AFNI User Group Meeting

Anisotropic Smoothing

Daniel Glen
Robert Cox

SSCC / NIMH / NIH / DHHS

Anisotropic Smoothing

- Image filtering operation that preferentially smoothes one part of an image versus another.
- This operation is in contrast to the more standard mean, median and Gaussian smoothing operations.
- Method based on Ding (Weickert, et al and Gerig, et al). Diffusion-based filtering.

Anisotropic Smoothing

Pseudo-code for DWI data (SmoothDWI) (2D only)
U_{0} is original image data

For $\mathrm{i}=0$ to 10

- Compute Image diffusion tensor (D)
- Smooth U_{i} a little with Gaussian (sigma=0.5)
- Compute gradients, matrix of products of gradients $R=\left[(d u / d x)^{2}(d u / d x)(d u / d y)\right.$; (du/dx)(du/dy) (du/dy)²]
- Smooth each component of R (sigma=1)
- Compute eigenvalues $\left(\mu_{1}, \mu_{2}\right)$ vectors for R
- Compute $\phi_{1}=1 /\left(\mu_{1}{ }^{*} \mathrm{~s}\right), \phi_{2}=1 /\left(\mu_{2}{ }^{*} \mathrm{~s}\right)$ where $\mathrm{s}=1 / \mu_{1}+1 / \mu_{2}$ (Ding method)
$-\quad$ or $\phi_{1}=0.01+0.99 \exp \left[-0.01 /\left(\mu_{1}-\mu_{2}\right)^{2}\right], \phi_{2}=0.01$ (exp method) Compute $\mathrm{D}=\mathrm{V} \Phi \mathrm{V}^{\top}$ where $\Phi=\left[\phi_{1} 0 ; 0 \phi_{2}\right]$
- Smooth image dataset (DWI data) given D
- Compute flux in image J_{x}, J_{y}
- Jx = Exx du/dx + Exy du/dy
- Jy = Exy du/dx + Eyy du/dy
where $\mathrm{E}=[\mathrm{Dxx}-\mathrm{Dm}$ Dxy; Dxy Dyy-Dm] and $\mathrm{Dm}=$ mean diffusivity
$-G_{p q n}=d J_{x} / d x+d J_{y} / d y=$ anisotropic part of the smoothing
$-U_{p, q, n+1}=U_{p, q, n}+\Delta t\left(F_{p q n}+G_{p q n}\right)$
- where $F=D m / \Delta x^{2} * U_{\text {smooth }}=$ isotropic smoothing and $\Delta t=\operatorname{Dmax} / 4$
End loop

3danisosmooth

Usage: 3danisosmooth [options] dataset
Smooth a DWI dataset using anisotropic smoothing.

The output dataset is preferentially smoothed in similar areas
may use a sub-brick selection list, as in program 3dcalc.
Options:
-prefix pname = Use 'pname' for output dataset prefix name.
-iters nnn = compute nnn iterations (default=10)
-2D = smooth a slice at a time
-3D = smooth through slices. Can not be combined with 2D option
-mask dset = use dset as mask to include/exclude voxels
-automask = automatically compute mask for dataset
Can not be combined with -mask
-viewer = show central axial slice image every iteration.
Starts aiv program internally.
-nosmooth = do not do intermediate smoothing of gradients
-sigma1 n.nnn = assign Gaussian smoothing sigma before gradient computation for calculation of structure tensor.
Default $=0.5$
-sigma2 n.nnn = assign Gaussian smoothing sigma after gradient matrix computation for calculation of structure tensor.
Default $=1.0$
-deltat n.nnn = assign pseudotime step.
Default $=0.25$
-savetempdata = save temporary datasets each iteration. Dataset prefixes are Gradient, Eigens, phi and Dtensor.
Each is overwritten each iteration.
-phiding = use Ding method for computing phi (default)
-phiexp = use exponential method for
computing phi
-help = print this help screen

