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A Normal Distribution for Tensor-Valued Random
Variables: Applications to Diffusion Tensor MRI

Peter J. Basser* and Sinisa Pajevic

Abstract—Diffusion tensor magnetic resonance imaging
(DT-MRI) provides a statistical estimate of a symmetric,
second-order diffusion tensor of water, , in each voxel within
an imaging volume. We propose a new normal distribution,
( ) exp( 1 2 : : ), which describes the variability

of in an ideal DT-MRI experiment. The scalar invariant,
: : , is the contraction of a positive definite symmetric,

fourth-order precision tensor, , and . A correspondence is
established between : : and the elastic strain energy density
function in continuum mechanics—specifically between and
the second-order infinitesimal strain tensor, and between and
the fourth-order tensor of elastic coefficients. We show that
can be further classified according to different classical elastic
symmetries (i.e., isotropy, transverse isotropy, orthotropy, planar
symmetry, and anisotropy). When is an isotropic fourth-order
tensor, we derive an explicit analytic expression for ( ), and for
the distribution of the three eigenvalues of , ( 1 2 3), which
are confirmed by Monte Carlo simulations. We show how can
be estimated from either real or synthetic DT-MRI data for any
given experimental design. Here we propose a new criterion for an
optimal experimental design: that be an isotropic fourth-order
tensor. This condition ensures that the statistical properties of
(and quantities derived from it) are rotationally invariant. We also
investigate the degree of isotropy of several DT-MRI experimental
designs. Finally, we show that the univariate and multivariate
distributions are special cases of the more general tensor-variate
normal distribution, and suggest how to generalize ( ) to treat
normal random tensor variables that are of third– (or higher)
order. We expect that this new distribution, ( ), should be
useful in feature extraction; in developing a hypothesis testing
framework for segmenting and classifying noisy, discrete tensor
data; and in designing experiments to measure tensor quantities.

Index Terms—Covariance, distribution, experimental design,
fourth-order, Gaussian, normal, precision, probability, random
variable, second-order, strain-energy, tensor.

NOMENCLATURE

Vector random variable.
Second-order symmetric tensor random variable.
Precision matrix.
Fourth-order symmetric precision tensor.
Quadratic function (form) of elements of .
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Quadratic function of elements of.
Normal probability density function (pdf) of.
normal pdf of .
Mean tensor of .

(written as a vector).
Lamé constant and scalar parameter used in
isotropic .
Shear modulus and scalar parameter used in
isotropic .
Kroneker delta (3 3), and isotropic second
order tensor.
th eigenvalue of .
th eigenvalue of (3 1).

“whitened” th eigenvalue of .
th eigenvalue of precision matrix.

Experimental error covariance matrix.
b-matrix summarizing effects of pulse gradients
on nonmagnetic resonance (NMR) signal.
NMR signal intensity for given b-matrix.
Design matrix for DT-MRI experiment.

I. INTRODUCTION

D IFFUSION tensor magnetic resonance imaging
(DT-MRI) [1] provides a measurement of a sym-

metric second-order translational diffusion tensor of water,
, for each voxel within an imaging volume. Recently, it was

shown that in an ideal DT-MRI experiment, noise in the esti-
mate of diffusion tensor element data is distributed according
to a multivariate Gaussian distribution [2], [3]. In this analysis,
second-order symmetric diffusion tensors were written as 6
1 vector random variables.

However, writing a tensor as a vector fails to preserve certain
intrinsic algebraic relationships among its elements and their
geometric relationships with the laboratory coordinate system in
which the tensor elements are measured. For example, algebraic
operations naturally performed on(e.g., decomposing it into
its eigenvalues and eigenvectors), or geometric operations (e.g.,
projecting it along a particular direction, or applying an affine
transformation to it), are unwieldy whenis written as a vector.

Additionally, the vector form of the estimated covariance (or
precision) matrix of tensor elements offers no insights into the
way noise or features of the experimental design affects their
distribution or that of other estimated tensor-derived quantities.
The democratic way in which the vector representation treats
tensor components makes it difficult to appreciate their unique
roles.

The new tensor-variate normal distribution we propose here
preserves the algebraic form and geometric structure of the
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tensor random variable and, thus, our ability to perform various
algebraic and geometric operations on it.

