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Qutline

¢ 3dREMLIfit = analysis allowing for serial correlation
e 3dLME = generalized ANOVA
* 1dGC = Granger Causality analysis

® align_epi_anat.py = align EPI and structural (T,) datasets
* Miscellany

* Manganese MRI= tracing anatomical connectivity

*» DCEMRI = Dynamic Contrast Enhanced MRI
* Realtime AFNI = feedback to the subject
* DTI = new plugin from UCSD

*» ExamineXmat.R= analyze X matrix for potential problems



3dREMLfit

AFNI’'s New Approach to Dealing
with Serial Correlation in FMRI
Linear Regression (GLM)




3dREMLfit: Conclusions First

® Serial correlation does not appreciably impact the activation magnitudes
(Bs) estimated using 3dDeconvolve (= Ordinary Least Squares solution)
® Group activation maps made from combining these fs using 3dANOVA,
3dLME, eftc., are essentially the same using 3dDeconvolve Or
3dREMLfit (= Generalized Least Squares solution)
» In other words, there is no need to re-run old group analyses to see
if allowing for serial correlation will change the results
* Thresholded individual subject activation maps are potentially affected,
depending on the task timing and on the scanner
* The biggest effect of serial (AKA temporal) correlation—when this
correlation is significant—is on the estimates of the variance of the
individual subjects’ s
* If the variance is under-estimated using 3dDeconvolve, then the
individual subject ¢- and F-statistics will be over-estimated
* Individual subject variances and statistics are not usually carried
forward to the group analysis level
o Since inter-subject variance is much larger than intra-subject variance

* Thus, group results are only marginally affected by serial correlation




3dDeconvolve and Ordinary Least Squares (OLSQ)

® OLSQ = consistent estimator of FMRI time series fit parameter vector

* No matter what the temporal (AKA serial) correlation structure of the noise

o “Consistent” means that if you repeated the identical experiment infinitely many times,
and averaged the estimated value (e.g., f3; variance), result would be the true value

* But OLSQ estimate of time series noise variance is not consistent when
serial correlation is present
* OLSQ variance estimator will usually be biased too small with serial correlation

® \/ariance estimate is in denominators of formulas for - and F-statistics

* Result: individual subject - and F-values will be too large and/or their DOF
parameters will be too large

* Upshot: Significance of individual subject activations will be over-estimated (p-
values will be too small)

* Thresholded individual subject FMRI maps might show too much activation

* Obvious impacts on ROIls generated directly from individual subject activation
maps (e.g., for connectivity analysis)

* However, statistics taking into account serial correlation can be too
conservative, and understate the extent of the “true” regions of activation

o For this reason, and to avoid selection bias, perhaps it is best to define FMRI-derived
ROls using a spherical “punch out” around each activation map peak




A Tiny Amount of Mathematics

* White noise estimate of variance: N
- . R 52 = Z[data — fit, |’
* N = number of time points; i = time index N-m"

* m = number of fit parameters
* N-—m = degrees of freedom (DOF) = how many equal-variance independent
random values are left after the time series is fit with m regressors
o OLSQ assumption is that each of the N noise values in the data time series are
equal-variance and independent (AKA white noise)
®* If noise values aren’tindependent, then N—m is too large an estimate of
DOF, so variance estimate is too small

® Two possible solutions are:
1) Adjust variance estimate (and so the - and F-values) to allow for too few DOF
2) Come up with a different variance estimator that has all N—m DOF possible

o Requires estimating the temporal correlation structure of the noise as well

o Once temporal correlation matrix is known, use Generalized Least Squares (GLSQ;
AKA pre-whitening) to estimate 8 parameter vector

o GLSQ is consistent and should produce S-values with smaller variance than OLSQ
¢ Solution #2 is what 3dREMLfit implements




Mathematical Model for Serial Correlation

* My choice: ARMA(1,1) = AutoRegressive order 1 + Moving Average order 1
» Notation: r, = correlation at time lag #k for k=1,2,...,N-1

® parameter a = decay rate of the r, as k increases: for FMRI, 0<a<1

® parameter b = affects correlation at lag 1 (r,): -1<b<1
x r,=(a+b)-(1+a-b)/(A+2a-b+b*) r,=a"'r, for k=12,..

