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A new magnetization preparation and image acquisition
scheme was developed to obtain high-resolution brain images
with optimal tissue contrast. The pulse sequence was derived
from an optimization process using simulated annealing, with-
out prior assumptions with regard to the number of radiofre-
quency (RF) pulses and flip angles. The resulting scheme com-
bined two inversion pulses with the acquisition of three images
with varying contrast. The combination of the three images
allowed separation of gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) based on T1, contrast. It also enabled
the correction of small errors in the initial T1 estimates in post-
processing. The use of three-dimensional (3D) sensitivity-en-
coded (SENSE) echo-planar imaging (EPI) for image acquisition
made it possible to achieve a 1.153 mm3 isotropic resolution
within a scan time of 10 min 21 s. The cortical GM signal-to-
noise ratio (SNR) in the calculated GM-only image varied be-
tween 30 and 100. The novel technique was evaluated in com-
bination with blood oxygen level-dependent (BOLD) functional
magnetic resonance imaging (fMRI) on human subjects, and
provided for excellent coregistration of anatomical and func-
tional data. Magn Reson Med 54:373–385, 2005. Published
2005 Wiley-Liss, Inc.†
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The excellent soft-tissue contrast provided by MRI is one
of the main advantages of this technique over X-ray CT,
especially in imaging of the brain. It allows one to distin-
guish between different tissue types, as well as to obtain
detailed anatomical maps of human cortical architecture.

Brain tissue can be classified into three broad categories:
white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF). Their relative volume and precise location
convey potentially important information for the diagnosis
and treatment of disease, as well as for the general under-
standing of brain anatomy and function (1). Tissue char-
acterization relies heavily on high-contrast MR images,
which can be obtained by techniques such as T1-weighted
magnetization-prepared rapid gradient-echo (MP-RAGE)
(2,3). These techniques aim to maximize the intensity dif-
ference between WM and GM, and at the same time main-
tain a high enough signal-to-noise ratio (SNR) to safely
distinguish those regions from the suppressed CSF signal.

Typically, an image segmentation algorithm (1), which is
usually intensity-based, complements this approach.

Even though the three tissue types differ in terms of both
proton density and relaxation times, which should result in
well-defined distinct intensity values for each category, the
segmentation problem is by no means trivial. The tissue
classification process is often hampered by issues such as
limited contrast-to-noise ratio (CNR), resolution, and partial
volume effects. Furthermore, intensity inhomogeneities,
even within the same type of tissue, severely hamper tissue
separation. A significant part of the spatial variations can be
attributed to inherent system limitations, such as radiofre-
quency (RF) coil inhomogeneities and noise, as well as to
normal variation in tissue homogeneity (4,5).

Partial volume effects arise when a voxel is composed of
a mixture of different tissue types. Since the signal is a
weighted sum of different tissue types, the resulting inten-
sities can fall in between the signals originating from these
different tissue values, causing ill-defined edges and dis-
persion of the expected intensity values. In this case, ei-
ther multiple images or prior knowledge combined with
modeling are needed in order to classify pixels as belong-
ing to one or more tissue categories (6–8).

A further difficulty comes into play in the context of
functional mapping in applications such as BOLD fMRI.
Functional data are typically acquired using echo-planar
imaging (EPI), which is known to be susceptible to geo-
metric distortions due to off-resonance effects. Anatomical
images, on the other hand, are normally acquired with
multishot acquisitions (e.g., fast low-angle shot (FLASH)
or fast spin echo (FSE)), which have relatively little geo-
metric distortion. This introduces a further level of com-
plexity to the coregistration problem.

Imaging of a single-tissue type in the brain by zeroing
two tissue types with the use of a double inversion recov-
ery (IR) sequence (9) was originally proposed by Redpath
and Smith (10). Double IR is efficient in dealing with
partial volume effects because the signal from the un-
wanted tissue types is suppressed (ideally close to zero),
and tissue suppression is not dependent on reception field
inhomogeneities, thus bypassing one of the causes of prob-
lems in traditional tissue segmentation. However, its effi-
cacy depends on the accuracy of the a priori T1 estimation
and the uniformity of T1 in the desired tissue types.

In this paper, a new optimized sequence is presented that
further elaborates on the concept of zeroing tissue signal
based on T1 relaxation. Our initial motivation was to derive
a high-quality GM image that could serve as an anatomical
reference for combination with BOLD fMRI data for the pur-
pose of functional mapping. Given practical constraints, in
terms of both minimizing subject motion and maximizing the
time available for the functional experiment, the technique
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was required to provide whole-brain coverage within a mea-
surement time of about 10 min.

A generic pulse scheme was assumed that consisted of a
variable number of RF pulses followed by gradient-re-
called EPI acquisitions. By appropriately combining the
acquired images, one should be able, based on T1 weight-
ing, to derive three separate images (one for each of the
major tissue types). The method should compensate for
small errors in initial T1 estimates with only a minor CNR
penalty. Simulated annealing (11,12) was used to deter-
mine the number, timing, and flip angles of the RF pulses
involved. Noise levels in the resulting single-tissue type
images, calculated for a constant reference level of signal,
were used as the optimization criterion.

MATERIALS AND METHODS

Sequence Design

T1 Preparation

T1-based magnetization preparation can be described as
the interaction of two main factors: 1) RF excitation pulses,
which drive magnetization away from equilibrium, and 2)
longitudinal relaxation, which describes the return of mag-
netization to the equilibrium position among the axis of
B0. Based on magnetization evolution during this process,
the expected signal can be described by a function b(t), as
shown in Appendix A.

Tissue differentiation by T1 contrast is based on the
different characteristics of b(t) for each tissue type. Assum-
ing that the MR image is instantaneously obtained at time
ti, the signal contribution from the k-th tissue type will be
weighted by the factor bk(ti).