The key idea motivating this work is intuitive. Just as vector-
valued data are written in vector form in the exponent of a
multivariate normal distribution [4], second- (and higher) order
tensors should be written in tensor form in the exponent of a
tensor-variate normal distribution.

In this paper, we propose the form of a normal distribution
for a symmetric second-order tensor random variable, , in
which we introduce a positive definite symmetric fourth-order
precision tensor, , as a parameter. We apply symmetry ar-
guments to simplify the form of , and suggest how to clas-
sify according to different classical elastic symmetries (i.e.,
isotropy, transverse isotropy, orthotropy, planar symmetry, and
anisotropy). The case in which is an isotropic fourth-order
tensor is of particular importance, since it implies that the sta-
tistical properties of are independent of the choice of the
coordinate system in which the tensor components are mea-
sured. For this case, we derive explicit expressions for , and
for the distribution of the three eigenvalues of, ,
which are confirmed by Monte Carlo (MC) simulations. We also
propose an expression that can be used to obtain sample esti-
mates of , which one can calculate from data. Using MC
simulated DT-MRI experiments, we generate sample estimates
of for typical values of found in gray matter, white matter,
and cerebrospinal-fluid-filled regions of the brain. Finally, we
show how this statistical framework can be used to aid in the
design of optimal DT-MRI experiments.

II. THEORY

The scalar exponent of a multivariate normal pdf, , con-
tains a quadratic form, , of an -dimensional normal
random vector, , and the precision (or inverse covariance) ma-
trix,

(1)

where is the determinant of the matrix, . In tensor par-
lance, is ascalar contraction—a linear operation that re-
duces one or more higher order tensors to a zeroth-order tensor
(or scalar). In this case, 1 above is a scalar contrac-
tion of a second-order precision tensor,2 , and the first-order
tensor, . The result is a linear combination of quadratic func-
tions formed from the products of the elements of, , and
the corresponding elements of, .

In generalizing the multivariate normal distribution to a
tensor-variate normal distribution, we seek atensor analog
to the quadratic form above containing terms that are
products of the elements of , . The most general

1We use the Einstein summation convention in which indexes that are re-
peated in the expression are summed over the range of their allowable values.
So, for example,x M x means x M x .

2MMM is usually referred to as a matrix, but it actually transforms as a second-
order tensor.

scalar function that contains all possible linear combinations of
these tensor elements is

(2)

In this case, is a scalar contraction of the fourth-
order tensor, , and a second-order tensor,. The result is a
linear combination of quadratic functions formed from products
of the elements of , , each weighted by the corre-
sponding elements of , .

We propose the normal distribution for a second-order tensor
random variable, , of the form

(3)

where is a fourth-order precision tensor andis the normal-
ization constant to be determined below.

A. Analogies Between and the Elastic Strain
Energy Density

The exponent in (3), has the same form
as the strain energy density,, (e.g., see [5]) that appears in the
theory of linear elasticity.3 Specifically, there is a direct analogy
between and the infinitesimal strain tensor, and between
and the fourth-order tensor of elastic coefficients.

In the theory of elasticity must be positive definite to ensure
that the material is elastically stable, i.e., that stresses developed
within the sample always act to return the object to its equilib-
rium configuration [6]. In this statistical application, the same
requirement must apply to ensure that the variances of the com-
ponents of are all positive.

The fourth-order precision tensor,, shares other proper-
ties with the tensor of elastic coefficients. also possesses
symmetries, which are reflected by its value being unaltered
by the exchange of certain pairs of indexes. For example,
since the product of two elements of the second-order tensor
commutes in (i.e., ), the
corresponding coefficients of should also be the same
(i.e., ). Moreover, since is symmetric (i.e.,

and ), we require that
and , respectively.4 Owing to these symmetry
conditions, there are at most 21 independent elements ofthat
we must specifya priori [8], or estimate from sample data.

In the theory of elasticity, these symmetry conditions arise
because should be independent of the coordinate system in
which the components of the strain tensor are measured (e.g.,
see [8]). This requirement applies equally well to . The
probability that a particular tensor arises is an intrinsic property
that should be independent of the coordinate system in which

is written. This requirement, that is a rotationally
invariant quantity, also ensures thatis a fourth-order tensor,
by a simple application of the Quotient Rule Theorem [9].

The theory of elasticity also provides us with a scheme to
classify fourth-order tensors of elastic coefficients according

3W measures the amount of internal energy stored as a homogeneous elastic
body deforms.

