the password
immediately; this can be done through the local user management interface of the Dorian IdP,
which will be discussed in the “Managing Dorian IdP Users” section of this document. In the
future you may wish to provision administrative rights to other or “real” users once they have
Dorian accounts, at which time you can disable or revoke privileges on the dorian account.

Logging onto the Grid

The GAARDS UI provides the ability to create and manage grid proxies/credentials. To obtain
grid credentials, use the following steps.

1. Click the Login button on the toolbar in the GAARDS UI to open the Create Proxy or
login window (Figure 5-35).

2. To login, first specify the Dorian that maintains your grid user account by selecting the
Dorian URI from the Identity Federation Service drop down. The GAARDS UI is pre-
configured with a list of Dorian’s through its configuration file. If the Dorian you wish to
select is not in the list, enter it.

3. Select the lifetime of your grid proxy; this is how long your credentials are good for.
Select from the Lifetime drop downs for hours, minutes, and seconds.

4. Specify how many times your credentials can be delegated. Delegating your credentials
gives another party the ability to act on you behalf or as you. For example if you allow a
delegation path length of 1, you allow a grid service you connect with to connect to
another grid service as you. However, the second grid service would not be able to
connect to another grid service as you. By default the delegation path length is set to 0,
and in most cases it will not need to be increased. If you wish to increase the delegation
path length, change the Delegation Path Length text field.

5. Specify the Identity Provider you wish to authenticate with by selecting your Identity
Provider from the Identity Provider drop down. After selecting your Identity Provider,
input fields display requesting the Authentication Information required by the selected

caGrid 1.0 User’s Guide

 96

Identity Provider. Provide the information requested. For example in Figure 5-35, a
Dorian IdP is selected. Since the Dorian IdP requires a user id and password, input
fields display. The GAARDS UI is pre-configured with a list of Identity Providers if your
Identity provider is not listed in the Identity Provider drop down. Add it by editing the
GAARDS UI configuration file.

6. Once you have entered the required IdP Authentication Information, click the
Authenticate button to 1) authenticate you with your Identity Provider, 2) obtain a SAML
Assertion from your Identity Provider, and 3) contact Dorian using the SAML Assertion to
facilitate the creation of a grid proxy. Once the grid proxy is created the Create Proxy
window closes and the Proxy Manager window (Figure 5-36) opens with the newly
created proxy shown. The Proxy Manager window allows the management of grid
proxies or grid credentials that you locally created. For details on the Proxy Manager
window, refer to the next section Managing Grid Proxies.

Figure 5-35 Dorian: Login / Create Proxy UI

Managing Grid Proxies
The Proxy Manager window (Figure 5-36) allows the management of grid proxies or grid
credentials that you have locally created. This window is accessible after logging into Dorian or
it is directly accessible through the GAARDS UI as follows.

1. Click the Grid Account Management button to open the Identity Federation menu.
Select Proxy Management and click the Select button.

2. The Select Proxy drop down contains a list of all the non-expired proxies that you
created with the addition of the default proxy. Generally Globus clients use the default
proxy to connect to grid services if no other proxy is selected. To set the default proxy,
select the proxy you wish to make the default from the Select Proxy drop down and

Chapter 5 Security Administration

97

click the Set Default button. Selecting a proxy from the drop down displays some
information about the proxy as well as the certificate chain for the proxy. The Proxy
information includes the subject of the proxy certificate, the issuer of the proxy
certificate, the grid identity, the strength of the proxy certificate, and when the proxy
expires. The certificate chain table lists each certificate in the proxies certificate chain,
with the proxy certificate listed first. You can view the details of a certificate in the chain
by selecting it and by clicking the View Certificate button.

3. Finally, you can delete a proxy by selecting the proxy to delete from the Select Proxy
drop down. Click the Delete Proxy button.

Figure 5-36 Dorian: Proxy Manager UI

Managing Trusted Identity Providers

In order for Dorian to issue grid proxies to a user using their institution provided credentials, the
institution’s Identity Provider (IdP) must be registered with and trusted by Dorian. IdPs
registered with and trusted by Dorian are referred to as Trusted Identity Providers (Trusted
IdPs). The set of Trusted IdPs can be managed by Dorian administrators through the GAARDS
UI, which provides the ability for remotely adding, modifying, and removing Trusted IdPs. A
Trusted IdP consists of the following information: IdP Id, IdP Name, IdP Status, User Policy,
Certificate, acceptable authentication methods, and attribute specifications. The IdP Id is a
unique id assigned by Dorian to identify the IdP. The IdP name is assigned by an administrator
and provides human readable name to easily identify an IdP. The IdP Status specifies the
current status of the IdP: Active or Suspended. The status of an IdP allows an administrator to
easily grant or suspend access to the grid for all users associated with an IdP. Each Trusted IdP

caGrid 1.0 User’s Guide

 98

is associated with a set of configurable User Policies that are applied to each user when they
authenticate. These policies designate how Dorian should handle users from a specified
Trusted IdP. Policies generally dictate what to do when a new user is encountered and what to
do when a user’s long term certificate expires. Currently Dorian supports four policies:

1. Auto Approval / Auto Renewal – A new user is automatically registered and given
access to the grid. (user’s status is active) When a user’s whose long term certificate
expires it is automatically renewed.

2. Auto Approval / Manual Renewal – A new user is automatically registered and given
access to the grid. (user’s status is active) When a user’s whose long term certificate
expires, an administrator is required to manually renew it.

3. Manual Approval / Auto Renewal – A new user is automatically registered but not
granted access, and administrator is required to grant access. (user’s status is pending)
When a user’s whose long term certificate expires it is automatically renewed.

4. Manual Approval / Manual Renewal – A new user is automatically registered but not
granted access, and administrator is required to grant access. (user’s status is pending)
When a user’s whose long term certificate expires, an administrator is required to
manually renew it.

When Dorian receives a SAML assertion from a Trusted IdP it verifies that the assertion was
signed with the private key that corresponds to the Trusted IdP’s certificate. Thus the Trusted
IdP’s certificate must be specified.

Each Trusted IdP must be configured with a list of acceptable authentication methods. A SAML
authentication assertion specifies the method in which the Trusted IdP authenticated the user.
In order for the SAML assertion to be accepted by Dorian, the authentication method specified
in the assertion must be specified as acceptable in the corresponding Trusted IdP.

Dorian requires the SAML assertions provided by Identity Provider’s to specify four attributes
which are maintained by Dorian for each user, such that Dorian and its administrators may
effectively administrate grid user accounts. These attributes include (1) user’s local unique user
id within the IdP, (2) user’s first name, (3) user’s last name, (4) user’s email address. In a SAML
Assertion attributes are specified with a namespace and name, because the naming of
attributes may differ from IdP to IdP, Dorian does not place requirements on how the attributes
are named within the SAML Assertion so long as the values of the attributes meet Dorian’s
formatting requirements. Therefore the namespace and name of each of the four attributes must
be specified for each Trusted IdP, such that Dorian knows what to look for when it receives a
SAML assertion from the IdP.

To manage Trusted IdPs through the GAARDS UI, use the following steps.

1. Click the Grid Account Management on the GAARDS UI toolbar to open the Identity
Federation menu. Select Manage Trusted IdPs and click the Select button.

2. The Trusted Identity Provider Management window opens (Figure 5-37). All the IdPs
trusted by a Dorian can be listed as follows:

• From the Service drop down, select the service URI of the Dorian you wish to list the
Trusted IdPs of, if it is not in the list enter it manually.

• From the Proxy drop down, select the proxy or credentials to use to authenticate to
Dorian. This must be a proxy of a Dorian administrator.

Chapter 5 Security Administration

99

• Click the Find Trusted Identity Providers button. The Trusted IdPs are listed in the
table below the progress bar. The list includes the Trusted IdP’s id, human readable
name, and status. In the example in Figure 5-37, there are two Trusted IdPs listed; the
first is Dorian’s Local IdP and the second is the Ohio State University IdP. Thus in the
example in Figure 5-37, Dorian would accept credentials from its local IdP and from
the Ohio State University.

Figure 5-37 Dorian: Trusted IdP Management Admin UI

Adding a Trusted Identity Provider

To add a Trusted IdP to Dorian, use the following steps.

1. Click the Add Trusted IdP button from the Trusted Identity Provider Management
window to open the Add Trusted IdP window. This (Figure 5-38) consists of three tabs,
each of which requires the information to be specified.

• IdP Information tab- specify the name, status, user policy, and acceptable
authentication methods.

• Certificate tab - specify the certificate that corresponds to the private key that is used
by the IdP in signing SAML Assertions that is issues. The certificate must be specified
in PEM format; click the Import Certificate button to open a file browser in which you
may browse to the certificate.

• Attributes tab - specify the namespace and name that the IdP uses for representing
each of the four required attributes in its SAML assertions, such that Dorian knows

caGrid 1.0 User’s Guide

 100

how to retrieve the attributes from the IdP’s SAML assertions.

2. Once you have specified all the required information, click the Add button to add the IdP
to Dorian as a Trusted IdP. Assuming you set the status of the newly added IdP to
active, Dorian immediately begins accepting SAML assertions from the IdP.

Figure 5-38 Dorian: Adding a Trusted Identity Provider Admin UI

Viewing/Updating a Trusted Identity Provider

To view/update a Trusted IdP, use the following steps.

1. Select the Trusted IdP of interest and click the View/Edit Trusted IdP button from the
Trusted Identity Provider Management window to open the Trusted IdP window. The
Trusted IdP window (Figure 5-39) consists of three tabs:

• IdP Information tab - update the name, status, user policy, and acceptable
authentication methods.

• Certificate tab - update the certificate that corresponds to the private key that is
used by the IdP in signing SAML Assertions that is issues. If you update the
certificate it must be specified in PEM format; click the Import Certificate button to
open a file browser in which you may browse to the certificate.

• Attributes tab - update the namespace and name that the IdP uses for
representing each of the four required attributes in its SAML assertions.

2. Once you have finished updating the Trusted IdP’s information click the Update button
to commit the changes, which take effect immediately.