Our initial assumption was that brain matter consists
mainly of WM, GM, and CSF, which can be approximately
represented by a set of average T1 values �T1

WM,T1
GM,T1

CSF�. If
this description is adequate, the magnetization evolution
and therefore the resulting signal of the three tissue types
can be estimated by the functions b1(t), b2(t), and b3(t),
respectively.

In the acquired data, the signal from each pixel can be
regarded as the inner product of the concentration vector
for each tissue type C � �WM,GM,CSF� and the vector
describing the T1 weighting for the particular image Bi

� �b1�ti�,b2�ti�,b3�ti��. Assuming that the individual images
are linear combinations of the concentration and the
weighting vectors formed as Si � Bi � CT, it is possible to
obtain a least-squares estimate of C if at least three images
with different T1 weightings are available:

Ĉ � ��BTB��1BT�S [1]

where S is a vector that contains the differently-weighted
image data, and B is a matrix composed of the Bi vectors for
all of the acquisitions.

The equation

A � �aik� � �BTB��1BT [2]

describes a matrix of weighting factors that are calculated
using numerical estimates of the B matrix based on the

selected imaging times ti and flip angles �i, and are subse-
quently used to add the acquired images.

Equation [1] yields three composite images, each of
which shows an estimate of the concentration of one of the
tissue types of interest.

Such a scheme is insensitive to inhomogeneities in the
MRI reception profile, since these are assumed to affect all
acquired images in identical manner. Hence, even though
intensity variations caused by these inhomogeneities will
still affect the combined images, they will not interfere
with the tissue separation process.

Sequence Optimization

The aim of the optimization was to find the number and
characteristics of preparation pulses and acquisitions that
would result in the largest CNR in the combined images.
The parameters to be optimized included the flip angles
and timing of a variable number of pulses that were fol-
lowed by gradient-echo image acquisitions. Gradient-echo
rather than spin-echo acquisitions were chosen because of
their reduced interference with the magnetization prepa-
ration scheme. In the results, pulses with flip angles less
than 1° were ignored, as were acquisitions following
pulses with flip angles within 1° of 180°. In the latter case,
where the pulses were set to 180°.

Since contrast between different tissue types is defined
by Eq. [1], maximizing CNR is equivalent to minimizing
noise in the combined images. To estimate noise behavior,
Gaussian white noise with a probability density distribu-
tion N(0,	2) is assumed for the raw images. The noise is
considered to be statistically independent between subse-
quent image acquisitions. Under these assumptions, the
noise in the combined image has the probability density
function N�0,�iaik

2 	2� and noise power will be multiplied
with the factor �iaik

2 .
Thus, the main point of the mathematical treatment was to

minimize the quantities �iaik
2 while maintaining a constant

reference level of signal in the three different types of image
combinations, resulting in a maximum SNR in the WM-only,
GM-only, and CSF-only images. This can be achieved by
varying the functions bj(ti), which is equivalent to varying the
number of pulses, timing, and flip angles involved in the
magnetization preparation and the image acquisition. By
starting with a sufficiently large number of RF pulses, and
making no assumptions other than the use of gradient-re-
called EPI as the acquisition strategy, and a minimum time
interval between pulses to allow sufficient time for the ac-
quisition, it is reasonable to assume that the resulting solu-
tion is close to a global optimum.

The cost function is a weighted sum of the noise amplifi-
cation factors for the three segmented images, in the form
�kwk�iaik

2 , where wk represents the relative weighting of the
noise factor of the k-th tissue type. Weight selection was an
empirical process, reflecting a trade-off in SNR between the
GM only image, which proved to be the most difficult to
isolate, and the WM and CSF images. The rationale for the
trade-off was to minimize the noise power in the GM-only
image, while preserving image quality in the other two im-
ages. The function was complemented by additional checks
for maximum sequence duration (TR) and minimum intra-
pulse duration, If the checks were failed, they would add a
significant penalty to the cost value.
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The complex hyperplane described by the cost function
posed a difficult optimization problem that exhibited a
large number of local minima. Therefore, the simulated
annealing algorithm (11–13) was chosen, which is briefly
described in Appendix B.

To estimate the general form of the sequence, the first
step was to assume different numbers of pulses (from 9 to
13), for a sequence lasting less than 10 s per TR. The
maximum TR was selected based on the measurement
time requirements of a high-resolution 3D anatomical
brain scan. In each case the optimization converged to a
scheme consisting of five pulses (three imaging pulses
interleaved by two inversions). The scheme is shown in
Fig. 1. We tested the validity of the solution by repeating
the optimization procedure several times using different
initial estimation values, and different values for the max-
imum duration allowed per TR.

Even though this optimization is sufficient to yield the
full set of parameters for the sequence, for the purpose of
calculating, fine-tuning, and testing the parameters and the
behavior of the five-pulse sequence, the optimization was
rerun while the number of variables was limited to the flip
angles of the three imaging pulses and the timing of both
imaging and the inversion pulses. This simplification of
the optimization problem aided convergence and signifi-
cantly reduced computation time. Several different sets of
T1 values were tried for the optimization; however, the
focus was on three different sets, reflecting literature val-
ues for 1.5 and 3.0 T (14,15), as well as our measurements
for 3.0 T, using cortical GM and subcortical WM for the T1

estimates. The constraints imposed on the optimization
process were a minimum intrapulse interval of 100 ms,
and a maximum TR in the range of 6–10 s. Optimization
was carried out again using simulated annealing, with the
additional step of a Powell optimization (16) as the last
stage, which provided for a relatively fast convergence.
The simulated annealing algorithm and optimization pro-
cess were implemented in IDL (Research Systems Inc.),
following the code in Ref. 16. As suggested in Ref. 16,
frequent restarts were used to facilitate convergence.