4It is known that a fourth-order tensor possessing these symmetry properties
given above is self-adjoint (e.g., see [7]).
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to the number, types, and degrees of symmetries they possess.
The most general linear constitutive law of an elastic solid
corresponds toanisotropy (or aeolotropy), requiring all 21
constants to specify the form of the tensor of elastic coefficients
[5]. Other models of elastic behavior require fewer constants
(e.g., see [5]). These include the cases ofplanar symmetry,
requiring 13 elastic coefficients;orthotropy, requiring nine
elastic coefficients;transverse isotropy, requiring five elastic
coefficients; andisotropy, requiring only two elastic coefficients.
Below, we analyze the most tractable and important case in
detail, isotropy.

B. Relationship Between the Fourth-Order Precision Tensor,
, and the 6 6 Precision Matrix,

The scalar contraction, , above can also be
recast as a quadratic form, , in which the random
second-order tensor,, is rewritten as a six-dimensional (6-D)
column vector, , and

is a 6 6 symmetric matrix. An important result that is
often used in continuum mechanics, and which we also exploit
here, is that any fourth-order tensor,, satisfying the symmetry
properties given in the previous section, can be mapped to a
6 6 symmetric matrix . Both and contain the same
21 independent coefficients (e.g., see [5], [7], and [10]). This
correspondence allows us to construct a 66 precision ma-
trix, , from any fourth-order precision tensor, and, thus,
to construct a corresponding multivariate normal distribution
directly from a tensor-variate normal distribution. Below, we
use this correspondence to calculate the normalization constant
for the tensor-variate distribution using the mathematical ma-
chinery developed for multivariate distributions.

C. Normalization Constant for the Tensor-Variate Normal
Distribution

We obtain the normalization constant of the tensor-variate
normal pdf by integrating the distribution over the entire range
of all six independent elements of the symmetric tensor,. This
integration is carried out in the following way. We require that

(4)

Here, the tensor dot product “:” denotes the contraction of
second-order tensors with the fourth-order precision tensor.5 If
the random tensor has a nonzero mean tensor,, we can al-
ways center the distribution about its mean using .
Then, the distribution becomes

(5)

The exponent in the integrand can be rewritten as a quadratic
form, where the coefficients of the quadratic terms inare
contained in the matrix,

(6)

where and (7), shown at
the bottom of page, holds. The integral in (6) is known from the
theory of multivariate normal distributions (e.g., see [11]); the
normalization constant is readily obtained from

(8)

By writing as four (3 3) square block matrices, as shown
in (7), and by noting that the diagonal block matrices are sym-
metric (i.e., and ), we can write in (8)
simply in terms of these four block matrices

(9)

So, the tensor-variate normal distribution with precision tensor,
, and mean tensor, , is

(10)

The distribution in (10) possesses the basic form and prop-
erties of a normal distribution. Since is positive definite,

is always nonnegative, and . Also,
the exponent in (10) is a quadratic function of the random vari-
able (in this case, a tensor random variable) whose mean and
precision tensors appear in the exponent in an analogous way to
the mean vector and precision matrix of the multivariate normal
distribution.

5In the case of tensor products between tensors of unequal order, such asDDD

andAAA, we use the definition,DDD :AAA = D A � � = D A .

(7)
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In fact, we can exploit the formal correspondence between
the tensor-variate normal distribution in (10) and the multi-
variate normal distribution in (1) to obtain many properties of
the tensor-variate normal distribution by using mathematical
tools and approaches that have already been developed to
analyze multivariate distributions (e.g., see [11]).

D. when is a General Isotropic Fourth-Order Tensor

We now derive the explicit form of for the case in which
is a general isotropic fourth-order tensor, . In this context,

isotropy means that the precision tensor is rotationally invariant,
i.e., its form is unchanged under any proper rotation, reflection,
or inversion of coordinates in which the components ofare
measured.

When is a symmetric tensor, the most general form of
is (e.g., see [8] and [10])

(11)

where and are as yet undetermined constants,6 and is
the second-order isotropic tensor. This choice, also
corresponds to the tensor of elastic coefficients for a general
isotropic linearly elastic solid.