Chapter 5 Security Administration

101

Figure 5-39 Dorian: View/Update Trusted IdP Admin UI

Removing a Trusted Identity Provider

To remove a Trusted IdP, select the Trusted IdP to remove from the Trusted Identity Provider
Management window and click the Remove Trusted IdP button. Removing a Trusted IdP will
remove all user accounts associated with the IdP, revoking access to all users associated with
the IdP.

Grid User Account Management

Managing grid users and provisioning grid user accounts is the ultimate goal of Dorian. Grid
user accounts are created the first time the user attempts to create a grid proxy with a SAML
Assertion signed by a Trusted Identity Provider. For each user Dorian maintains a local user id
within their IdP, the user’s first name, the user’s last name, and the user’s email address. The
information is obtained from the SAML Assertion presented to Dorian when creating a proxy.
When a user account is created, Dorian creates a long term certificate and private key for the
user, the user’s certificate is signed by Dorian’s certificate authority. Dorian maintains the user’s
private key and certificate locally and never distributes it to anyone. Dorian uses the user’s
private key and certificate in creating and signing grid proxies, in which the user will use to
authenticate to grid services. The subject of the user’s certificate is composed of (1) Information
from Dorian’s CA subject, (2) The id of the user’s IdP, and (3) the user’s local id within the IdP,
giving each user a unique identity in the grid. Each user account also has a status associated:

caGrid 1.0 User’s Guide

 102

Active, Suspended, Pending, or Expired. Only users with an Active status will be allowed access
to the grid. When a grid user account is first created, the initial status of the account depends on
the user policy configured with the user’s IdP. If a manual approval policy is specified, the initial
status of the grid user account will be Pending, if an automatic approval policy is specified, the
initial status of the grid user account will be Active. When a user’s long term certificate expires,
the status of the user’s account will be set to Expired if the user’s IdP specifies a manual
renewal policy. In this case an administrator will have to manually renew the user’s credentials
to grant the user access to the grid again. If however an auto renewal policy is specified for the
user’s IdP, Dorian will automatically renew the user’s long term certificate and private key, and
the user’s account status will remain Active. As mentioned earlier, users who account access is
not Active will not be able to create grid proxies; they will also be published in the Dorian
Certificate Authority’s Certificate Revocation List (CRL), which is published by Dorian to the Grid
Trust Service (GTS). Finally each user account is assigned a role within Dorian, either User or
Administrator. Users with the Administrator role may create grid proxies; administrate Trusted
IdPs, and grid user accounts within Dorian. User with the User role may only create grid proxies.

Use the following steps to administrate grid user accounts using the GAARDS UI.

1. Click the Grid Account Management button on the GAARDS UI toolbar to open the
Identity Federation menu. Select User Management and click the Select button.

2. The Identity Federation User Management window also known as the Grid User
Management window opens (Figure 5-40). From this window, you can search for grid
user accounts managed by Dorian, manage user accounts, and remove user accounts.
To list all grid user accounts managed by a Dorian, select the URI of the Dorian you are
interested in from the Service drop down. If the URI of the Dorian you are interested in
is not listed, enter it.

3. Select the grid proxy to use from the Proxy drop down. Select a proxy of a Dorian
administrator.

4. Finally, click the Find Users button to list all the grid user accounts managed by the
selected Dorian. To narrow your search, specify search criteria. Dorian supports the
following search criteria on grid user accounts: Identity Provider, user id, grid identity,
first name, last name, email, status, user status, and user role. For example if you wish
to search for all the accounts that are pending administrative approval, select Pending
from the User Status drop down.

Chapter 5 Security Administration

103

Figure 5-40 Dorian: Grid User Management Admin UI

User Account Management

Use the following steps to manage individual grid user accounts through the GAARDS UI.

1. Open the Identity Federation User Management window by first selecting the user of
interest and then clicking the Manage User button.

2. The Manage User window opens (Figure 5-41). From this window, you can change a
user’s account status. For example, in the case that the user’s IdP requires manual
approval you may change the status from Pending to Active. To revoke a user’s access
to the grid, change the user’s account status to Suspended. You may also change the
user’s role within Dorian. To grant administrative rights, change the user’s role from User
to Administrator. To revoke a user’s administrative rights, change the user’s role from
Administrator to User.

3. To commit changes made to a user’s status or a user’s role, click the Update User
button, which reflects the changes immediately.

Alternatively, you may renew a user’s long term certificate and private key. You may
want to do this if they have expired or if they are going to expire. Details on the user’s
long term certificate can be found in the Certificate tab. To renew a user’s long term
certificate and private key click the Renew Credentials button.

caGrid 1.0 User’s Guide

 104

Figure 5-41 Dorian: Manage Grid User Account Admin UI

Removing a Grid User Account

To remove individual grid user accounts through the GAARDS UI, do the following.

Open the Identity Federation User Management window by first selecting the user to remove
and then clicking the Remove User button. It is important to note that if you remove a grid user
account for a user, a new one will automatically be created if they try to create a proxy again.
Thus removing an account does not always revoke access to the grid. To disable access to the
grid, change the user’s account status to Suspended. In most cases grid user accounts should
only be removed if they are no longer affiliated with their Identity Provider.

Local Dorian Identity Provider

It is anticipated that most users will use their existing locally provided credentials for obtaining
grid credentials and only users that are un-affiliated with an existing credential provider should
register directly with Dorian. The Dorian Identity Provider (DorianIdP) gives developers, smaller
groups, research labs, unaffiliated users, and other groups that don’t have their own IdP, the
ability to leverage Dorian. The DorianIdP provides a method for prospective users to register for
an account. When users register they create a user id and password which they can
subsequently use to authenticate with the Dorian IdP. When a user authenticates, the Dorian
IdP provides the user with a SAML assertion, which can then be used to authenticate with
Dorian’s to create grid proxies. The DorianIdP provides mechanisms for administrators to
manage users; this includes modifying user information (name, address, email, etc.), changing

Chapter 5 Security Administration

105

passwords, granting and revoking access, and other administrative actions. All operations
provided by the Dorian IdP are made available through Dorian’s grid service interface.
Administrative operations require administrators to authenticate with a trusted grid proxy. The
GAARDS UI provides a method for perspective users to register with the Dorian IdP. The
GAARDS UI also provides a mechanism for Dorian IdP administrators to administrate Dorian
IdP user accounts.

Registering with the Dorian IdP

To register with the DorianIdP through the GAARDS UI, use the following steps.

1. Click the Local Account Management button on the GAARDS UI toolbar to open the
Identity Provider menu. Select Register and click the Select button to open the IdP
User Application (Figure 5-42).

2. To register first select the URI of the Dorian you wish to register with. Next specify a
username and password; this will be the username and password that you use to
authenticate with the Dorian IdP.

3. Finally enter your personal information and click the Apply button. In most cases your
account will need to be approved by an administrator before you will be able to login.
Depending on the policies of your administrator, you may be contacted once your
account has been approved as the Dorian IdP does not provide an automated method of
contacting you.

caGrid 1.0 User’s Guide

 106

Figure 5-42 Dorian: Dorian IdP Registration UI

Managing Dorian IdP Users

To manage Dorian IdP users through the GAARDS UI, use the following steps.

1. Click the Local Account Management button on the GAARDS UI toolbar to open the
Identity Provider menu. Select Manage Users and click the Select button to open the
Manage Users window (Figure 5-43).

2. From the Manage Users window, you may search for local user accounts managed by
the Dorian IdP, manage user accounts, and remove user accounts. To list all local user
accounts managed by a Dorian IdP, select the URI of the Dorian you are interested in
from the Service drop down. If you don’t see the URI of the Dorian you are interested in,
enter it.

3. Next select the grid proxy to use from the Proxy drop down. You will need to select a
proxy of a Dorian IdP administrator.

4. Finally click the Find Users button to list all the local user accounts managed by the
selected Dorian IdP. To narrow your search, you may also specify search criteria. The
Dorian IdP supports the following search criteria on local user accounts: by status, by
role, and by user information (first name, last names, address, etc). For example, if you
want to search for all the accounts that are pending administrative approval select
Pending from the User Status drop down.

Chapter 5 Security Administration

107

Figure 5-43 Dorian: Dorian IdP User Management UI

To manage individual local user accounts through the GAARDS UI, use the following steps.

1. Open the Manage Users window by first selecting the user of interest and then clicking
the Manage User button to open the Manage User window (Figure 5-44).

2. From the Manage User window, change the user’s demographic information, which
includes their first name, last name, mailing address, organization, phone number, and
email address.

A user’s demographic information can also be changed in the User Information tab.
Through the Account Information tab you can also change a user’s account
information. A user account information consist of their status within the Dorian IdP
(Active, Pending, Suspended, Rejected) and the user’s role within the Dorian IdP
(Administrator or NonAdministrator). Newly registered user’s may have an account
status of Pending meaning an administrator has yet to approve their account. An
account can be approved by changing a user’s Pending status to Active. Likewise an
account can be rejected by changing a user’s status from Pending to Rejected. An
account can be temporarily suspended or permanently suspended by changing a user’s
status from Active to Suspended. A temporary account suspension can be removed by
changing a user’s status from Suspended to Active. It is important to note that a User’s
Status within the Dorian IdP has no relationship to a Dorian grid user account status.

caGrid 1.0 User’s Guide

 108

Thus having an account in the Dorian IdP does not guarantee that you will have a
working grid user account, this will depend on the user policy configure for the Dorian
IdP within the Identity Federation component of Dorian. Likewise a user’s role with the
Dorian IdP has no relationship to a user’s role with the Identity Federation component of
Dorian. Although a Dorian IdP user with an Administrator role in the Dorian IdP may
administrate local user accounts in the Dorian IdP, they may not administer grid user
accounts. Finally you may also change a user’s account password; this can be done
through the Change Password tab.

3. To commit any changes made to a user’s Dorian IdP account, click the Update User
button; the changes are reflected immediately.