Gradient Filter Kernels

2D kernels
$d u / d x$

$-a$	0	a
$-b$	0	b
$-a$	0	a

du/dy

$-a$	$-b$	$-a$
0	0	0
a	b	a

$3 D$ kernels at $p-1, p+1$

a	b	a
b	c	b
a	b	a

where
$\mathrm{a}=0.02, \mathrm{~b}=0.06, \mathrm{c}=0.18$
where $a=3 / 16, b=10 / 16$

Isotropic smoothing kernel

b	a	b
a	d	a
b	a	b

at slice p

$$
\begin{aligned}
& a=0.4, \quad b=2.0 / 15.0, \quad c=1.0 / 60.0 \\
& d=(-6.0 * a)-(12.0 * b)-(8.0 * c)=-4.13
\end{aligned}
$$

c	b	c
b	a	b
c	b	c

$p+1$

DWI Images

25 iterations

DWI/DT Images

DWI Intermediate Images

Gradient Dxx², Dxy, Dyy ${ }^{2}$

DWI Intermediate Images

Eigenvalues, vectors

DWI Intermediate Images

Phi Values

DWI Intermediate Images

D Tensor: Dxx, Dxy, Dyy

DWI Intermediate Images

Flux in x and y

G matrix anisotropic part

Cosine Circles

After 25 iterations

Cosine Circles

25 iterations

Gradient Dxx², Dxy, Dyy ${ }^{2}$

Eigenvalues, vectors

D tensor Dxx, Dxy, Dyy

Phi value calculation

Issues

- Performance and Memory
- 3:30 for 10 iterations, 21 seconds per iteration with DWI $256 \times 256 \times 41 \times 22$ sub-bricks (2D)
- $\quad-1 \mathrm{sec} / \mathrm{sub}-$ brick/iteration $\sim 0.025 \mathrm{sec} /$ slice/iteration
- 9:00 for 10 iterations, 54 seconds per iteration, 2.5 sec/sub-brick/iteration, 0.06 sec/slice/iteration (3D),
- 5:54 for 10 iterations, 35 seconds per iteration with T2 $512 \times 512 \times 112$ single brick data (2D)
- $\quad 0.3 \mathrm{sec} /$ slice/iteration
- 16:22 for 10 iterations, 98 seconds per iteration, 0.88 sec/slice/iteration (3D)
$-2 n+6$ sub-briks for $2 \mathrm{D}, 2 \mathrm{n}+12(3 \mathrm{D}), \mathrm{n}=$ number of sub-bricks (almost 1GB)
- Improvements made in
- Gaussian smoothing (spatial kernels instead)
- more efficient spatial kernels for gradient and other smoothing kernel in algorithm
- eigenvalue solver specific for symmetric 2×2 and 3×3
- mask operations - edge of mask gets special treatment
- Larger Delta T step (instability possible)
- Cheaper D tensor and alternative phis - eigenvalue alternative (Ding, Matlab)
- Edges, Masks, Anisotropy
- Edges show problems after many iterations
- Masks treated equivalently to edges in program
- Voxels treated "isotropically" (dx=dy=dz)
- Overfiltering and end points
- Truth
- Shock filter (stop determination)

References

Z Ding, JC Gore, AW Anderson, Reduction of Noise in Diffusion Tensor Images Using Anisotropic Smoothing, Mag. Res. Med., 53:485-490, 2005

J Weickert, H Scharr, A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance, CVGPR Group Technical Report at the Department of Mathematicsln" " and Computer Science,University of Mannheim,Germany,TR 4/2000.
J.Weickert,H.Scharr. A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. J Visual Communication and Image Representation, Special Issue On Partial Differential Equations In Image Processing,Comp Vision Computer Graphics, pages 103-118, 2002.

Gerig, G., Kubler, O., Kikinis, R., Jolesz, F., Nonlinear anisotropic filtering of MRI data, IEEE Trans. Med. Imaging 11 (2), 221-232, 1992.

