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Alcoholism is a common disease resulting from the complex interaction of genetic, social, and 
environmental factors. Interest in the high heritability of alcoholism has resulted in many studies of how 
single genes, as well as an individual’s entire genetic content (i.e., genome) and the proteins expressed 
by the genome, influence alcoholism risk. The use of large-scale methods to identify and characterize 
genetic material (i.e., high-throughput technologies) for data gathering and analysis recently has made it 
possible to investigate the complexity of the genetic architecture of susceptibility to common diseases 
such as alcoholism on a systems level. Systems genetics is the study of all genetic variations, their 
interactions with each other (i.e., epistasis), their interactions with the environment (i.e., plastic 
reaction norms), their relationship with interindividual variation in traits that are influenced by many 
genes and contribute to disease susceptibility (i.e., intermediate quantitative traits or endophenotypes1) 
defined at different levels of hierarchical biochemical and physiological systems, and their relationship 
with health and disease. The goal of systems genetics is to provide an understanding of the complex 
relationship between the genome and disease by investigating intermediate biological processes. After 
investigating main effects, the first step in a systems genetics approach, as described here, is to search 
for gene–gene (i.e., epistatic) reactions. KEY WORDS: Alcoholism; alcoholism etiology; genomics; genetics; 
systems genetics; epistasis; gene–gene interactions; genome-wide studies; biological epistasis; statistical epistasis; 
risk factors; protective factors; disease etiology; literature review 

mental influences. Alcoholism affected 
Alcohol addiction is a complex 

disease that results from a variety 
of genetic, social, and environ-

approximately 4.65 percent of the U.S. 
population in 2001–2002, producing 
severe economic, social, and medical 
ramifications (Grant 2004). Researchers 
estimate that between 50 and 60 per-
cent of alcoholism risk is determined 
by genetics (Goldman and Bergen 1998; 
McGue 1999). This strong genetic 
component has sparked numerous link-
age and association studies investigat-
ing the roles of chromosomal regions 
and genetic variants in determining 
alcoholism susceptibility. To date, some 
of these studies have identified potential 
susceptibility genes. However, the com-
plex etiology of alcoholism lends itself 
to further investigation that takes into 
account the multiple layers of interac-
tion between genes within the context 
of both the genome and environment. 

Systems genetics offers a new 
approach to studying the progression 

of multifaceted diseases such as alco-
holism. This new and emerging field 
is the result of the synergy of disciplines 
such as bioinformatics, biotechnology, 
epidemiology, genetics, molecular 
biology, physiology, psychology, and 
statistics, all of which contribute to 
a more complete understanding of 
the  interactions and functions of the 
entire genome with given ecological 
and sociological contexts. Detecting, 
characterizing, and interpreting gene– 
gene and gene–environment interac-
tions as risk factors for alcoholism is 
an important first step in a systems 
genetics approach that combines 
genomics2 and proteomics3 data with 
methods to understand how biologi-
cal processes work together to deter-
mine human health. This approach 
does not, however, negate the need to 
look for variants that directly impact 
disease independent of interaction 
effects (main effects) within the data. 

A complete review of all results 
from genetic, genomic, proteomic, 

and metabolic studies of alcoholism 
is beyond the scope of this review. 
This article focuses on recent literature 
involving studies of genes selected 

1 An endophenotype is a genetically determined trait 
(i.e., phenotype) that is not immediately visible but may 
contribute to the susceptibility to develop a particular 
behavior or syndrome. See the glossary, p. 84, for 
descriptions of other technical terms used in this article. 

2 Genomics is the study of the structure and function of 
an organism’s complete genetic content, or genome. 

3 Proteomics is the study of the complete set of proteins
produced by an organism (i.e., proteome). 
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based on biochemical evidence for 
their role in disease (i.e., candidate 
genes) and genome-wide studies, 
followed by an overview of the inter­
action among genes (i.e., epistasis) 
and its current and potential applica­
tion in the study of alcoholism. This 
article concludes with a discussion of 
several methods currently being devel­
oped that incorporate a systems approach 
to genetics and their potential applica­
tions for the future study of alcoholism. 

Alcoholism Genetics: 
A Brief Overview 

The genetic architecture of suscepti­
bility to a disease such as alcoholism 
can be defined as (1) the number of 
genes directly or indirectly involved, 
(2) the interindividual variation in 
those genes, and (3) the magnitude 
and nature of their specific genetic 
effects. Alcoholism develops in sus­
ceptible individuals as a result of 
genetic, environmental (e.g., alcohol 
consumption), and social influences, 
as well as their propensity for risk-
taking behaviors (Ramoz et al. 2006). 
Because of this complex etiology, 
multiple levels of information must 
be integrated to more completely 
understand the genetic architecture 
of alcoholism. In the progression of 
multifactorial diseases such as alco­
holism, gene–gene interactions result 
in a variety of differentially expressed 
proteins. These proteins also interact, 
resulting in certain biochemical and 
physiological characteristics that, in 
the presence of certain environmental 
influences, result in alcoholism. 
Although studies of alcoholism’s 
etiology have been successful in iden­
tifying a few candidate genes for sus­
ceptibility,  interindividual variation in 
these  genes accounts for only a small 
proportion  of the overall heritability 
of  the  disease. Much of the remaining 
heritability is potentially due to DNA 
sequence  variations, with effects that 
are  dependent on contexts defined 
by the rest of the genome and the 
environment. 