Figure 5-44 Dorian: Dorian IdP Manage User UI

Grid Grouper
Grid Grouper provides a group based authorization solution for the grid, where grid services and
applications enforce authorization policy based on membership to groups defined and managed
at the grid level. Grid Grouper is built on top of Grouper, an internet initiative focused on
providing tools for group management. Grouper is a java object model that currently supports:
basic group management by distributed authorities; subgroups; composite groups (whose
membership is determined by the union, intersection, or relative complement of two other
groups); custom group types and custom attributes; trace back of indirect membership; and
delegation. Applications interact with Grouper by embedding the Grouper’s java object model
within applications. Grouper does not provide a service interface for accessing groups. For more
information on Grouper, refer to the following URL:

https://wiki.internet2.edu/confluence/display/GrouperWG/Home

Chapter 5 Security Administration

109

Grid Grouper (Figure 5-45) is a grid enabled version of Grouper, providing a web service
interface to the Grouper object model. Grid Grouper makes groups managed by Grouper
available and manageable to applications and other services in the grid. Grid Grouper provides
an almost identical object model to the Grouper object model on the grid client side.
Applications and services can use the Grid Grouper object model much like they would use the
Grouper object model to access and manage groups as well as enforce authorization policy
based on membership to groups.

Figure 5-45 Grid Grouper Architecture

In Grouper/Grid Grouper, groups are organized into namespaces called stems. Each stem can
have a set of child stems and a set of child groups with exception to the root stem, which cannot
have any child groups. For example, consider a university that is comprised of many
departments each of which has Faculty, Staff, and Students. In terms of organizing the
university in Grid Grouper, a stem could be created for each department and each department
stem would contain three groups; one for each Faculty, Staff, and Students.

Grid Grouper Software Prerequisites

Table 5-3 lists the software prerequisites for Grid Grouper.

Software Version Description

Java SDK jsdk1.5 or higher Grid Grouper is written in Java therefore it requires

caGrid 1.0 User’s Guide

 110

Software Version Description

 the Java SDK. After installing you will have to set up
an environmental variable pointing to the Java SDK
directory and name it JAVA_HOME.

Mysql Mysql 4.1.x or higher For persisting the trust fabric and other information.

Ant Ant 1.6.5 GridGrouper along with the Globus Toolkit in which
GridGrouper is built on, uses Jakarta Ant for building
and deploying.

Globus Globus 4.0.3 GridGrouper is built on top of the Globus Toolkit.
GridGrouper requires the ws-core installation of the
Globus Toolkit.

Tomcat

(Only
required if
deploying to
Tomcat)

Tomcat 5.0.30 GridGrouper can be optionally deployed as a Grid
Service to a Tomcat deployed Globus Toolkit.

Table 5-3 Software prerequisites for Grid Grouper

Building Grid Grouper

To build GridGrouper, enter ant clean all from the GridGrouper installation directory. Depending
on the distribution obtained you may be required to build from the root distribution directory to
ensure that GridGrouper is provided with all of its dependencies.

Configuring Grid Grouper

To configure GridGouper you must specify your Mysql database information in the
grouper.hibrenate.properties configuration file located in
GRID_GROUPER_INSTALLATION_DIRECTORY/resources/conf/.

 The properties you need to edit are highlighted in bold in Figure 5-46, mainly the database
connection URL, database username, and database password.

Figure 5-46 Grid Grouper Configuration File

#MySQL

hibernate.dialect =net.sf.hibernate.dialect.MySQLDialect

hibernate.connection.driver_class = com.mysql.jdbc.Driver

hibernate.connection.url = jdbc:mysql://localhost:3306/grouper

hibernate.connection.username = root

hibernate.connection.password =

Chapter 5 Security Administration

111

Once you have edited the Grid Grouper configuration file, initialize the Grid Grouper database
by manually creating the grouper database in Mysql. The database should be name as
configured in the hibernate.connection.url property of the
grouper.hibrenate.properties configuration file. Once you have created the database,
enter ant grouperInit to build out and initialize the Grouper/Grid Grouper database.

Deploying Grid Grouper

Grid Grouper can be deployed to either an HTTPS secure Globus container or an HTTPS
secure Tomcat container. It is assumed that both Grid Grouper and the container it is being
deployed to will be properly configured prior to deployment. Grid Grouper can be deployed to a
Globus container by entering ant deployGlobus from the Grid Grouper installation directory.
Likewise Grid Grouper can be deployed to a Tomcat container by entering ant deployTomcat
from the Grid Grouper installation directory. It is important to note that you must add an initial
administrator to Grid Grouper before starting your container. Refer to the next section for further
directions.

Grid Grouper Administration

Initially Grid Grouper has a root stem with one child stem named Grouper Administration
(grouperadministration). The Grouper Administrative stem contains one group named Grid
Grouper Administrators (grouperadministration:gridgrouperadministrators). The Grid Grouper
Administrators is the super user group for Grid Grouper; all members of this group have admin
privileges on all the stems and groups within Grid Grouper. It is important to note the individual
groups and stems can also be assigned administrators.

The Grid Grouper Administrators group is initially empty, but at least one administrative user
must be added before Grid Grouper can be administered. Grid Grouper provides a command
line tool for bootstrapping GridGrouper and initially adding administrator(s). The command line
tool for adding administrators can be invoked by entering ant addAdmin from the Grid Grouper
distribution directory. The program prompts for the grid identity of the administrator to add. Enter
it and press the ENTER key to add the requested user to Grid Grouper as an administrator.
After the initial administrator is added, the GAARDS UI should be used for adding additional
administrators by adding the user’s grid identity as a member of the Grid Grouper
Administrators group. Instructions on adding members to groups is described in Group
Memberships on page 120.

To both browse and administer Grid Grouper through the GAARDS UI, use the following steps.

1. Open the Group Management Browser by clicking the Group Management button on
the toolbar (Figure 5-47). The Group Management Browser is divided into two
sections. The left is a hierarchal view of the stem/group organization for Grid Grouper(s);
the right is a detailed tabbed pane for individually administering both stems and groups.
Double clicking on a stem or group from the hierarchal view (left side) opens a tab on the
right containing a detailed view of the stem or group and allows the stem or group to be
administered.

caGrid 1.0 User’s Guide

 112

2. After opening, the hierarchal view in the Group Management Browser does not have any
Grid Grouper(s) displayed. To add a Grid Grouper, click the Add Grid Grouper button to
open the Add Grid Grouper dialog. From this dialog, select the URI of the Grid Grouper
to be loaded. If the URI for the Grid Grouper to be added is not in the list, enter it.

3. Select the grid proxy to connect to Grid Grouper. You do not need to specify a proxy;
Grid Grouper only allows access to things you have permission to do based on the grid
proxy you provide it. If you do not provide a grid proxy then you will only be able to
access publicly available things. Likewise you will be able to access anything if you
provide a grid proxy of a user that is a member of the Grid Grouper Administrators
group.

4. Once you have specified or not specified a proxy, click the Add button to load the
specified Grid Grouper into the Group Management Browser.

Figure 5-47 Grid Grouper: Group Management Browser

Administrating Stems

To administer a stem, use the following steps.

1. From the Grid Grouper hierarchy in the Group Management Browser, select the stem
you want to administer and click the View button. A tab opens entitled with the stem’s
name in the Details pane (Figure 5-48). This tab will be referred to as the Stem
Administration tab. The top of this tab lists the Grid Grouper in which the stem exists,
the full display name of the stem in regards to the rest of the hierarchy, and the
credentials you used to obtain the stem. It also contains four sub tabs: Details,
Privileges, Child Stems, and Groups. The Details tab lists a stem’s metadata which
includes:

• Stem Id – Unique Id assigned to the Stem by Grouper.

Chapter 5 Security Administration

113

• Display Name – Full display name for the stem with context to the rest of the
hierarchy.

• System Name – Full system name for the stem with context to the rest of the
hierarchy.

• Display Extension– Local Display name for the stem.
• System Extension– Local system name for the stem.
• Create– Date the stem was created.
• Create By– The identity of the user or service that created the stem.
• Last Modified– Date the stem was last modified.
• Last Modified By– The identity of the user or service who last modified the

stem.
• Description – Human readable description of the stem.

2. Of the metadata listed, only the display extension and description may be updated by
making changes and clicking the Update Stem button.

Figure 5-48 Grid Grouper: Administrating Stems UI

Stem Privileges

The Stem hierarchy in Grid Grouper is publicly visible to anyone accessing the service.
However the ability to view a group within a stem depends on the privileges for the group. A
Stem can have two types of privileges associated with it: the Stem Privilege and the Create
Privilege. Users with the Stem Privilege can create, modify, and remove child stems. Users with
the Create Privilege can create, modify, and remove child groups.

caGrid 1.0 User’s Guide

 114

To administer stem privileges from the GAARDS UI, use the following steps.

1. From the Grid Grouper hierarchy in the Group Management Browser, select the stem
whose privileges you want to administer and click the View button. The Stem
Administration tab opens for the selected stem.

2. Next select the Privileges tab (Figure 5-49). To list all the privileges for a stem, click the
Get Privileges button. All the users with privileges on the stem are listed and the
privileges that each user has. For example in Figure 5-49, the stem shown lists one user
that has been assigned privilege(s). The user listed has been assigned the Stem
privilege.

Figure 5-49 Grid Grouper: Administrating Stem Privileges UI

3. Users without existing privileges can be granted privileges by clicking the Add
Privilege(s) button. For users with existing privileges, new privileges can be added or
existing privileges can be revoked, by selecting the user from the Privileges table
(Figure 5-49) and clicking the Update Privilege(s) button. In either case, the Update
Stem Privilege(s) window (Figure 5-50) opens. If you are granting privileges to a user
without existing privileges, you will need to specify the user’s grid identity and select the
privileges you wish to grant them. If you are granting/revoking privileges to/from a user
with existing privileges you need to select the privileges you wish to grant and deselect
the privileges you wish to revoke.