® Fora>0and—-a<b<0, ARMA(1,1) noise can be thought of as a sum of

AR(1) noise and white noise, with variance proportions determined by b

* Why | prefer 2 parameter ARMA(1,1) over easier 1 parameter AR(1) model (5=0)

..... Red: a=0.7 b= 0.0 = pure AR(1) model
....... --Green: a=0.7 b=+0.6
...... ~Blue: a=0.7 b=-0.6

" b =0 gives r;=a
b < 0 reduces r,
(as additive WN does)
b > 0 increases r,
a determines decay rate
for larger lags

0.6 ]

0.4

0.2




New Program: 3dREMLfit

* Implements Solution #2: estimate correlation parameters and use GLSQ

* REML is a (partially nonlinear) method for simultaneously estimating variance +
correlation parameters and estimating regression fit parameters (fs)
* Each voxel gets a separate estimate of its own correlation parameters (a,b)
o Estimates of ¢ and b can be spatially smoothed before they are used to compute the fs

o Can also input ¢ and b directly and skip their estimation (the slow part), if desired, and
use those values to compute the fs

o Variance estimate uses pre-whitened residuals to keep DOF=N-m
* Even if correlation decay parameter a was the same for all voxels, relative
amount of white noise (measured by ») mixed in would vary spatially
o Sample analyses using 1-parameter AR(1) and MA(1) models shown later

® |nputs to 3dREMLfit
* Run 3dDeconvolve first to setup .xmat.1D matrix file, GLTs, etc.

o Don’t have to let 3dDeconvolve finish analysis: -x1D stop

o 3dDeconvolve also outputs a command line to run 3dREML£it with the same
3D+time dataset and the matrix file just created

* Then, input matrix file and 3D+time dataset to 3dREMLfit
® Qutput datasets are structured to be similar to those in 3dDeconvolve

* |t should be easy to adapt scripts that use 3dDeconvolve output files (e.g., for
group analysis) to use the new software




Rapid Event Related Design (NIH 3 T: JJY)

Individual Maps from 17 Subjects

® Color map & Threshold: Full 7 such that p=0.001 (Underlay = TT_N27+tIrc)

REML
F=3.35
»=0.001

oLSQ
F=3.35
»=0.001

GIF Animation:
time = subject
Not visible in PDF

Differences
between REML
and OLSQ are
noticeable with
rapid event-

related design
(but activated
regions are very
similar)
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Block Design (15 s blocks: FBIRN-1 SM Task)

1 Individual Map (Subject#106)

Color=% signal change; Threshold: p=0.05 (uncorrected)

OoLSQ

 Very little difference
between OLSQ and
REML, even at so low a
threshold

“3 e Data is markedly less
; correlated in time (UNM

Siemens 1.5 T), as shown
by maps of REML-
estimated r,

 Similar data from U lowa
GE 1.5 T has similarly low
temporal correlation

« BWH & MGH 3 T data has
higher temporal correlation
than FBIRN 1.5 T, but lower
than NIH3 T —— ???
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Block Design (30 s blocks: NIH 3T: JJY)

Individual Maps from 16 Subjects

® Color map & Threshold: Full 7 such that p=0.001 (Underlay = TT_N27+tIrc)

REML
F=3.15
»=0.001

GIF Animation:
time = subject
Not visible in PDF

oLSQ
F=3.15
»=0.001

This is the worst
situation for
OLSQ: stimulus
is at very low
frequencies,
where noise
correlation
affects variance
the most
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Results Thus Far

* Between OLSQ and GLSQ+REML:

* Individual subject thresholded activation maps may differ very little,
some, or a lot

® | evel of temporal correlation determines how much difference GLSQ
makes to individual subject statistics

* Amount of temporal correlation seems to depend on magnetic field
strength, other scanner details, pulse sequence, ...

* Effect of temporal correlation also seems to depend on stimulus timing
* As theory indicates:
o Temporal correlation means noise variance depends on frequency

o So amount of noise that interferes with (“looks like”) the signal will
depend on frequencies at which the hemodynamic response is
appreciable

* Next slides: Group activation maps, GLSQ+REML vs OLSQ
* 2 cases from NIH: Event-related and Block:30s designs
* Don’t have enough FBIRN-1 subjects to do a group analysis
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Block Design: Group Results (3dANOVA3)

REML OLSQ

I;;:Zi: for Differences at

condition group level
are small:

F-test for = Mapy fal_se

Category _nega. Ives In

condition individual
maps when
using more
conservative

GLSQ+REML?
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Event-Related Design:

Group Results (3dANOVA3)

REML

OoLSQ

Differences
at group
level are
small:

fs don't
depend very
much on REML
vs OLSQ
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Tentative Conclusions

® For individual subject thresholded activation maps:

* Use GLSQ/REML estimation, especially for slow block design
experiments at 3+ Tesla

* Be aware that there may be many false negatives
o i.e., false acceptances of the null hypothesis

o am looking into an FDR-like procedure for estimating the missed detection
rate, similar to how FDR estimates the false positive rate

® For group maps using ANOVA (or similar statistics):
* Differences between OLSQ and GLSQ estimation are small

® | Recommendations:
* Don’t need to re-visit group activation conclusions’

» Use 3dREMLfit as a near drop-in replacment for 3dDeconvolve for
future work

o A little extra CPU time (usually from 1..3 times as long)
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Outline of SPM and FSL Approaches

e SPM5 and SPM2

* Estimate fixed ARMA(1,1) (more precisely, AR(1)+white noise) model for all “voxels
of interest” (pass an OLSQ F-test)

o By averaging estimated auto-covariance matrix from OLSQ residuals over
these voxels

o SPM assumes AR parameter ¢=0.2, and approximates ARMA(1,1)
correlations via linear Taylor series, to make correlation parameter estimation
easier to program

* Use GLSQ (same for each voxel) to solve for fs
o SPM99: Use OLSQ and adjusts DOF downwards to allow for serial correlation

¢ FSL and FMRIstat (similar, but differ in important details at several points)

* Use OLSQ to get first-pass residuals; use these to estimate each voxel’s auto-
correlation matrix; smooth these matrices spatially (FSL & FMRIstat vary here)

*x Estimate AR(1) parameter for each voxel separately from smoothed matrices
* Use GLSQ (different for each voxel) to solve for fs
® All these programs use a non-REML method to estimate serial correlation

parameter(s) from the OLSQ residual auto-correlation matrix, and then
adjust these estimates to reduce the bias thus introduced




Using 3dREMLfit - 1

® Step 1: run 3dDeconvolve as normal, setting up timing, GLTs

¢ 3dDeconvolve ... -bucket Adecon -x1D stop
Screen output: ‘\" filename re-used for 3dREMLfit command

A_

++ Wrote matrix values to file Adecon.xmat.1lD

++ Things you can do with the matrix file

++ (a) Linear regression with ARMA(1l,1) modeling of serial
correlation:

3dREMLfit -matrix Adecon.xmat.1lD -input ssl7.AllRuns.norm+torig
-mask ssl7 mask+orig -Rbeta Adecon beta REML -fout -Rbuck
Adecon REML -Rvar Adecon REMLvar

++ N.B.: 3dREMLfit command above written to file Adecon.REML cmd
++ (b) Visualization/analysis of the matrix via ExamineXmat.R

++ (c) Synthesis of sub-model datasets using 3dSynthesize

++

++ 3dDeconvolve exits: -xl1D stop option was given
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Using 3dREMLfit - 2

® Step 2: run 3dREMLfit ; perhaps adding options to the command line:
* —addbase : add extra baseline columns to the regression matrix
* —-slibase : add exira baseline columns to the regression matrix, on
a per slice basis = intended to aid in removal of physiological noise
* -gltsym : add exira GLTs (beyond those from 3dDeconvolve)
* —-usetemp : -slibase can require a lot of memory
o Generates REML matrices for many (a,b) cases for each slice

o This option writes & reads temporary matrices to disk to reduce RAM usage
- -verb : outputs information about memory usage as program runs

* —Obuck : output OLSQ bucket dataset (etc.)
o -Rbuck : output GLSQ bucket (stimulus s and statistics)
o —Rbeta : output GLSQ (all the ps and only the fs; no statistics)
o —-Rfitts : output GLSQ fitted model

o —Rvar : output GLSQ («,b) parameters and variance estimate (per voxel)
* —-NEGcor : allow negative correlations in the estimation
o Probably not really needed for FMRI, but option is there just in case
o There are more options to control estimation of the (a,b) parameters
® Of course: read the output of 3dREMLfit -help
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Potential Add-ons to SAREMLfit

® Add option to use this program to afni_proc.py super-script
® Add -iresp and -sresp options

® Qutput variances for Bs

* e.g., to be carried to the group analysis level? Need to implement a new
approach for this option to be useful.