This article first reviews what cur­
rently is known about the role genet­

ics plays in alcoholism and then gives 
a brief overview of the key findings 
from candidate gene and genome-wide 
studies. These studies confirm the role 
of genetics in the development of 
alcoholism and elucidate the need for 
a systems-based approach to the study 
of the genetic basis of the disease. 

Candidate Gene Studies 
Two basic strategies are used to iden­
tify genetic risk factors for common 
human diseases. The most common 
approach is to focus on a few candi­
date genes. This targeted approach 
is popular because a biological basis 
exists for the hypotheses being tested. 
Alternatively, genetic variations (i.e., 
polymorphisms) from across the human 
genome can be measured in a high-
throughput manner to search for 
genetic risk factors without making 
assumptions about which genes might 
be important. This latter genome-wide 
approach is popular because much 
more information is examined. 
Researchers frequently debate the 
advantages and disadvantages between 
candidate gene and genome-wide 
strategies as well as the differences in 
genome-wide strategies themselves. 
Risch (2000) suggests that genome-
wide association studies, which com­
pare the genomes of people with an 
illness (i.e., cases) with unaffected 
people (i.e., controls), may be more 
sensitive toward finding effects for 
complex diseases than genome-wide 
linkage studies, which seek to identify 
regions of the genome that are associ­
ated with disease risk. The candidate 
gene approach is more direct and 
hypothesis-based and, therefore, per­
haps more likely to have significant 
findings, although less likely to find 
novel associations. The genes most 
extensively examined by candidate 
gene studies have been those involved 
in alcohol (i.e., ethanol) metabolism 
and in neurological pathways respon­
sible for increased risk taking and 
“reward” stimulation from ethanol. 
The metabolic genes most frequently 
studied include those for the enzymes 
alcohol dehydrogenase (ADH), alde­
hyde dehydrogenase (ALDH), catalase, 

and cytochrome P450 2E1 (CYP2E1). 
ADH is responsible for 80 percent of 
ethanol’s metabolism to acetaldehyde, 
which is then further metabolized to 
acetate by ALDH. CYP2E1 metabo­
lizes approximately 10 percent of 
ethanol and, because of its lower 
affinity for ethanol, is largely active 
only when ADH is saturated (Gemma 
et al. 2006). 

Researchers also have studied various 
genes related to the brain chemistry 
of alcoholism and specific chemicals 
(i.e., neurotransmitters) involved in 
addiction. Such research has exam­
ined genes for the binding sites (i.e., 
receptors) for the neurotransmitter 
gamma-aminobutyric acid (GABA); 
opioid receptors; components of the 
pathways for the neurotransmitters 
serotonin, dopamine, and glutamate, 
as well as the enzyme catechol-O­
methyl-transferase (COMT), which 
is involved in the inactivation of 
dopamine; and the neurotransmitter 
neuropeptide Y (NPY) (Dick and Bierut 
2006; Oroszi and Goldman 2004). 

Candidate gene association studies 
also help to focus on genetic variants 
that may be directly linked to patho­
physiology, as reviewed by Kohnke 
(2007). Several genes, including those 
for neurotransmitters such as dopamine 
as well as those genes mentioned above, 
have undergone frequent investigation 
in candidate association as well as link­
age studies. Some have shown promis­
ing, and others conflicting, results.  

The candidate gene approach has 
not only confirmed a genetic compo­
nent of alcoholism but also has 
brought important understanding to 
disease etiology and may yield further 
insight when integrated with gene 
expression and proteomic analysis. 
Though the candidate approach has 
proven useful, genome-wide studies 
may provide a more comprehensive 
view of whole-genome interaction 
in the etiology of alcohol addiction. 

Genome-Wide Studies 
A first step toward advancing our 
understanding of the role of genetics 
in the development of alcoholism is 
to gather genetic data on a genome-
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wide scale. As previously noted, stud­
ies to date have focused on a limited 
number of candidate genes. Although 
these studies have furthered our under­
standing of the disease and will con­
tinue to play an important role in 
our understanding of alcoholism, the 
advent of new genomic and computa­
tional methods is making it possible 
to broaden our knowledge of the dis­
ease through a more inclusive whole-
genome approach. There are two main 
approaches to genome-wide analysis— 
association and linkage. Association 
studies examine genetic polymorphisms 
associated with case or control status, 
whereas linkage studies investigate the 
inheritance of specific locations on a 
chromosome (i.e., loci) within family 
lines. Though these two approaches 
are quite different in procedure and 
analysis, both are being greatly advanced 
by commercially available technology. 
The discussion of systems genetics below 
cites examples of both approaches. 

The largest genome-wide study 
of alcoholism to date has been the 
Collaborative Study on the Genetics 
of Alcoholism (COGA) (Begleiter et 
al. 1995; Reich 1996). This study 
collected data from families with 
alcoholism and has been used for 
both linkage and association analyses. 
Researchers have identified candidate 
susceptibility regions on chromo­
somes 1, 2, and 7, including suscepti­
bility and protective regions within 
the neurexin 1(NRXN1) gene on 
chromosome 2 (Yang et al. 2005). 
Another study by Namkung and 
colleagues (2005) was able to show 
that association analysis of COGA 
data pointed to a significant gene on 
chromosome 7, as well as 13 genes 
associated with both alcoholism and 
schizophrenia. The genes in these 
regions represent candidates for inde­
pendent main effects for susceptibili­
ty to alcoholism. Some of the COGA 
victories include associations that 
have been subsequently substantiated 
by other investigations, such as GABA 
receptor alpha (GABRA2), choliner­
gic muscarinic 2 receptor (CHRM2), 
and ADH4 (Edenberg and Froud 
2006). The challenge thereafter is to 
identify DNA sequence variations 

that influence susceptibility primarily 
through nonlinear interactions (i.e., 
the total interaction is not the sum of 
the influence of its interacting parts) 
with other genes or environmental 
factors. The complex interactions 
resulting in differential disease sus­
ceptibility and progression necessitate 
further investigation of epistatic 
interactions, which occur when the 
action of one gene is modified by one 
or several other genes. 