The scalar contraction of the exponent of the tensor-variate
normal distribution, , becomes

(12)
In Appendix A, we show that this expression reduces to a linear
combination of two scalar invariants of, i.e.,

(13)

The distribution must assume the same form under any
proper rotation, reflection or inversion of laboratory coordinates
because it depends only on functions ofthat are rotationally
invariant, and . Thus, we find that isotropy
of implies rotational invariance of .

If is a tensor whose mean is , it is also easy to show that
the tensor contraction in (13) becomes

(14)

so that is also rotationally invariant in this more
general case.

To obtain the form of using in (11), we again
write as a vector, ,
and rewrite the scalar contraction in (13) as a quadratic form,

. Then, the precision matrix, , from (7) becomes

(15)

6In continuum mechanics,� and� correspond to the Lamé constant and shear
modulus of the isotropic material, respectively.

Clearly, since the block matrix, , is not diagonal, the three
diagonal elements of are mutually correlated. However, the
structure of implies that coupling among , , and
is independent of their size and of the particular choice of the

, , and axes in the laboratory coordinate frame. Since
, diagonal elements of are not correlated with off-diagonal

elements of . However, since , where is the 3
3 identity matrix, the three off-diagonal elements ofare

mutually uncorrelated, and have equal variances.
Using (15), simplifies to

(16)

where

(17a)

and

(17b)

where it is assumed that the mean ofis given by in the
distributions above.

Thus, a meaningful distinction between the new
tensor-variate and multivariate normal distributions is the
way in which their covariances are characterized. While ,
given in (11), is an isotropic fourth-order tensor, the corre-
sponding matrix for the multivariate distribution, given in
(15) has a nonintuitive block form, which is clearly not a 6-D
isotropic precision matrix. Only in the special case in which

, when all elements of are independently distributed,
is a diagonal matrix. Even then, all of its diagonal ele-
ments are still not equal. Clearly, the relationship between the
tensor-variate and multivariate normal distributions is not a
trivial one.

In the subsequent sections, we will use the new tensor-variate
distribution for to obtain an analytical expression for
the distribution of the eigenvalues of, and to design optimal
DT-MRI experiments.

E. The Distribution of the Eigenvalues of for

For in (12) we can immediately obtain the joint
probability distribution of , , and , the three eigenvalues
of . The distribution, is a special case of
in (17a) and (b), obtained by performing a principal coordinate
transformation in which the three diagonal elements ofare
mapped to the three eigenvalues of. Integrating over all pos-
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sible values of the off-diagonal elements, and substituting,
, and for , , and in the distribution above, we

obtain

(18)

where , , and are the three mean eigenvalues. Equiva-
lently, we can obtain the result in (18) by substituting the expres-
sions, and
into (13), and by collecting terms.7

The joint distribution of the eigenvalues of is character-
ized by only two parameters, and . While the eigenvalues
are correlated, their coupling is independent of their order or
assignment (which is not the case for eigenvalues of random
matrices described by a Wishart distribution [4]). This finding
follows because with its exponent given in (13), depends
only on and , scalar invariants of ,
which are inherently insensitive to the order of the eigenvalues.
Thus, permuting the eigenvalue order will always leave this dis-
tribution unchanged.

We can uncorrelate or “whiten” by diag-
onalizing in (15) and (18) using its three eigenvalues,

, , and ; and its three
corresponding normalized eigenvectors, ,

, and . In the principal
frame of , is simply the product of three inde-
pendent univariate normal distributions

(19)

when we use the transformed random variables

or

(20)

7N.B. The theoretical distribution,p( ;  ;  ), may not always conform to
an empirical distribution obtained, e.g. by using MC simulations, because of the
well-known sorting artifact that occurs when one orders calculated eigenvalues.

Interestingly, is proportional to , which mea-
sures the average size of the isotropic part of. The other
two variables, and , characterize the anisotropic part
of . Specifically, measures the difference between the
predominant eigenvalue and the average of the two remaining
eigenvalues, while measures the difference between the two
latter eigenvalues. Together, , , and represent novel
parameters with which to characterize the size and shape of the
probability ellipsoid8 one can construct from .

More importantly, the coefficients and in the isotropic
fourth-order precision tensor can easily be related to the vari-
ances of in (19)

(21)

Above, the variances, and , correspond roughly to the
“Trace” and the “Skewness” of the uncertainty of, respec-
tively, as in (20). Since and can be estimated statistically
from sample data, and can now be expressed in terms of
measurable parameters,9 and

(22)

This result allows us to write in (12) explicitly in terms of
and

(23)
Note that in deriving , we make no explicit assump-
tion that all eigenvalues are positive, i.e., that is positive
definite. This condition could be added as a constraint to the
tensor-variate distribution but the distribution would no longer
be Gaussian. As an aside, provides no explicit information
about the distribution of eigenvectors ofwhen .