® Matrix error checking when -addbase or -slibase is used

* In case the bumbling user puts in a collinear column
* Program cannot handle an all-zero column (unlike 3dDeconvolve)

® Re-run with extra GLTs to be added to existing bucket
* Or at least have a GLT-only output option: -Rglt ??

® Finish work with R Birn’s physiological noise regressors and integrate
these into time series analysis via -—slibase

®* -jobs option to spread load across multiple CPUs

*x Especially loop where parameters (a,b) are estimated: the slowest part
° .77

Next: more details on ARMA vs AR vs MA
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Serial Correlation Model & Notation: ARMA(1,1)

Denote noise value at time index i by &, for i=0..N-1

Variance is average (AKA expected) value of noise squared:
* 0 = E[&f] where E[e] means “expected value of ¢”

Covariance is similar to variance, measured between different time points:

* X,_,=E[ES,] which depends on time difference between time points i and ;
Correlation is covariance with variance factored out
* E[EE1=0"r_, (with r,=1)
o N.B.: r, measures predictability of noise value at time j+k given value at time ;
For entire time series, express variance/correlation as a matrix
* E[£E"]=0"R  with correlation matrix R having elements R, , =7,_,
Need to have a simplified model for R (i.e., the r, for k=1,2,...,N-1)
* Otherwise, have too many parameters to estimate
* My choice: ARMA(1,1) = AutoRegressive order 1 + Moving Average order 1
*x parameter a = decay rate of the », as k increases: for FMRIl, 0<a<1
*x parameter b = determines correlation at lag 1 (»,): -1 <b<1
or,=(a+b)-(1+a-b)/(1+2a-b+b*) r,=a"'r, for k=1,2,..
* Fora>0and -a < b <0, ARMA(1,1) noise can be thought of as a sum of AR(1)
noise and white noise, with variance proportions determined by 5
o This feature is one reason | prefer ARMA(1,1) as a noise correlation model over AR(1)
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AR(1): @ vs. MA(1): b vs. ABMA(1,1): a & b

® Check the effectiveness of GLSQ pre-whitening solution by examining
pre-whitened residuals

* Pre-whitening: applying a linear transformation to the time series data to de-
correlate the noise

o Symbolically, R-'> where R is the correlation matrix
® After pre-whitening, residuals (difference between data and fitted time series)
should be (mostly) uncorrelated
®* Power spectrum of white noise is flat

* Power spectrum = expected value of absolute value of Fourier transform,
averaged over an infinity of repeated identical experiments

® Visually inspect graph of abs[FFT(pre-whitened residuals)]
* Should be flattish, with random excursions
o This is noise, after all, and we don’t have an infinity of data over which to average
®* Next 4 slides:

* Graphs of “spectrum” for OLSQ and GLSQ using ARMA(1,1), AR(1), and
MA(1) correlation models (generated using interactive AFNI, of course)

* For 3 strongly “active” voxels in one subject (block design: 30 s blocks; NIH 3T)
* Then the single subject activation maps for 6 types of analysis
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Spectrum (slightly smoothed absFFT) of Residuals

X! [AJu AFNI: block/sb04.block.results/sb04.olerr+orig & stats.s|

In this voxel: | #% oLSQ
e« OLSQ:

definitely not
“white” | b4y

X! [B]u AFNI: block/sb04.

 GLSQ: 1355%53527] ARMA: a=0.6 5=0.1
“‘white-ish” for
all 3

correlation |
models

X/ [C]u AFNI: block/sb04.block.results/sbj

o~ AR: a=0.6 50

X [D]u AFNI: block/sb04.block.results/sh

MA: a=0 b=0.5

Block:30s I'M
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In this voxel:

 OLSQ: not
“white” but
not very
“colored”
either

« GLSQ: All
methods
about the
same in fixing
up what little
needs to be
fixed

Block:30s

Spectrum of Residuals

X/ [A]Ju AFNI: block/sb04.block.results/sb04.olerr+orig & stats.sb04_REMLvar+orig

36.42847
+36.42857]

oLSQ

X/ [B]u AFNI: block/sb04.block.results/sb04.wherr+o

31.875
+31.874]

0

ARMA: a=0.8 h=-0.7

X!/ [Clu AFNI: block/sb04.block.results/sb04.wherr.AR1+orig & sb04.var.|

28.33333
+28.33333]