4. To commit any changes to Grid Grouper, click the Update Privilege(s) button. Changes
are effective immediately.

Chapter 5 Security Administration

115

Figure 5-50 Grid Grouper: Granting/Revoking Stem Privileges UI

Managing Child Stems

Each stem in Grid Grouper can have a set of child stems. To list, create, and remove child
stems using the GAARDS UI, use the following steps.

1. Since stems are publicly readable, any user may view the stem hierarchy. However, only
users with the Stem Privilege may create and remove stems. To view the child stems for
a given stem, select the stem from the Grid Grouper hierarchy in the Group
Management Browser and click the View button. The Stem Administration tab opens
for the selected stem.

2. Next select the Child Stems tab. The stem’s child stems are listed in the Child Stems
table (Figure 5-51). To view a child stem, select the stem of interest and click the View
Stem button to open the Stem Administration tab for the selected stem. To remove a
stem, select the stem to remove and click the Remove Stem button. To remove a stem,
all of the stem’s child stem(s) and groups must be removed. A child stem can be added
at the bottom of the Child Stems tab by entering a local name for the stem, entering a
local display name for the stem, and clicking the Add Stem button.

caGrid 1.0 User’s Guide

 116

Figure 5-51 Grid Grouper: Administrating Child Stems UI

Managing Child Groups

Each stem in Grid Grouper can have a set of groups. To list, create, and remove groups through
the GAARDS UI, use the following steps.

1. Only users with the Create Privilege may create and remove groups. To view the groups
for a given stem, select the stem from the Grid Grouper hierarchy in the Group
Management Browser and click the View button. The Stem Administration tab for the
selected stem opens.

2. Next select the Groups tab to list the stem’s groups in the Child Group(s) table (Figure
5-52). To view a group, select the stem of interest, click the View Group button to open
the Group Administration tab for the selected group. To remove a group, select the
group to remove and click the Remove Group button. To add a new group, at the
bottom of the Groups tab, enter a local name for the group, enter a local display name
for the group, and click the Add Group button.

Chapter 5 Security Administration

117

Figure 5-52 Grid Grouper: Managing Child Groups UI

Administrating Groups

In Grouper/Grid Grouper, groups are comprised of a set of metadata describing the group, a set
of members in the groups, and a set of privileges assigned to users for protecting access to the
group. To administrate a group, use the following steps.

1. From the Grid Grouper hierarchy in the Group Management Browser, select the group
to administer and click the View button. A tab, entitled with the group’s name in the
details pane, opens (Figure 5-53). This tab is referred to as the Group Administration
tab. The top of the tab lists the Grid Grouper in which the group exists, the full display
name of the group in regards to the rest of the hierarchy, and the credentials used to
obtain the group. The tab also contains three sub tabs: Details, Privileges, and
Members. The Details tab lists a group’s metadata, which includes:

• Group Id – Unique Id assigned to the group by Grouper.
• Display Name – Full display name for the group with context to the rest of the

hierarchy.
• System Name – Full system name for the group with context to the rest of the

hierarchy.
• Display Extension– Local display name for the group.
• System Extension– Local system name for the group.
• Create– Date the group was created.
• Create By– The identity of the user or service that created the group.

caGrid 1.0 User’s Guide

 118

• Last Modified– Date the group was last modified.
• Last Modified By– The identity of the user or service who last modified the

group.
• Description – Human readable description of the group.

Of the metadata listed, only the display extension, system extension, and description
can be updated by making the changes, and clicking the Update Group button.

Figure 5-53 Grid Grouper: Group Management Details UI

Group Privileges

To protect access to groups in Grid Grouper, users can be assigned the following privileges on
a group: View, Read, Update, Admin, Optin, and Optout. The View privilege allows user’s to see
that the group exists. Users with the Read privilege can read basic information about the group.
Users with the Update Privilege can manage memberships to the group as well as administer
View, Read, and Update privileges. Users with the Admin privilege can modify/administer
anything on the group: metadata, privileges, and memberships. Users with the Optin privilege
can add themselves as a member to a group; similarly users with the Optout privilege can
remove themselves from a group. When a user accesses a group, they will only be allowed to
access the privileges assigned to them. Users without any privileges assigned will inherit the
privileges assigned to the GrouperAll user or default user. By default the GrouperAll is granted
Read and View privileges on each group.

To administer group privileges from the GAARDS UI, use the following steps.

1. From the Grid Grouper hierarchy in the Group Management Browser, select the group
whose privileges you want to administer and click the View button. The Group
Administration tab for the selected group opens.

2. Next select the Privileges tab (Figure 5-54). To list all the privileges for a group, click

Chapter 5 Security Administration

119

the Get Privileges button. All the users with privileges on the group are listed with the
privileges each user has. For example in Figure 5-54, the group shown lists two users
that have been assigned privilege(s). The first user listed has been assigned the Admin
privilege; the second user, GrouperAll, has been assigned Read and Write privileges.

Figure 5-54 Grid Grouper: Administering Group Privileges UI

3. Users without existing privileges can be granted privileges by clicking the Add
Privilege(s) button. For users with existing privileges, new privileges can be added or
existing privileges can be revoked by selecting the user from the Privileges table and
clicking the Update Privilege(s) button. In either case, the Update Group Privilege(s)
window opens (Figure 5-55). If you are granting privileges to a user without existing
privileges, specify the user’s grid identity and select the privileges to grant them. If you
are granting/revoking privileges to/from a user with existing privileges, select the
privileges to grant and deselect the privileges to revoke.

4. To commit changes to Grid Grouper, click the Update Privilege(s) button. Changes are
effective immediately.

caGrid 1.0 User’s Guide

 120

Figure 5-55 Grid Grouper: Updating Group Privileges UI

Group Memberships

Grid Grouper provides three mechanisms for adding members to a group: 1) directly adding a
member, 2) adding a subgroup to a group, and 3) making a group a composite of other groups.
Directly adding a user as a member to a group is straight forward; these members are referred
to as Immediate Members. Adding a subgroup to a group makes all the members of the
subgroup members of the group in which the subgroup was added. Members in a group whose
membership is granted by membership in a sub group are referred to as Effective Members. A
group can also be set to be a Composite group, which is a group whose memberships are
determined based on a set operation (Union, Intersection, or Complement) on two other groups.
For example, a composite group consisting of the Intersection of Group X and Group Y would
contain all the members that are both members of Group X and Group Y. Members whose
membership is granted through a composite group are referred to as Composite Members.

To administer group memberships through the GARRDS UI, use the following steps.

1. Select the group of interest from the Grid Grouper hierarchy in the Group Management
Browser and click the View button. The Group Administration tab opens for the
selected group.

2. Next select the Members tab (Figure 5-56) where the members of the group can be
listed by performing a member search. A member search can list all the members of the
group or can list the members of the group by membership type (Immediate, Effective,
Composite). To list the members of the group, select the type of search to perform from
the dropdown: all members, immediate members, effective members, or composite
members. Click the List Members button. The group members that meet the
membership criteria are listed in the table in the lower portion of the screen.

Chapter 5 Security Administration

121

Figure 5-56 Grid Grouper: Administrating Group Memberships UI

To add additional members to a group click the Add Member button. The Add Member window
opens (Figure 5-57). To add a new member, select the Member Type from the Member Type
drop down. Members can be added as individuals, groups, or composites. Below the Member
Type drop down, you are prompted for input based on the member type selected. For
individuals, enter the grid identity of the user or service you wish to add as a member. If adding
a group as a member, select the group to add as a subgroup. If adding a composite member as
shown in Figure 5-57, select a composite type (union, intersection, complement) and two groups
that will comprise the composite statement. In the example in Figure 5-57, the user is adding a
composite member consisting of the union of the staff group and the faculty group. Once added,
this group will contain all the members of both the staff and faculty groups. Note that a group
with a composite membership, also referred to as a composite group, may only have one
membership (that is, the composite defined). A composite group may not contain additional
immediate, effective, or composite members.

caGrid 1.0 User’s Guide

 122

Figure 5-57 Grid Grouper: Adding Members to a Group UI

To remove immediate members from a group through the GAARDS UI, use the following steps.

1. Select the member to remove and click the Remove Member button.

2. Members whose membership to a group is obtained through being a member of a
subgroup (Effective Membership) and whose membership is obtained through a
composite cannot be directly removed using this method. To remove effective members
of a group, the member must be removed from the subgroup of which they are
immediate members.

3. To remove composite members from a group, the composite membership associated
with the group must be removed. Click the Remove Composite Member button.

Authentication Management
The role of the Authentication Service project is to provide an integration point between local
identity management and caGrid identify federation. To achieve this goal, an interface is defined
that should be implemented by an Identity Provider (IdP) service. The framework
implementation is provided that exposes the Common Security Module (CSM) as an IdP.

This section describes how to

• Configure the service
• Deploy to a container
• Configure CSM

Configuring the Service

Table 5-4 contains the properties in the file SRC/deploy.properties that must be edited.

Property Description

index.service.url The URL of the index service to advertise to.

csm.app.context The name of the application context that contains the CSM

Chapter 5 Security Administration

123

Property Description

authentication policy. This value must map to an application name
specified in the JAAS configuration file.

saml.provider.crt The absolute path to the X.509 certificate that the Authentication
Service should use to sign SAML assertions. This file must be in
PEM format.

saml.provider.key The absolute path to the X.509 private key.

saml.provider.pwd The password for the private key. (If there is no password, this
value is ignored.)

Table 5-4 Properties in SRC/deploy.properties

Deploying to the Container

The Authentication Service may be deployed to either the Globus standalone container or the
Globus web application (deployed in Tomcat 5.0.28). It does not require Globus to run as a
secure container.

The deployGlobus Ant target, defined in SRC/buid-deploy.xml, deploys the service to the
standalone Globus container pointed to by the GLOBUS_LOCATION environment variable. The
deployTomcat Ant target deploys the service to the Globus web application in the Tomcat
installation pointed to by the CATALINA_HOME environment variable.