MRI Scanning

The optimum sequence that resulted from the simulations
was implemented on a GE 3.0 T whole-body scanner, with
a detunable transmit coil and a 16-channel Nova receive-
only coil and in-house-built digitizer (17). The preparation
scheme was combined with a gradient-recalled EPI acqui-
sition scheme with an additional phase-encoding gradient
in the z-direction, stepped at each repetition of the five-
pulse sequence. Ramp sampling was used to accelerate the
acquisition. The EPI readout was followed by a spoiler
gradient to dephase any remaining transverse magnetiza-
tion. Since the acquisitions were sufficiently apart in time
to prevent the buildup of stimulated echoes, no additional

RF scrambling was employed. The inversion pulses were
implemented as adiabatic frequency-offset corrected in-
version (FOCI) pulses (18), which provided for indepen-
dence of the inversion profile from imhomogeneties of the
amplitude of the excitation RF field (B1). Navigator correc-
tion was used for zero-order phase correction in order to
account for phase errors between z phase-encode steps.
Three additional repetitions of the five-pulse sequence
were added before the start of the acquisition to allow
magnetization to reach equilibrium conditions. Both con-
ventional and SENSE (19) gradient-recalled, in-plane, sin-
gle-shot EPI were used. The image acquisition was pre-
ceded by a noise measurement for noise-weighted coil
combining, and, in the case of SENSE imaging, by the
acquisition of 3D reference volumes for coil sensitivity
calibration (20). For the latter, the T1 preparation scheme
was turned off. To ensure image intensity uniformity, a
birdcage-type receive coil was simulated by the addition of
individual coil images after their phase was normalized to
the center of the image (17). The sequence was tested on
six healthy volunteers, who were scanned after they gave
informed consent under an IRB-approved protocol.

Image Analysis

After the EPI images were reconstructed (17), the first stage
of postprocessing involved the calculation of the image
combination coefficients. These were derived from Eq. [2],
which allows three sets of coefficients (one for each type of
image) to be calculated. The explicit aim of the image
coefficient calculation was to set in each image the signal
from the unwanted tissue types equal to zero. In the real-
istic situation of the presence of a range of T1 values, this
leads to a T1-based filtering, as described by the curves
shown in Fig. 2.

As detailed below, several subsequent corrections can
be made to further optimize image quality and remove
imperfections that arise from variations of T1 values and
flip angle, phase drift, and intensity variations.

Compensation for Spatial Variation in T1

The sequence optimization, as described above, relies on a
set of T1 values to describe the average behavior of the three
different tissue types. However, the exact values used in the
optimization are not critical. Small variations in T1, which
are normal across different subjects and different parts of the
brain, can be compensated for by recalculating the coeffi-
cients bj(ti) in Eq. [2] for the new T1 values. The T1 values can
be selected either by visual inspecting the component maps
or by calculating the values that minimize the signal in ho-
mogeneous regions of interest (ROIs).

To estimate the SNR penalty for the coefficient recalcu-
lation, the theoretically expected noise amplification fac-
tors for the coefficient recalculation of a sequence opti-

FIG. 1. General scheme of the optimized se-
quence: three imaging pulses (dark gray) are fol-
lowed by EPI acquisitions and interleaved by two
inversion pulses (light gray). The sequence is re-
peated with the z-encoding stepped every TR.
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mized for T1 values of 800, 1550, and 3700 ms for WM,
GM, and CSF, respectively, were compared with the noise
amplification factors of sequences that were explicitly op-
timized for the actual sets of T1 values. The ranges of
interest were 750–900 ms for WM, 1250–1650 ms for GM,
and 3500–4500 ms for CSF. As indicated by the maximal
values of relative noise power amplification over those
ranges, which are given in Table 1, the noise behavior in
the GM image is remarkably stable, while the behavior in
the other two images is still acceptable, especially if the
actual T1 values are sufficiently close to the previously
estimated ones.

Transmit Profile Compensation

A second type of postprocessing deals with compensating
for flip angle variations. Even though the use of adiabatic
pulses resulted in accurate inversions, B1 field inhomoge-
neities affected the imaging pulses, which resulted in flip
angles that were within 80–120% of the target values. As
shown in Fig. 2, this results in a deformation of the con-
trast curve. In the GM image, zeroing of the WM appears to
be insensitive to normal flip angle variations; however,
there is a problem with the contribution of CSF, which can
potentially grow up to 10% of its full signal value. The
problem can be exacerbated by the relatively high proton
density and T*2 values of CSF. The same is true for the WM
image, even though there the change in T1 weighting is
smaller, and the unwanted CSF signal is kept to less than
5% of its full signal value. Within the normal range of flip
angle variation in our scanner, the residual signal resulting

from the flip angle deviation was small but noticeable,
especially at the edges of the head, and resulted in a rim of
CSF around the brain. Therefore, an estimation of the B1

field based on independent measurements was taken into
account for the combination coefficient calculation. It
should be noted here that high accuracy is not critical for
the flip angle correction, and hence a rough field estimate
should be adequate. The CNR loss due to flip angle devi-
ation is shown in Fig. 3, where it can be seen that by
correcting the image, it is possible to recover up to 15% of
the original CNR.

Phase Drift Compensation

After the combination coefficients were calculated, the
raw images were added in their complex (magnitude and
phase) form. Phase errors between the images, which can
easily arise due to subject motion or hardware drift, posed
the first challenge for the image addition scheme. These
were overcome by normalizing the image phase. The phase
of one image served as reference in order to calculate the
phase difference modulo 
 between the reference and the
other two images. The reason we used modulo 
 instead of
the usual modulo 2
 was to preserve sign differences due
to the inversion process. Furthermore, a shift of the wrap-
ping window, similar to the one described in Ref. 21, was
applied to avoid abrupt phase value changes if the phase
difference between two images happened to be around

/2. Subsequently, two fourth-order polynomials were fit-
ted to the differences, and subtracted from the phases of
the respective images. Alternatively, for situations with

FIG. 2. Simulated signal intensity in the WM- and GM-only images as a function of T1. Additional dotted lines indicate the effect of flip angle
deviation.