AR: a=0.4 h=0

(SXSXS)

X [D]u AFNI: block/sb04.block.results/sb04.wherr.MA1l+orig & sb04.va

29
[+29]

MA: a=0 b=0.3 |—

Ml
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In this voxel:

* OLSQ:
definitely not
“white”

 GLSQ:
ARMA
appears a
little “whiter”
than either
AR or MA
alone

Block:30s

Spectrum of Residuals

X! [A]Ju AFNI: block/sb04.block.results/sb04.olerr+orig & stats.sb04_REMLvar+ori

127.5
+127.5]

0

oLSQ

X! [B]Ju AFNI: block/sb04.block.results/sb04.wherr+orig & s

72.85714
+72.85714]

ARMA: a=0.4 »h=0.7

X! [C]u AFNI: block/sb04.block.results/sb04.wherr.AR1+orig & sb04.var.AR|

102
[+102]

AR: a=0.8 h=0

X [D]u AFNI: block/sb04.block.results /sb04.wherr.MA1+orig & sb04.var.M,

87
[+87]

MA: a=0 b=0.8

e g A




6

T

es of Analysis

Threshold=F

C()|0r=13task#1

AR(1) fixed a=0.42 |s

/sb04_mpra+orig & st .

 5iockcsos |

sb04_mpra
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Conclusions from Previous Slides

® |tis possible to find voxels where pre-whitening of different types (AR-
only or MA-only or ARMA) is “optimal”
* And voxels where pre-whitening makes little difference
®* For many (most?) voxels, the pre-whitening details don’t make a lot of
difference in the statistics
* As long as something is done that is about right

* e.g., Using fixed AR(1) or MA(1) single parameter method was still OK-ish for
single subject maps ——

o A few more extraneous small blobs
o But fewer than pure OLSQ solution statistics

* Map of r,=correlation at neighboring TRs,—> .

as output by REML and ARMA(1,1) fit

* Same slice as previous slides (NIH 3 T data)

* In general, cortical gray matter shows more
correlation, but this result is not universal
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Mathematics and Implementation

® Available in PDF (scanned from hand-written pages) for the truly devoted
x File 3dREMLfit mathnotes.pdf

® Qutline of REML estimation methodology
* What is REML and why do we care?

® Matrix algebra for efficient solution of the many linear systems that must
be solved for each voxel

* Sparse matrix factorizations, multiplications, and solvers
* How ARMA(1,1) parameters are estimated in 3dREMLfit

* Optimizing REML log-likelihood function over a discrete grid of (¢,b)
values, using 2D binary search

* Must solve a GLSQ problem for each (a,b) tested, for each voxel
* How statistics are implemented as GLTs

* Testing null hypothesis Gf=0 for arbitrary matrix G
® Derivation of ARMA(1,1) formulas

* For completeness, and because we all love equations
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3dLME

Group Analysis Beyond the
Capabilities of ANOVA
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Linear Mixed-Effects Modeling: 3dLME

® Limitations of traditional group analysis with ANOVA:
* Usually requires equal number of subjects across groups
* Doesn’t allow missing data from individual subjects
o If a subject didn’t perform a task, have to throw away all the data from the
subject?
* Allows only a limited number of factors and fixed design structures
o 3dANOVAx: Currently only allows up to 4 fixed factors
* Cumbersome when modeling HRFs with multiple basis functions
o Use area under the curve (AUC)?
o Difficult to detect shape difference
o Troubling when undershoots occur
* Inflexible when handling residual variance-covariance structure
o Strong assumptions: homoscedasticity and sphericity
* Model fine-tuning impossible
o Even if an interaction is insignificant, it has to stay in the model
o Unwieldy with covariates

® Linear mixed-effects (LME) modeling comes to save the day
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Linear Mixed-Effects Modeling: 3dLME

®* Program 3dLME
* Written in open source language R
* Fills in the gaps in ANOVA'’s repertoire
* Batch mode with all specifications included in text file model. txt
* See http://afni.nimh.nih.gov/sscc/gangc/Ime.html for more information
* Downsides
o High computational cost: lots of calculation; R isn’t so efficient
o Some statistical controversies about DF’s and F-statistic (sequential vs.
marginal)
* When HRF is modeled with multiple basis functions
* Reassemble HRF’s (unnecessary with TENT or CSPLIN)
* Assume amplitudes of an HRF at k equally-spaced time points: y,, v,,... ¥,
*» We don’t care about the differences among y’s, so won'’t test H,: y,=V,=...=Y,
* Instead we want to focus on H,: y,=V,=...=y,=0
* And have to deal with temporal correlations among y’s