Configuring the CSM

A file named .java.login.config must be placed in the home directory of the user account
that Tomcat or the Globus container are running under. This file must contain entry with an
application name that maps to the one specified as the value of csm.app.context in the file
SRC/deploy.properties. Figure 5-58 contains an example JAAS configuration file.

myapp{

gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule
required

 driver="org.gjt.mm.mysql.Driver"

 url="jdbc:mysql://somehost:3306/somedatabase"

 user="dbuser"

 passwd="dbpassword"

 TABLE_NAME="CSM_USER"

 USER_LOGIN_ID="LOGIN_NAME"

caGrid 1.0 User’s Guide

 124

 USER_PASSWORD="PASSWORD"

 USER_FIRST_NAME="FIRST_NAME"

 USER_LAST_NAME="LAST_NAME"

 USER_EMAIL_ID="EMAIL_ID";

};

Figure 5-58 Example JAAS configuration file for configuring CSM

The version of CSM used by caGrid requires that a system property named
gov.nih.nci.security.configFile be set and its value must be the absolute path to a CSM
ApplicationSecurityConfig.xml file. Figure 5-59 contains an example file.

<security-config>

 <upt-context-name>UPT

 </upt-context-name>

 <application-list>

 <application>

 <context-name>myapp

 </context-name>

 <authentication>

 <lockout-time>100

 </lockout-time>

 <allowed-login-time>100

 </allowed-login-time>

 <allowed-attempts>3

 </allowed-attempts>

 <authentication-provider-class>

 </authentication-provider-class>

 </authentication>

 <authorization>

 <authorization-provider-class>

 </authorization-provider-class>

 <hibernate-config-file>

 </hibernate-config-file>

 </authorization>

Chapter 5 Security Administration

125

 </application>

 </application-list>

</security-config>

Figure 5-59 CSM ApplicationSecurityConfig.xml file

To set the system property for the Tomcat container, place the following line in
CATALINA_HOME/catalina.sh.

JAVA_OPTS="$JAVA_OPTS -Dgov.nih.nci.security.configFile= \

/path/to/ApplicationSecurityConfig.xml"

To set the system property for the Globus container, place the following line in
GLOBUS_LOCATION/globus-start-container.

updateOptions "gov.nih.nci.security.configFile" \

"/path/to/ApplicationSecurityConfig.xml"

Authorization Management
The main responsibility of the Authorization (Authz) component is to provide an integration point
between local authorization policy and grid-wide authorization policy. Authorization policy in
caGrid is based on membership in groups that are defined in Grid Grouper. Authorization policy
within an organization is usually based in an individual's identity within that organization. The
Authz component provides a framework to integrate groups that have been defined in the
Common Security Module (CSM), which is the authorization policy management system, used
by the NCICB and Grid Grouper groups. The result is that local administrators can extend
access privileges to members of the caBIG community based on membership in Grid Grouper
groups, rather than having to create local identities for each individual.

Since the Authz component has been designed to plug into the CSM framework, caCORE 3.1
systems that use CSM 3.1 can plug in the Authz component without changing code.

This section describes how to configure CSM for a caCORE service to use the Authz
component.

JAAS Configuration

No changes are required to be made to CSM’s JAAS configuration.

ApplicationSecurityConfig.xml

caCORE services that are using CSM will have configured the
gov.nih.nci.security.configFile system property to point to an
ApplicationSecurityConfig.xml file. To use the Authz component, specify

caGrid 1.0 User’s Guide

 126

gov.nih.nci.cagrid.authorization.CSMGridAuthorizationManager as the
implementation to use for both the authorization manager and the authentication manager.

Figure 5-60 contains an example ApplicationSecurityConfig.xml file.

<security-config>

 <upt-context-name>UPT</upt-context-name>

 <application-list>

 <application>

 <context-name>SDK</context-name>

 <authentication>

 <lockout-time>100</lockout-time>

 <allowed-login-time>100</allowed-login-time>

 <allowed-attempts>3</allowed-attempts>

 <authentication-provider-class>

 gov.nih.nci.cagrid.authorization.impl.CSMGridAuthorizationManager

 </authentication-provider-class>

 </authentication>

 <authorization>

 <authorization-provider-class>

 gov.nih.nci.cagrid.authorization.impl.CSMGridAuthorizationManager

 </authorization-provider-class>

 <hibernate-config-file>

 /my/app/etc/hibernate.cfg.xml

 </hibernate-config-file>

 </authorization>

 </application>

 </application-list>

</security-config>

Figure 5-60 ApplicationSecurityConfig.xml file

hibernate.cfg.xml

Hibernate must be configured to use the c3p0 connection pool. Add the following properties to
the session-factory element in the hibernate.cfg.xmlfile.

<property name="hibernate.c3p0.min_size">5</property>

Chapter 5 Security Administration

127

<property name="hibernate.c3p0.max_size">20</property>

<property name="hibernate.c3p0.timeout">300</property>

<property name="hibernate.c3p0.max_statements">50</property>

<property name="hibernate.c3p0.idle_test_period">3000</property>

Web Applications Classpath

Table 5-5 contains the jars that must be added to the web applications classpath.

From the Globus 4.0.3
WS Core Distribution

From other caGrid 1.0
Projects (these end up in
cagrid-1-0/ext/lib, when
building the Authz project).

From the Authz project’s lib
folder:

Addressing-1.0.jar caGrid-1.0-core.jar c3p0-0.8.5.2.jar

axis.jar caGrid-1.0-gridca.jar clm.jar

cog-axis.jar caGrid-1.0-gridgrouper-
client.jar

csmapi.jar

cog-jglobus.jar caGrid-1.0-gridgrouper-
common.jar

hibernate-3.0.5.jar

cryptix-asn1.jar caGrid-1.0-gridgrouper-
stubs.jar

spring-core.jar

cryptix.jar caGrid-1.0-metadata-
common.jar

spring-beans.jar

Cryptix32.jar caGrid-1.0-metadata-
security.jar

jce-jdk13-125.jar caGrid-1.0-
ServiceSecurityProvider-
client.jar

jgss.jar caGrid-1.0-
ServiceSecurityProvider-
common.jar

puretls.jar caGrid-1.0-
ServiceSecurityProvider-
service.jar

wsrf_common.jar caGrid-1.0-
ServiceSecurityProvider-
stubs.jar

wsrf_core_stubs.jar cglib-nodep-2.1_3.jar

wsrf_core.jar Grouper.jar

wss4j.jar Mobius_common_client.jar

caGrid 1.0 User’s Guide

 128

From the Globus 4.0.3
WS Core Distribution

From other caGrid 1.0
Projects (these end up in
cagrid-1-0/ext/lib, when
building the Authz project).

From the Authz project’s lib
folder:

 mobius_factories.jar

 Mobius_gme_client.jar

 mobius_mako_client.jar

 Mobius_tools.jar

 subject-0.2.1.jar

Table 5-5 jars to add to the web applications classpath

Note: The clm.jar and csmapi.jar files are from a pre-CSM 3.2 release. Though the official
CSM 3.2 versions should work, at the time of writing, this has not been tested.

Finally, a file named ObjectStateLoggerConfig.xml must be added to the classpath. That
file should look like the following (Figure 5-61).

<?xml version="1.0" encoding="UTF-8"?>

<logging-config>

 <logger-name>CSM.Audit.Logging.ObjectState.Authorization</logger-name>

 <logger-config-file>log4jConfig.xml</logger-config-file>

 <log-level>info</log-level>

 <messageType>string</messageType>

 <domainObjectList>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.Application</object-

name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.ApplicationContext</obj

ect-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.Group</object-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.GroupRoleContext</objec

t-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.Privilege</object-name>

 <object-

Chapter 5 Security Administration

129

name>gov.nih.nci.security.authorization.domainobjects.ProtectionElement</obje

ct-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.ProtectionElementPrivil

egeContext</object-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.ProtectionGroup</object

-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.ProtectionGroupRoleCont

ext</object-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.Role</object-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.User</object-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.UserGroupRoleProtectonG

roup</object-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.UserProtectionElement</

object-name>

 <object-

name>gov.nih.nci.security.authorization.domainobjects.UserRoleContext</object

-name>

 <object-

name>gov.nih.nci.security.authorization.dao.hibernate.ProtectionGroupProtecti

onElement</object-name>

 <object-

name>gov.nih.nci.security.authorization.dao.hibernate.RolePrivilege</object-

name>

 <object-

name>gov.nih.nci.security.authorization.dao.hibernate.UserGroup</object-name>

 </domainObjectList>

 <loggingEnabled>true</loggingEnabled>

</logging-config>

Figure 5-61 ObjectStateLoggerConfig.xml

caGrid 1.0 User’s Guide

 130

CSM Administration

This section provides an example scenario to illustrate the steps that a local CSM administrator
would take to extend access privileges to caGrid users.

In this scenario, the administrator would like to permit members of the “cabig:researchers” group
to query his caCORE system for gov.nih.nci.cabio.domain.Gene objects. The Grid Grouper
instance in which this group is defined is running at
https://some.host:8443/wsrf/services/cagrid/GridGrouper.

Perform the following steps with the UPT.

1. Create a group named
{https://some.host:8443/wsrf/services/cagrid/GridGrouper}cabig:researchers (Figure
5-62).

Figure 5-62 Create a group in the UPT

In this scenario, it is assumed that the “gov.nih.nci.cabio.domain.Gene” protection
element already exists, and is a member of the “Domain Objects” protection group
(Figure 5-63).

Chapter 5 Security Administration

131

Figure 5-63 Protection groups and protection group elements in the UPT

2. It is also assumed that a role named “Domain Object Readers” exists and has a single
“READ” privilege (Figure 5-64).

caGrid 1.0 User’s Guide

 132

Figure 5-64 Role and privileges association in the UPT

3. To grant the “READ” privilege to members of the
“{https://some.host:8443/wsrf/services/cagrid/GridGrouper}cabig:researchers” group,
assign the “Domain Objects” protection group and “Domain Object Readers” role to this
group (Figure 5-65 and Figure 5-66).