Epistasis or Gene–Gene 
Interaction 

Epistasis has been defined in multiple 
ways (e.g., Brodie 2000; Hollander 
1955; Phillips 1998). The following 
section reviews two types of epistasis— 
biological and statistical (Moore and 
Williams 2005)—including aspects of 
biological epistasis, current methods 
used to study statistical epistasis, and 
analytical challenges associated with 
studying epistasis for genome-wide 
data and possible strategies for over­
coming these challenges. 

Biological epistasis results from 
physical interactions among bio­
molecules (e.g., DNA, RNA, proteins, 
enzymes, etc.) and occurs at the cellu­
lar level in an individual. This type 
of epistasis is what Bateson (1909) had 
in mind when he coined the term. 
Statistical epistasis was first defined 
by Fisher (1918) as a mathematical 
phenomenon that occurs at the popu­
lation level and is realized when there 
is interindividual variation in DNA 
sequences. Figure 1 illustrates the 
conceptual divide between biological 
and statistical epistasis that is impor­
tant to understand in order to make 
biological inferences from statistical 
results (Moore and Williams 2005). 

Understanding biological epistasis 
is one important motivation for 
studying statistical epistasis. With 
alcoholism, researchers have focused 
more on the direct study of biological 
epistasis at the cellular and biochemical 
level. However, a wide range of ana­
lytical tools is available for the study 
of statistical epistasis in human popu­
lations that could be applied to this 

disease. Methods for detecting statis­
tical epistasis, described below, include 
linear and logistic regression (e.g., 
Cordell 2002; Millstein et al. 2006), 
combinatorial partitioning (Nelson et 
al. 2001), restricted partitioning 
(Culverhouse et al. 2004), set associa­
tion analysis (Hoh et al. 2001; Hoh 
and Ott 2003, 2004; Ott and Hoh 
2003; Wille et al. 2003), genetic pro­
gramming of neural networks 
(Motsinger et al. 2006; Ritchie 
2003b; Ritchie et al. 2004; White 
et al. 2003), symbolic discriminant 
analysis (Moore et al. 2002, 2007), 
and multifactor dimensionality 
reduction (MDR) (Hahn and Moore 
2004; Moore 2004, 2007; Moore et 
al. 2006; Ritchie et al. 2001, 2003b). 
The following section focuses first 
on studies of biological epistasis and 
then reviews some of these statistical 
methods. 

Biological Epistasis and Alcoholism 
Though gene–gene interactions are 
expected to play an important role 
in alcoholism, few studies have inves­
tigated epistasis in this disease. As 
mentioned above, members of the 
ADH gene family are common can­
didates for alcoholism susceptibility 
genes. As a model system, fruit flies 
(i.e., Drosophila) have been used to 
study epistasis in ADH genes and 
genes for other metabolic enzymes in 
relation to larval tolerance of ethanol. 
In one study, Freriksen and colleagues 
(1994) discerned differences in the 
metabolism of ethanol by measuring 
the ratios of metabolic intermediates 
that were “fluxed” through different 
branches of the ethanol metabolism 
pathways. They found that ethanol 
metabolism varied depending on the 
particular ADH genes present (i.e., 
ADH genotype). The authors suggest­
ed that the changes in intermediate 
ratios through the pathway might be 
the foundation for observed statistical 
epistatic interactions. 

The biological epistasis of alcoholism 
also has been studied in reference to 
neurological genes. As demonstrated 
by Job and colleagues (2007), in a 
study of a type of ethanol-stimulated 
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opioid receptor (i.e., the µ-opioid 
receptor [MOPr]) in mice, epistatic 
interactions may be sexually dimorphic. 
The researchers found a sex–genotype 
interaction regarding the level of 
dopamine released in mice with the 
MOPr gene deleted (i.e., MOPr knock­
out mice) when they were stimulated 
with ethanol in the ventral striatum, 
with females showing a larger reduction. 

Palmer and colleagues (2003) found 
a potential interaction between poly­
morphisms of the dopamine receptor 
D2 (DRD2) gene by constructing 
DRD2 knockout mice against two 
different genetic backgrounds (B6 and 

129). B6 mice previously were shown 
to have less stimulation in response to 
ethanol than 129 background mice. 
The two types of DRD2 knockouts 
showed different locomoter stimulator 
and locomotor sensitization, demon­
strating that there was an epistatic 
interaction between DRD2 and the 
genetic background. DRD2 also has 
been a popular target for studies of sta­
tistical epistasis, as described below. 

Statistical Epistasis and Alcoholism 
In contrast to biological epistasis, sta­
tistical epistasis is a population-level 
phenomenon that arises from linear 

Figure 1 Biological epistasis is a measure of gene interaction occurring within 
a single organism, via gene–gene, gene–protein, and protein–protein 
interaction. Statistical epistasis is a detectable measure of epistasis at 
the population level. 