Table 1
SNR Cost for Coefficient T1 Recalculation*

White matter image Gray matter image CSF image

White matter (750–900 ms) 17.3% (92.3%) 4.4% (97.9%) 13.4% (93.9%)
Gray matter (1250–1650 ms) 2.5% (98.7%) 0.6% (99.7%) 6% (97.1%)
CSF (3500–4500 ms) 11% (94.9%) 3% (98.5%) 8.8% (95.9%)

*Maximal noise power amplification increase and corresponding relative SNR (in parentheses) resulting from recalculation of the combi-
nation coefficients in order to accommodate for T1 variation. The ranges of T1 values considered were 750–900 ms for white matter,
1250–1650 ms for gray matter, and 3500–4500 ms for CSF. The sequence was originally optimized for T1s of 800 ms for white matter,
1550 ms for gray matter, and 3700 ms for CSF. Percentages are given with respect to optimized sequences for the particular T1

combinations.
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low SNR, the use of magnitude images when the expected
sign of the acquired images was constant for each image
over the T1 range of interest proved to be a reliable solu-
tion.

Intensity Correction

Even though intensity variations did not affect the pro-
posed tissue separation process, they were still present in
the resulting images. To compensate for that, we investi-
gated the use of homomorphic filtering (22,23). However,
homomorphic filtering is associated with both edge en-
hancement and noise amplification in areas of the image
with lower signal. The latter effect is prominent in the
resulting GM-only image. To avoid this, the low frequency
intensity profile was derived from a low-contrast reference
image, which was obtained from a reference scan preced-
ing the acquisition or from the SENSE reference scan, or
was calculated from the three raw images. In the latter
case, the intensity reference image was calculated as a
linear combination of the single-tissue type images, as
described by Eq. [3]. A sample reference image derived
from the three raw images is shown in Fig. 4.

The intensity profile was calculated by fitting the loga-
rithm of the masked reference image with a fourth-degree
polynomial. We chose to use polynomial fitting instead of
low-pass filtering (as in the case of classic homomorphic
processing) to avoid edge-enhancing effects on the outside
of the brain. The acquired images were subsequently di-
vided by the exponential of the fitted profile, resulting in
the intensity-corrected images.

In principle, it is also possible to produce images that
show all three tissues, and at the same time control the
T1-weighted contribution of each tissue. This is achieved
by substituting the weighting factors �aik� of Eq. [2] by a
linear combination

Ac � �wWM,wGM,wCSF��BTB��1BT [3]

where the values of the combination vector [wWM, wGM,
WCSF] are set to the desired contribution of each tissue
type. In this case, however, one should take into account
that the final images are also T*2 and proton density-
weighted.

Coregistration with BOLD fMRI Data

To demonstrate the applicability of the proposed method-
ology for coregistering BOLD fMRI data to anatomical im-
ages, a visual activation study was performed. The stimu-
lation paradigm was a 7.5 Hz contrast reversing bull’s-eye

FIG. 3. Effects of flip angle deviation, given as the ratio of the actual over the nominal flip angle, on the CNR of the combined images. In
the data for the composite GM image (right), the corrected image (solid line) has higher CNR values than the noncorrected ones for contrast
between WM and GM (dotted line), and GM and CSF (dashed line). In the data for the composite WM image (left), the signal in the WM rises
more than that in GM or CSF, resulting in higher CNR values between WM and GM (dotted line), and WM and CSF (dashed line) for the
noncorrected images compared to the corrected one (solid line). However, if signal suppression is sought, correction should be applied.
SNR values are normalized to the values attainable from an EPI acquisition with 90° flip angle.

FIG. 4. Intensity reference image, used for intensity correction. The
image was created by combining the three raw images acquired
with the proposed scheme.
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checkerboard that alternated between foveal (central 5°)
and peripheral (5–15°) visual fields in a block design man-
ner. The images were shown by back projection on a
screen fitted on the Nova receive-only coil. The volunteers
could see the screen with the help of a mirror, which was
also mounted to the coil. Each block contained 15 scans
with a duration of 30 s. Functional data were acquired
using 2D gradient-echo EPI with TR � 2000 ms, echo time
(TE) � 45 ms, flip angle � 90°, FOV � 220 � 165 mm2,
matrix � 192 � 144, slice thickness/slice gap � 1.8/
0.4 mm, and SENSE rate � 2.

For the purpose of coregistration with BOLD fMRI data,
anatomical data are acquired using the same in-plane res-
olution and acquisition characteristics (e.g., EPI readout
duration) as the functional scan. This results in the same
deformations in both scans, and reduces the registration
problem to a rigid-body one.

The first of the EPI acquisitions of the functional scan,
which is predominantly T*2 -weighted, is used as an ana-
tomical reference on which the CSF-only image is regis-
tered. This step was deemed necessary to account for
slight translation errors between the two scans. After the
displacement is calculated, the registration reduces to a
simple overlay of the two images.

RESULTS

Sequence Design

The generic form of the optimized sequence consists of
three imaging pulses followed by gradient-recalled EPI
acquisitions and interleaved with two inversion pulses, as
shown in Fig. 1. However, for fine tuning the parameters of
the final sequence, there are two issues that should be
addressed: the choice of TR and the weights used for the
cost function.

The values of the noise amplification factors, and con-
sequently of the cost function, depend on the choice of TR.
To limit the overall imaging time, originally TRs below
12 s per slice were considered. In this interval, the noise
amplification factors monotonically decrease with TR,
with a range of 10–5 for the GM image, 6–3.5 for the WM
image, and 11–5.5 for the CSF image. The expected SNR in
the combined images can be calculated as the ratio of the
SNR of a prototype, non-T1-weighted 90° flip angle image
over the noise amplification factors. The normalized value
of SNR divided by the square root of TR, which is often
referred to as the “SNR per unit time,” can be used as a
guide to determine optimal TR. For the T1 values under
consideration, this reached a maximum at about 10.5 s per
TR. However, concerns about the overall experiment du-
ration in a 3D high-resolution experiment led us to choose
a shorter TR of 6 s per slice. The SNR efficiency trade-off
for this duration was an approximately 15% loss of SNR
per unit time in the GM-only image, and 10% loss in the
WM-only image.