Chapter 5 Security Administration

133

Figure 5-65 Group, Protection Group and Roles Association in the UPT

caGrid 1.0 User’s Guide

 134

Figure 5-66 Group, Protection Group and Roles Association in the UPT

4. Now, assuming that the following
/O=NIH/OU=NCI/OU=NCICB/OU=DEV/OU=localhost/OU=IdP [1]/CN=george
identity is a member of the “cabig:researchers” group, the following code should print
“Authorized: true” (Figure 5-67).

String identity =

"/O=NIH/OU=NCI/OU=NCICB/OU=DEV/OU=localhost/OU=IdP [1]/CN=george";

String app = "myapp";

String objectId = "gov.nih.nci.cabio.domain.Gene";

String privilege = "READ";

AuthorizationManager mgr =

SecurityServiceProvider.getAuthorizationManager(app);

boolean authorized = mgr.checkPermission(identity, objectId, privilege);

System.out.println("Authorized: " + authorized);

Figure 5-67 Code verification

Chapter 6 Workflow Services

135

Chapter 6 Workflow Services

This chapter describes the caGrid implementation of a workflow, which provides a grid service
for submitting and running workflows that are composed of other grid services.

Topics in this chapter include:

• Overview on this page

• The Business Process Execution Language (BPEL) on this page

• Creating a Workflow on page 136

• Creating a Simple Workflow Using Example Services on page 136

Overview
caBIG aims to bring together disparate data and analytic resources into a “World Wide Web of
cancer research.” This will be achieved through common standards and software frameworks
for the federation of these resources into “grid” services. Many of the tasks in the collection and
analysis of cancer-related data on the grid involve the use of workflow. Here, we define
workflow as the connecting of services to solve a problem that each individual service could not
solve. caGrid implements workflow by providing a grid service for submitting and running
workflows that are composed of other grid services.

The Business Process Execution Language (BPEL)
The Business Process Execution Language (BPEL) is an XML language for describing business
process behavior based on web/grid services. BPEL is layered on top of other Web
technologies such as WSDL 1.1, XML Schema 1.0, XPath 1.0, and WS Addressing, which
makes it a perfect candidate for use in caGrid. The BPEL notation includes flow control,
variables, concurrent execution, input and output, transaction scoping/compensation, and error
handling. A BPEL process describes a business process, which often invoke Web/Grid services
to perform functional tasks. A process can be either abstract or executable. Abstract processes
are similar to library APIs: they describe what the process can do with inputs and outputs, but
they do not describe how the work actually gets done. Abstract processes are useful for
describing a business process to another party that wants to implement the process. Executable
processes do the "heavy lifting" – they contain all of the execution steps that represent a
cohesive unit of work. The focus of this document will be on executable processes, as they are
concrete workflows that are runnable through the workflow service.

Some vocabulary must be established to understand a BPEL document. While a typical domain
user such as an oncologist is not expected to write a BPEL document, it is expected that
developers be able to produce BPEL from higher-level tools. In BPEL, a process consists of
activities connected by links. A process sometimes only contains one activity, but that is usually
a container for more activities. The path taken through the activities and their links is

caGrid 1.0 User’s Guide

 136

determined by many things, including the values of variables and the evaluation of expressions.
The starting points are called start activities, and their “create instance” attributes are set to
"yes". When a start activity is triggered, a new business process instance is created. Each
service that is invoked by the workflow is called a PartnerLink, and BPEL extends this concept
to include the client that is invoking the workflow.

Creating a Workflow
Use the following steps to create a workflow.

1. Get the endpoints of the services you want to the workflow to consist of. These
endpoints can be obtained from a query to the Index Service based on the
ServiceMetaData, though that must be done prior to creating the workflow.

2. Define PartnerLinks for the services you want to interact
3. Create a BPEL document (using a GUI if available)
4. Submit the BPEL document to the WorkflowFactoryService using the command-line

client, specifying any input files you need for the workflow
5. The command-line client submits the workflow and starts it.

Creating a Simple Workflow Using Example Services
We will create a workflow that would orchestrate two caGrid services that are built using
Introduce. The workflow will take a String as input. Though caBIG The workflow engine invokes
the first service that’s taking part in the workflow with the input string. The first service appends
a string to the input string and returns that as a result. The workflow engine then invokes the
second caGrid compliant service with the result of from the first invocation. For simplicity, the
second service also appends another string to the input string and itself be exposed as a
service

1. Deploy the two test services from the workflow test services distribution
a. The names of the services are WorkflowTestService1 and WorkflowTestService2
b. They can be found at https://gforge.nci.nih.gov/frs/download.php/1375/cagrid-

1.0-Workflow_Test_Services.tar.gz
c. Run “ant deploy” to deploy them to Tomcat. Now you have two services that you

can orchestrate.
2. Normally you would need to write a little bit of WSDL now to make the services into

partnerLinks that can be used in writing a workflow. The workflow test services already
have the appropriate partnerLink statements. This step will be automated in the next
iteration.

Submitting the Workflow

You can use the command-line client bundled with the release to submit the workflows. The
workflow client takes arguments for the workflow factory location (EPR) and the location of the
BPEL file. The client then submits the workflow to the factory service, creates the workflow
resource, and returns the EPR for workflow management service the to the user. At this point
the workflow definition is validated and found to be syntactically and semantically right.
Otherwise exceptions are thrown to the user specifying the nature of error. The workflow
management service is used for starting, stopping, pausing, and canceling the workflow.
Another Command-line client is provided to execute the submitted workflows.

Chapter 6 Workflow Services

137

Executing the Workflow

The EPR of the workflow resource that is returned from the above step can be used to execute
the workflow process created using input data (if the workflow needs). The command-line client
takes the EPR that the user provides, locates the Workflow Service and invokes the start
operation on it with the input parameters. This is a non-blocking call and returns immediately.
The Workflow Service provides other operations for the user, such as querying for the status of
the workflow.

Query the Status of the Workflow

The client used in step above can be used to query the status of the workflow if the user
provides the EPR of the workflow resource that he wants to find status for. This operation
returns one of the five states a workflow can be in. It throws an exception if the workflow cannot
be found.

Terminating a Workflow

Since the workflows are modeled as WS-RF resources, they have a lifetime associated with
them. The Workflow service provides a standard “destroy” operation to stop the workflow and
free up all the resources that are used by the workflow

Pausing a Workflow

The command-line client provides an operation by which users can pause an active workflow.
This command will result in the service invoking the “pause” operation of the workflow
management service using the workflow id.

Resuming a Paused Workflow

The command-line client provides an operation by which users can resume a paused workflow.
This command will result in the service invoking the “resume” operation of the workflow
management service using the workflow id.

caGrid 1.0 User’s Guide

 138

 Appendix A References

139

Appendix A References

Scientific Publications
[1] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V.

Nefedova, D. Quesnal, and T. S., "Data Management and Transfer in High Performance
Computational Grid Environments," Parallel Computing Journal, vol. 28, pp. 749-771,
2002.

[2] W. E. Allcock, I. Foster, and R. Madduri, "Reliable Data Transport: A Critical Service for
the Grid.," in Proceedings of Building Service Based Grids Workshop, Global Grid Forum
11. Honolulu, Hawaii, USA, 2004.

[3] G. Allen, T. Dramlitsch, I. Foster, T. Goodale, N. Karonis, M. Ripeanu, E. Seidel, and B.
Toonen, "Cactus-G Toolkit: Supporting Efficient Execution in Heterogeneous Distributed
Computing Environments," in Proceedings of the 4th Globus Retreat. Pittsburg, PA,
2000.

[4] H. Andrade, T. Kurc, A. Sussman, and J. Saltz, "Active Proxy-G: Optimizing the Query
Execution Process in the Grid," in Proceedings of the ACM/IEEE Supercomputing
Conference (SC2002). Baltimore, MD: ACM Press/IEEE Computer Society Press, 2002.

[5] J. Annis, Y. Zhao, J. Voeckler, M. Wilde, S. Kent, and I. Foster, "Applying Chimera
Virtual Data Concepts to Cluster Finding in the Sloan Sky Survey," in Proceedings of the
ACM/IEEE Supercomputing Conference (SC2002). Baltimore, MD: ACM Press/IEEE
Computer Society Press, 2002.

[6] M. P. Atkinson and et.al., "Grid Database Access and Integration: Requirements and
Functionalities," Technical Document, Global Grid Forum. http://www.cs.man.ac.uk/grid-
db/documents.html, 2002.

[7] F. Berman, H. Casanova, J. Dongarra, I. Foster, C. Kesselman, J. Saltz, and R. Wolski,
"Retooling Middleware for Grid Computing," NPACI & SDSC enVision, vol. 18, 2002.

[8] M. Beynon, T. Kurc, A. Sussman, and J. Saltz, "Design of a Framework for Data-
Intensive Wide-Area Applications," in Proceedings of the 2000 Heterogeneous
Computing Workshop (HCW2000). Cancun, Mexico, 2000.

[9] H. Casanova, O. Graziano, F. Berman, and R. Wolski, "The AppLeS Parameter Sweep
Template: User-Level Middleware for the Grid," in Proceedings of the ACM/IEEE
Supercomputing Conference (SC2000): ACM Press/IEEE Computer Society Press,
2000.

[10] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kesselman,
P. Kunst, M. Ripeanu, B. Schwartzkopf, H. Stockinger, and B. Tierney, "Giggle: A
Framework for Constructing Scalable Replica Location Services," in Proceedings of the
ACM/IEEE Supercomputing Conference (SC2002): ACM Press/IEEE Computer

caGrid 1.0 User’s Guide

 140

Computer Society Press, 2002, pp. 1-17.

[11] A. Chervenak, E. Deelman, C. Kesselman, B. Allcock, I. Foster, V. Nefedova, J. Lee, A.
Sim, A. Shoshahi, B. Drach, D. Williams, and D. Middleton, "High-performance remote
access to climate simulation data: a challenge problem for data grid technologies,"
Parallel Computing, vol. 29, pp. 1335-1356, 2003.

[12] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, "The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large
Scientific Datasets," Journal of Network and Computer Applications, vol. 23, pp. 187-
200, 2000.