F. MC Simulations of

In Fig. 1, we plot MC estimates of and versus their
theoretical values obtained from (21). First, MC estimates of

are generated from a multivariate normal distribution with
the precision matrix given in (15). Then, the eigenvalues,,

, and are computed for each , and an empirical dis-
tribution, , is constructed, from which and
are estimated. Agreement between the analytical distribution in
(18) and MC simulated data is excellent. Values ofand are
chosen randomly within their allowable range (as described in
footnote 9), but so that the distributions of distinct eigenvalues

8Surfaces of constant probability are obtained for the distribution of the eigen-
values ofDDD above by setting the exponent to a constant, e.g.,

( ;  ;  )

2�+ � � �

� 2�+ � �

� � 2�+ �







= 1:

This quadratic form can be represented by a cylindrically symmetric, pancake-
or cigar-shaped, three–dimensional ellipsoid (e.g., see [12]) whose three prin-
cipal axes are� , � , and� .

9N.B. In order for the exponent of the tensor-variate cumulative distribution
to be unitless,� and� must be in units that are the inverse square of the eigen-
values’ units, consistent with� and� being inverse variances. To ensure pos-
itive definiteness of the covariance matrix, we also require that� � 0 and
� � �2�=3.
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Fig. 1. Three-hundred points from MC simulations of second-order tensor,
DDD, with ( ;  ;  ) = (1200; 700; 200), typical of brain white matter. The
precision of MC estimates was 0.2%. This figure indicates that (19) precisely
and accurately predicts the uncertainty of the estimated eigenvalues ofDDD.

do not overlap, thus avoiding a known “sorting” artifact that
would bias the estimates of and (see [13]).

G. Optimal Experimental Design—The Rotational Invariance
Principle

Several groups have proposed methods for optimally
designing DT-MRI experiments in which independent experi-
mental variables, such as the number of gradient acquisitions,
the gradient directions, and gradient strengths, are chosen to
minimize some objective or performance measure [15]–[19].
Skareet al.have proposed minimizing the condition number of
the covariance matrix of the estimated diffusion tensor elements
[15], while Jones and Papadakis minimize the orientational
dependence of the variance of the fractional anisotropy (FA)
[16]–[19].

Here, we propose that anecessarycondition for an optimally
designed DT-MRI experiment is that be an isotropic fourth-
order tensor, of the form given in (11). Since describes
the observed variations of due to background noise in
the measurements, this condition will ensure that , and
consequently all tensor-derived quantities (e.g., FA, Trace, and
the relative anisotropy), have orientationally invariant statistical
properties. Certainly, the constraint that be an isotropic
fourth-order tensor can be used in conjunction with other
objective functions or performance measures.

To analyze different DT-MRI experimental designs we first
consider the log-linear form of the basic model relating the
NMR signal to the diffusion tensor [20]

(24)

where is the measured echo intensity,s are the
elements of the symmetric b-matrix constructed from all applied
gradient waveforms. The predicted form of the precision matrix
for this model is given by

(25)

where is the error covariance matrix, and is
the experimental design matrix whose ith row,

, contains the b-matrix el-
ements associated with the ith gradient acquisition [20].

It is reasonable to assume that experimental variances are
uncorrelated in the MR experiment, so that is diagonal
[20]. However, Batchelor further assumes that all experimental
variances are equal.10 Then, (25) becomes , and

. Moreover, it is sometimes possible to
design MR sequences in which , where and
represent the peak magnetic field gradients (diffusion gradients)
applied along the jth and kth coordinate directions,and ,
respectively.11 In the special case in which all gradients used
in an experiment have the same magnitude (i.e., )
then . Under these restricted assumptions,
is proportional to themean normal matrix( ) used by
Batchelor12 [22]. To compare our predictions with those of
Batchelor, we will first consider experimental designs in which
all these simplifying assumptions have been applied.