The weights elected for the cost function affect the noise
amplification values. By favoring the GM image in the cost
function, it is possible to gain up to about 10% in SNR
compared to an equally weighted cost function. As shown
in Fig. 5, the penalty for this gain is SNR loss in the WM
and CSF images. In the extreme case, the cost function is

determined only by the SNR of the GM image. Then the
optimization process yields the double IR sequence, with
the Ernst angle (for GM T1 and overall TR) as the flip angle
of the imaging pulse. It should be noted, however, that this
is not the case in the optimization for a single WM image,
where the double IR solution results are suboptimal. For
the GM image, as shown in Fig. 5, the SNR penalty for
acquiring the two additional images is very small. In
choosing the weighting scheme, one should take into ac-
count that the SNR of the final image depends also on
proton density and T*2 weighting, and that the SNR penalty
for the two remaining images when compared to the SNR
gain in the GM-only image quickly renders the trade-off
inefficient, as shown in Fig. 5. Hence, a weighting of 3:18:2
for the WM, GM, and CSF images, respectively, was cho-
sen.

After the TR and the cost weighting scheme were se-
lected, the sequence parameters for different sets of T1’s,
corresponding to both literature values and our own T1

measurements, were calculated. The time required for a
single optimization was about 4 min on a dual AMD MP
2600 based personal computer. Sample parameter sets
are given in Table 2.

Three sample images corresponding to the three acqui-
sitions are shown in Fig. 6a–c. Their different T1 weight-
ings allowed the WM, GM, and CSF images shown in Fig.
6d–f to be derived by means of linear combination.

With a TR of 6 s, whole-brain coverage at 1.153 mm3

isotropic resolution (matrix � 192 � 144 � 96, FOV �
220 � 165 � 110 mm3) was achieved in 10 min 21 s. A
SENSE rate of 2 was used in the second dimension to
reduce T*2 blurring and geometric distortions. Sample im-
ages are given in Fig. 7. For 1.73 mm3 isotropic resolution
over the same volume (matrix size � 128 � 96 � 64),
corresponding to a typical fMRI study, the scan duration is
6 min 42 s.

FIG. 5. Expected normalized SNR of the combined images as a
function of the cost weighting scheme. TR was kept constant at 6 s
per slice. The last set of values refers to three different acquisitions
(one for each tissue type).
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Image Contrast

The combination of a maximized signal difference with an
optimized SNR behavior leads to an optimized CNR be-
havior. Table 3 shows average SNR values for images with
1.15 mm isotropic resolution (96 slices), measured over
ROIs in the selected structures. As can be easily deduced
from the presented values, the ratio of cortical GM signal
to WM signal is about 9:1 in the GM image, and 1:9 in the
WM image.

However, SNR is affected by a variety of factors, includ-
ing coil sensitivity, proton density, and the actual T1 and
T*2 values of the imaged tissues. This results in a signifi-
cant spread in the measured SNR values, which are re-
flected in the histograms shown in Fig. 8. To generate these
histograms, masks of “pure” GM, WM, and CSF were se-
lected for a typical volunteer by comparing the pixel in-
tensity values in the respective single-tissue type images.
The selection was limited to the 37 central slices to avoid
regions with signal drop-off due to the slice-selection pro-
file or shimming problems. Thresholds were adjusted to
include a large region, while at the same time partial
volume effects were minimized. Since the histograms are
calculated based on the magnitude images, the SNR dis-

tributions follow Rician-like curves, which are particu-
larly evident for the suppressed tissue types.

In general, the lower proton density and T*2 of WM result
in contrast values in the WM image that are comparable to
or lower than those of the GM image, while the higher
proton density and T*2 of CSF lead to CNR values above 70
in the CSF-only image. Imperfect tissue suppression due to
T1 variation of physiological tissue is also reflected in the
given results. Furthermore, inhomogeneities in the coil
sensitivity profile also affect the measured values, with
cortical GM showing the highest CNR values because of its
proximity to the receive coils.

Figure 8c and d show SNR values normalized to the SNR
values of a nonweighted EPI image of the same resolution
and SENSE rate, obtained using a 30° nominal flip angle,
48-ms TE, and 140-ms TR. The objective of this compari-
son was to minimize the effects of receiver sensitivity to
the final SNR distribution. Variations in T1, flip angle, and
phase errors still cause a significant widening in the dis-
tributions; however, the peaks are clearly distinguishable.

As a further evaluation, the proposed method was com-
pared with a manufacturer-provided MP-RAGE sequence
(inversion time (TI) � 725 ms, delay time (TD) � 1400 ms,

FIG. 6. Raw images (a–c) acquired with
the proposed sequence. Their weighted
combination yields the single-tissue type
images shown in d–f. Skull tissue signals
are still visible in d and e.

Table 2
Sequence Parameters*

T1(ms)
WM; GM; CSF

Imaging pulse
#1

Inversion pulse
#1

Imaging pulse
#2

Inversion pulse
#2

Imaging pulse
#3

800; 1550; 3700 0 ms / 46° 3020 ms 3573 ms / 23° 5112 ms 5575 ms / 83°
832; 1331; 3700 0 ms / 65° 315 ms 3685 ms / 23° 5243 ms 5695 ms / 77°
700; 1050; 3500 0 ms / 76° 3362 ms 3809 ms / 24° 5346 ms 5724 ms / 73°

*Examples of optimized scheme parameters for different sets of T1s (given in ms in the first column). The first row corresponds to our T1

measurements, the second row to values given for 3 T by Wansapura et al (16), and the third for estimated values at 1.5 T based on values
from Breger et al (15). TR was kept at 6 s, and the cost weighting scheme was 3 for the white matter, 18 for the gray matter, and 2 for the
CSF image.
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flip angle � 6°, TR � 5.7 ms, readout time (TACQ) �
2.048 ms). Simulated SNR values for the proposed EPI
sequence and the MP-RAGE sequence are given in Table 4.
The results show that for resolutions attainable without
SENSE, the CNR values (per unit scan time) obtained with
the proposed method are comparable to those obtained by
an MP-RAGE sequence of the same nominal resolution. An
experimental comparison on a single volunteer using a
standard GE birdcage head coil and no k-space apodiza-
tion during image reconstruction yielded CNR values of
about 9.8 for the WM image, 8.3 for the GM image, and 5.1
for the MP-RAGE image, as measured between homoge-
nous regions of frontal WM and GM in the caudate nu-
cleus. Normalized by the square root of TR in seconds, this
yields a CNR/unit time of 0.49 for the WM image, 0.41 for
the GM image, and 0.33 for the MP-RAGE image.