Linear Mixed-Effects Modeling: 3dLME

* i1st example of model. txt

* 3 fixed factors: gender, object, and modality; 1 covariate: age
* Gender: male and female; Object: face and house; Modality: visual and audial

Data:Volume

Output:FileName
MASK:Mask+tlrc.BRIK

Model : Gender*Object*Modality+Age
COV:Age

RanEf : TRUE

VarsStr:0

CorStr:0

SS:sequential

MFace-FFace
Male*Face*0*0-Female*Face*(0*0
MVisual-Maudial
Male*0*Visual*0-Male*0*Audial*0

Subj Gender Object
Jim Male Face
Carol Female House
Karl Male House
Casey Female Face

* Command: 3dLME.R MyOutput

either Volume or Surface

any string (no suffix needed)

mask dataset

model formula for fixed effects
covariate list

random effects

variance structure

correlation structure

F-statistic: sequential or marginal
contrast label

contrast specification

Modality Age InputFile

Visual 25 filel+tlrc.BRIK
Audial 23 file2+tlrc.BRIK
Visual 26 file3+tlrc.BRIK
Audial 24 filed+tlrc.BRIK
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Linear Mixed-Effects Modeling: 3dLME

* 2nd example of model. txt

* HRF modeled with 6 tents:

Data:Volume
Output:FileName
MASK:Mask+tlrc.BRIK
Model:Time-1

CoVv:
RanEf : TRUE
VarStr:0

CorStr:1 Order|Subj
SS:sequential

Subj Time TimeOrder
Jim tl 1

Jim t2 2

Jim to

Carol tl

Carol t2

Carol to o

Hy: By=B,=...=

<

InputFile
JimTl+tlrc.BRIK
JimT2+tlrc.BRIK

JimTo6+tlrc.BRIK
CarolTl+tlrc.BR

CarolT2+tlrc.BR

CarolTo6+tlrc.BR

* Command: 3dLME.R MyOutput &
* Output: an F for H,, B and t for each basis function

:86=0
either Volume or Surface
any string (no suffix needed)
mask dataset
model formula for fixed effects
covariate list
random effects
variance structure
correlation structure

F-statistic: sequential or marginal

IK
IK

IK
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1dGC

Granger Causality Analysis
(and other connectivity tools)
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Granger Causality Analysis: 1dGC

®* Network detection in the brain

*x A network in the brain may leave some signature (e.g., latency) in the
fine texture of BOLD signal because of dynamic interactions among
regions

* Reverse engineering: such a signature may reveal the network
structure

* Assumption: causes precede effects, or latencies indicate causal
relationship

* Problem: some latency effects might be due to confounding effects
such as neurovascular differences

®* Necessary requirements for successful network detection in FMRI
* Fine time resolution: usually TR = 1 second or less?

*x Accurate ROI selection: any missing region may result in spurious
connectivity

* Appropriate experiment design
* Removing confounding effects
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Granger Causality Analysis: 1dGC

1dGc: network detection via vector auto-regressive (VAR) modeling
* Multivariate (e.g., multiapproach instead of bivariate in BrainVoyager
*x Not purely data-driven as in BrainVoyager

o ROls are pre-selected by user: model-based analysis

o Path connectivity is statistically determined: data-driven analysis
* Written in open source language R
* Sequential mode: specifying parameters via answering questions
* Allows for time breaks in the data (e.g., inter-run intervals)

* Handles all confounding effects as covariates instead of via prior
filtering

* Providing network evolution through lags

* Diagnoses model with various tests

* Individual analysis first, then group analysis on path coefficients per lag
* More details here: http:/afni.nimh.nih.gov/sscc/gangc/VAR.html
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Granger Causality Analysis: 1dGC

* A network identified by 1dec @

xResting state data P <

* TR=1.2 seconds

* 250 time points

«6 ROIs R_amyg LPF ¢

* Red: positive
connectivity

* Blue: negative <
connectivity

R_DLP G
O

R _BA25
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Granger Causality Analysis: 1dGC

® 1dGc: applicability to experiment designs
* Resting state
o ldeal situation: time series in entirety as input with no cut and stitch involved
o Physiological data are likely essential for reliable results
*x Block experiments
o Block duration = 5 seconds

o Cut and stitch blocks together: important when handling confounding effects
such as tasks/conditions of no interest, but tricky — where to cut?