Batchelor proposed that an MR acquisition scheme in which
diffusion gradients were oriented at vertices of an icosahedron
possessed orientationally (i.e. rotationally) invariant statistical
properties of the estimated diffusion tensor by showing that the

for this scheme is the same as the obtained
when using a gradient sampling scheme with an infinite number
of gradient vectors that are uniformly distributed on the surface
of a unit sphere [22].

Within the context of the tensor-variate distribution we can
understand Batchelor’s notion of rotational invariance: his

has the same form as , the precision
matrix associated with in (11) with . Choosing an
isotropic fourth-order tensor with , we
are able to reproduce Batchelor’s exactly for an isoc-
ahedral gradient scheme, and for a gradient sampling scheme
with an infinite number of gradient vectors that are uniformly
distributed on a unit sphere13 [22]. This is shown in Fig. 2.

In fact, many other gradient schemes can be constructed
that satisfy this rotational invariance requirement. The simplest
rotationally invariant gradient scheme uses only six gradient
directions. It consists of gradient vectors whose coordinates
are the noncollinear vertices of an icosahedron. This scheme is
identical to one proposed in [23], and is given in Table I. Interest-
ingly, one finds that gradient designs using the ten noncollinear
vertices of a dodecahedron (the dual regular polyhedron of
the icosahedron), an icosidodecahedron (polyhedron obtained
by adding a tetrahedron on each of the faces of the dodeca-
hedron), a Buckminster “Fullerene,” as well as other patterns
(i.e., those of Jones [16] and Muthupallai [23]) produce rota-
tionally invariant experimental designs with the same values

10It is important to note that this assumption was not made in [20],
in which a first-order correction was applied to account for the effect of
the log-linear transformation on the variance of the measured signal.

11This assumes that there are no cross-terms arising from imaging gradients
[21].

12MMM = (1=� )B B � NMNMMNMMNM where N is the number of
acquisitions.

13Note, the matrix “A” used in Batchelor is a special case of the matrix “B”
used in [20] and should not be confused with our use ofAAA as a fourth-order
tensor.
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Fig. 2. Elements of the predicted precision matrix,MMM , obtained
for experimental designs whose gradient vectors lie on the vertices of an
icosahedron, dodecahedron (the dual regular polyhedron of the icosahedron),
an icosidodecahedron (polyhedron obtained by adding a tetrahedron on each of
the faces of the dodecahedron), a Buckminster “Fullerene,” and the polygons
of Jones [16] and Muthupallai [23]. ThisMMM is also proportional to the
MNMMNMMNM matrix obtained for the infinite uniform directional gradient sampling
scheme described by Batchelor [29].

TABLE I
DIFFUSION GRADIENT VECTORSWRITTEN IN TERMS OFTHEIR x, y, AND z

COMPONENTS, fG ;G ;G g. THE SIX VECTORSABOVE LIE ON AN

ICOSAHEDRON. ALTHOUGH IT HAS TWELVE VERTICES, THE ICOSAHEDRON

IS ANTIPODALLY SYMMETRIC, SO ONLY SIX DISTINCT ORIENTATIONS

ARE INDEPENDENT. THE QUANTITY f IS FIBONACCI’s GOLDEN RATIO,
f = (

p
5 � 1)=2 � 0:61803. THIS ACQUISITION SCHEME IS

IDENTICAL TO WHAT WAS PROPOSEDPREVIOUSLY IN [23]

of and . for these designs is shown in Fig. 2. In
Fig. 3, we consider the gradient scheme of Papadakis [17].
Interestingly, we find that it is approximately, but not strictly
isotropic.

The advantage of using this new tensor-variate distribution
framework to design DT-MRI experiments is that we can
consider gradient schemes having different numbers of gradient
acquisitions, gradient strengths and gradient magnitudes rather
than those with uniform gradient strength. We can also use
this framework to show that any combination of rotationally
invariant experimental designs (with arbitrary rotations and
scaling factors) will produce a rotationally invariant exper-
imental design, so that these designs can be concatenated,
producing a combined design that is also rotationally invariant.
When combining these different designs, the constant of
proportionality changes, but the precision matrix with
remains isotropic in form. Moreover, we are not limited to one
particular choice of to produce a rotationally invariant
DT-MR experiment.