Coregistration with BOLD fMRI Data

Figure 9 displays the overlay of BOLD fMRI data (t-score
maps) from a foveal and peripheral visual field stimulation
experiment onto GM anatomical maps resulting from the
proposed sequence. The use of EPI with the same readout
train ensures that the images have the same geometric
distortions, and thus removes one of the main uncertainty
factors in the registration problem. The only correction
process necessary is a rigid-body registration to account
for small displacements between the scans. Hence, in the

final overlay images, it is easy to see the excellent spatial
correlation of the activation patterns with the underlying
anatomy.

DISCUSSION

Sequence Design

The new imaging sequence presented in this work is the
solution of an optimization problem. To address this prob-
lem, we developed a T1-based magnetization preparation
and image acquisition strategy whereby the addition of
acquired images would result in three single-tissue type
images showing WM, GM, and CSF, with maximal SNR
values. The constraints of the problem, which correspond
to the initial assumptions, are the maximum TR, the min-
imum time interval between subsequent RF pulses, and
the use of gradient-recalled EPI for image data acquisition.
The double IR scheme and the three variable flip angle
image acquisitions emerged as a result of the simulated
annealing process.

Furthermore, the presented mathematical treatment
demonstrates that an appropriate formulation of the cost
function combined with a versatile optimization algorithm
can be applied to the generic problem of magnetization
preparation at the level of sequence design, and not just for
value optimization. Simulated annealing offered the nec-
essary robustness to deal with a complex optimization
problem. The emergence of the double IR scheme verified
that double IR is the optimum solution for the problem of
nullifying two tissue types based on T1 contrast. In addi-
tion, the reduction of the free variables at the second stage
of the optimization allowed the parameters to be calcu-
lated in in a reasonable time, and provided an easy way to
adjust the sequence to different T1 values and to try a
variety of cost functions with different weighting schemes.

The main advantage of the proposed method over the
double IR technique proposed by Redpath and Smith (10)
is that it does not require a precise estimate of the tissue
T1’s before the data are acquired. A reasonable variation of
T1 values, which is normally expected both between dif-
ferent subjects and within different areas of the same
brain, can be taken into account during the postprocessing
stage, by appropriate recalculation of the combination co-
efficients. Therefore, the proposed method appears to be

Table 3
Signal-to-Noise Ratio Measurements*

Gray matter image White matter image

Cortical gray matter 55 5
White matter 6.5 46.5
Caudate nucleus 27.5 6.5
Putamen 21 11
Thalamus 22 13
CSF 7.5 4

*Average signal-to-noise ratio estimates over different parts of the
resulting images. Measurements were taken from 3D EPI acquisi-
tions with matrix size 192�144�96 covering a 220�165�110 mm3

FOV with SENSE rate 2 (six normal volunteers). The values were
measured in homogeneous regions of interest, in different regions of
the brain and away from obvious artifacts.

FIG. 7. Axial oblique GM images
and sagittal oblique WM images
obtained during a 3D scan with
the proposed method. Coverage
of a 220 � 165 � 110 mm3 FOV
with a 192 � 144 � 96 matrix was
achieved in 10 min 21 s.
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more suited for routine use. Furthermore, it allows the
simultaneous acquisition of GM, WM, and CSF images, as
opposed to the single-tissue type image offered by the
double IR method in the same amount of time.

In the work presented here, EPI was chosen because it is
the work horse for BOLD fMRI studies, and because it
offers high efficiency in terms of SNR and image encoding
speed. An important drawback of EPI is its sensitivity to
geometric distortions and T*2 blurring, which ultimately
limit the achievable image resolution. Although EPI arti-
facts can to some extent be corrected, they must be taken
into account when evaluating the images. Potentially, one

could reduce EPI-related artifacts by either increasing the
SENSE rate or using interleaved EPI schemes, at the cost of
scan time and motion sensitivity. Special care must be
taken regarding the EPI fat ghosting. Because fat has a low
T1 value, the presented adding scheme can significantly
enhance such ghosting, as can be derived by extrapolating
the curves in Fig. 2 for the T1 values corresponding to fat.
Appropriate fat suppression is critical for the quality of the
final images.

Flip angle dependence, a well known problem in T1

measurement methods, is present but is not critical. If
qualitative results are sought, the high CNRs provided by

FIG. 8. SNR histograms from images of a normal volunteer. Graphs a and b show SNR distributions for the three tissue types and the whole
brain of the noncorrected GM and white images, respectively. In graphs c and d, the values have been normalized to the SNR values of
a nonweighted EPI reference image. Data are based on the 37 center slices of a 96-slice set.