Statistical Epistasis 

Population 

Biological Epistasis 

Phenotype 

Proteins 

Genes 

Individual 

and nonlinear patterns of variation in 
genotypes and complex traits such as 
alcoholism. As such, detecting and 
characterizing statistical epistasis 
requires special analytical modeling 
methods. An association study by 
Osier and colleagues (2004) found a 
potential epistatic interaction between 
the ADH1B and ADH7 genes among 
a Han Chinese population. The ADH 
variant ADH1B Arg47His previously 
was found to be protective against 
alcoholism (Osier 1999). This protec­
tive effect was not solely related to the 
ADH1B gene but to an interaction 
with ADH7 (or a locus that occurs 
with it more often than would be 
expected by random chance [i.e., 
a site in linkage disequilibrium with 
it]). The study included analysis of sets 
of closely linked genetic variants that 
tend to be inherited together (i.e., hap­
lotypes) and 2-x-2 contingency tables, 
which are used to record and analyze 
the relationship between two or more 
variables, to discern a statistically sig­
nificant, though relatively weak, pro­
tective effect of the ADH7 StyI site. 

Neurological statistical epistasis 
studies include a study among three 
different Taiwanese populations that 
examined three different DRD2 poly­
morphisms. The results showed no 
association between the DRD2 poly­
morphisms and alcoholism when 
considered individually or as haplo­
types (Lu et al. 1996). The minor 
(A1) allele of DRD2 and major (G1) 
allele of GABA receptor beta 3 
(GABRB3), however, have been asso­
ciated with alcoholism risk indepen­
dently and in combination in a study 
of severely alcoholic and nonalcoholic 
Caucasians (Noble et al. 1998). This 
discrepancy regarding the statistical 
effect of DRD2 variations could be 
due to several factors, including eth­
nicity or an effect of DRD2 variation 
that is only detectable when epistasis 
is considered. Also, in a recent associ­
ation study, COGA researchers have 
found that alcoholism association 
with the DRD2 region actually may 
be the result of an association with 
the nearby ankyrin repeat and kinase 
domain containing 1 (ANKK1) gene 
(Dick et al. 2007).  
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Methods for Detecting Statistical 
Epistasis 
Two commonly used statistical methods 
for studying epistasis are parametric 
logistic regression and nonparametric 
MDR. In logistic regression models, 
the probability of disease (p) is expressed 
as a linear function of independent 
variables (see Hosmer and Lemeshow 
2002; Kleinbaum and Klein 2002). 
The advantage of logistic regression 
is that interactions can be modeled 
relatively easily, the statistical theory 
is very well characterized, and the 
approach can be implemented on 
a standard desktop computer using 
a variety of freely and commercially 
available statistical packages. An impor­
tant disadvantage is that very large 
sample sizes are needed to accurately 
estimate the parameters in the model 
when there are many independent 
variables.4 Epistasis is difficult to detect 
and characterize using traditional 
parametric statistical methods such 
as logistic regression because of the 
sparseness of the data in high dimen­
sions. That is, when interactions 
among multiple polymorphisms are 
considered, there are many multilocus 
genotype combinations that have very 
few or no data points. For example, 
with two single nucleotide polymor­
phisms5 (SNPs) that each have three 
genotypes, there are nine two-locus 
genotype combinations. In the case 
of three SNPs, there are 27 three-
locus genotype combinations. There­
fore, as each additional SNP is con­
sidered, the number of multilocus 
genotype combinations increases expo­
nentially. The result of this added 
dimensionality is that exponentially 
larger sample sizes are needed in order 
to have enough data to estimate the 
interaction effects. This phenomenon 
has been referred to as the curse of 
dimensionality (Bellman 1961) and, 
for methods such as logistic regres­
sion, can lead to parameter estimates 
that have very large standard errors,6 

resulting in an increase in false-positives 
(i.e., type I errors) (Concato et al. 1993; 
Hosmer and Lemeshow 2002; Peduzzi 
et al. 1996). In addition, detecting gene– 
gene interactions using traditional pro­

cedures for fitting regression models 
can be problematic, leading to an 
increase in false negatives (i.e., type II 
errors) and a decrease in power. 

MDR is a data-mining strategy for 
identifying combinations of SNPs 
that are predictive of a discrete clinical 
end point in which no parameters are 
estimated (i.e., nonparametric) and 
no genetic model is assumed (i.e., 
genetic model–free) (Hahn et al. 2003; 
Hahn and Moore 2004; Moore 2004, 
2007; Moore et al. 2006; Ritchie et al. 
2001, 2003b). At the heart of the 
MDR approach is a feature or attribute 
construction algorithm that creates a 

new attribute (characteristic) by pool­
ing genotypes from multiple SNPs. 
The process of defining a new attribute 
as a function of two or more other 
attributes is referred to as constructive 
induction or attribute construction 
and was first developed by Michalski 
(1983). 

Constructive induction using MDR 
is accomplished in the following way. 
Given a threshold T, a multilocus 
genotype combination is considered 
high risk if the ratio of cases (subjects 
with disease) to controls (healthy sub­
jects) exceeds T; otherwise, it is con­
sidered low risk. Genotype combina­
tions considered to be high risk are 
labeled G1, whereas those considered 
low risk are labeled G0. This process 
constructs a new one-dimensional 
attribute with levels G0 and G1. It is 
this new single variable that is assessed 
using a classification method such as 
naïve Bayes7 or logistic regression. 