* Event-related design

o Rapid event-related experiment: no need to cut and stitch (not practicable),
but need to regress out tasks/conditions of no interest as covariates

o Slow event-related experiment: applicability of GC questionable
® Caveats: no magic wand - everything is statistical (correlations)
* Can’t prove true causal structures, but a necessary condition for a network

* No transitive relationship: If A Granger causes B, and B Granger causes C, it
does not necessarily follow that A Granger causes C

* Missing ROls in the model or coarse time resolution may give spurious paths

* Absence of connectivity from the analysis doesn’t necessarily mean no causal
relationship because model is as good as its assumptions (e.g., linearity)
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Path Analysis: 1dSEM

® Path analysis (a.k.a. structural equation modeling)
* Start with a few pre-selected regions
* Assess the network based on pair-wise correlation among ROI’s at group level
* Minimize discrepancy between covariances based on data and predicted from
model
® 1dSEM: 2 modes
* Model validation: “confirm” a network based on data
o Input: network connectivity, covariance matrix, residual variance, DF
o H,: we have a good model. Decision: accept, reject, or modify the model?
o Output: path coefficients, various fit indices, and decision on H,

* Model search: look for a “best” network the data could support
o Start with a minimum model (flag desired paths with 1): can be empty
o Some paths can be excluded (0), and some optional (2)
o Model grows (like grass or tree branches) by adding one extra path a time
o “Best” in terms of various fit criteria
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Correlation Analysis

® Correlation analysis (a.k.a. functional connectivity)
* Purely data-driven
* Look for response similarity between a seed region and the rest of the brain
* No indication about directionality/causality

* Correlation between two regions doesn’t necessarily mean
connectivity/causality

* Confounding effects should be included as covariates

® Two kinds of correlation analysis
* Simple correlation
o Typically used for resting state experiments
o Details: http://afni.nimh.nih.gov/sscc/gangc/SimCorrAna.html
* Context-dependent correlation (a.k.a. PPI)
o Look for correlation under the context of a task/condition

o Effect of the seed region on a target depends on the specific task/condition
or the interaction between the task/condition (psycho-) and the neuronal
response (physiological) of the seed

o Steps: http://afni.nimh.nih.gov/sscc/gangc/CD-CorrAna.html
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align epi anat

Aligning EPI and T1-weighted
structural volumes




41—

Alignment of EP| and Anatomical Datasets

®* New LPC method gives consistently better alignment—based on
visual inspection—over other cost functionals, including Ml and CR
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align epi anat.py

® aligns EPI and structural datasets using LPC method in 3dAllineate
®align _epi anat.py script prepares data, then does the work:
- deobliquing
- skull stripping
- slice timing correction
- motion correction
- weighting, resampling
- Talaraich transformation
® Applies concatenated matrices (oblique, volume registration, tlrc)
® Aligns EPI—-Anat or Anat—EPI

Basic Example:
# align anatomical dataset to epi dataset at sub-brick 5
align epi anat.py -anat anat+orig -epi epitorig \

-epi base 5
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align epi anat.py

More advanced example:
# Transform EPI| dataset to match Anat

# Register “child EPI” datasets to “parent” EPI and align with Anat
# Warp EPI and child EPI datasets to +tlrc space based on existing
# Anatomical +tlrc datase

# Also, create composite edge images

Gauto tlrc -base ~/abin/TT N27+tlrc \
-input sb23 mpra+orig
align epi anat.py -anat sb23 mpra+orig
-epi epi r03+orig
-epi base 6 -child epi epi r??+orig.HEAD
-epi2anat -suffix al2anat
-tlrc _apar sb23 mpra at+tlrc -AddEdge

~ 7

Flexibility in options for cost functionals and processing steps allow
alternate uses. Already used also for T,-to-T, (SPGR, FLAIR, 3T, 7T), EPI-
to-EPI, rat and monkey data, and partial coverage data.
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Assessment o

* AFNI provides multiple
viewers, overlay/underlay
switching, opacity control

® Edge-enhanced display now
available with dual edge
composite or single edge
options with @AddEdge and
—AddEdge option to
align epi anat.py

® QAddEdge script drives
AFNI GUI to display pre-
aligned and post-aligned
datasets