Table 4
Expected SNR Values: Simulation Results*

T1 (in ms) EPI-GM image EPI-WM image MP-RAGE

800–840 (WM) 0.0–4.9 38.6–43.7 56.4–59.9
1300–1600 (GM) 33.7–34.7 0.0–7.4 21.5–33.4
3700–4300 (CSF) 0.0–7.8 0.0–2.5 2.5–6.1

*Simulated SNR values (normalized per unit time-arbitrary units) for two different acquisitions of a 128�96�64 matrix. The EPI scheme is
based on the first preparation scheme of Table 1 and combined for T1 values of 800 ms, 1550 ms, and 4000 ms for white matter, gray
matter, and CSF respectively. EPI characteristics: TE � 48 ms, 557 �s per echo and 6 min 41 sec total acquisition time. MP-RAGE
simulation was based on a manufacturer provided implementation, with TI � 725 ms, TD � 1400 ms, 6° flip angle, sampling rate 16 �s per
sample, TR � 5.7 ms, and TE � 2 ms. Average tissue water density was assumed as � � 0.708 for white matter, � � 0.832 for gray matter,
and � � 1 for CSF (24), while average T2* was assumed at 48.9 ms (25) for gray and white matter, and it was not taken into account for
CSF.
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the proposed method can compensate for the deviations
caused by a normal range of flip angle variation. If quan-
titative results are desired, the effects of flip angle devia-
tion can be corrected by using a B1 map to calculate the
combination coefficients.

On the other hand, inhomogeneities of the reception
profile have no effect on the tissue separation process.
Even though intensity inhomogeneities are present in the
final images, the separation process depends only on the
relationship between the signal in the three acquisitions.
Since the combination process is linear, a multiplicative
factor (e.g., coil sensitivity) does not affect it, and it is
transferred, unchanged, to the final images, where it can be
corrected using image-processing techniques like the one
presented.

Image Contrast

The results of both the theoretical evaluation and the in
vivo experiments show that the proposed method is capa-
ble of providing high-contrast anatomical images, with
CNR comparable to that achieved by established tech-
niques.

From the experimental results, it follows that the com-
bination of the proposed sequence with the 16-channel
Nova head coil can yield GM images showing an average
CNR on the order of 40–50 between cortical GM and WM,
at an isotropic resolution of 1.153 mm3 in less than 11 min.
The slightly lower values in the WM image are due mainly
to the coil sensitivity profile, the greater dependence of the
WM image on the accuracy of the initial T1 estimation, and
the lower proton density of WM, which result in overall
smaller CNR values.

As with any sequence that produces T1-weighted images,
the contrast values depend on the actual T1 values of the
tissues involved. This means that contrast is affected by T1

variations both within different regions of the brain of the
same subject and between different subjects (14,15,26–28).
The steep slope of the T1 response curve (Fig. 2) around the
zero point shows that the method is sensitive to even small
variations of T1 for the first zeroed tissue (WM in the GM
image, and GM in the WM image). Recalculating the image
combination coefficients for slightly different T1’s can help
accommodate T1 variations.

The initial assumption of the method—that the received
signal is the linear sum of signals originating from differ-
ent tissue types—takes into account partial volume effects.
Because of the linearity of the method, the image combi-
nation should be as effective in suppressing the signal
from the unwanted tissue types whether there are signals
from other tissue types in the same voxel or not. Hence, the
ratios formed in Table 3 (ranging from 1:9 to 1:3) are
indicative of the suppression of partial volume errors in
the resulting images.

When compared with state-of-the-art anatomical tech-
niques, such as the MP-RAGE sequence shown in Table 4,
the proposed EPI scheme produces comparable CNR val-
ues at lower resolutions with full-FOV acquisitions, espe-
cially between the basal ganglia and WM. However, if a
representation of cortical GM is sought, as was the initial
motivation for this work, there are three additional points
that should be taken into account. The first one is that the
expected SNR per unit time in the cortical GM is compa-
rable to or higher than that attainable with the MP-RAGE
sequence under consideration. Second, the signal values
in the GM-only image yielded by the proposed method are
almost constant over a wide range of T1 values, covering
the normal range of variation of GM T1. In contrast, over
the same range of T1 values the expected intensity in the
MP-RAGE image varies within 30% of the highest ex-
pected value. The third point concerns the signal ratios in

FIG. 9. Overlay of fMRI data on anatomical GM maps. The functional data (t-score maps) corresponding to foveal and periphery visual field
stimulation paradigms were acquired using 2D gradient-echo EPI with TR � 2000 ms, TE � 45 ms, flip angle � 90°, FOV � 220 � 165 mm2,
matrix � 192 � 144, slice thickness/slice gap � 1.8/0.4 mm, SENSE rate � 2. The anatomical data were obtained using 3D, in-plane,
single-shot, gradient-echo EPI with TE � 48 ms, matrix � 192 � 144 � 96, FOV � 220 � 165 � 110 mm3, SENSE rate � 2. Since both
the anatomical and functional data were acquired using in-plane, single-shot EPI acquisitions with the same parameters, they exhibit the
same deformations, which facilitates the coregistration.
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the resulting images. While both the expected and the
measured GM:WM ratio in the MP-RAGE images point
toward 1:3, in the EPI images an average signal ratio of 9:1
for cortical GM:WM is measured. This, and the fact that
there are three images, each of which provides information
about a specific tissue type, make the method more effi-
cient in dealing with the problem of partial volume effects.

Coregistration with BOLD fMRI Data

The proposed method is highly suitable for coregistration
with EPI-based fMRI data, since the deformations due to
off-resonance effects in both scans can be matched. Be-
cause the proposed method uses an EPI acquisition
scheme, one can choose identical acquisition characteris-
tics (e.g., resolution, gradient strength, and duration) for
both the functional and the anatomical scan. In this case,
both scans exhibit the same deformations and can be
aligned by rigid-body registration procedures. This should
facilitate fMRI interpretation on a case-by-case basis, par-
ticularly for high-resolution scans (29,30); however, it will
not necessarily simplify the analysis of group data.

CONCLUSIONS

A novel pulse sequence has been presented that is capable
of simultaneously producing GM-only, WM-only, and
CSF-only images based on T1 contrast. The proposed
method uses an initial estimate of the T1 values of the
tissues involved, but it can use postprocessing to take their
variations into account at the cost of a very minor CNR
penalty. This increased flexibility compared to conven-
tional methods enables its use in a wide range of subjects.