Figure 2 illustrates the constructive 
induction process used in MDR for 
two interacting SNPs. 

The MDR method is based on the 
idea that reducing the dimensionality 
of the data will make the detection of 
attribute dependencies (e.g., the SNP 
interactions that determine the classi­
fication of case/control) easier for a 
classifier such as a decision tree or a 
naïve Bayes learner. The drawbacks to 
this method include computational 
time for large datasets or interactions 
beyond four-way. Also, MDR soft­
ware currently cannot be applied to 
continuous end points (such as blood 
pressure) but is very powerful for 
discrete end points such as “case” or 
“control” classifications even with 
missing data and genotyping error 
(Ritchie et al. 2003b). For family-
based studies, a version of the software 
known as the MDR–PDT is available 
that is based on a merging of MDR 
and the Pedigree Disequilibrium Test, 
which measures the transmission of 
disease alleles through pedigrees. 
This method has excellent power for 
detecting epistasis in studies of nuclear 
families with low phenocopy errors8 

(Martin et al. 2006). MDR open-
source software is freely available from 
www.epistasis.org.  

The MDR method has been suc­
cessfully applied to the detection of 
epistasis for a variety of common 
human diseases, including sporadic 
breast cancer (Ritchie et al. 2001), 
essential hypertension (Moore and 
Williams 2002; Williams et al. 2004), 
atrial fibrillation (Moore et al. 2006; 
Tsai et al. 2004), myocardial infarction 
(Coffey et al. 2004), type 2 diabetes 
(Cho et al. 2004), prostate cancer (Xu 
2005), bladder cancer (Andrew et al. 

4 Parameters are estimated as part of logistic regres­
sion in order to quantify the behavior of independent 
variables in a statistical model. 

5 See glossary, p. 84. 

6 The standard error represents the “average” devia­
tion between actual and predicted observations. 

7 A naïve Bayes classifier uses probability methods 
to classify new data points. 

8 Phenocopy is the presence of phenotypes in a sam­
ple that mimic those caused by genetic influences, 
but are instead the result of environmental influences. 
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2006), schizophrenia (Qin et al. 2005; 
Vilella 2007), autism (Coutinho et al. 
2007), and familial amyloid polyneu­
ropathy (Soares et al. 2005). The 
MDR method also has been success­
fully applied in the context of studying 
genetic variation that influences an 
individual’s response to drugs (i.e., 
pharmacogenetics) and toxic substances 
(i.e., toxicogenetics) (e.g., Wilke et al. 
2005), and also is likely to be a useful 
tool for detecting epistasis in genetic 
studies of alcoholism. 

Genome-Wide Analysis of Epistasis 
Technologies now are available to 
measure 1 million or more SNPs across 
the human genome. The availability 
of high-dimensional SNP data has 

opened the door to genome-wide 
association studies. The COGA studies 
have made good progress in using large-
scale genotyping studies for alcoholism. 
As genome-wide methods improve, 
more studies implementing systems 
genetics methods are likely to be 
undertaken.  

A number of significant analytical 
challenges are associated with genome-
wide data, as summarized by Hirsch-
horn and Daly (2005) and Wang and 
colleagues (2005). Moore and Ritchie 
(2004) have outlined three significant 
challenges that must be overcome if 
we are to successfully identify gene– 
gene interactions using a genome-
wide approach. First, powerful data 
mining and machine learning meth­
ods such as MDR will need to be 

Figure 2 Multifactor dimensionality reduction (MDR) attribute construction. A) 
Distribution of cases (left bars) and controls (right bars) for each of the 
three genotypes of single nucleotide polymorphism (SNP) 1 and SNP2. 
The dark-shaded cells have been labeled ‘‘high risk,’’ and the light-shad­
ed cells have been labeled ‘‘low risk.’’ B) Distribution of cases and con­
trols when the two functional SNPs are considered jointly. A new single 
attribute is constructed by pooling the high-risk genotype combinations 
into one group (G1) and the low-risk genotype into another group (G0). 

49 44 

105 103 

46 53 46 46 

9895 

5659 

0 1 2 

SNP2 

0 1 2 

SNP1A 

B 
0 1 2 

SNP1 

90 0 
1720 

46 

49 

23 

0 
12 

0 

52 46 

23 

0 

31 
13 

59 

MDR 

103 

0 

G0 

SNP1_SNP2 

G1 
200 

97 

developed to statistically model the 
relationship between combinations of 
DNA sequence variations and disease 
susceptibility. A second challenge is 
the selection of genetic features or 
attributes that should be included for 
analysis. If interactions between genes 
explain most of the heritability of 
common diseases, then combinations 
of DNA sequence variations will 
need to be evaluated from a list of 
thousands of candidates. Methods for 
doing this are discussed below. The 
third challenge is the interpretation 
of gene–gene interaction models. 
Although a statistical model can be 
used to identify DNA sequence varia­
tions that confer risk for disease, this 
approach cannot be translated into 
specific prevention and treatment 
strategies without interpreting the 
results in the context of human biol­
ogy. Making etiological inferences 
from computational models may 
therefore be the most important and 
the most difficult challenge of all 
(Moore and Williams 2005). 