Additionally, our statistical framework also provides a natural
way to assess the degree of rotational invariance of any exper-
imental design, or rather, the degree to which an experimental

Fig. 3. MMM obtained for the Papadakis scheme. This scheme has 12
directions but they are not vertices of icosahedron, although it resembles
it. The MMM is approximately isotropic, but not exactly isotropic. It is
obtained by minimizing the variance in the elements ofDDD (Papadakis, personal
communication).

design deviates from statistical isotropy. One way is to measure
the mean-squared deviation betweenfor a particular exper-
imental design and an isotropic fourth-order precision tensor

, but many other such measures can be contemplated.

H. Estimating From Simulated DT-MRI Data

Note that formalism assumes a linear relationship
between the measured MR signal and the unknown diffusion
tensor elements with additive Gaussian noise. In the MR
experiment, however, this relationship is nonlinear, and, if the
log-linear form as in (24) is used, the noise is not additive
[24]. Thus, the actual precision matrix obtained by using the
least-square solution will differ from . However, we
defer these issues for another paper and here we just report MC
simulations of DT-MRI experiments that yield an “isotropic”

.
We performed MC simulations [13] to synthesize noisy

replicates of diffusion tensors, , typical of those measured
in isotropic gray matter regions of the human brain with
DT-MRI using experimental parameters provided in [25].
From these MC data, we obtained sample estimates of
and using formulae described in Appendix B. Estimated
precision matrices using (B.2) for simple schemes like the one
shown in Table I, do not produce isotropic precision matrices
as predicted by (25) due to the log-linear transformation of the
MR signal data. However, we found that when using a large
number of directions, we can obtain approximately isotropic
designs, but with not necessarily equal to. Fig. 4 shows

displayed as a 66 matrix with coefficients organized as
in (7). Such a relationship holds rather well in the case of
isotropic diffusion and a large number of gradient directions
( 50 or more); for the data shown in Fig. 4 the number of
directions was 60. The two matrices displayed show results for
the cases when no nondiffusion-weighted (non-DW) images
were used in the simulation, and where ten non-DW images
were used. Although the actual values ofand , and their
ratio, depend on the number of non-DW images, the isotropic
form appears to hold up to 20 non-DW images. However, in the
case of anisotropic diffusion the log-linearization introduces a
dependence of on the mean values of . Investigating this
problem and other problems of optimal design will be a subject
of another paper.
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Fig. 4. Elements of the estimated precision matrixMMM , organized as in (7), and obtained using (B.2) on MC replicates of a simple acquisition scheme consisting
of three-fold repetitions of the gradients, which are the vertices of a dodecahedron. In (a) no nondiffusion-weighted images were used whereas in (b)ten
nondiffusion-weighted images were used in the experimental design. The elements in the lower diagonal positions equal 4�. It is easy to see that� �= 25 in
both cases, and�(0) �= �8, �(10) �= 8; hence,� + 2� should assume values 42 and 58, respectively, which is close to the actual values of the three diagonal
elements in the upper diagonal matrices.

Note that the formulae given in Appendix B can also be used
to obtain estimates of from empirically estimated data on a
voxel by voxel basis, using Bootstrap methods to resample the
set of acquired diffusion weighted images [3].

III. D ISCUSSION

DT-MRI applications require a normal distribution for a
tensor-valued random variable. While the multivariate normal
distribution per se can describe the variability of individual ele-
ments of , it does not naturally yield other useful information
[2]. Specifically, we would like to predict how the distribution
of would change if the laboratory coordinate system were
rotated, or if a general affine transformation were applied to

, for example, by applying shearing or dilatation operations
required in image warping and registration applications [26].
It is also of interest to know how the first and higher moments
of the apparent diffusion coefficient behave. This quantity is
obtained by projecting the diffusion tensor along a particular
direction. It is also of interest to know how the principal dif-
fusivities (eigenvalues) and principal directions (eigenvectors)
of are distributed. Moreover, we would also like to know
the distribution of scalar invariants of (e.g., and

that characterize the type and degree of anisotropic
diffusion.

On a more fundamental level, a tensor-variate distribution
is needed because, at present no statistical model describes
variability of second and higher-order tensors, which would
be useful in prediction, estimation, filtering, and hypothesis
testing applications of tensor data, and in improving the ability
to design and interpret experiments involving tensor data.

