AFNI User Group Meeting

Anisotropic Smoothing

Daniel Glen Robert Cox

SSCC / NIMH / NIH / DHHS

Anisotropic Smoothing

- Image filtering operation that preferentially smoothes one part of an image versus another.
- This operation is in contrast to the more standard mean, median and Gaussian smoothing operations.
- Method based on Ding (Weickert, et al and Gerig, et al). Diffusion-based filtering.

Anisotropic Smoothing

Pseudo-code for DWI data (SmoothDWI) (2D only)

 U_0 is original image data

For i=0 to 10

- Compute Image diffusion tensor (D) ۲
 - Smooth U_i a little with Gaussian (sigma=0.5)
 - Compute gradients, matrix of products of gradients $R=[(du/dx)^2(du/dx)(du/dy);$ $(du/dx)(du/dy) (du/dy)^{2}$
 - Smooth each component of R (sigma=1)
 - Compute eigenvalues (μ_1, μ_2) vectors for R
 - Compute $\phi_1 = 1 / (\mu_1 * s)$, $\phi_2 = 1 / (\mu_2 * s)$ where $s = 1/\mu_1 + 1/\mu_2$ (Ding method)
 - or $\phi_1 = 0.01 + 0.99 \exp \left[-0.01/(\mu_1 \mu_2)^2\right], \phi_2 = 0.01$ (exp method) Compute D = V Φ V^T where Φ = [ϕ_1 0; 0 ϕ_2]
- Smooth image dataset (DWI data) given D ۲
 - Compute flux in image J_x , J_y
 - Jx = Exx du/dx + Exy du/dy
 - Jy = Exy du/dx + Eyy du/dy
 - where E = [Dxx-Dm Dxy; Dxy Dyy-Dm] and Dm = mean diffusivity
 - $G_{nan} = dJ_x/dx + dJ_y/dy =$ anisotropic part of the smoothing

 - $U_{p,q,n+1}^{pqn} = \hat{U}_{p,q,n} + \Delta t (F_{pqn} + G_{pqn})$ where F = Dm / $\Delta x^2 * U_{smooth}$ = isotropic smoothing

and $\Lambda t = Dmax/4$

End loop

3danisosmooth

Usage: **3danisosmooth** [options] dataset Smooth a DWI dataset using anisotropic smoothing.

The output dataset is preferentially smoothed in similar areas

may use a sub-brick selection list, as in program 3dcalc.

Options :

- -prefix pname = Use 'pname' for output dataset prefix name.
- -iters nnn = compute nnn iterations (default=10)
- -2D = smooth a slice at a time
- -3D = smooth through slices. Can not be combined with 2D option
- -mask dset = use dset as mask to
 include/exclude voxels
- -automask = automatically compute mask for dataset

Can not be combined with -mask

-viewer = show central axial slice image
 every iteration.

Starts aiv program internally.

- -nosmooth = do not do intermediate
 smoothing of gradients
- -sigma1 n.nnn = assign Gaussian smoothing sigma before gradient computation for calculation of structure tensor. Default = 0.5
- -sigma2 n.nnn = assign Gaussian smoothing sigma after gradient matrix computation for calculation of structure tensor. Default = 1.0
- -deltat n.nnn = assign pseudotime step. Default = 0.25
- -savetempdata = save temporary datasets each iteration. Dataset prefixes are Gradient, Eigens, phi and Dtensor. Fach is overwritten each iteration.
- -phiding = use Ding method for computing
 phi (default)
- -phiexp = use exponential method for computing phi

-help = print this help screen

Gradient Filter Kernels

2D kernels

du/dx

du/dy

-a	-b	-a
0	0	0
а	b	а

where a=3/16, b= 10/16

3D kernels at p-1, p+1

а	b	а
b	С	b
а	b	а

where

a = 0.02, b = 0.06, c = 0.18

Isotropic smoothing kernel

b	а	b
а	d	а
b	а	b

2D

a = 0.4, b = 2.0/15.0, c = 1.0/60.0, d = (-6.0 * a) - (12.0 * b) - (8.0 * c) = -4.13

3D

С	b	С
b	а	b
С	b	С

at slice p

at slice p-1, p+1

DWI Images

25 iterations

DWI/DT Images

Gradient Dxx², Dxy, Dyy²

Eigenvalues, vectors

Phi Values

D Tensor: Dxx, Dxy, Dyy

Flux in x and y

G matrix anisotropic part

Cosine Circles

After 25 iterations

Cosine Circles

25 iterations

Gradient Dxx², Dxy, Dyy²

Eigenvalues, vectors

phi values

D tensor Dxx, Dxy, Dyy

Phi value calculation

Issues

• Performance and Memory

- 3:30 for 10 iterations, 21 seconds per iteration with DWI 256x256x41 x 22 sub-bricks (2D)
- ~ 1 sec/sub-brick/iteration ~ 0.025 sec/slice/iteration
- 9:00 for 10 iterations, 54 seconds per iteration, 2.5 sec/sub-brick/iteration, 0.06 sec/slice/iteration (3D),
- 5:54 for 10 iterations, 35 seconds per iteration with T2 512x512x112 single brick data (2D)
- ~ 0.3 sec/slice/iteration
- 16:22 for 10 iterations, 98 seconds per iteration, 0.88 sec/slice/iteration (3D)
- 2n + 6 sub-briks for 2D, 2n+12(3D), n=number of sub-bricks (almost 1GB)
- Improvements made in
 - Gaussian smoothing (spatial kernels instead)
 - more efficient spatial kernels for gradient and other smoothing kernel in algorithm
 - eigenvalue solver specific for symmetric 2x2 and 3x3
 - mask operations edge of mask gets special treatment
- Larger Delta T step (instability possible)
- Cheaper D tensor and alternative phis eigenvalue alternative (Ding, Matlab)
- Edges, Masks, Anisotropy
 - Edges show problems after many iterations
 - Masks treated equivalently to edges in program
 - Voxels treated "isotropically" (dx=dy=dz)
- Overfiltering and end points
 - Truth
 - Shock filter (stop determination)

References

Z Ding, JC Gore, AW Anderson, Reduction of Noise in Diffusion Tensor Images Using Anisotropic Smoothing, Mag. Res. Med., 53:485-490, 2005

J Weickert, H Scharr, A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance, CVGPR Group Technical Report at the Department of Mathematics\n" " and Computer Science,University of Mannheim,Germany,TR 4/2000.

J.Weickert,H.Scharr. A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. J Visual Communication and Image Representation, Special Issue On Partial Differential Equations In Image Processing,Comp Vision Computer Graphics, pages 103-118, 2002.

Gerig, G., Kubler, O., Kikinis, R., Jolesz, F., Nonlinear anisotropic filtering of MRI data, IEEE Trans. Med. Imaging 11 (2), 221-232, 1992.