National Institute of Allergy and Infectious Diseases
Link to NIAID Home Page Link to NIAID Home Page Link to NIH Home Page
NIAID Home Health & Science Research Funding Research News & Events Labs at NIAID About NIAID

News & Events
 News Releases
  2009
  2008
  2007
  2006
  2005
  2004
  2003
  2002
  2001
  2000
  1999
  1998
  1997
  1996
  1995
  By Topic
 Qs & As
 Media Inquiries
 Events & Calendars
 NIAID in the News
 Resources


National Institute of Allergy and
Infectious Diseases (NIAID)
http://www.niaid.nih.gov

FOR IMMEDIATE RELEASE
Wednesday, May 21, 2008

Media Contact: NIAID Office of Communications
(301) 402-1663
niaidnews@niaid.nih.gov


NIAID MEDIA AVAILABILITY
Scientists Discover How Common Vaccine
Booster Works

WHAT:

In an online paper in the journal Nature, Yale University researchers funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, explain how a common ingredient in many vaccines stimulates and interacts with the immune system to help provide protection against infectious diseases.

Vaccines must possess not only the bacterial or viral components that serve as targets of protective immune responses, but also ingredients to kick start those immune responses. In many vaccines, the bacterial or viral components themselves have this capability. For other vaccines, the immune system requires an added boost. Adjuvants are those substances added to a vaccine to help stimulate the immune system and make the vaccine more effective.

Currently the only vaccine adjuvants licensed for general use in the United States are aluminum hydroxide/phosphate formulations, known as alum. Although alum has been used to boost the immune responses to vaccines for decades, no one has known how it works.

In this paper, the Yale team, led by Richard Flavell, M.D., Ph.D., and Stephanie Eisenbarth, M.D., Ph.D., examined the immune system pathway and cell receptors used by alum. Many microbial compounds function as adjuvants by stimulating Toll-like receptors. These receptors identify microbial invaders and alert the body to the presence of a disease-causing agent, or pathogen. Alum, however, does not stimulate Toll-like receptors. The Yale team found that alum stimulates clusters of proteins called inflammasomes, found inside certain cells. Inflammasomes respond to stresses such as infection or injury by releasing immune cell signaling proteins called cytokines. Inflammasomes are a component of the innate immune system that operates in parallel with, but separate from, Toll-like receptors, also part of the innate immune system. 

To make this determination, Dr. Eisenbarth and her coworkers used mice that had been genetically engineered to be deficient in various components of a specific type of inflammasome, characterized by the presence of the protein termed Nalp3. The team demonstrated that an immune response did not occur in those animals with the deficient Nalp3 inflammasomes, despite the inclusion of alum, while it did occur in normal mice. The team’s findings provide the first convincing evidence that the Nalp3 inflammasome forms the basis for alum’s adjuvant action.

According to the study authors, several unanswered questions remain regarding how activation of this pathway controls a highly specific and long-lasting immune response generated by a vaccine. But this new information on the molecules that alum uses to activate the innate immune system should provide the keys to better understanding adjuvant function and should facilitate the design of new vaccine adjuvants.

ARTICLE:

SC Eisenbarth et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminum adjuvants. Nature DOI 10.1038/nature06939 (2008).

WHO:

Lynda Chiodetti, Ph.D., Program Officer, NIAID Division of Allergy, Immunology and Transplantation, is available to comment on this article.

CONTACT: To schedule interviews, contact the NIAID Press Office, 301-402-1663, niaidnews@niaid.nih.gov.

NIAID is a component of the National Institutes of Health. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on basic immunology, transplantation and immune-related disorders, including autoimmune diseases, asthma and allergies.

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov

###

back to top

E-mail update Get E-mail Updates

See Also

  • Media Contact Info
  • News Releases by Topic

  • NIH Logo

    The National Institute of Allergy and Infectious Diseases is a component of the National Institutes of Health, U.S. Department of Health and Human Services

    NIAID Logo

     
    Print Icon Print this page
    E-mail Icon E-mail this page
    E-mail update Get E-mail Updates

    See Also

  • Media Contact Info
  • News Releases by Topic