[13] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn, A.
Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda, "Mapping Abstract Complex
Workflows onto Grid Environments," Journal of Grid Computing, vol. 1, pp. 25-39, 2003.

[14] E. Deelman, G. Singh, M. P. Atkinson, A. Chervenak, N. P. Chue Hong, C. Kesselman,
S. Patil, L. Pearlman, and M. Su, "Grid-Based Metadata Services," in Proceedings of the
16th International Conference on Scientific and Statistical Database Management
(SSDBM '04), 2004.

[15] I. Foster and C. Kesselman, "Globus: A Metacomputing Infrastructure Toolkit.,"
International Journal of High Performance Computing Applications, vol. 11, pp. 115--
128, 1997.

[16] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao, "Chimera: A Virtual Data System for
Representing, Querying, and Automating Data Derivation," in Proceedings of the 14th
Conference on Scientific and Statistical Database Management (SSDBM '02), 2002.

[17] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, "Condor-G: A
Computational Management Agent for Multi-institutional Grids," in Proceedings of the
Tenth International Symposium on High Performance Distributed Computing (HPDC-10):
IEEE Press, 2001.

[18] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Darlington, "ICENI: An Open Grid
Service Architecture Implemented with JINI," in Proceedings of the ACM/IEEE
Supercomputing Conference (SC2002). Baltimore, MD: ACM Press/IEEE Computer
Society Press, 2002.

[19] A. S. Grimshaw and W. Wulf, "The Legion: Vision of a Worldwide Virtual Computer,"
Communications of the ACM, vol. 40, pp. 39--45, 1997.

[20] S. Hastings, S. Langella, S. Oster, and J. Saltz, "Distributed Data Management and
Integration: The Mobius Project," Proceedings of the Global Grid Forum 11 (GGF11)
Semantic Grid Applications Workshop, Honolulu, Hawaii, USA., pp. 20-38, 2004.

[21] S. Langella, S. Oster, S. Hastings, F. Siebenlist, T. Kurc, and J. Saltz, "Dorian: Grid
Service Infrastructure for Identity Management and Federation," presented at The 19th
IEEE Symposium on Computer-Based Medical Systems, Special Track: Grids for
Biomedical Informatics, Salt Lake City, Utah., 2006.

[22] R. Oldfield and D. Kotz, "Armada: A Parallel File System for Computational Grid," in
Proceedings of the IEEE International Symposium on Cluster Computing and the Grid

 Appendix A References

141

(CCGrid2001). Brisbane, Australia: IEEE Computer Society Press, 2001.

[23] M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and H. Takagi, "Ninf: A
Network based Information Library for a Global World-Wide Computing Infrastructure,"
in Proceedings of the Conference on High Performance Computing and Networking
(HPCN '97) (LNCS-1225), 1997, pp. 491-502.

[24] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Mahohar, S. Pail,
and L. Pearlman, "A Metadata Catalog Service for Data Intensive Applications," in
Proceedings of the ACM/IEEE Supercomputing Conference (SC2003), 2003.

[25] G. Singh, E. Deelman, G. Mehta, K. Vahi, M. Su, B. Berriman, J. Good, J. Jacob, D.
Katz, A. Lazzarini, K. Blackburn, and S. Koranda, "The Pegasus Portal: Web Based Grid
Computing," in Proceedings of the 20th Annual ACM Symposium on Applied Computing.
Santa Fe, New Mexico, 2005.

[26] J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. A. Fernandes, and R. Sakellariou,
"Distributed Query Processing on the Grid.," presented at Proceedings of the Third
Workshop on Grid Computing (GRID2002), Baltimore, MD, 2003.

[27] D. Thain, J. Basney, S. Son, and M. Livny, "Kangaroo Approach to Data Movement on
the Grid," in Proceedings of the Tenth IEEE Symposium on High Performance
Distributed Computing (HPDC-10), 2001.

[28] L. Weng, G. Agrawal, U. Catalyurek, T. Kurc, S. Narayanan, and J. Saltz, "An Approach
for Automatic Data Virtualization," in Proceedings of the 13th IEEE International
Symposium on High-Performance Distributed Computing (HPDC-13). Honolulu, Hawaii,
2004, pp. 24-33.

[29] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, "The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration," Open Grid Service
Infrastructure Working Group Technical Report, Global Grid Forum.
http://www.globus.org/alliance/publications/papers/ogsa.pdf 2002.

[30] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling Scalable
Virtual Organizations.," International Journal of Supercomputer Applications, vol. 15, pp.
200-222, 2001.

[31] E. Cerami, Web Services Essentials: O'Reilly & Associates Inc., 2002.

[32] S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y. Nakamura, and R.
Neyama, Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and
UDDI: SAMS Publishing, 2002.

[33] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling, S.
Tuecke, and W. Vambenepe, "The WS-Resource Framework version 1.0," vol. 2004,
2004.

[34] J. Saltz, S. Oster, S. Hastings, T. Kurc, W. Sanchez, M. Kher, A. Manisundaram, K.
Shanbhag, and P. Covitz, "caGrid: Design and Implementation of the Core Architecture
of the Cancer Biomedical Informatics Grid," Bioinformatics. (in press). 2006.

caGrid 1.0 User’s Guide

 142

[35] S. Langella, S. Hastings, S. Oster, T. Kurc, U. Catalyurek, and J. Saltz, "A Distributed
Data Management Middleware for Data-Driven Application Systems," in Proceedings of
the 2004 IEEE International Conference on Cluster Computing (Cluster 2004), 2004.

[36] K. Bhatia, S. Chandra, and K. Mueller, "GAMA: Grid Account Management Architecture,"
San Diego Supercomputer Center (SDSC), UCSD Technical Report. #TR-2005-3, 2005.

[37] I. Foster, C. Kesselman, S. Tuecke, V. Volmer, V. Welch, R. Butler, and D. Engert, "A
National Scale Authentication Infrastructure," IEEE Computer, vol. 33, pp. 60-66, 2000.

[38] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kesselman,
S. Meder, L. Pearlman, and S. Tuecke, "Security for Grid Services," presented at 12th
International Symposium on High Performance Distributed Computing (HPDC-12), 2003.

[39] H. Morohoshi and R. Huang, "A User-friendly Platform for Developing Grid Services over
Globus Toolkit 3," presented at The 2005 11th International Conference on Parallel and
Distributed Systems (ICPADS'05), 2005.

[40] S. Mizuta and R. Huang, "Automation of Grid Service Code Generation with AndroMDA
for GT3," presented at The 19th International Conference on Advanced Information
Networking and Applications (AINA'05), 2005.

[41] G. von Laszewski, I. Foster, J. Gawor, and P. Lane, "A Java Commodity Grid Kit,"
Concurrency and Computation: Practice and Experience, vol. 13, pp. 643-662, 2001.

[42] G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke, "CoG Kits: A Bridge
Between Commodity Distributed Computing and High Performance Grids," presented at
ACM Java Grande 2000 Conference, 2000.

[43] R. Buyya and S. Venugopal, "The Gridbus Toolkit for Service Oriented Grid and Utility
Computing: An Overview and Status Report," presented at the First IEEE International
Workshop on Grid Economics and Business Models (GECON 2004), New Jersey, USA,
2004.

[44] M. Humphrey and G. Wasson, "Architectural Foundations of WSRF.NET," International
Journal of Web Services Research, vol. 2, pp. 83-97, 2005.

[45] M. Smith, T. Friese, and B. Freisleben, "Model Driven Development of Service Oriented
Grid Applications," presented at Advanced International Conference on
Telecommunications and International Conference on Internet and Web Applications
and Services (AICT-ICIW '06), 2006.

Technical Manuals/Articles
National Cancer Institute. "caCORE 3.1 Technical Guide",
ftp://ftp1.nci.nih.gov/pub/cacore/caCORE3.1_Tech_Guide.pdf

Java Bean Specification: http://java.sun.com/products/javabeans/docs/spec.html

Foundations of Object-Relational Mapping: http://www.chimu.com/publications/objectRelational/

Object-Relational Mapping articles and products:

http://www.service-architecture.com/object-relational-mapping/

 Appendix A References

143

Hibernate Reference Documentation: http://www.hibernate.org/hib_docs/reference/en/html/

Basic O/R Mapping: http://www.hibernate.org/hib_docs/reference/en/html/mapping.html

Java Programming: http://java.sun.com/learning/new2java/index.html

Javadoc tool: http://java.sun.com/j2se/javadoc/

JUnit: http://junit.sourceforge.net/

Extensible Markup Language: http://www.w3.org/TR/REC-xml/

XML Metadata Interchange: http://www.omg.org/technology/documents/formal/xmi.htm

Global Grid Forum: http://www.gridforum.org

Globus: http://www.globus.org

Mobius: http://www.projectmobius.org

W3C: http://www.w3c.org

OGSA-DAI: http://www.ogsadai.org

Apache: http://www.apache.org

Globus Toolkit 3 Programmer's Tutorial:

http://gdp.globus.org/gt3-tutorial/singlehtml/progtutorial_0.4.3.html

XPath tutorial: http://www.w3schools.com/xpath/xpath_syntax.asp

Globus Security Overview:

http://www.ogsadai.org.uk/docs/OtherDocs/SECURITY-FOR-DUMMIES.pdf

High level Overview of Grid:

http://gridcafe.web.cern.ch/gridcafe/index.html

Overview of Globus Toolkit 3 and the OGSI architecture :

http://www-128.ibm.com/developerworks/grid/library/gr-gt3/

caBIG Material
caBIG: http://cabig.nci.nih.gov/

caBIG Compatibility Guidelines: http://cabig.nci.nih.gov/guidelines_documentation

caCORE Material
caCORE: http://ncicb.nci.nih.gov/NCICB/infrastructure

caBIO: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO

caDSR: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr

EVS: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary

CSM: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm

caGrid 1.0 User’s Guide

 144

 Glossary

145

Glossary
Term Definition
{jboss-home} The base directory where JBoss is installed on the server

API Application Programming Interface

caArray cancer Array Informatics

caBIG cancer Biomedical Informatics Grid

caBIO Cancer Bioinformatics Infrastructure Objects

caCORE cancer Common Ontologic Representation Environment

caDSR Cancer Data Standards Repository

caMOD Cancer Models Database

cardinality Cardinality describes the minimum and maximum number of
associated objects within a set

CDE Common Data Element

CGAP Cancer Genome Anatomy Project

CMAP Cancer Molecular Analysis Project

CN Common Name

CS Classification Scheme

CSI Classification Scheme Item

CSM Common Security Module

CTEP Cancer Therapy Evaluation Program

CUI Concept Unique Identifier

CVS Concurrent Versions System

DAIS Data Access and Integration Services

DAML DARPA Agent Markup Language

DAO Data Access Objects

DARPA Defense Advanced Research Projects Agency

DAS Distributed Annotation System

DL Description Logic

EA Enterprise Architect

EBI European Bioinformatics Institute

EVS Enterprise Vocabulary Services

GAI CGAP Genetic Annotation Initiative

caGrid 1.0 User’s Guide

 146

Term Definition

GEDP Gene Expression Data Portal

GGF Global Grid Forum

GME Mobius Global Model Exchange - DNS-like service for the universal
creation, versioning, and sharing of data descriptions

Grid Service Basically a Web Services with improved characteristics and standard
services like stateful and potentially transient services, Service Data,
Notifications, Service Groups, portType extension, and Lifecycle
management.