A recent report from the Inter­
national HapMap Consortium 
(Altshuler et al. 2005) suggests that 
approximately 300,000 carefully 
selected SNPs may be necessary to 
capture all of the relevant variation 
across the Caucasian human genome. 
Assuming this is true, we would need 
to scan 4.5 x 1010 pairwise combina­
tions of SNPs to find what Goldberg 
(2002) refers to as a genetic needle in 
a haystack. The number of higher-
order combinations is astronomical, 
which raises the question, “What is the 
optimal approach to this problem?” 

There are two general approaches 
to selecting attributes for predictive 
models: the wrapper approach and 
the filter approach. With a filter 
approach, researchers analyze a prese­
lected subset of SNPs that most likely 
are to be significant. With a wrapper 
approach, researchers use some mea­
sure while running the analysis itself 
to select a subset of SNPs. The key 
difference between the two approaches 
is that the classifier (i.e., statistical 
model) plays no role in selecting which 
attributes to consider in the filter 
approach. As Freitas (2002) reviews, 
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the advantage of the filter is speed, 
whereas the wrapper approach has the 
potential to do a better job classifying. 
For examples of each, see Moore and 
White (2006, 2007). 

Though attempts at genome-wide 
studies of alcoholism have not employed 
these methods to date, such strategies 
will be essential in the future to under­
standing the systems genetics of alco­
holism. As genome-wide datasets 
become available, tools such as MDR 
for modeling interactions must be 
developed in conjunction with powerful 
computational algorithms for search­
ing for optimal combinations of poly­
morphisms. To understand the link 
between genotype and an alcoholic 
phenotype, we must traverse the divide 
between genes and alcoholism by 
observing and measuring the levels of 
gene expression as well as proteomic 
and environmental interactions that 
compose the interactive genome. 

Toward a Systems Genetics 
Approach to the Study of 
Alcoholism 

Documenting the role of epistasis in 
alcoholism as described above is a 
good first step toward thinking about 
how genes work together to influence 
risk. However, a more complete under­
standing of the hierarchical mapping 
relationship between genotype and 
phenotype will come from studying 
other key biomolecules, such as 
mRNA and proteins, and their inter­
actions. The ultimate goal of systems 
genetics is to determine how these 
biomolecular interactions in a particu­
lar ecological context influence the 
physiological processes that are respon­
sible for disease phenotypes (figure 3). 
This information will dramatically 
increase our ability to develop effec­
tive prevention and treatment strate­
gies. The studies and strategies 
reviewed below provide a basis for 
moving forward with a systems genet­
ics approach to alcoholism. 

Genomics and Proteomics 
Microarray analysis, which allows the 
simultaneous analysis of up to tens of 
thousands of genes, now is a routine 
approach for investigating changes in 
gene expression on a genome-wide 
scale and has yielded interesting results 
in regards to alcoholism. Meta-analyses 
of microarray studies have revealed 
patterns in gene regulation in alco­
holics according to brain region. For 
example, in chronic alcoholics, DNA 
binding and cell signaling genes show 
increased expression in the prefrontal 
cortex relative to the nucleus accum­
bens, and genes controlling cellular 
plasticity were notably downregulated 
in the nucleus accumbens (Flatscher-
Bader et al. 2006; Mulligan et al. 2006; 
Worst and Vrana 2005). These are 
examples of studies that combined 

behavioral genetics and microarray 
analyses, which can be a promising way 
to uncover associations between gene 
expression and behavior patterns 
(Letwin et al. 2006). 

High-throughput measurement of 
proteins can be accomplished with 
technologies such as mass spectrome­
try. Proteomic studies have found 
varying protein levels based on brain 
region. Witzmann and colleagues 
(2003) describe “subtle but significant” 
differences in protein expression in 
rats genetically predisposed to prefer 
ethanol (i.e., ethanol preferring [P] 
rats) compared with those bred not 
to prefer ethanol (i.e., nonpreferring 
[NP] rats). Indeed, most of the report­
ed protein levels varied only slightly 
between P and NP rats in both the 
hippocampus and nucleus accumbens. 
Potential reasons for the subtlety 

Figure 3 The contribution of genes to alcoholism progresses through a hierarchy 
of gene expression, protein interaction, and physiology within the context 
of environment. Though association, linkage, expression, proteomic, 
physiological, and environmental studies capture pertinent information 
from each hierarchical level, they do not independently capture the com­
plex interaction actually responsible for disease. Colored shapes repre­
sent interacting gene products (i.e., RNA and proteins). 
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include limitations in current proteomic 
techniques such as two-dimensional 
electrophoresis. In a later study, P rats 
were allowed ethanol consumption 
on three different timetables: contin­
uous, at regularly scheduled intervals, 
or not at all. The researchers reported 
significant changes in protein levels 
within the nucleus accumbens and 
amygdala of differentially treated rats 
in several molecular pathways, signi­
fying the complexity of effects that 
ethanol can have on protein expression 
in varying regions of the brain (Bell 
2006). 

Though useful, model organism 
proteomic studies cannot necessarily 
be directly applied to understanding 
human systems. Human postmortem 
proteomic studies have been conduct­
ed with samples from the brains of 
alcoholics. Differences in the pro­
teomes of alcoholics with and with­
out liver cirrhosis were detected in 
three regions of the brain’s cerebellar 
vermis, when compared with healthy 
brains. Thiamine deficiency, which is 
often related to alcoholism, may be 
responsible for the changes observed 
in metabolic protein levels in both 
groups. Patients with complicated 
and uncomplicated cirrhosis had dif­
fering levels of the structural protein 
β-actin and the enzymes glutamate 
dehydrogenase (GDH) and carbonic 
anhydrase-2, indicating varying 
effects of liver damage on brain tissue 
(Alexander-Kaufman et al. 2007). 