The proposed pulse sequence, which resulted from an
optimization procedure with no prior assumptions as to
the generic sequence form, converged to a variant of the
double IR technique that is currently used for brain tissue
segmentation, and approaches the optimal solution of the
tissue separation problem based on T1 values.

The proposed method is particularly well suited for
functional mapping applications because it provides high-

contrast anatomical maps using the same EPI acquisition
characteristics as the fMRI experiment. Other potential
applications may include cortical-thickness measurement
or substructure segmentation.

APPENDIX A

If the pulse sequence parameters are known, the function
b(t) can be derived from the Bloch equations. By solving
for Mz in the absence of an RF field B1, one gets

Mz�t� � M0 � �Mz�t0� � M0�e��t�t0�/T1 [A.1]

The effect of RF pulses can be easily modeled as

Mz
 � Mz

�cos��j� [A.2]

where �j is the flip angle of the jth pulse, and Mz
�, Mz

 is the
longitudinal component of the magnetization before and
after the application of the RF pulse, respectively.

Starting at time 0 with initial conditions Mz � Mz
in, and

normalizing by setting M0 �1, it can be shown that in the
generic case of a T1 preparation consisting of N pulses
with flip angles �i at time points ti, i � 1, 2, . . .N, Mz after
the Nth pulse is given by:

Mz�t� � 1 � ��
i�1

N�1��cos��i� � 1�� �
j�i1

N

cos��j��eti/T1�
� �cos��N� � 1�etN/T1 � �Mz

in � 1��
i�1

N

cos��i��e�t/T1, t � tN

[A.3]

If the sequence is repeated continuously without a system
relaxation interval, the equilibrium values for Mz at the
end of the preparation scheme, representing the condition
Mz�tn� � Mz

in � Mz
eq for the equilibrium state, will be:

M z
eq �

cos��N� � e�tN/T1��
i�1

N�1��cos��i� � 1���
j�i1

N cos��j��eti/T1� � �
i�1

N cos��i��
1 � e�tN/T1�

i�1

N cos��i�
[A.4]

It is straightforward to derive the signal weighting factor at
the n-th pulse b(t) analytically by substituting Mz

in

� Mz
eq in Eq. [A.3] as

b�tn� � sin��n��1 � ��
i�1

n�2��cos��i� � 1�� �
j�i1

n�1

cos��j��eti/T1�
� �cos��n�1� � 1�etn�1/T1 � �Mz

eq � 1��
i�1

n�1

cos��t��e�tn/T1�
[A.5]

The use of n reflects the adjustment of the sum and prod-
uct limits to the number of points applied up to the desired
time point. However, from a programming perspective,
especially with sequences that involve many RF pulses, it
is easier to calculate Mz

eq as a starting value and subse-
quently numerically evaluate b(t) using Eqs. [A.1] and
[A.2].

APPENDIX B

Simulated annealing was originally proposed by Kirk-
patrick et al. (12). It is based on an analogy between the
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optimization problem and the thermodynamic process of
slow cooling-down in molten metals. Due to the thermal
energy of the system, atom movements that result in a
higher potential energy configuration can occur. By slowly
lowering the temperature, and thereby decreasing the ther-
mal energy, the system settles down in a minimum energy
configuration.

Simulated annealing imitates this process by allocating
an initial amount of “thermal” energy to the system. As
shown in Fig. 10, an initial set of values is assumed for the
parameters of the optimization. These are varied by ran-
dom steps. As in any gradient descent method, steps that
decrease the value of the cost function are always ac-
cepted. However, steps that increase the value of the cost
function can also be accepted. In this case, the increase of
the cost function is compared to the value of a random
variable having a probability density function of the form

p � exp� � �E/T� [B.1]

where T is the assigned system temperature. If the increase
of the cost function is smaller than the current value of the
random variable, the step is accepted. This helps the sys-
tem escape from local minima.

The system temperature is decreased during the optimi-
zation process. The rules that specify after how many steps
and by how much it is brought down are called the an-
nealing schedule. As the temperature drops, the probabil-
ity of a movement uphill along the energy gradient is
reduced, and the optimization process tends to become a
conventional gradient descent method. However, if the
annealing process is slow enough (i.e., with the appropri-
ate choice of initial temperature and annealing schedule),
it can be successful in avoiding local minima.

Vanderbilt and Louie (13) described the application of
simulated annealing to continuous variable problems,
such as in the present design problem. It has been ap-
plied to various MR studies, as parameter estimation for

in vivo MR spectroscopy (MRS) (31), or 2D selective
excitation pulse design (32). In addition, Epstein et al.
(33) applied simulated annealing to MRI sequence opti-
mization.

For the purposes of the sequence optimization de-
scribed, several initial vectors were tried to ensure conver-
gence stability. Equally distributed times among the se-
lected maximum TR or a known optimal solution for a
smaller TR were used, even though the latter may intro-
duce a bias to the results. The sequence vector was varied
using random steps, the size of which was controlled by an
initial simplex size (16) of 100 ms for the timing variables
and 1.0 radians for the flip angles. Based on the vector, the
quantities bj(ti) were evaluated numerically using esti-
mates of the T1 values of the tissues of interest. The
weights aik were calculated from Eq. [2]. They were then
used to calculate the value of the cost function. Downhill
movements were always accepted, and a logarithmically
distributed random variable controlled the acceptance of
uphill movements, as described in Ref. 16. Although the
exact parameters for the simulated annealing optimization
depended on both the maximum TR and the T1 values
elected, and were the result of an empirical, trial-and-error
process, an initial temperature T of 106 with 5000 itera-
tions per annealing cycle resulted in a relatively stable
behavior in most cases. Reducing the number of free vari-
ables by considering three imaging and two inversion
pulses allowed us to reduce the initial temperature to 105,
and to use 2000 iterations per cycle. This significantly
reduced the computing time requirements. At the end of
each cycle, T was reduced to 0.98T.
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