GSH Grid Service Handle

GSI Grid Security Infrastructure - represents the latest evolution of the
Grid Security Infrastructure. GSI in GT3 builds off of the functionality
present in early GT2 toolkit releases - X.509 certificates, TLS/SSL for
authentication and message protection, X.509 Proxy Certificates for
delegation and single sign-on.

HTTP Hypertext Transfer Protocol

ISO International Organization for Standardization

JAAS Java Authentication and Authorization Service

JAR Java Archive

Javadoc Tool for generating API documentation in HTML format from doc
comments in source code (http://java.sun.com/j2se/javadoc/)

JDBC Java Database Connectivity

JET Java Emitter Templates

JMI Java Metadata Interface

JSP JavaServer Pages

JUnit A simple framework to write repeatable tests
(http://junit.sourceforge.net/)

LDAP Lightweight Directory Access Protocol

LLT Lowest Level Term

LOINC Logical Observation Identifier Names and Codes

MAGE MicroArray and Gene Expression

MAGE-OM MicroArray Gene Expression - Object Model

MDA Model Driven Architecture
MedDRA Medical Dictionary for Regulatory Activities

metadata Definitional data that provides information about or documentation of
other data.

MGED Microarray Gene Expression Data

 Glossary

147

Term Definition

Mobius An array of tools and middleware components to coherently share
and manage data and metadata in a Grid and/or distributed
computing environment.

multiplicity Multiplicity of an association end indicates the number of objects of
the class on that end may be associated with a single object of the
class on the other end

NCI National Cancer Institute

NCICB National Cancer Institute Center for Bioinformatics

OGSA Open Grid Services Architecture - developed by the Global Grid
Forum, aims to define a common, standard, and open architecture
for grid-based applications.

OGSI Open Grid Services Infrastructure -gives a formal and technical
specification of what a Grid Service is. In other words, for a high-
level architectural view of what Grid Services are, and how they fit
into the next generation of grid applications

OIL Ontology Inference Layer

OilEd Ontology editor allowing you to build ontologies using DAML+OIL

OLLT Obsolete Lower Level Terms

OMG Object Management Group

ORM Object Relational Mapping

PT Preferred Term

RDBMS Relational Database Management System

SDE Service Data Element

SDK Software Development Kit

Semantic
connector

A development kit to link model elements to NCICB EVS concepts.

SOA Service Oriented Architecture: A discipline for building reliable
distributed systems that deliver application functionality as services
with the additional emphasis on loose coupling between interacting
services.

SOA Service Oriented Architecture
SOAP Simple Object Access Protocol

SOC System Organ Class

SPORE Specialized Programs of Research

SQL Structured Query Language

caGrid 1.0 User’s Guide

 148

Term Definition

SSC Special Search Categories

UI User Interface

UID User Identification

UML Unified Modeling Language

UML Unified Modeling Language
UMLS Unified Medical Language System

UPT User Provisioning Tool

URL Uniform Resource Locators

VD Value Domain

Virtualization Make a computational or data resource available to caBIG
community - some people call "Gridification"

VO Virtual Organization

WAR Web Application Archive

Web Service Application to application communication using web based service
interfaces as describe by the Web Services 1.0 or 2.0 specification.

WSDD Web Service Deployment Descriptor
WSDL Web Services Description Language

WSDL Web Services Description Language

WSRF Web Services Resource Framework
XMI XML Metadata Interchange

(http://www.omg.org/technology/documents/formal/xmi.htm) - The
main purpose of XMI is to enable easy interchange of metadata
between modeling tools (based on the OMG-UML) and metadata
repositories (OMG-MOF) in distributed heterogeneous environments

XML Extensible Markup Language (http://www.w3.org/TR/REC-xml/) -
XML is a subset of Standard Generalized Markup Language
(SGML). Its goal is to enable generic SGML to be served, received,
and processed on the Web in the way that is now possible with
HTML. XML has been designed for ease of implementation and for
interoperability with both SGML and HTML

XML Extensible Markup Language
XPath XML query/traversal language adhering to the XPath specification

set forth by the W3C.

XQuery XML query/transformation language adhering to the XQuery
specification set forth by the W3C.

Index

149

Index

Analytical and data services
overview, 7

Analytical service developer, 4
Apache Axis

relationship to Introduce, 8
ApplicationSecurityConfig.xml, 125
Authentication management. See CSM
Authorization Management. See Authz
Authz

configuring JAAS, 125
overview, 125
required jars, 127
setting classpath, 127

caBIG
references, 143

caCORE
references, 143

caCORE SDK, 41
caGrid

client APIs, 50
overview, 49
user management, 86

caGrid document, 3
caTRIP

client application case study, 55
definition, 55

Client API
discovery API, 52
EPR, 51
inspecting metadata, 53
Introduce, 19
invoking operations on service, 54
obtain EPR for service, 51
overview, 50
secure communication, 50

Client application developer, 4
Create basic service, 7
CSM

administration example, 130
configuring, 123
configuring a service, 122
deploying to container, 123
overview, 122

Data service developer, 4
Deploy

grid service, 19
Deploy service, 7
Deploying

Dorian, 95
Grid Grouper, 111

Discover service methods, 10

Discovery API, 52
DiscoveryClient, 53
Document conventions, technical guide, 2
Dorian

adding trusted identity provider, 99
building, 90
certificate authority configuration, 93
configuring, 90
definition, 60
deploying, 95
identity management configuration, 92
identity provider configuration, 91
managing grid proxies, 96
managing grid user accounts, 101
managing grid users, 89
managing IdP users, 106
managing trusted identity providers, 97
registering with IdP, 105
removing trusted identity provider, 101
setting default administrator account, 95
software prerequisites, 89
viewing/updating trusted identity provider, 100

End point reference
definition, 51
obtaining for service, 51

Enterprise Vocabulary Services, 49
Examples

caTRIP invocation adn client API, 56
caTRIP metadata and client API, 56
client API and caTRIP discovery, 55
create basic analytical service, 20
create grid service using data extension, 34
create service using caCORE SDK, 41
CSM administration, 130
discovering services, 53
inspecting metadata, 54

GAARDS
definition, 60

Global Model Exchange
relationship to Introduce, 8

Globus toolkit
removing administrator, 71

Globus Toolkit, 64
adding administrator, 70
adding authority, 81
adding trust levels, 73
adding trusted certificate authorities, 75
building, 67
building SyncGTS, 86
configuring, 67
deploying, 68

caGrid 1.0 User’s Guide

 150

managing certificate authorities, 74
managing trust levels, 71
prioritizing authority, 83
relationship to Introduce, 8
removing authority, 83
removing trust levels, 74
removing trusted certificate authorities, 79
running SyncGTS, 86
software prerequisites, 67
synchronization, 84
syncing with trust fabric, 83
updating an authority, 82
user management, 86
view/modify trust levels, 72
viewing/modifying trusted certificate

authorities, 77
Grid Grouper

administering, 111
adminstrating groups, 117
building, 110
configuring, 110
deploying, 111
overview, 108
software prerequisites, 109
stem administration, 112

Grid Security Infrastructure, 64
Grid trust fabric

definition, 62
Grid Trust Fabric

bootstrapping, 66
managing, 69, 79

Grid Trust Service, 64
Groups

adminstrating in Grid Grouper, 117
memebership, 120
privileges, 118

Hibernate
configuring for Authz, 126

hibernate.cfg.xml, 126
Introduce

client API, 19
discover service methods, 10
graphical development environment, 9
overview, 8
service creation, 10
service modification, 12

ISO/IEC 11179, 49
Metadata

inspecting, 53
Metadata API, 53
Modify service, 7
References

caBIG, 143

caBIG materials, 143
caCORE, 143
caCORE material, 143
technical manuals, guides, 142

Referneces
scientific publications, 139

Service
contexts, 17
create basic analytical, 20
create using caCORE SDK, 41
create using data extension, 34
deployment, 19
levels of security, 16
operations, 14
resource properties, 15
service properties, 15
types, 13

Service administration
administration user interface, 61
bootstrapping grid trust fabric, 66
Globus toolkit, 64
grid trust fabric, 62
grid trust service, 64
overview, 59
security infrastructure, 60

Service administrator, 5
Service creation, 10
Service developer, 3
Service modification, 12
Software prerequisites

Dorian, 89
Globus, 67
Grid Grouper, 109

Stems
administrating in Grid Grouper, 112
managing child groups, 116
managing children, 115
privileges, 113

SyncGTS
building, 86
running, 86

Text conventions, technical guide, 2
User accounts

managing, 103
removing, 104

User role
analytical service developer, 4
client application developer, 4
data service developer, 4
definition, 3
service administrator, 5
service developer, 3