A key attribute of using a fourth-order tensor,, to char-
acterize the covariance structure of the tensor-variate distribu-
tion—rather than rewriting it as a vector—is that it preserves
the form of the tensor random variable,, and our ability
to perform admissible algebraic operations on it.14 Unlike
the multivariate distribution—whose only natural coordinate

14Algebraists say that two vector spaces of the same dimension are
“isomorphic,” but that the isomorphism is not “canonic.” in the sense that
the isomorphism is not uniquely prescribed. Such is the case with the
vector and tensor-variate distributions.

system is that of the covariance matrix,—the tensor-variate
distribution refers the components of and explicitly to
the reference or laboratory coordinate system.

However, because we have also shown how to convert be-
tween vector- and tensor-variate Gaussian distributions, we can
employ all of the mathematical and statistical machinery devel-
oped for multivariate Gaussian distributions (e.g., see [11]) to
analyze tensor data without having to rederive these findings
and results.

The tensor formalism also allows us to view univariate and
multivariate normal distributions as special cases of the more
general tensor-variate distribution. The univariate distribution
results from the contraction of two zeroth-order tensor random
variables and a zeroth-order precision tensor; the multivariate
distribution results from the contraction of two first-order
random variables and a second-order precision tensor. In
general, an th-order tensor-variate normal distribution can be
constructed by contracting twoth-order random tensors and a

th-order precision tensor. In this way, we are able to generate
distributions for random variables that are tensors of second
and higher order.

There are a number of disciplines to which this new statistical
methodology could be applied. In imaging sciences and signal
processing, the most obvious application is to diffusion tensor
MRI data [1], [20]. This new framework will help us estimate
moments of the tensor-variate distribution, and perform nu-
merous hypothesis tests for diffusion tensor-derived quantities
in clinical, biological, and materials sciences applications.
In the physical sciences, quantities such as the moment of
inertia tensors, rotational or spin-diffusion tensors, and elastic
coefficient tensors of elastic media, nematics, and crystals
[27] are routinely measured. In some cases, they may conform
to a normal tensor-variate distribution, especially if they are
measured using regression methods (e.g., as in [20]). In the
physics of continuous media, and in materials engineering,
tensor quantities arise in constitutive equations that are used to
describe charge, mass, momentum, and energy transport. These
include the translational diffusion tensor, the particle dispersion
tensor, the fabric tensor, the electrical conductivity tensor, the
thermal conductivity tensor, and the hydraulic permeability
tensor. These quantities are measured using a variety of
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methods, and in some cases, their individual components may
also conform to a normal distribution that could be described
using the formalism above. Finally, many input/output matrix
models used in engineering and in the social sciences may have
coefficients that are also described by this new distribution.

IV. CONCLUDING REMARKS

The idea of using the tensor contraction operation (in this
case, applied to fourth- and second-order tensors) in the expo-
nent of a normal distribution appears to be novel to the theory of
statistical distributions, and significantly extends the scope and
applicability of the normal distribution to accommodate many
types of high dimensional data.

In the near term, this new tensor-variate distribution should
improve our ability to estimate and quantities derived from
it in DT-MRI studies. It should also lead to the development of
hypothesis tests with which to analyzein vivo DT-MRI data.
Finally, it should lead to improvements in the experimental de-
sign of DT-MRI studies, providing a unifying framework for
understanding the effect of changing independent experimental
parameters.

APPENDIX A
FOR AN ISOTROPIC TENSOR

When is an isotropic fourth-order tensor, the contraction
can be written as

(A.1)

With a little algebra, this simplifies to15

(A.2)

Now, using the definitions (see [28])

(A.3)

we can rewrite the tensor contraction in (A.1) as

(A.4)

which is the result we set out to show.

APPENDIX B
FORMULAE FOROBTAINING SAMPLE ESTIMATES OF AND

Sample estimates of the mean and precision tensors for the
tensor-variate distribution are readily obtained from simulated
DT-MR data.

The sample mean tensor for a sample of sizeis

(B.1)

15If DDD is interpreted as an infinitesimal strain tensor, and its parameters are
elastic constants, then this expression is exactly of the form of the stress of an
isotropic solid (e.g. see [8] and [28]). Moreover, the termDDD : AAA : DDD can be
interpreted as a strain energy function for such a material.

The estimate of the fourth-order precision tensor can be
obtained through its relationship to the precision matrix,,
[see (7)]. The estimate of the precision matrix is the inverse of
the unbiased estimate of the covariance matrix of the diffusion
(column) vector,

(B.2)

The resulting can then be used to obtain the elements of
using (7).
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