A new method for improving functional-to-
structural MRI alignment using local
Pearson correlation, Neurolmage, in
press (now online)

f Alignment
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align epi anat.py example output

Pre-alignment

Post-alignment

@AddEdge -single-edge display shows before and after
with edges from transformed EPI dataset as overlay
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align epi anat.py example output

X! [A]Ju AFNI: AddEdge/epil_rs+orig & anat_ns_e3+orig X! [AJu AFNI: AddEdge/epil_rs_al+orig & anat_ns_e3+orig

Pre-alignment Post-alignment

Example data from message board posting.
@AddEdge -single-edge display shows before and
after with transformed EPI dataset in the underlay and

the anatomical edge in the overlay



Manganese
Enhanced MRI
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Manganese Enhanced MRI

®* We have a pipeline for voxelwise detection of Manganese induced signal
enhancement

* Robust skull removal and intra-subject longitudinal alignment

* Parametric and non-parametric signal detection approaches with multiple
comparison correction

* Output of summary results from each stage for quality checking

* Morals from our experiences thus far:
o Get as many scans as possible (10+) in pre-injection phase
o Get several post-injection scans at each time point of interest (2+)
o Examine your images immediately for bad artifacts and correct!!

First generation results: Fig. 7, Simmons et al. J. Neuroscience 08

B Day 2 only

I Day 4 only
B Both Days
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DCEMRI

Dynamic Contrast Enhanced MRI:
Analysis with 3dNLfim
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DEMRI: Dynamic (contrast) Enhanced MRI

4.882341
[+4.010526]

black: scaled MRI signal

Ve (extracellular, blue: fittime series

extravascular volume)
estimate overlayed on
MRI time series

7

~

tumor location

Grid:  10|Scale: 95 pix/datum |Mea.n: 2.275214

Num 0:29 | Base: separate Sigma: 0.854988

¢ Collaboration with John Butman, Hemant Sarin in Clinical Center, on Dynamic
Contrast Enhanced MRI (DCEMRI or DEMRI)

* Gd-DTPA injection — large, relatively inert molecule that doesn’t pass intact blood-
brain barrier injected after short baseline, but brightens T1-weighted images

® Non-linear model in 3dNL£im framework to compute kinetic parameters (Ktrans,
kep, Ve, fpv) of brain tissue in a two compartment model to model breakdown of
blood-brain barrier

® This implementation in AFNI is the only freely available DEMRI software for
volumetric analysis (at this time)



Realtime AFNI
at NIH
Scanners
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Realtime FMRI-Feedback at NIH Scanners

® Enhanced version of the NIH realtime MRI scanner software
* installed on all GE MRI scanners (written by Jerzy Bodurka)
* can be used with AFNI to conduct realtime FMRI with feedback to the subject
* a sample real-time plotting tool is installed on all FMRIF MRI scanners
o based on serial helper, with updates written by Javier and Jerzy
o uses Grace: a 2D plotting tool for the X Window System

* MRI data is captured each TR and used to drive the realtime subject
feedback display

* motion parameters: to show the subject when they move “too much”
* ROl averages: to show real-time “activation” at one or more ROls
* raw (registered) voxel data: for other nefarious purposes

®* AFNI’s realtime updates:
*Dimon — afni iS more responsive, to improve subject feedback
* has enhanced stability and environmental controls
»afni can send ROl averages or raw voxel data to serial helper, each TR



Diffusion
Tensor Imaging

New Plugin from UCSD
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Diffusion Plug-in
* From UCSD group led by Larry Frank with Greg Balls, Ning Kang
*® seed-based “diffusion model” tractography allows for fiber crossing
* Pretty 3D primary eigenvector and FA-encoded tractography display
® Coming real-soon-now ...

'8 06 X [A] AFNI Diffusion v. 0.58 000 X| Diffusion Vector Visualizer

tbi/datasets/501_DWI_cubic+orig [epan:3D+t:52]

Choose Diffusion Dataset

Slicer
—

——
University of Calitornia - Sagittal
SanDiego
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,— Snap to View
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Help Copyright Reload done E 3 » b SRR .
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1 Show axes

Save Image
Exit
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ExamineXmat

Putting your time series
regression matrix up on the rack
and checking it for problems

® A tool to examine design matrices
¢ Visualize matrix and selected subsets of it

® Condition numbers for various subsets of matrix and
selected regressors
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