Ecology and Environmental Exposure 

The genomics era has obvious poten­
tial for the study of genetic contribu­
tions to psychiatric diseases. Most 
studies to date have focused on asso­
ciating polymorphisms with behavior 
or endophenotypes (Caspi and Moffitt 
2006). However, it is well known 
that environmental influences play a 
strong role in disease development and 
are presumed causes of low experimen­
tal reproducibility (Hamer 2002). For 
example, it is anticipated that envi­
ronmental pathogens such as ethanol 
modulate the effects of susceptibility 
genes (Caspi and Moffitt 2006).  

A review by Lesch (2005) focuses 
on serotonin as a link between alco­
holism genetics and environment. 
Based on endophenotypes such as 
response to ethanol or reaction to 
stress and anxiety, the authors discuss 
the role that the serotinergic system 
plays in modifying each step of the 
biological hierarchy from genetic 
basic studies of variants of serotonin 
to molecular functional imaging. 
Another review article by Enoch 
(2006) combines environmental and 
genetic risk factors into models for 
high risk of alcoholism. The environ­
mental factors include cultural norms, 
childhood sexual abuse, and binge 
drinking as an adolescent. These 
environmental factors can interact 
with an individual’s genetic back­
ground, making the individual more 
or less susceptible to genetic risk fac­
tors, such as the presence of certain 
variants of the enzymes monoamine 
oxidase A (MAOA) or ADH2. 
Investigating such bridges between 
gene variants, environment, and 
endophenotype or phenotype is at 
the heart of systems genetics and is 
likely to yield the greatest insight 
into disease etiology.  

Some studies have attempted to 
investigate the interaction between 
the genetic and environmental risks 
for alcoholism. Most studies first try 
to divide genetic and environmental 
influences entirely. For instance, a 
study by Prescott and Kendler (1999) 
of 3,516 male–male twin pairs revealed 
that 42 to 52 percent of liability for 
alcoholism was the result of environ­
mental influences. Finnish twin stud­
ies uncovered the gene–environment 
roles in more detail, suggesting that 
environment is most important for 
initiation of drinking, whereas genet­
ic influences are more important for 
establishing drinking patterns (Rose 
and Dick 2005). Although it is 
important that such studies have 
revealed potential gene–environment 
interactions, a more thorough under­
standing of those interactions is 
required to aid in the development 
of potential treatment.  

Gene–ethanol interaction, though 
not the only environmental influence 

potentially involved in addiction, 
has been most widely studied. 
Research shows that the risk of 
becoming dependent increases with 
increased consumption (Dawson 
1994; Whitfield et al. 2004). Most 
gene–ethanol interactions have been 
associated with varying response to 
ethanol consumption with respect to 
metabolism, intoxication, or enjoy­
ment. Certain ADH and ALDH gene 
variants are associated with decreased 
risk for alcoholism. These polymor­
phisms result in high levels of 
acetaldehyde (Whitfield 2005), which 
produces facial flushing and various 
uncomfortable physiological effects 
that can reduce the enjoyment of 
alcohol consumption and therefore 
reduce risk for dependence. 

Putting the Pieces Together 
Systems genetics quickly is becoming 
a reality because it is possible to mea­
sure genetic, genomic, and proteomic 
factors at different levels of the bio­
logical hierarchy between genotype 
and phenotype. For example, expres­
sion quantitative trait locus (eQTL)9 

mapping attempts to identify QTLs 
for gene expression (Kendziorski and 
Wang 2006). In this case, the pheno­
types are the expression levels (how 
actively the genes are undergoing 
transcription) measured using 
microarrays. Genetic variants such as 
SNPs also can be measured in a high-
throughput manner and associated 
with the expression levels of the 
genes, thereby using genetic variation 
as a predictor for variation in expres­
sion. Researchers particularly are 
interested in specific DNA regions 
that are responsible for regulating lev­
els of gene expression (i.e., regulatory 
regions). Cis-acting regulatory regions 
are located in or near the affected 
gene, whereas trans-acting regulatory 
regions are located far away and often 
are master regulators of several genes. 
Although linkage analysis or expres­
sion analysis alone cannot uncover 
these regions, eQTL mapping with 

9 QTL are stretches of DNA that are closely linked to the 
genes that underlie a particular trait or characteristic. 
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computer programs can narrow the 
search by combining the two data 
types and searching for cis- and trans­
acting regulators (Mueller et al. 2006). 

Gathering linkage and expression 
data can be time consuming and the 
volume of data overwhelming. How­
ever, statistical and computation meth­
ods are useful for dealing with the 
data in a streamlined way. Kendziorski 
and Wang (2006) review available 
methods and caveats. One tool of note, 
eQTL Explorer, allows (patho)physio­
logic QTLs (associated with a patho­
physiologic trait) (pQTLs) and eQTLs 
to be displayed alongside one another, 
while linking QTL information to 
outside databases (Mueller et al. 2006). 
This will enable researchers to link 
genomic, expression, and physiologic 
data and understand more fully the 
interactions that result in alcohol 
dependence, bridging the gap between 
genetics and etiology. Although many 
questions remain as to appropriate sta­
tistical handling of data (see Kendziorski 
and Wang 2006 for a complete review), 
this mapping technique is becoming 
an increasingly popular experimental 
method and has been applied to several 
complex diseases, including alcoholism. 
For example, MacLaren and Sikela 
(2005) analyzed more than 39,000 
mRNA molecules (i.e., transcripts) 
from the cerebellums of Inbred Long-
Sleep (ILS) and Inbred Short-Sleep 
(ISS) mice, which show significant 
differences in sleep time when given a 
sedative dose of ethanol. eQTL map­
ping was used to locate chromosomal 
regions that could be affecting the 
transcription of 286 differentially 
expressed genes. Regions on the ends 
(i.e., distal) of chromosomes 2 and 4, 
along with a mid-region on chromo­
some 7, were determined to be eQTL 
rich, associated with sleep time, 
ethanol-induced hypothermia (chro­
mosome 2), and ethanol preference 
(chromosomes 4 and 7). 

The Role of Model Organisms 
Systems genetics approaches to studying 
the genetic architecture of common 
human diseases will not be possible 
without first being applied to model 

organisms in which the underlying 
biology is more simple and perturba­
tion experiments are possible. It has 
been suggested that functional studies 
of unicellular and other simple organ­
isms are key to learning the “rules” 
governing epistatic interactions and 
the development of methods that can 
accurately detail those interactions 
(Moore and Williams 2005). Because 
epistasis has been shown to be a ubi­
quitous principle of biological sys­
tems, simple and more controllable 
subjects than humans provide an 
analogous venue of study for epistatic 
interaction. Drosophila has been used 
for many years to study alterations in 
ADH and related genes and serves as 
a highly controllable and alterable 
system for studying ethanol metabolic 
genes (Freriksen et al. 1994). The use 
of Drosophila for such studies is con­
troversial, however, because of differ­
ences in activity between human and 
Drosophila ADH (Benach et al. 2005).  

Studying neurological genes in con­
junction with metabolic genes in a 
way that will be applicable to humans 
requires a more advanced system. 
Bennett and colleagues (2006) provide 
an overview of various mouse models 
in alcoholism, citing that no mouse 
model entirely captures the complexity 
of the disease or known behaviors 
associated with susceptibility. They 
instead present a strategy for using sev­
eral models to dissect the genetics 
behind various components of the dis­
ease, including tolerance, withdrawal, 
and response to ethanol. The strategy 
uses QTLs and then maps the genes 
before applying bioinformatics, haplo­
type, and expression analysis tools that 
yield candidate genes. Candidate genes 
then can be applied to a variety of 
molecular and biochemical analyses 
that will further elucidate their func­
tion and influence on phenotype, such 
as creating knockout mice. 

Methods investigating systems 
genetics must be applied to the area 
of bioinformatics and expression 
analysis. Large-scale genetic analyses 
of mice showing alcoholism-like 
behavior should, in the future, be 
studied from the viewpoint of com­
plex interactions and should apply 

methods such as MDR and eQTL 
mapping, as previously described. 
Because interactions can be studied in 
mice in a controllable and defined 
environment, they will be especially 
useful in examining how the rules 
governing interactions change in dif­
ferent environmental contexts. Once 
mouse studies have characterized some 
of the governing ideas and identified 
genes leading to alcoholism, results 
can be used to guide genome-wide 
systems genetics studies of alcoholism 
in humans. 

The methods employed in systems 
genetics can be improved and devel­
oped further, especially when relating 
gene–gene interaction to large-scale 
proteomic analysis. The current sta­
tistical tools used to relate SNP data 
with protein arrays are highly limited 
at best. In addition, very few resources 
are available for the systematic analysis 
of gene–environment interaction on a 
large-scale basis. Interdisciplinary and 
collaborative work will be necessary to 
drive the development of tools and stan­
dards for interpreting their results in an 
approach that will be relevant to the 
understanding of alcoholism and lead to 
medical applications. 

Discussion 

The new era of “-omics” approaches, 
along with the development of bioin­
formatics tools, has made it possible for 
researchers to more completely tackle 
the genetic architecture of common 
human diseases. Alcoholism is a highly 
complex disease with many interact­
ing genetic, environmental, and socio­
economic factors. Researchers have 
long been interested in the biological 
susceptibilities and protective effects 
of various genetic sequences on alco­
holism. An interactive genome, rather 
than a stationary one, contributes to 
the incidence of disease. As researchers 
begin to implement methods that can 
analyze interactions and integrate data 
types, we will be better able to apply 
research to personalized risk assessment 
and treatment approaches. 

This overview examined certain pop­
ular tools and how they can be used to 
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further the understanding of alco­
holism. However, one area that 
requires further methods development 
is gene–environment interaction. 
Though epidemiologists have various 
methods for examining gene–environ­
ment interaction, the relative number 
of studies focusing on applying and 
evaluating these tools are few.  

Various tools are available that take 
multiple layers of information regard­
ing alcohol-influencing factors into 
account. Before using these tools, 
researchers should first focus on find­
ing gene–gene interactions in genome-
wide analyses. Once genetic epistasis 
has been identified, various computa­
tional systems genetics methods such 
as eQTL mapping can be used to inte­
grate other levels of data. Such exten­
sive data gathering and analysis will 
obviously require collaborative efforts 
and effective use of preexisting data. 

Overall, the current state of systems 
research offers promising insights 
into the genetics of alcoholism. With 
alcoholism’s high heritability and 
widespread medical and socioeconomic 
effects, studies resulting in a more 
complete view of alcoholism and its 
complexity will be of great value to 
society and should be a high priority 
among researchers.  ■ 
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